WorldWideScience

Sample records for science research program

  1. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  3. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  4. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  5. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  6. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  7. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  8. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications...

  9. Ground-Based Research within NASA's Materials Science Program

    Science.gov (United States)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  10. Integrating Research into an Undergraduate Family Sciences Program

    Science.gov (United States)

    Khelifa, Maher; Sonleitner, Nancy; Wooldridge, Deborah; Mayers, Gloysis

    2004-01-01

    The authors report the outcomes of introducing undergraduate research to family science majors at Zayed University, United Arab Emirates. The program has enriched students' educational experiences and has had tangible benefits. In addition to acquiring research skills, students improved in critical analysis, originality, independent learning,…

  11. Academic and Research Programs in Exercise Science, South Korea.

    Science.gov (United States)

    Park, Kyung-Shin; Song, Wook

    We appreciate the opportunity to review academic curriculum and current research focus of Exercise Science programs in South Korea. The information of this paper was collected by several different methods, including e-mail and phone interviews, and a discussion with Korean professors who attended the 2009 ACSM annual conference. It was agreed that exercise science programming in South Korea has improved over the last 60 years since being implemented. One of distinguishable achievement is that exercise science programs after the 1980's has been expanded to several different directions. It does not only produce physical education teachers but also attributes more to research, sports medicine, sports, leisure and recreation. Therefore, it has produced various jobs in exercise-related fields. Some of exercise science departments do not require teacher preparation course work in their curriculum which allows students to focus more on their specialty. Secondly, we believe we South Korea has caught up with advanced countries in terms of research quality. Many Korean researchers have recently published and presented their investigations in international journals and conferences. The quality and quantity of these studies introduced to international societies indicate that Exercise Science programs in South Korea is continuing to develop and plays an important part in the world.

  12. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  13. Minority Summer Research Program in the Plant Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Poff, Kenneth L.

    2004-08-12

    Gutierrez and Larcom (2000) suggest that ''According to the National Science Foundation/Division of Science Resources Studies in 1997, the percentage distribution of scientists and engineers in the labor force by race/ethnicity changed little between 1993 and 1997''. According to this report, Black, non-Hispanic went from 3.6 in 1993 to 3.4 in 1997. Hispanic went from 3.0 in 1993 to 3.1 in 1997; and American Indian/Alaskan Native stayed the same at 0.3 during the same period. The only exceptions were a slight increase in the percentage of Asian from 9.2 in 1993 to 10.4 in 1997, while a slight decrease in percentage White from 83.9 in 1993 to 82.8 in 1997. Overall, no major changes in minorities were present in the science and engineering fields during that period. These data shows that major efforts are needed in order to improve and achieve better results for diversity in the workplace (Gutierrez & Larcom, 2000). This does not mean that major steps have not been taken over this period. For example, the Minority Summer Research Program in Plant Sciences (also funded in part by NSF under the title, ''Undergraduate Researchers in Plant Sciences Program'') was established in an effort to enhance the diversity of the plant science community. The Minority Summer Research Program in Plant Sciences was designed to encourage members of underrepresented groups to seek career opportunities in the plant sciences. To achieve this end, the program contained several components with the primary focus on mentored research for undergraduate students. The research experience was provided during the summer months on the campus of Michigan State University in East Lansing, Michigan. At the end of the summer experience, each participant presented an oral report on their research, and submitted a written paper on the same topic. This was deliberately designed to mimic the plant science professions in which research leads to presentations in the

  14. Summaries of the FY 1981 applied mathematical sciences research program

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Applied Mathematical Sciences serves as the DOE focal point for monitoring and advancing the state of the art in mathematics, statistics, and computer science. Several DOE mission programs develop and refine specific techniques from the applied mathematical sciences applicable to their immediate needs. In contrast, Applied Mathematical Sciences concentrates on more broadly based, continuing needs throughout the DOE community. Emphasis is placed on research basic to the analysis, development, and use of large-scale computational models; the management and analysis of large, complex collections of information; and the effective use of DOE computing resources. The purpose of this research is not to improve existing technologies and methodologies, but rather to render them obsolete. Each part of the Applied Mathematical Sciences activity has been designed with the help and advice of leading mathematicians and computer scientists from universities, industry, and DOE laboratories to assure the broadest and greatest impact on the nation's energy R and D enterprise. Many of them are expert in industry's needs in the relevant areas. Close liaison is maintained with other federal agencies in the selection of areas of emphasis and of individual research tasks. This is high leverage research. In favorable cases, the results may be of great benefit simultaneously to a number of different energy technologies. The requested increase will be an exceptionally sound investment.

  15. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  16. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  17. Interdisciplinary research and training program in the plant sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  18. A multidisciplinary Earth science research program in China

    Science.gov (United States)

    Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian

    2011-09-01

    Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).

  19. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  20. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    Science.gov (United States)

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  1. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World

    Science.gov (United States)

    1996-01-01

    This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?

  2. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  3. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…

  4. CSU Science Teacher and Researcher (STAR) Program: Developing "Teacher-Researchers" Through Paid Summer Research Experiences for Pre-Service and Early Career Science and Math Teachers

    Science.gov (United States)

    Keller, J.; Rebar, B.; Elrod, S.

    2011-09-01

    The Science Teacher and Researcher (STAR) program aims to enhance the recruitment, preparation, and retention of science and math teachers by providing pre-service and early career science and math teachers with a "teacher-researcher" experience. With the guidance of a research mentor, STAR Fellows work on original science projects in national laboratories and other research facilities for eight to ten weeks. Weekly education workshops and an opening and closing conference provide context and opportunities for STAR Fellows to consider how the "doing of science" may be translated into the "teaching of science." This model has allowed for considerable growth over the first four years from 16 participants in its first year to 71 in the most recent year. Early indications suggest that, as a result of the program, STAR Fellows have increased interest in teaching, feel more prestige about teaching careers, and feel more included in the teacher-researcher community.

  5. Applied Science Division annual report, Environmental Research Program FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  6. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  7. Health Science Students' Perception about Research Training Programs Offered in Saudi Universities

    Science.gov (United States)

    Al Kuwaiti, Ahmed; Subbarayalu, Arun Vijay

    2015-01-01

    Purpose: The purpose of this paper was to examine the perceptions of students of health sciences on research training programs offered at Saudi universities. Design/methodology/approach: A cross-sectional survey design was adopted to capture the perceptions of health science students about research training programs offered at selected Saudi…

  8. Atmospheric Science Program. Summaries of research in FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  9. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    Science.gov (United States)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  10. Finalizing the Libby Action Plan Research Program | Science ...

    Science.gov (United States)

    Libby, Montana is the location of a former vermiculite mine that operated from 1923 to 1990. The vermiculite ore from the mine co-existed with amphibole asbestos, referred to as Libby Amphibole Asbestos (LAA). Combined with the cessation of the asbestos mining and processing operations, there has been significant progress in reducing the exposure to LAA in Libby, Montana. In 2009, the U.S Environmental Protection Agency (EPA) jointly with the Department of Health and Human Services (DHHS) declared a public health emergency in Libby due to observed asbestos-related health effects in the region. As part of this effort, the EPA led a cross-agency research program that conducted analytical, toxicological, and epidemiological research on the health effects of asbestos at the Libby Asbestos Superfund Site (Libby Site) in Libby, Montana. The Libby Action Plan (LAP) was initiated in 2007 to support the site-specific risk assessment for the Libby Site. The goal of the LAP research program was to explore the health effects of LAA, and determine toxicity information specific to LAA in order to accurately inform a human health risk assessment at the Libby Site. LAP research informed data gaps related to the health effects of exposure to LAA, particularly related to specific mechanisms of fiber dosimetry and toxicity (e.g., inflammatory responses), as well as investigated disease progression in exposed populations and advanced asbestos analytical techniques. This work incl

  11. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  12. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    Science.gov (United States)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  13. The influences and factors of an undergraduate research program in preparing women for science careers

    Science.gov (United States)

    Campbell, Ashley Mcdowell

    Progress has been made in diminishing barriers experienced by women in science in recent years, however obstacles still remain. One of the key elements of the Texas Tech University Howard Hughes Medical Institute (TTU/HHMI) Undergraduate Biological Sciences Education Program is to "support activities that broaden access to science for women." In light of the barriers women in science face, this dissertation examined how the experiences of females in the TTU/HHMI fellows program prepared them for a career in science. This study employed mixed methods, utilizing both a questionnaire involving all past female fellows, and in-depth interviews with seven fellows who chose a career as a professional scientist. According to the quantitative data, research experience, the relationship with mentors, and opportunities to present at state or national meetings were program factors that fellows identified as contributing to their career success. The TTU/HHMI program experiences positively influenced the fellows' level of interest in science, confidence in science, and motivation to pursue a science-related career. Encouragement from the mentor and increased confidence regarding the ability to be successful in science were significant predictors of career advantages. Motivation to pursue a science-related career was the most significant predictor of the fellows' preparation to overcome barriers. Qualitatively, six themes were identified for coding, which included (1) research experience, (2) the mentor, (3) support and interactions, (4) self-confidence, (5) career decisions, and (6) time demands related to a science career. The themes identified were important factors in preparing these past female fellows for a career in science by initiating a change in their attitudes, knowledge, and skills. With over 90% of past fellows currently pursuing a science career, the program, through research experience and encouraging mentors, made a large impact on the career paths of fellows

  14. Preliminary Results of Professional Development Program for School Science Research

    Science.gov (United States)

    Wuttiprom, Sura; Wuttisela, Karntarat; Phonchaiya, Sonthi; Athiwaspong, Wanwalai; Chitaree, Ratchapak; Sharma, Manjula Devi

    2016-01-01

    Teachers need to design their courses to be as similar to real-life situations as possible as genuine learning emerges in real life as opposed to studying in class. Research-based learning is an innovative approach exploring many critical strategies for success in the twenty-first century. In it, students drive their own learning through inquiry,…

  15. Materials Sciences Programs

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. (GHT)

  16. USDA-ARS Plant Science Research Unit, St. Paul Alfalfa/Forage Research Program

    Science.gov (United States)

    The Plant Science Research Unit (PSRU) located at the University of Minnesota in St. Paul receives approximately $1.5 million to fund the research of six scientists who direct their research efforts toward developing new uses and improved traits for alfalfa. Our overarching goal is to develop alfalf...

  17. Scientific culture from the University. Research competence evaluation of students enrolled in the Summer Science Programs

    Directory of Open Access Journals (Sweden)

    Abel Antonio GRIJALVA VERDUGO

    2017-10-01

    Full Text Available The training of young researchers from tertiary education represents a latent concern in educational centers worldwide. In that sense, there are private and public initiatives that encourage scientific culture inside and outside the school curriculum; such as the Summer Science Program in Mexico. This program aims to provide university students with research competence, to incorporate them into the production, creation, and transfer of knowledge through various means: graduate studies, collaboration with solid research groups, among others, so that they contribute to the social, economic, and technological development of their region. Therefore, this work inquires the research competence levels shown in eight generations of undergraduate students in a public university in the Mexican state of Sinaloa that completed the Summer Science Program.In the fieldwork, 227 students participated. They were divided into four knowledge areas: 1 Economic and administrative sciences, 2 Social sciences and humanities, 3 Engineering and Technology, and 4 Biological sciences. As data collecting instruments, interviews and polls were applied, as well as a structured questionnaire composed by 34 items; this report shows the findings of the last one. For the analysis, nonparametric statistics were used, to contrast the competence levels between the different subgroups of students. The results have a descriptive scope, but also allow visualizing a theoretical and empirical spectrum of the needs and strengths of the young researchers training programs

  18. Interdisciplinary Research and Training Program in the Plant Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-01-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  19. Integrating Science Communication Training and Public Outreach Activities into the Juneau Icefield Research Program

    Science.gov (United States)

    Timm, K.; Kavanaugh, J. L.; Beedle, M. J.

    2012-12-01

    Creating better linkages between scientific research activities and the general public relies on developing the science communication skills of upcoming generations of geoscientists. Despite the valuable role of science outreach, education, and communication activities, few graduate and even fewer undergraduate science departments and programs actively foster the development of these skills. The Juneau Icefield Research Program (JIRP) was established in 1946 to train and engage primarily undergraduate students in the geosciences, field research skills, and to prepare students for careers in extreme and remote environments. During the course of the 8-week summer program, students make the 125-mile traverse across the Juneau Icefield from Juneau, Alaska to Atlin, British Columbia. Along the way, students receive hands on experience in field research methods, lectures from scientists across several disciplines, and develop and carry out individual research projects. Until the summer of 2012, a coordinated science communication training and field-based outreach campaign has not been a part of the program. During the 2012 Juneau Icefield Research Program, 15 undergraduate and graduate students from across the United States and Canada participated in JIRP. Throughout the 2-month field season, students contributed blog text, photos, and videos to a blog hosted at GlacierChange.org. In addition to internet outreach, students presented their independent research projects to public audiences in Atlin, British Columbia and Juneau, Alaska. To prepare students for completing these activities, several lectures in science communication and outreach related skills were delivered throughout the summer. The lectures covered the reasons to engage in outreach, science writing, photography, and delivering public presentations. There is no internet connection on the Icefield, few computers, and outreach materials were primarily sent out using existing helicopter support. The successes

  20. Soils under fire: soils research and the Joint Fire Science Program.

    Science.gov (United States)

    Heather E. Erickson; Rachel. White

    2008-01-01

    Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and...

  1. Solar Astronomy as a Means to Promote Authentic Science Research in a Teacher Professional Development Program

    Science.gov (United States)

    Walker, C. E.; Croft, S.; Pompea, S. M.; Plymate, C.; McCarthy, D.

    2003-12-01

    Teacher Leaders in Research Based Science Education (TLRBSE) is an NSF-funded Teacher Enhancement Program hosted by the National Optical Astronomy Observatory (NOAO) in Tucson, AZ. Consistent with national priorities in education, TLRBSE seeks to retain and renew middle and high school science teachers. Within the exciting context of astronomy, TLRBSE integrates the best pedagogical practices of Research Based Science Education with the process of mentoring. One means by which participants are provided training in astronomy content, pedagogy, image processing, research and leadership skills is through a 15-week distance-learning course and an in-residence, two-week institute at Kitt Peak National Observatory and the National Solar Observatory (NSO). Throughout the program, teachers work with professional astronomers and education specialists. At the in-situ, two-week institute, teachers are the researchers on one of four research projects, including solar astronomy. Preparation for the solar project dictates much of the design of the program (e.g., development and feasibility testing of the observing program, the reduction and analysis software, the preparatory documents for the teachers). The program design of the solar project is centered on teachers experiencing the scientific process. Initially through a staff-facilitated guided inquiry and then on their own as a team, the teachers propose a research question and discuss alternative hypotheses. They operate the solar telescope and take, calibrate, reduce and analyze the data. Teachers interpret and report results to their peers and pundits. Ultimately the observing experience and knowledge gained by the teachers is transferred to the classroom, where students learn science by doing science. Staff astronomers and education specialists provide continuing support with the goal of sustaining a professional learning community that outlives the research experience. Further observing experience is available during the

  2. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.

  3. GSD Update: Year in Review: Spotlight on 2013 research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2014-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  4. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  5. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  6. GSD Update: Year in Review: Spotlight on 2016 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2017-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities of the USDA...

  7. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    Science.gov (United States)

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  8. NASA DEVELOP Program: Students Extending Earth Science Research to Address Community Needs

    Science.gov (United States)

    Richards, A. L.; Ross, A. L.

    2006-12-01

    Eight years ago, several students at NASA Langley Research Center launched the DEVELOP Program. DEVELOP is now at six NASA centers and is a program element of the NASA Applied Sciences Human Capital Development Program that extends the use of Earth observation sources to address Earth science issues in local communities. Students in the program strengthen their leadership and academic skills by analyzing scientific data, experimenting with novel technology, and engaging in cooperative interactions. Graduate, undergraduate and high school students from across the United States collaborate to integrate NASA space-based Earth observation sources and partner agencies' science data, models and decision support tools. Information from these collaborations result in rapid prototype projects addressing local policy and environmental issues. Following a rigorous 10-week term, DEVELOP students present visual products demonstrating the application of NASA scientific information to community leaders at scientific and public policy forums such as the American Geophysical Union (AGU), the American Meteorological Society (AMS), and the Southern Growth Policies Board (SGPB). Submission of written products to peer-reviewed scientific publications and other public databases is also done. Student experiences and interactions working with NASA data, advanced technological programs and community leaders have, and continue to prove, beneficial to student professional development. DEVELOP's human capital development focus affords students real world experience, making them a valuable asset to the scientific and global community and to the continuation of a scientifically aware society. NASA's DEVELOP Program is more than scientific exploration and valuable results; DEVELOP fosters human capital development by bridging the gap between NASA science research and federal, state, local and tribal resource managers.

  9. Evolution of natural and social science interactions in global change research programs

    Science.gov (United States)

    Mooney, Harold A.; Duraiappah, Anantha; Larigauderie, Anne

    2013-01-01

    Efforts to develop a global understanding of the functioning of the Earth as a system began in the mid-1980s. This effort necessitated linking knowledge from both the physical and biological realms. A motivation for this development was the growing impact of humans on the Earth system and need to provide solutions, but the study of the social drivers and their consequences for the changes that were occurring was not incorporated into the Earth System Science movement, despite early attempts to do so. The impediments to integration were many, but they are gradually being overcome, which can be seen in many trends for assessments, such as the Intergovernmental Platform on Biodiversity and Ecosystem Services, as well as both basic and applied science programs. In this development, particular people and events have shaped the trajectories that have occurred. The lessons learned should be considered in such emerging research programs as Future Earth, the new global program for sustainability research. The transitioning process to this new program will take time as scientists adjust to new colleagues with different ideologies, methods, and tools and a new way of doing science. PMID:23297237

  10. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  11. Science Research 4: Results of Implementation of Student-Facilitated Teacher Training and Student Mentorship Programs Promoting Original Scientific Research

    Science.gov (United States)

    Danch, J. M.; Aker, K.

    2014-12-01

    A high school curriculum allowing students previously involved in a 3-year Science Research Program to continue into a 4th year was developed in 2013 and implemented in 2014. The goals of this curriculum were to allow 3-year students to utilize their expertise in research methods and data acquisition technology to mentor both incoming research students and their teachers in the development and implementation of original scientific research. Student responsibilities involved the mentorship of both 8th Grade Honors Geoscience students and 9th grade Science Research students during the development and implementation of original research. Science Research 4 students also conducted teacher training sessions facilitating the use of electronic sensors and data acquisition devices in the classroom for general education and scientific research applications. The development, testing and presentation via teacher workshops, of the utilization of the Daily Inquiry method of promoting original scientific research in the middle school and high school classroom were also undertaken. Mentored students successfully completed and presented original research projects and teachers involved in training sessions reported increased and effective utilization of data acquisition technology and Daily Inquiry methods in the classroom.

  12. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  13. National Forestry Research Plan and Strategic Plan of the Agricultural Science and Technology Program (Colciencias

    Directory of Open Access Journals (Sweden)

    Mónica María Baquero Parra

    2011-06-01

    Full Text Available This paper aims to share the national research priorities in agriculture and forestry areas with the scientific community, based on the lines of research identified by the Agricultural Science and Technology Program for the 2010-2019 Strategic Plans by Colciencias. The Strategic Agriculture Plan has determined that the research priorities are Colombia to manage the supply chain, nutrition, rural poverty, quality and innocuousness, as well as the slow production transformation: cost of opportunity and insufficient, decontextualized research. Each of the aforementioned problems is briefly described in the document. As far as the National Plan of Forestry Research is concerned, the following three main topics were suggested: to strengthen a national genetic improvement of tree species that contribute to productivity and the increase of environmental services; to identify and characterize areas, species and potential products for reforestation programs; and to identify species, arrangements and densities that optimize the goods that may be obtained from a forest plantation and its environmental services for the top priority social and agro-ecological conditions of the country. The information regarding the two National Strategic Plans is expected to be disclosed during the first semester of 2011, so that the Administrative Department of Science, Technology and Innovation (Colciencias can support the research projects that meet the expectations of the identified priorities.

  14. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  15. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  16. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    Science.gov (United States)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  17. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE)

    DEFF Research Database (Denmark)

    Raiten, Daniel J; Sakr Ashour, Fayrouz A; Ross, A Catharine

    2015-01-01

    /Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible...... of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs...... for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence...

  18. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    Science.gov (United States)

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  20. progressive problemshifts between different research programs in science education: A lakatosian perspective

    Science.gov (United States)

    Niaz, Mansoor

    Given the importance of epistemology and philosophy of science, the Lakatos (1970) methodology is particularly suited to evaluate competing research programs in science education. This article has two objectives: (a) to evaluate critically the interpretations of Gilbert and Swift (1985) and Rowell and Dawson (1989), and (b) to postulate a progressive problemshift between Piaget's epistemic subject and Pascual-Leone's metasubject. Regarding the Gilbert and Swift interpretation, it is concluded that the alternative conceptions movement at its present stage of development cannot explain the previous success of its rival (Piagetian school) nor supersede it by a further display of heuristic power as required by Lakatos. If we accept the Rowell and Dawson thesis it would amount to the postulation of Piagetian and integrated (Piagetian and schema) theories as rival research programs. It appears that the Rowell and Dawson approach would enrich Piagetian theory with descriptive content rather than explanatory constructs, and thus would not lead to a progressive problemshift. It is concluded that Pascual-Leone's theory extends Piaget's negative heuristic by introducing antecedent variables, and at the same time enriches the positive heuristic by introducing metasubjective task analysis, which leads to a progressive problemshift.

  1. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  2. Creating a Pipeline for African American Computing Science Faculty: An Innovative Faculty/Research Mentoring Program Model

    Science.gov (United States)

    Charleston, LaVar J.; Gilbert, Juan E.; Escobar, Barbara; Jackson, Jerlando F. L.

    2014-01-01

    African Americans represent 1.3% of all computing sciences faculty in PhD-granting departments, underscoring the severe underrepresentation of Black/African American tenure-track faculty in computing (CRA, 2012). The Future Faculty/Research Scientist Mentoring (FFRM) program, funded by the National Science Foundation, was found to be an effective…

  3. USGS Water Availability and Use Science Program - research Towards a national water budget

    Science.gov (United States)

    Dalton, M.

    2016-12-01

    A key part of achieving the US Department of the Interior's sustainability goals is informing the public and decision makers about the status and trends of the Nation's water resources. To achieve these goals the USGS has implemented a National Water Census (NWC) to provide a more accurate picture of the quantity of the Nation's water resources and improve forecasting of water availability for current and future economic, energy production, and environmental uses. In 2016, to streamline water sustainability activities, the USGS realigned all water availability and use oriented research, including the NWC, within a new Program - the Water Availability and Use Science Program (WAUSP). WAUSP supports producing a current, comprehensive scientific assessment of the factors that influence water availability through development of nationally consistent datasets on the status and trends of water budget components (precipitation, streamflow, groundwater, and evapotranspiration), as well as human water use; improving the current understanding of flow requirements for ecological purposes; and evaluating water-resource conditions in selected river basins, or Focus Area Studies, where competition for water is a local concern. In addition to supporting research that provides water budget component estimates at the smallest possible spatial and temporal scale, WAUSP has supported the development of new methods and techniques to improve estimation of water use through the National Water Use Science project. These efforts include developing a heat budget-based model to improve estimates of thermoelectric water use, evaluating direct and indirect water use associated with unconventional oil and gas production, and developing methods to estimate irrigation consumptive use at both the local and regional scale. Additionally, WAUSP collaborates with federal, State, local, and University partners on a number of other water use related research including the new Water Use Data and

  4. Evaluation of the National Science Foundation's Partnerships for International Research and Education (PIRE) Program, Volume 2: Supplementary Materials. Final Report

    Science.gov (United States)

    Martinez, Alina; Epstein, Carter; Parsad, Amanda

    2015-01-01

    The National Science Foundation contracted with Abt Associates to conduct an evaluation of its Partnerships for International Research and Education (PIRE) program, which supports intellectually substantive collaborations between U.S. and foreign researchers in which the international partnership is essential to the research effort. The evaluation…

  5. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs

    Directory of Open Access Journals (Sweden)

    Lucy M. Turner

    2017-03-01

    Full Text Available The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs.

  6. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  7. Implementation of an Action Research Course Program for Science Teachers: A Case for Turkey

    Science.gov (United States)

    Kucuk, Mehmet; Cepni, Salih

    2005-01-01

    The purpose of this study was to introduce an AR approach to a group of science teachers during an in-service AR course program and learn its contributions to their professional development. Data were gathered through an AR project by working with a group of eight science teachers throughout a four-week period. In the content of the course,…

  8. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  9. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  10. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  11. National Academy of Sciences - National Research Council Resident Research Associateship Program (RRA)

    Science.gov (United States)

    1992-03-11

    CERAMIC DRUG DELIVERY SYSTEMS. Universite de Rouen, Rouen, France., December 7, 1990. 8. RESORBABLE BIOCERAMICS. Faculte de Medecine , Lariboisiere - St...During Tenure: This research has focused on the use of high and low field Nuclear Magnetic Resonance to study the composition of room temperature...liquid complexes. We have determined nuclear quadrupolar coupling constants for the various complexes in the liquid state. (16) Publications Resulting

  12. United States Naval Academy Polar Science Program; Undergraduate Research and Outreach in Polar Environments

    Science.gov (United States)

    Woods, J. E.

    2013-12-01

    The United States Naval Academy (USNA) Polar Science Program (PSP), has been very active completing its own field campaign out of Barrow, AK, sent students to the South Pole, participated in STEM activities and educated over 100 future Naval Officers about the Polar Regions. Each activity is uniquely different, but has the similar undertone of sharing the recent rapid changes in the Cryosphere to a wide range of audiences. There is further room for development and growth through future field campaigns and new collaborations. The Naval Academy Ice Experiment (NAICEX) 2013 was based out of the old Naval Arctic Research Laboratory (NARL) in Barrow, AK. In joint collaboration with the University of Delaware, University of Washington, and Naval Research Laboratory we successfully took multiple measurements for over a week on the fast ice just offshore. Five undergraduate students from USNA, as well as 3 graduate students from University of Delaware participated, as well as multiple professors and instructors from each institution. Data collected during the experiment will be used in capstone courses and thesis research. There was also an outreach component to the experiment, where local students from Barrow H.S. have been assigned to the USNA ice observations project for their own high school course work. Local students will be analyzing data that will contribute into the larger research effort at USNA through coordinated remote efforts and participation in future field experiments. The USNA STEM office is one of the most robust in the entire country. The USNA PSP is active within this program by developing polar specific modules that are integrated varying length outreach opportunities from a few hours to week long camps. USNA PSP also engages in educator training that is held at the Naval Academy each summer. Through this program of educating the educators, the far reaching levels of awareness are multiplied exponentially. Also, the USNA Oceanography Department has

  13. Student Perceptions of Staged Transfer to Independent Research Skills during a Four-Year Honours Science Undergraduate Program

    Science.gov (United States)

    Symons, Sarah L.; Colgoni, Andrew; Harvey, Chad T.

    2017-01-01

    We describe interim results of an ongoing longitudinal pedagogical study investigating the efficacy of the Honours Integrated Science Program (iSci). We describe the pedagogical methods we use to prompt research skill development in a model from instructor-dependence to independent original research. We also describe a tool we use to help students…

  14. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  15. INCREASING DIVERSITY IN ENVIRONMENTAL SCIENCE AND ENGINEERING: THE ORD RESEARCH APPRENTICESHIP PROGRAM FOR HIGH SCHOOL STUDENTS

    Science.gov (United States)

    The "Research Apprenticeship Program for High School Students" began in 1990 as a collaborative effort between EPA's Office of Research and Development in Research Triangle Park, NC and Shaw University, an Historically Black College/University (HBCU) in Raleigh, NC. The program a...

  16. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  17. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE).

    Science.gov (United States)

    Raiten, Daniel J; Sakr Ashour, Fayrouz A; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben

    2015-05-01

    An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. © 2015 American Society for Nutrition.

  18. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE)12345

    Science.gov (United States)

    Raiten, Daniel J; Ashour, Fayrouz A Sakr; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben

    2015-01-01

    An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. PMID:25833893

  19. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    Science.gov (United States)

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  20. Science Coordination in Support of the US Weather Research Program Office of the Lead Scientist (OLS) and for Coordination with the World Weather Research (WMO) Program

    Science.gov (United States)

    Gall, Robert

    2005-01-01

    This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.

  1. The importance of basic science and clinical research as a selection criterion for general surgery residency programs.

    Science.gov (United States)

    Melendez, Mark M; Xu, Xiaoti; Sexton, Thomas R; Shapiro, Marc J; Mohan, Eugene P

    2008-01-01

    The selection criteria for surgical residents applying for residency differ among programs nationwide. Factors influencing this selection process have not been well defined, and research in particular has not been evaluated fully. This study aimed to evaluate the relative importance of basic science and clinical research in the selection criteria used by program directors (PDs). A web-based survey consisting of 11 questions was sent to PDs using the list server of the Association of Program Directors in Surgery. Respondents were asked to rank selection factors using a 1-to-5 scoring system, with 5 as most important. Their responses were recorded and tabulated. University-based teaching hospital. The survey went to 251 accredited general surgery residency programs in the United States. Overall, 134 (53.3%) of the surveys were returned, representing 61 university-based programs, 57 community-based programs with university affiliation, and 16 community-based programs without university affiliation. In total, 120 PDs (89.5%) considered basic or clinical research almost always or all the time when evaluating applicants to their general surgery program. Another 73 PDs (54.5%) gave basic science and clinical research equal importance. Another 40 PDs (29.9%) rarely or never credited research unless it had been published as an abstract or paper. In ranking research, 11 (8.2%) respondents gave it the 5 score. Most respondents (n = 93; 69.4%) gave it the 3 score. An applicant's interview and interest in surgery were the factors considered most important by 93 (69.4%) and 78 (58.2%), respectively, of the PDs. Basic science and clinical research constituted an important but secondary criterion for resident selection by PDs into general surgery residency programs. PDs perceived the primary factors for residency selection to be the interview, demonstrated interest in surgery, AOA membership, letters of recommendation, and USMLE Step I scores.

  2. A 10-Year Review of the Food Science Summer Scholars Program: A Model for Research Training and for Recruiting Undergraduate Students into Graduate Programs and Careers in Food Science

    Science.gov (United States)

    Roberts, Angela J.; Robbins, Janette; McLandsborough, Lynne; Wiedmann, Martin

    2010-01-01

    A pressing problem facing regulatory agencies, academia, and the food industry is a shortage of qualified food science graduates, particularly those with advanced degrees (that is, M.S. or Ph.D.). In 2000, the Cornell Institute of Food Science established the annual Food Science Summer Scholars Program as an experiential summer research program…

  3. ENVIRONMENTAL RESEARCH AND EDUCATION PROGRAMS: LETS GET HONEST ABOUT SCIENCE, POLICY, AND ADVOCACY

    Science.gov (United States)

    Those of us who are involved in undergraduate education should change the current situation where many, arguably most, students graduating from environmental programs have a limited appreciation of the proper role of science in ecological policy deliberations. To be fair, perhap...

  4. A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tian-Sen [Prairie View A& M Univ., Prairie View, TX (United States); Saganti, Premkumar [Prairie View A& M Univ., Prairie View, TX (United States)

    2017-02-17

    . Apart from scientific staff members, several students (more than ten undergraduate students and two graduate students from several engineering and science disciplines) were supported and worked on the equipment and experiments during the award period. We also anticipate that these opportunities with current expansions may result in a graduate program in plasma science and propulsion engineering disciplines. *Corresponding Author – Dr. Saganti, Regents Professor and Professor of Physics – pbsaganti@pvamu.edu

  5. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    Science.gov (United States)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  6. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  7. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  8. A psycho-historical research program for the integrative science of art.

    Science.gov (United States)

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Critics of the target article objected to our account of art appreciators' sensitivity to art-historical contexts and functions, the relations among the modes of artistic appreciation, and the weaknesses of aesthetic science. To rebut these objections and justify our program, we argue that the current neglect of sensitivity to art-historical contexts persists as a result of a pervasive aesthetic–artistic confound; we further specify our claim that basic exposure and the design stance are necessary conditions of artistic understanding; and we explain why many experimental studies do not belong to a psycho-historical science of art.

  9. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  10. Characteristics of Biostatistics, Epidemiology, and Research Design Programs in Institutions With Clinical and Translational Science Awards.

    Science.gov (United States)

    Rahbar, Mohammad H; Dickerson, Aisha S; Ahn, Chul; Carter, Rickey E; Hessabi, Manouchehr; Lindsell, Christopher J; Nietert, Paul J; Oster, Robert A; Pollock, Brad H; Welty, Leah J

    2017-02-01

    To learn the size, composition, and scholarly output of biostatistics, epidemiology, and research design (BERD) units in U.S. academic health centers (AHCs). Each year for four years, the authors surveyed all BERD units in U.S. AHCs that were members of the Clinical and Translational Science Award (CTSA) Consortium. In 2010, 46 BERD units were surveyed; in 2011, 55; in 2012, 60; and in 2013, 61. Response rates to the 2010, 2011, 2012, and 2013 surveys were 93.5%, 98.2%, 98.3%, and 86.9%, respectively. Overall, the size of BERD units ranged from 3 to 86 individuals. The median FTE in BERD units remained similar and ranged from 3.0 to 3.5 FTEs over the years. BERD units reported more availability of doctoral-level biostatisticians than doctoral-level epidemiologists. In 2011, 2012, and 2013, more than a third of BERD units provided consulting support on 101 to 200 projects. A majority of BERD units reported that between 25% and 75% (in 2011) and 31% to 70% (in 2012) of their consulting was to junior investigators. More than two-thirds of BERD units reported their contributions to the submission of 20 or more non-BERD grant or contract applications annually. Nearly half of BERD units reported 1 to 10 manuscripts submitted annually with a BERD practitioner as the first or corresponding author. The findings regarding BERD units provide a benchmark against which to compare BERD resources and may be particularly useful for institutions planning to develop new units to support programs such as the CTSA.

  11. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  12. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    OpenAIRE

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L.

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 ...

  13. gidakiimanaaniwigamig (Seek To Know)--A Native Youths Science Immersion Program Created Through a Partnership Between a Tribal College, a Research Laboratory and a Science Museum

    Science.gov (United States)

    Dalbotten, D. M.; Pellerin, H.; Steiner, M.

    2004-12-01

    The National Center for Earth-surface Dynamics, an NSF-sponsored Science and Technology Center, through a partnership between the University of Minnesota, the Science Museum of Minnesota, and the Fond du Lac Tribal and Community College, has created gidakiimanaaniwigamig (Seek to Know), where students in middle and high school participate in hands-on research projects on topics in environmental science through a series of four yearly seasonal camps combined with field trips and after school programming. Through meetings with Native elders, community leaders and educators, we know that the major issues that must be addressed are student retention, gaps in programming that allow students who have been performing successfully in math and science to drift away from their interest in pursuing STEM careers, and concern about moving away from the community to pursue higher education. After-school and summer programs are an effective means of creating interest in STEM careers, but single-contact programs don't have the long-term impact that will create a bridge from grade school to college and beyond. Often children who have learned to love science in grade school gradually move away from this interest as they enter middle and high school. While a single intervention offered by a science camp or visit to a laboratory can be life-altering, once the student is back in their everyday life they may forget that excitement and get sidetracked from the educational goals they formed based on this single experience. We want to build on the epiphany (science is fun!) with continued interaction that allows the students to grow in their ability to understand and enjoy science. In order to foster STEM careers for underrepresented youths we need to create a sustained, long-term, program that takes youths through programs that stimulate that initial excitement and gradually become more intensive and research-oriented as the youths get older. NCED's approach to these challenges is to

  14. REQUIREMENTS TO AUTOMATIZATION PROCESSING IN THE PROGRAMMING INFORMATION SYSTEM OF SCIENTIFIC RESEARCHES IN ACADEMY OF PEDAGOGICAL SCIENCES OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Alla V. Kilchenko

    2010-08-01

    Full Text Available A construction and introduction of the information systems in a management education is the actual task of forming of modern information society. In the article the results of research of automation of treatment of financial documents, which was conducted within the project «Scientific-methodical providing of the informative system of programming of scientific researches in Academy of Pedagogical Sciences of Ukraine based on the Internet» № 0109U002139 are represented. The article contains methodical principles of automation of treatment programming and financial documents as well as requirements to the information system, which will be the base to next project stages.

  15. Space Technology Research Grants Program

    Data.gov (United States)

    National Aeronautics and Space Administration — The Space Technology Research Grants Program will accelerate the development of "push" technologies to support the future space science and exploration...

  16. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  17. Annual report on the collaborative program of research in engineering sciences

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This program continues to pursue three broad goals: to perform quality research on energy-related technologies involved in industrial processes and productivity; to demonstrate the potential of collaborative programs between universities and the national laboratories; and to encourage the transfer of technology developed to the industrial sector. Highlights of research activities during the past year include the following: modeling and control of droplet based thermal processes, metal transfer in gas metal arc welding, fundamentals of elastic-plastic fracture, comminution of energy materials, synthesis and optimization of integrated chemical processes.

  18. Workshop on the ERDA Marine Sciences Research program for the west coast of the U. S

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, W.L. (ed.)

    1976-01-01

    Thirty marine scientists involved in Energy Research and Development Administration (ERDA)-supported marine research on the west coast of the United States met March 17-19, 1976, at the Asilomar Conference Center, Monterey, California. The objective of this workshop was to define the elements of an integrated research program that would contribute to a better knowledge of the potential impact of pollutants on coastal ecosystems from energy-related fuel cycles. One of the long-range objectives of the Division of Biomedical and Environmental Research in ERDA is to support research on processes and mechanisms that occur in the coastal waters that would allow assessment of the impact of energy technology fuel cycles, i.e., nuclear, oil and gas, coal, and solar. Additionally, the research has an objective of providing a basic environmental data base which will aid in the technological development and deployment of energy supply systems. While the research is not designed for the purposes of standard setting or for regulatory processes; nevertheless, it may, in the long term, contribute to a better basis for setting standards that are in the balanced best interest of both energy production and the preservation of our valuable coastal ecosystems. It was recognized that other Federal agencies also have charter responsibilities in this area and support research and monitoring programs that potentially overlap into ERDA programs. One of the working considerations was to identify where any significant overlap was perceived. Three panels were formed: Transport and Diffusion, Sediment Interaction, and Bioavailability and Effects. Each panel was asked to identify the major problem areas and gaps in our knowledge and define the needs of research programs that would increase and enhance our understanding of the mechanisms and processes that occur in each area of concern.

  19. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    Science.gov (United States)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  20. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy

    Science.gov (United States)

    Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Domingo, Mariano R. Sto.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A., III

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs…

  1. Providing Authentic Research Experiences for Pre-Service Teachers through UNH's Transforming Earth System Science Education (TESSE) Program

    Science.gov (United States)

    Varner, R. K.; Furman, T.; Porter, W.; Darwish, A.; Graham, K.; Bryce, J.; Brown, D.; Finkel, L.; Froburg, E.; Guertin, L.; Hale, S. R.; Johnson, J.; von Damm, K.

    2007-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers, who teach or will teach Earth science curricula. As part of this program, pre-service teachers participated in an eight- week summer Research Immersion Experience (RIE). The main goal of the RIE is to provide authentic research experiences in Earth system science for teachers early in their careers in an effort to increase future teachers` comfort and confidence in bringing research endeavors to their students. Moreover, authentic research experiences for teachers will complement teachers` efforts to enhance inquiry-based instruction in their own classrooms. Eighteen pre-service teachers associated with our four participating institutions - Dillard University (4), Elizabeth City State University (4), Pennsylvania State University (5), and University of New Hampshire (UNH) (5) participated in the research immersion experience. Pre-service teachers were matched with a faculty mentor who advised their independent research activities. Each pre-service teacher was expected to collect and analyze his or her own data to address their research question. Some example topics researched by participants included: processes governing barrier island formation, comparison of formation and track of hurricanes Hugo and Katrina, environmental consequences of Katrina, numerical models of meander formation, climatic impacts on the growth of wetland plants, and the visual estimation of hydrothermal vent properties. Participants culminated their research experience with a public presentation to an audience of scientists and inservice teachers.

  2. SCICEX: Submarine Arctic Science Program, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  3. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed

  4. Selected achievements, science directions, and new opportunities for the WEBB Small Watershed Research Program

    Science.gov (United States)

    Pierre D. Glynn; Matthew C. Larsen; Earl A. Greene; Heather L. Buss; David W. Clow; Randall J. Hunt; M. Alisa Mast; Sheila F. Murphy; Norman E. Peters; Stephen D. Sebestyen; James B. Shanley; John F. Walker

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric...

  5. A new model for catalyzing translational science: the early stage investigator mentored research scholar program in HIV vaccines.

    Science.gov (United States)

    Adamson, Blythe J S; Fuchs, Jonathan D; Sopher, Carrie J; Flood, Danna M; Johnson, R Paul; Haynes, Barton F; Kublin, James G

    2015-04-01

    Engagement of early stage investigators (ESIs) in the search for a safe and effective vaccine is critical to the success of this highly challenging endeavor. In the wake of disappointing results from a large-scale efficacy trial, the HIV Vaccine Trials Network (HVTN) and Center for HIV/AIDS Vaccine Immunology (CHAVI) developed a novel mentored research program focused on the translation of findings from nonhuman primate studies to human trials of experimental vaccines. From 2008 to 2011, 14 ESI Scholars were selected from 42 complete applications. Post program surveys and tracked outcomes suggest that the combination of flexible funding, transdisciplinary mentorship, and structured training and networking promoted the scientific contributions and career development of promising ESIs. Embedding a multicomponent research program within collaborative clinical trial networks and research consortia is a promising strategy to attract and retain early career investigators and catalyze important translational science. © 2014 Wiley Periodicals, Inc.

  6. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  7. Faculty Development Workshops to Support Establishing and Sustaining Undergraduate Research Programs in the Earth Sciences (Invited)

    Science.gov (United States)

    Fox, L. K.; Guertin, L. A.

    2013-12-01

    The Geosciences Division of the Council of Undergraduate Research (GeoCUR, http://curgeoscience.wordpress.com/) has a long history of supporting faculty who engage in undergraduate research. The division has held faculty development workshops at national meetings of the GSA and AGU for over 15 years. These workshops serve faculty at all career stages and cover multiple aspects of the enterprise of engaging students in undergraduate research. Topics covered include: getting a job (particularly at a primarily undergraduate institution), incorporating research into classes, mentoring independent research projects and identifying sources of internal and external funding. Originally, these workshops were funded through CUR and registration income. When the administrative costs to run the workshops increased, we successfully sought funding from the NSF Course, Curriculum, and Laboratory Improvement (CCLI) program. This CCLI Type 1 special project allowed the expansion of the GSA workshops from half-day to full-day and the offering of workshops to other venues, including the annual meeting of the Association of American Geographers and sectional GSA meetings. The workshops are organized and led by GeoCUR councilors, some of whom attended workshops as graduate students or new faculty. Current and past Geoscience program officers in the NSF Division of Undergraduate Education (DUE) have presented on NSF funding opportunities. Based on participant surveys, the content of the workshops has evolved over time. Workshop content is also tailored to the particular audience; for example, AGU workshops enroll more graduate students and post-docs and thus the focus is on the job ';search' and getting started in undergraduate research. To date, this CCLI Type 1 project has supported 15 workshops and a variety of print and digital resources shared with workshop participants. This presentation will highlight the goals of this workshop proposal and also provide insights about strategies

  8. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    Science.gov (United States)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  9. The Translational Science Training Program at NIH: Introducing Early Career Researchers to the Science and Operation of Translation of Basic Research to Medical Interventions

    Science.gov (United States)

    Gilliland, C. Taylor; Sittampalam, G. Sitta; Wang, Philip Y.; Ryan, Philip E.

    2017-01-01

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with…

  10. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    Science.gov (United States)

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  11. Science programs in Kansas

    Science.gov (United States)

    Kelly, Brian P.; Kramer, Ariele R.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 30 locations; streamflow monitoring at more than 232 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  12. Science programs in Kansas

    Science.gov (United States)

    Kramer, Ariele R.; Kelly, Brian P.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  13. Florida Bay Science Program: a Synthesis of Research on Florida Bay

    OpenAIRE

    Hunt, John; Nuttle, William

    2007-01-01

    This report documents the progress made toward the objectives established in the Strategic Plan revised in 1997 for the agencies cooperating in the program. These objectives are expressed as five questions that organized the research on the Florida Bay ecosystem: Ecosystem History What was the Florida Bay ecosystem like 50, 100, and 150 years ago? Question 1—Physical Processes How and at what rates do storms, changing freshwater flows, sea level rise, and local evaporatio...

  14. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  15. Cooperative science to inform Lake Ontario management: Research from the 2013 Lake Ontario CSMI program

    Science.gov (United States)

    Watkins, James M.; Weidel, Brian C.; Fisk, Aaron T.; Rudstam, Lars G.

    2017-01-01

    Since the mid-1970s, successful Lake Ontario management actions including nutrient load and pollution reductions, habitat restoration, and fish stocking have improved Lake Ontario. However, several new obstacles to maintenance and restoration have emerged. This special issue presents management-relevant research from multiple agency surveys in 2011 and 2012 and the 2013 Cooperative Science and Monitoring Initiative (CSMI), that span diverse lake habitats, species, and trophic levels. This research focused on themes of nutrient loading and fate; vertical dynamics of primary and secondary production; fish abundance and behavior; and food web structure. Together these papers identify the status of many of the key drivers of the Lake Ontario ecosystem and contribute to addressing lake-scale questions and management information needs in Lake Ontario and the other Great Lakes and connecting water bodies.

  16. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  18. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  19. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    Science.gov (United States)

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  20. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  1. "I Actually Contributed to Their Research": The Influence of an Abbreviated Summer Apprenticeship Program in Science and Engineering for Diverse High-School Learners

    Science.gov (United States)

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-01-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research…

  2. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  3. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy.

    Science.gov (United States)

    Maton, Kenneth I; Beason, Tiffany S; Godsay, Surbhi; Sto Domingo, Mariano R; Bailey, TaShara C; Sun, Shuyan; Hrabowski, Freeman A

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. © 2016 K. I. Maton et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Improving clinical and translational research training: a qualitative evaluation of the Atlanta Clinical and Translational Science Institute KL2-mentored research scholars program.

    Science.gov (United States)

    Comeau, Dawn L; Escoffery, Cam; Freedman, Ariela; Ziegler, Thomas R; Blumberg, Henry M

    2017-01-01

    A major impediment to improving the health of communities is the lack of qualified clinical and translational research (CTR) investigators. To address this workforce shortage, the National Institutes of Health (NIH) developed mechanisms to enhance the career development of CTR physician, PhD, and other doctoral junior faculty scientists including the CTR-focused K12 program and, subsequently, the KL2-mentored CTR career development program supported through the Clinical and Translational Science Awards (CTSAs). Our evaluation explores the impact of the K12/KL2 program embedded within the Atlanta Clinical and Translational Science Institute (ACTSI), a consortium linking Emory University, Morehouse School of Medicine and the Georgia Institute of Technology. We conducted qualitative interviews with program participants to evaluate the impact of the program on career development and collected data on traditional metrics (number of grants, publications). 46 combined K12/KL2 scholars were supported between 2002 and 2016. 30 (65%) of the 46 K12/KL2 scholars are women; 24 (52%) of the trainees are minorities, including 10 (22%) scholars who are members of an underrepresented minority group. Scholars reported increased research skills, strong mentorship experiences, and positive impact on their career trajectory. Among the 43 scholars who have completed the program, 39 (91%) remain engaged in CTR and received over $89 000 000 as principal investigators on federally funded awards. The K12/KL2 funding provided the training and protected time for successful career development of CTR scientists. These data highlight the need for continued support for CTR training programs for junior faculty. Copyright © 2016 American Federation for Medical Research.

  5. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  6. A community translational research pilot grants program to facilitate community--academic partnerships: lessons from Colorado's clinical translational science awards.

    Science.gov (United States)

    Main, Deborah S; Felzien, Maret C; Magid, David J; Calonge, B Ned; O'Brien, Ruth A; Kempe, Allison; Nearing, Kathryn

    2012-01-01

    National growth in translational research has increased the need for practical tools to improve how academic institutions engage communities in research. One used by the Colorado Clinical and Translational Sciences Institute (CCTSI) to target investments in community-based translational research on health disparities is a Community Engagement (CE) Pilot Grants program. Innovative in design, the program accepts proposals from either community or academic applicants, requires that at least half of requested grant funds go to the community partner, and offers two funding tracks: One to develop new community-academic partnerships (up to $10,000), the other to strengthen existing partnerships through community translational research projects (up to $30,000). We have seen early success in both traditional and capacity building metrics: the initial investment of $272,742 in our first cycle led to over $2.8 million dollars in additional grant funding, with grantees reporting strengthening capacity of their community- academic partnerships and the rigor and relevance of their research.

  7. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    Science.gov (United States)

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.

  8. ORD Science and Technology for Sustainability Research Program Mid-Cycle Review - July 2009

    Science.gov (United States)

    The purpose of the review was to evaluate progress that the STS Program has made since the 2007 program review and to assess the responsiveness of the Program to advice, comments, and recommendations provided by the BOSC as a product of that review.

  9. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  10. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  11. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this program to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.

  12. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  13. Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-06-30

    This is a second quarter 1194 progress report on the UNLV Information Science Research Institute. Included is symposium activity; staff activity; document analysis program; text retrieval program; institute activity; and goals.

  14. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Science.gov (United States)

    2010-03-30

    ... Marine Laboratory in Charleston, South Carolina. DATES: All applications, paper and electronic, must be..., Gaithersburg Laboratories in Gaithersburg, Maryland or at the NIST Hollings Marine Laboratory in Charleston..., Thermophysical Properties, and Analytical Chemistry. In Charleston, the CSTL carries out programs in the...

  15. Demonstrating the value of a social science research program to a natural resource management agency

    Science.gov (United States)

    Pamela J. Jakes; John F. Dwyer; Deborah S. Carr

    1998-01-01

    With ever tightening resources to address an increased number of diverse and complex issues, it has become common for scientists and managers to be called upon to demonstrate the value of their programs. In the spring of 1995, social scientists at the USDA Forest Service North Central Forest Experiment Station we so called upon. This paper discusses an effort to...

  16. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    Energy Technology Data Exchange (ETDEWEB)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  17. Social science in the context of the long term ecological research program

    Science.gov (United States)

    Ted L. Gragson; Morgan Grove

    2006-01-01

    This special issue of Society and Natural Resources brings the results of long-term ecological research with an explicit social dimension to the attention of the social scientific research community. Contributions are from the Baltimore Ecosystem Study LTER, the Central Arizona-Phoenix LTER, the Coweeta LTER and the Northern Temperate Lakes LTER The range of practice...

  18. Social science in the context of the long term ecological research program

    Science.gov (United States)

    Ted L. Gragson; Morgan Grove

    2006-01-01

    This special issue of Society and Natural Resources brings the results of long-term ecological research with an explicit social dimension to the attention of the social scientific research community. Contributions are from the Baltimore Ecosystem Study LTER, the Central Arizona-Phoenix LTER, the Coweeta LTER and the Northern Temperate Lakes LTER. The range of practice...

  19. Fact Sheet on EPA's Science, Technology, Engineering & Math (STEM) Outreach Program in Research Triangle Park

    Science.gov (United States)

    Employees from EPA’s Research Triangle Park (RTP) campus serve as guest speakers at local schools and in the community. Hands-on activities and interactive discussions supplement classroom instruction and promote environmental awareness

  20. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  1. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  2. Teaching Science through Research.

    Science.gov (United States)

    Hugerat, Muhamad; Zidani, Saleem; Kurtam, Naji

    2003-01-01

    Discusses the objectives of the science curriculum and the teacher's responsibility of passing through not only the required material, but also skills. Suggests that in order to improve teaching and learning skills, new strategies, such as teaching and learning through research must be utilized. Presents four examples of teaching and learning…

  3. Classifying publications from the clinical and translational science award program along the translational research spectrum: a machine learning approach.

    Science.gov (United States)

    Surkis, Alisa; Hogle, Janice A; DiazGranados, Deborah; Hunt, Joe D; Mazmanian, Paul E; Connors, Emily; Westaby, Kate; Whipple, Elizabeth C; Adamus, Trisha; Mueller, Meridith; Aphinyanaphongs, Yindalon

    2016-08-05

    Translational research is a key area of focus of the National Institutes of Health (NIH), as demonstrated by the substantial investment in the Clinical and Translational Science Award (CTSA) program. The goal of the CTSA program is to accelerate the translation of discoveries from the bench to the bedside and into communities. Different classification systems have been used to capture the spectrum of basic to clinical to population health research, with substantial differences in the number of categories and their definitions. Evaluation of the effectiveness of the CTSA program and of translational research in general is hampered by the lack of rigor in these definitions and their application. This study adds rigor to the classification process by creating a checklist to evaluate publications across the translational spectrum and operationalizes these classifications by building machine learning-based text classifiers to categorize these publications. Based on collaboratively developed definitions, we created a detailed checklist for categories along the translational spectrum from T0 to T4. We applied the checklist to CTSA-linked publications to construct a set of coded publications for use in training machine learning-based text classifiers to classify publications within these categories. The training sets combined T1/T2 and T3/T4 categories due to low frequency of these publication types compared to the frequency of T0 publications. We then compared classifier performance across different algorithms and feature sets and applied the classifiers to all publications in PubMed indexed to CTSA grants. To validate the algorithm, we manually classified the articles with the top 100 scores from each classifier. The definitions and checklist facilitated classification and resulted in good inter-rater reliability for coding publications for the training set. Very good performance was achieved for the classifiers as represented by the area under the receiver operating

  4. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  5. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  6. Student Perceptions of Staged Transfer to Independent Research Skills During a Four-year Honours Science Undergraduate Program

    Directory of Open Access Journals (Sweden)

    Sarah L. Symons

    2017-03-01

    Full Text Available We describe interim results of an ongoing longitudinal pedagogical study investigating the efficacy of the Honours Integrated Science Program (iSci. We describe the pedagogical methods we use to prompt research skill development in a model from instructor-dependence to independent original research. We also describe a tool we use to help students organise their group research during their first attempts. Finally, we discuss students’ perceptions of how well iSci develops their research skills. Our results show that students are attracted to the iSci program because of the opportunities for research-based learning and skills development. We also found that in-program students value research skill development as a tool for successful completion of their degree and for their future academic or career plans. We conclude that our study methods help identify areas where we can support our students by building their research confidence and, in particular, their time-management skills. Nous présentons une description des résultats intérimaires d’une étude pédagogique longitudinale qui vise à évaluer l’efficacité du programme spécialisé intégré de sciences (iSci. Nous faisons une description des méthodes pédagogiques que nous utilisons pour déclencher le développement des compétences en recherche au sein d’un modèle qui va de la recherche qui dépend de l’instructeur à la recherche indépendante originale. Nous décrivons également un outil que nous utilisons pour aider les étudiants à organiser leur recherche par groupe au cours de leurs premières tentatives. Pour finir, nous discutons les perceptions des étudiants sur la manière dont le programme iSci développe leurs compétences en recherche. Nos résultats indiquent que les étudiants sont attirés vers le programme iSci à cause des occasions d’apprentissage basé sur la recherche et de développement des compétences. Nous avons également remarqué que les

  7. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...... a coherent perspective on DSR and its relationship to other research paradigms. Attendees will also be introduced to three specific and applied techniques for planning and conducting DSR, which were developed by the workshop organisers. When covering the applied techniques and tools, both to further...... attendees’ learning and to develop their research, attendees will be invited to apply the techniques to their own ongoing, planned, or potential DSR research projects. The organisers have developed workbooks that the attendees can use to carry out practical exercises and take them away afterwards...

  8. Communication Sciences Laboratory Quarterly Progress Report, Volume 9, Number 3: Research Programs of Some of the Newer Members of CSL.

    Science.gov (United States)

    Feinstein, Stephen H.; And Others

    The research reported in these papers covers a variety of communication problems. The first paper covers research on sound navigation by the blind and involves echo perception research and relevant aspects of underwater sound localization. The second paper describes a research program in acoustic phonetics and concerns such related issues as…

  9. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  10. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    Science.gov (United States)

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  11. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  12. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  13. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  14. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    Science.gov (United States)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  15. The Master of Science in clinical epidemiology degree program of the Perelman School of Medicine at the University of Pennsylvania: a model for clinical research training.

    Science.gov (United States)

    Strom, Brian L; Kelly, Thomas O; Norman, Sandra A; Farrar, John T; Kimmel, Stephen E; Lautenbach, Ebbing; Feldman, Harold I

    2012-01-01

    An innovative training program to provide clinical research training for clinicians was created in 1979 at the University of Pennsylvania School of Medicine, now the Perelman School of Medicine. The program's principal and continuing aim is to provide trainees mentored experiences and the training needed to become skilled independent investigators able to conduct clinical research and develop academic careers as independent clinical investigators.The authors identify the vision that led to the creation of the master of science in clinical epidemiology (MSCE) degree program and describe today's training program, including administration, oversight, participating faculty, and trainees. They also describe the program's core curriculum, elective options, seminars on ongoing research, training in the responsible conduct of research, professional development activities, and the development and completion of a closely mentored clinical research project.Approximately 35 new trainees enter the two- to three-year program annually. Funding is provided primarily by National Institutes of Health-funded training programs and supplemented by private industry, private foundations, and employee-based benefits. More than 500 individuals have received or are currently receiving training through the MSCE program. A large percentage of former trainees maintain full-time positions in academic medicine today.The authors identify some challenges that have been met and insights regarding funding, faculty, trainees, and curriculum. Ongoing challenges include recruiting trainees from some selected highly paid, procedure-oriented specialties, maintaining sufficient mentors for the continually increasing numbers of trainees, and distinguishing applicants who truly desire a primary research career from others.

  16. The Theoretical Science of Research

    OpenAIRE

    Subbarayan Peri

    2013-01-01

    The science of research is unique among sciences in many respects. All other sciences are reared by it, but it has never been viewed as a science so far in this world. Had it been developed as an independent science, the world would have advanced by some centuries than what it did and had. The science of research is an integral part of the emerging ‗learning science‘ along with it counter-parts the science of education. Every systematic science has its elements i.e. paraphernalia —assumption...

  17. Computer Science Research in India.

    Science.gov (United States)

    1995-10-07

    This paper begins with a discussion of the nature of Computer Science Research in India. The type of institutions in which Computer Science research...Finally we study the influence on Indian Computer Science research of the phenomenal growth in exports by the Indian software industry and the arrival

  18. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  19. Nevada Underserved Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  20. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  1. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program.

    Science.gov (United States)

    Keen-Rhinehart, E; Eisen, A; Eaton, D; McCormack, K

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one's field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty.

  2. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  3. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  4. Entering the Community of Practitioners: A Science Research Workshop Model

    Science.gov (United States)

    Streitwieser, Bernhard; Light, Gregory; Pazos, Pilar

    2010-01-01

    This article describes the Science Research Workshop Program (SRW) and discusses how it provides students a legitimate science experience. SRW, which is funded by the National Science Foundation, is an apprenticeship-style program in which students write proposals requesting resources to research an original question. The program creates a…

  5. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    Science.gov (United States)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  6. Science Academies Summer Research Fellowship

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 11. Science Academies Summer Research Fellowship. Information and Announcements Volume 13 Issue 11 November 2008 pp 1091-1094. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  8. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  9. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    Science.gov (United States)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  10. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  11. Strategic Research Directions In Microgravity Materials Science

    Science.gov (United States)

    Clinton, Raymond G., Jr.; Wargo, Michael J.; Marzwell, Neville L.; Sanders, Gerald; Schlagheck, Ron; Semmes, Ed; Bassler, Julie; Cook, Beth

    2004-01-01

    The Office of Biological and Physical Research (OBPR) is moving aggressively to align programs, projects, and products with the vision for space exploration. Research in advanced materials is a critical element in meeting exploration goals. Research in low gravity materials science in OBPR is being focused on top priority needs in support of exploration: 1) Space Radiation Shielding; 2) In Situ Resource Utilization; 3) In Situ Fabrication and Repair; 4) Materials Science for Spacecraft and Propulsion Systems; 5) Materials Science for Advanced Life Support Systems. Roles and responsibilities in low gravity materials research for exploration between OBPR and the Office of Exploration Systems are evolving.

  12. `I Actually Contributed to Their Research': The influence of an abbreviated summer apprenticeship program in science and engineering for diverse high-school learners

    Science.gov (United States)

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-02-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research practices within working university chemistry and engineering laboratories. The experience was supplemented by discussions and activities intended to impact nature of science (NOS) and inquiry understandings and to allow for an exploration of STEM careers and issues of self-identity. Participants completed a NOS questionnaire before and after the experience, were interviewed multiple times, and were observed while working in the laboratories. Findings revealed that as a result of the program, participants (1) demonstrated positive changes in their understandings of certain NOS aspects many of which were informed by their laboratory experiences, (2) had an opportunity to explore and strengthen STEM-related future plans, and (3) examined their self-identities. A majority of participants also described a sense of belonging within the laboratory groups and believed that they were making significant contributions to the ongoing work of those laboratories even though their involvement was necessarily limited due to the short duration of the program. For students who were most influenced by the program, the belonging they felt was likely related to issues of identity and career aspirations.

  13. Traveling science: An elementary science enhancement program

    Energy Technology Data Exchange (ETDEWEB)

    Gotlib, L.; Brown, S. [South Granvile High School, Creedmoor, NC (United States); Bibby, E. [Granville County Schools, Oxford, NC (United States)

    1994-12-31

    Traveling Science is an elementary science visitation program by two high school teachers (using scheduled release time) for every third to fifth grade student and teacher in Granville County, North Carolina (a total of sixty-one classes, 1,600 students-over 25,000 student contacts in three years). Teachers and students see and participate in hands-on, inquiry-based science done with inexpensive, readily available materials (usually less than 2% per class). Teachers become more confident and self-reliant with respect to science education, and students get increased exposure to hands-on science. In addition to the classroom visits (a total of six per year for each class), teachers receive a guide containing introductory and follow-up materials, and a monthly newsletter. Visit topics cover the physical, life and earth sciences; designed to stress the processes of science. We try to use topics of interest and relevance to students, such as toys, food, animals and playground activities. Teachers and schools also receive additional materials (posters and videos).

  14. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  15. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  16. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  17. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    Science.gov (United States)

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  18. Coastal Inlets Research Program

    Science.gov (United States)

    2015-10-30

    The Coastal Inlets Research Program (CIRP) is a R&D Program funded through the Operations & Maintenance (O&M) funding. The CIRP mission is to...transport, and vessel-induced flow and wake. In FY 2014, the Corps spent approximately $808 million in maintenance dredging of 152 million cubic...web-based tools and applications. The CIRP’s applied research and development provides quantitative and practical predictive tools and data to

  19. The National Institute of Environmental Health Sciences Superfund Research Program: a model for multidisciplinary training of the next generation of environmental health scientists.

    Science.gov (United States)

    Carlin, Danielle J; Henry, Heather; Heacock, Michelle; Trottier, Brittany; Drew, Christina H; Suk, William A

    2017-10-23

    The National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) funds university-based, multidisciplinary research on human health and environmental science and engineering with the central goals to understand how hazardous substances contribute to disease and how to prevent exposures to these environmental chemicals. This multi-disciplinary approach allows early career scientists (e.g. graduate students and postdoctoral researchers) to gain experience in problem-based, solution-oriented research and to conduct research in a highly collaborative environment. Training the next generation of environmental health scientists has been an important part of the SRP since its inception. In addition to basic research, the SRP has grown to include support of broader training experiences such as those in research translation and community engagement activities that provide opportunities to give new scientists many of the skills they will need to be successful in their field of research. Looking to the future, the SRP will continue to evolve its training component by tracking and analyzing outcomes from its trainees by using tools such as the NIEHS CareerTrac database system, by increasing opportunities for trainees interested in research that goes beyond US boundaries, and in the areas of bioinformatics and data integration. These opportunities will give them the skills needed to be competitive and successful no matter which employment sector they choose to enter after they have completed their training experience.

  20. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  1. Research Journal of Health Sciences

    African Journals Online (AJOL)

    The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns with the mission of the Osun State University, which is “to create a unique institution, committed to the pursuit of academic innovation, skills-based training and a ...

  2. Using a creativity-focused science program to foster general creativity in young children: A teacher action research study

    Science.gov (United States)

    Gomes, Joan Julieanne Mariani

    The importance of thinking and problem-solving skills, and the ability to integrate and analyze information has been recognized and yet may be lacking in schools. Creativity is inherently linked to problem finding, problem solving, and divergent thinking (Arieti, 1976; Csikszentmihalyi, 1990; Milgram, 1990). The importance of early childhood education and its role in the formation of young minds has been recognized (Caine & Caine, 1991; Montessori, 1967a, 1967b; Piaget, 1970). Early childhood education also impacts creativity (Gardner, 1999). The features of brain-based learning (Caine & Caine, 1991; Jensen, 1998; Sousa, 2001; Wolfe, 2001) have a clear connection to nurturing the creative potential in students. Intrinsic motivation and emotions affect student learning and creativity as well (Hennessey & Amabile, 1987). The purpose of this study was to discern if a creativity-focused science curriculum for the kindergarteners at a Montessori early learning center could increase creativity in students. This action research study included observations of the students in two classrooms, one using the creativity-focused science curriculum, and the other using the existing curriculum. The data collected for this interpretive study included interviews with the students, surveys and interviews with their parents and teachers, teacher observations, and the administration of Torrance's (1981) Thinking Creatively in Action and Movement (TCAM) test. The interpretation of the data indicated that the enhanced science curriculum played a role in enhancing the creativity of the children in the creativity-focused group. The results of the TCAM (Torrance, 1981) showed a significant increase in scores for the children in the creativity-focused group. The qualitative data revealed a heightened interest in science and the observation of creative traits, processes, and products in the creativity-focused group children. The implications of this study included the need for meaningful

  3. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  5. High school science fair and research integrity.

    Science.gov (United States)

    Grinnell, Frederick; Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students' science fair experiences or expectations were evident.

  6. Unique post-doctoral positions in Master of Arts in Teaching Earth Science program at the American Museum of Natural History: Involving early-career research scientists in Earth science education

    Science.gov (United States)

    Flores, K. E.; Nadeau, P. A.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.

    2012-12-01

    Post-doctoral positions in Earth science fields traditionally emphasize research within a university setting or research institute. Such positions may include a teaching component, but one which is often restricted to introductory undergraduate Earth science courses or upper-level courses within their own field of specialization. With such a specific focus, there may not be much inclination on the part of a post-doctoral fellow to involve themselves in broader education programs, such as public outreach or secondary schools. The American Museum of Natural History is now conducting a non-traditional post-doctoral position as part of its new Master of Arts in Teaching Earth Science (MAT). This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State, particularly in high-needs schools with diverse populations. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The post-doctoral fellows of the MAT program have unique 3-year positions, with more traditional research-based work comprising 65% of the tenure and non-traditional educational roles 35%. The MAT fellows are divided into two types: those with a teaching role, who are involved in the co-design and co-teaching of graduate-level Earth science courses; and those in a research/mentoring role, who design and teach a summer-long science research practicum while also providing informal support to MAT teaching candidates throughout the school year. Over the first year of the MAT program's implementation, fellows have been exposed to a range of activities outside the realm of a traditional post

  7. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  8. Virginia Tech launches corporate partners program in biological sciences

    OpenAIRE

    Doss, Catherine

    2007-01-01

    Virginia Tech's Department of Biological Sciences in the university's College of Science, has launched a corporate partners program to foster collaboration between faculty, students and bio-science oriented corporations in the mid-Atlantic region. The so-named Biological Sciences Partners in Research and Education (BioSPIRE) program is designed to engage companies with an interest and capacity to impact education in the biological sciences.

  9. Global change research: Science and policy

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  10. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  11. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  12. Center forTelehealth and Cybermedicine Research, University of New Mexico Health Sciences Center: a model of a telehealth program within an academic medical center.

    Science.gov (United States)

    Alverson, Dale C; Dion, Denise; Migliorati, Margaret; Rodriguez, Adrian; Byun, Hannah W; Effertz, Glen; Duffy, Veronica; Monge, Benjamin

    2013-05-01

    An overview of the Center for Telehealth and Cybermedicine Research at the University of New Mexico Health Sciences Center was presented along with several other national and international programs as part of the of a symposium-workshop on telehealth, "Sustaining and Realizing the Promise of Telemedicine," held at the University of Michigan Health System in Ann Arbor, MI, May 18-19, 2012 and hosted by the University of Michigan Telemedicine Resource Center and its Director, Rashid Bashshur. This article describes our Center, its business plan, and a view to the future.

  13. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  14. Physical Sciences Research Priorities and Plans in OBPR

    Science.gov (United States)

    Trinh, Eugene

    2002-01-01

    This paper presents viewgraphs of physical sciences research priorities and plans at the Office of Biological and Physical Sciences Research (OBPR). The topics include: 1) Sixth Microgravity Fluid Physics and Transport Phenomena Conference; 2) Beneficial Characteristics of the Space Environment; 3) Windows of Opportunity for Research Derived from Microgravity; 4) Physical Sciences Research Program; 5) Fundamental Research: Space-based Results and Ground-based Applications; 6) Nonlinear Oscillations; and 7) Fundamental Research: Applications to Mission-Oriented Research.

  15. MRM Evaluation Research Program

    Science.gov (United States)

    Taylor, James C.

    1998-01-01

    This is an interim report on the current output of the MRM evaluation research program. During 1998 this research program has used new and existing data to create an important tool for the development and improvement of "maintenance resource management" (MRM). Thousands of surveys completed by participants in airline MRM training and/or behavior change programs have, for the first time, been consolidated into a panel of "MRM Attitudes and Opinion Profiles." These profiles can be used to compare the attitudes about decision making and communication in any given company at any stage in its MRM program with attitudes of a large sample of like employees during a similar period in their MRM involvement. This panel of comparison profiles for attitudes and opinions is a tool to help audit the effectiveness of a maintenance human factors program. The profile panel is the first of several tools envisioned for applying the information accumulating in MRM databases produced as one of the program's long range objectives.

  16. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  17. Research Ethics with Undergraduates in Summer Research Training Programs

    Science.gov (United States)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  18. Fusion Energy Sciences Advisory Committee Reports on Review of the Fusion Materials Research Program, Review of the Proposed Proof-of-Principle Programs, Review of the Possible Pathways for Pursuing Burning Plasma Physics, and Comments on the ER Facilities Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1998-07-01

    The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of current scientific excellence and recommendations for future goals and balance within the Program was requested.

  19. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  20. Reactor Safety Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  1. [Earth Sciences Research

    Science.gov (United States)

    2004-01-01

    contents include the following: 1. Argentina Field Expedition (2004). NASA funds supported joint fieldwork by Peter Makovicky (Dept. of Geology, TFM) and Sebastian Apesteguia (Museo Argentino de Ciencias Naturales, Buenos Aires) in a fossil-rich locality in the Cenomanian Candeleros Formation of northern Rio Negro Province, Argentina. The goal of this fieldwork was to collect small fossil vertebrates, which are abundant in this formation, with a special emphasis on small theropod (casmivorous) dinosaurs. 2. East Greenland Field Expedition (2004). During July-August 2004 the Field Museum led a month long expedition to Jameson Land in East Greenland to collect Triassic-Jurassic aged fossil plants from one of the most productive sites of this age in the world. The project aims include the study of events leading up to catastrophic changes in the biota and atmosphere that occurred about 200 million years ago. 3. Chile Field Expedition (March, 2004). Paleontological reconnaisance of the central Andean main range by helicopter: additional new Cenozoic mammal faunas from Chile. A several thousand sq km swath of the central Andean Cordillera was prospected by helicopter during 2004, permitting rapid survey of large areas in remote or difficult to access regions. This led to the recovery of fossils from several parts of the range, and the identification of sites worthy of future attention. 4. Wyoming Field Expedition (2004). NASA funds supported a three-week field program by Curator of Dinosaurs Peter Makovicky and a crew of Field Museum staff and volunteers at several sites in the Early Cretaceous Cloverly Formation of north-central Wyoming. The nine-member team excavated a number of sites that had been discovered over the preceding two summers.

  2. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  3. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  4. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  5. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  6. 1998 Environmental Management Science Program Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

  7. UNLV Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-12-31

    This document summarizes the activities and progress for the 1994 Fall quarter for the UNLV Information Science Research Institute. Areas covered include: Symposium activity, Staff activity, Document analysis program, Text-retrieval program, and Institute activity.

  8. International Community-University Research Alliance Program ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The International Community-University Research Alliance program (ICURA) is a joint initiative of the Social Sciences and Humanities Research Council (SSHRC) and IDRC. ICURA seeks to foster innovative research, training and the creation of new knowledge in areas of importance to the social, cultural and economic ...

  9. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  10. University of Maine’s Follow a Researcher™ Program: Using Graduate Student Field Research as a Framework to Incorporate Next Generation Science Standards (NGSS) Practices in the K-12 Classroom

    OpenAIRE

    Kaluzienski, Lynn; Hamley, Catherine; Rodda, Charles; Kranich, Gregory; Wilson, Laura

    2016-01-01

    Follow a Researcher™ is an innovative University of Maine 4-H program that connects youth with a graduate student who is conducting field research in a remote location. Using technology and social media, K-12 classrooms have an unprecedented opportunity to get to know a student researcher. Youth engage in the research process and witness NGSS Science and Engineering Practices in action.

  11. Contributions of acid rain research to the forest science-policy interface: learning from the national acid precipitation assessment program.

    Science.gov (United States)

    Charles E. Peterson; David S. Shriner

    2004-01-01

    During the 1970s, there was growing concern by scientists, policy officials and the general public in the USA over the possible effects of acid rain on human health and the environment (crops, forests, water, etc.). The lack of science-based information needed for policy and regulatory decisions led Congress to create an interagency task force in 1980 called the...

  12. Twitter and Health Science Research.

    Science.gov (United States)

    Finfgeld-Connett, Deborah

    2015-10-01

    Twitter is a communication platform that can be used to conduct health science research, but a full understanding of its use remains unclear. The purpose of this narrative literature review was to examine how Twitter is currently being used to conduct research in the health sciences and to consider how it might be used in the future. A time-limited search of the health-related research was conducted, which resulted in 31 peer-reviewed articles for review. Information relating to how Twitter is being used to conduct research was extracted and categorized, and an explanatory narrative was developed. To date, Twitter is largely being used to conduct large-scale studies, but this research is complicated by challenges relating to collecting and analyzing big data. Conversely, the use of Twitter to conduct small-scale investigations appears to be relatively unexplored. © The Author(s) 2014.

  13. Base Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  14. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  15. Open Science and Research Reproducibility.

    Science.gov (United States)

    Munafò, Marcus

    2016-01-01

    Many scientists, journals and funders are concerned about the low reproducibility of many scientific findings. One approach that may serve to improve the reliability and robustness of research is open science. Here I argue that the process of pre-registering study protocols, sharing study materials and data, and posting preprints of manuscripts may serve to improve quality control procedures at every stage of the research pipeline, and in turn improve the reproducibility of published work.

  16. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  17. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  18. The Science Program at SNOLab

    Science.gov (United States)

    Jillings, C. J.

    2009-03-01

    SNOLab is located at the 6800-foot level (6010 m.w.e. horizontal overburden) of Vale INCO Creighton Mine #9, near Sudbury, Ontario, Canada. Creighton mine is an active nickel and copper mine. The laboratory is an expansion of the space used for the Sudbury Neutrino Observatory and will be the site for several experiments in neutrino physics, geophysics, and particle astrophysics (including direct dark-matter searches and supernovae watches). The infrastructure and science program of the SNOLab underground laboratory is described.

  19. Geopolitical research in ukrainian science

    Directory of Open Access Journals (Sweden)

    O. V. Dashevs’ka

    2015-12-01

    Full Text Available The intensity and diversity of political and geopolitical processes in Ukraine give greater empirical basis for Geopolitical Studies. However, the popularity of this research is purely populist currents, leaving only a quarter of all science research. The aim of the study is to examine the specific dynamics and geopolitical studies in modern Ukrainian political thought. This paper reviews the dissertation research of local scientists. It was noted that most of the work falls on political sciences, specialty 23.00.04 - political problems of international systems and global development. The main trends in domestic geopolitical studies: 1. Identification of Ukraine’s place on the geopolitical map of the world by analyzing the geopolitical position and historical and political research; 2. Study regional issues, bilateral relations between countries; 3. Research general issues of international security, terrorism and the role of Ukraine in the system of international security; 4. Analysis of ethnic and political problems in Ukraine and their impact on international relations; 5. Investigation euro integration aspirations of Ukraine as the only right in terms of the geopolitical position; 6. General geopolitical studies that examined the practice of various geopolitical theories and concepts in different times and different countries. The analysis presented dissertations and other scientific literature suggests domestic authors only the first stage of mastering such important political science as geopolitics.

  20. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  1. Biological researchers: building nursing science.

    Science.gov (United States)

    Rudy, Ellen; Grady, Patricia

    2005-01-01

    Nursing science addresses the individual from a multidimensional perspective, and the questions nurses generate from their practice are often grounded in basic biology. However, concern is frequently voiced as to whether there is adequate preparation and support for biological researchers within nursing. This study reports on a survey of nurse investigators funded by the National Institutes of Health who carry out biological research. All study participants were current faculty, and 48% had post-doctoral training. The majority worked with animal models. Research areas ranged from cell and molecular biology to delivery of health care. Some participants reported tension between their work and how others view "typical" nursing research. All participants had been awarded federal research funding, primarily from the National Institute of Nursing Research (NINR), and most reported receiving small grants from other funding organizations early in their careers. Self-identified factors influencing success included mentoring, flexibility, persistence, and hard work.

  2. Mathematical Sciences Division 1992 Programs

    Science.gov (United States)

    1992-10-01

    methods and ring -vortex methods. The research in meteorology will be carried out using geometrical and linear programming methods for solving problems in Lp...investigated. 159 TITLE: Computational Properties of Auditory Neurons PI: Malvin C. Teich Columbia University in the City of New York Department of

  3. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  4. Research into minorities: between science and politics

    Directory of Open Access Journals (Sweden)

    Lena Ingilæ Landsem

    2017-09-01

    Full Text Available The article examines the interplay between science and politics in minority research in the period 1979 to mid-1980s at the University of Tromsø. Research was influenced by different conditions at the time, such as political events and policy priorities and ideological of streams in academia. Three factors influenced the choice of theme, priorities and approaches to minority research in North Norway. The first factor was the damming of the Alta-Kautokeino river, followed by Sami rights struggle and political changes towards the Sami population in Norway. What consequences did the political case for the research for the academic environment in the Northern Norway? The second factor was the research program run by the Norwegian general scientific Research (NAVF. An analysis on the relevant themes and focus areas within minority research is undertaken on basis of the research program. Finally I will use the methodological and research political discussions on emic and etic research positions that took place in the 1980s. Was it the Sami themselves, or also the researchers belonging to the majority that had the right to pursue research on the Sami? Sources consist of internal documents, reports, research papers and oral sources from the UiT.

  5. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  6. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  7. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  8. Impact of International Cooperation for Sustaining Space-Science Programs

    CERN Document Server

    Jani, Karan

    2016-01-01

    Space-science programs provide a wide range of application to a nation's key sectors of development: science-technology infrastructure, education, economy and national security. However, the cost of sustaining a space-science program has discouraged developing nations from participating in space activities, while developed nations have steadily cut down their space-science budget in past decade. In this study I investigate the role of international cooperation in building ambitious space-science programs, particularly in the context of developing nations. I devise a framework to quantify the impact of international collaborations in achieving the space-science goals as well as in enhancing the key sectors of development of a nation. I apply this framework on two case studies, (i) Indian Space Research Organization - a case of space-science program from a developing nation that has historically engaged in international collaborations, and (ii) International Space Station - a case for a long term collaboration ...

  9. Interdisciplinary Research and Training Program in the Plant Sciences. Technical progress report, February 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-07-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  10. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.

  11. Accreditation standards for undergraduate forensic science programs

    Science.gov (United States)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes

  12. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  13. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  14. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  15. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  16. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  17. Professor Barry Fraser's Contributions to Science Education Research

    Science.gov (United States)

    Aldridge, Jill M.

    2011-01-01

    In this article, I endeavour to convey the depth of Barry Fraser's contributions to science education research, including his tireless endeavours to promote and advance research, especially the field of learning environments, the realisation of his vision to create one of the largest doctoral programs in science and mathematics education in the…

  18. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    Science.gov (United States)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  19. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    IAS Admin

    2013-11-30

    Nov 30, 2013 ... Science Academies' Summer Research Fellowship Programme for. Students and Teachers – 2014. Sponspored by. Indian Academy of Sciences, Bangalore. Indian National Science Academy, New Delhi. The National Academy of Sciences, India, Allahabad. The three national science academies offer ...

  20. Policy Sciences in Water Resources Research

    Science.gov (United States)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  1. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  2. Basic Research in Computer Science

    Science.gov (United States)

    1993-10-01

    Widgets 82 6.5.6 Debugging 83 6.5.7 Utilities 84 6.6 Higher-Level Tools 84 6.6.1 Gilt 85 6.6.2 Lapidary 86 6.6.3 C32 86 6.6.4 Marquise 86 6.7...phase of the research-facilitating the eventual transfer of the technology, providing feedback for the ongoing basic-sensor research, and demonstrating... feedback object might have constraints that say "I am the same size as whatever I’m over," and then at runtime, the program will set the referent

  3. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  4. Archives: Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Items 1 - 16 of 16 ... Archives: Science, Technology and Arts Research Journal. Journal Home > Archives: Science, Technology and Arts Research Journal. Log in or Register to get access to full text downloads.

  5. Eastern Africa Social Science Research Review: Contact

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Contact. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Contact. Log in or Register to get access to full text downloads.

  6. Archives: Eastern Africa Social Science Research Review

    African Journals Online (AJOL)

    Items 1 - 34 of 34 ... Archives: Eastern Africa Social Science Research Review. Journal Home > Archives: Eastern Africa Social Science Research Review. Log in or Register to get access to full text downloads.

  7. The Dental Services Research Scholars Program.

    Science.gov (United States)

    Keenan, Terrance

    1983-01-01

    A foundation program to bring research on health services and policy issues into the domain of clinical scholarship is described. The principal approach is to train young clinicians for academic careers with major responsibilities in health studies at university health sciences centers. (MSE)

  8. A Program for Outdoor Recreation Research.

    Science.gov (United States)

    National Academy of Sciences, Washington, DC.

    The categorical sections of the proposed program for outdoor recreation research are (1) principal findings and recommendations of the National Academy of Sciences, (2) the social and behavioral dimensions of outdoor recreation, (3) the economics of outdoor recreation, and (4) the operation of recreation service systems. Among the specific topics…

  9. Research and development program, fiscal year 1974

    Energy Technology Data Exchange (ETDEWEB)

    1972-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for Fiscal Year 1974 is conducted within the scope of the following categories: Effects of Radiation of Living Organisms; Molecular and Cellular Radiobiology; Land and Fresh Water Environmental Sciences; Radiological and Health Physics and Instrumentation; and Nuclear Medical Research. (ACR)

  10. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  11. Research Programs & Initiatives

    Science.gov (United States)

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  12. The NASA Earth Science Flight Program

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2014-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 17 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission and the Orbiting Carbon Observatory-2 (OCO-2). The ESD has 18 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small competitively selected orbital and instrument missions of opportunity belonging to the Earth Venture (EV) Program. The International Space Station (ISS) is being used to host a variety of NASA Earth science instruments. An overview of plans and current status will be presented.

  13. Discussion Paper: Researchers and Open Science

    OpenAIRE

    Picarra, Mafalda

    2016-01-01

    This discussion paper introduces the concept of Open Science to policymakers and discusses how Open Science is fomenting change in the way scientific research is conducted, communicated, accessed and shared. The key highlights of this paper include an overview of the European Commission’s agenda for transforming science and democratising research through Open Science and considers the implications of Open Science for researchers’ and policymakers.

  14. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  15. Institutional Research Productivity in Science Education for the 1990s: Top 30 Rankings

    Science.gov (United States)

    Barrow, Lloyd H.; Settlage, John; Germann, Paul J.

    2008-01-01

    The purpose of this study was to identify the major science education programs in the United States, where the science education researchers published their research. This research is the first study of the scholarly productivity of science education programs at domestic institutions of higher education. Each issue of the eight research journals…

  16. University Research Initiative Research Program Summaries

    Science.gov (United States)

    1987-06-01

    stomatogastric ganglion are coupled to those in other ganglia. Another physiological system, studied by Dr. Cohen, is the lamprey spinal cord, an ideal...detailed structure of the lamprey oscillators. 103 10O4 I. ENVIRONMENTAL SCIENCE AND TECHNOLOGY Services’ Areas of Emphasis: Geosciences (ARO) Ocean...modeling and remote sensing to understand the mesoscale variability of the eastern Pacific Ocean. The principal objective of the program is to develop a

  17. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  18. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

  19. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  20. Training Math and Science Teacher-Researchers in a Collaborative Research Environment: Implications for Math and Science Education

    Science.gov (United States)

    Kyei-Blankson, Lydia

    2014-01-01

    In this mixed-methods study, the effect of training teacher-researchers in a collaborative research environment is examined for a cohort of teachers enrolled in a Math and Science Partnership (MSP) master's degree program. The teachers describe changes in their research views and in their application of research in practice, and detail the…

  1. Laser Science & Technology Program Annual Report - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.

  2. Human Research Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Strategically, the HRP conducts research and technology development that: 1) enables the development or modification of Agency-level human health and performance...

  3. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  4. Aquatic Sciences and Its Appeal for Expeditionary Research Science Education

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.

  5. U.S. Global Change Research Program Budget Crosscut

    Data.gov (United States)

    Office of Science and Technology Policy, Executive Office of the President — U.S. Global Change Research Program budget authority for Agency activities in which the primary focus is on:Observations, research, and analysis of climate change...

  6. Tansmutation Research program

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  7. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  8. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  9. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  10. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  11. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  12. Summaries of FY 1980 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  13. Research on Automatic Programming

    Science.gov (United States)

    1975-12-31

    It was not released to the general ECL user community , and in its stead several features were installed in the compiler. These included the...processes to communicate with each other in the manner specified. A technique has now been developed whereby the correctness of the specification can be...Refutation graphs and resolution theorem proving, Working paper, Harvard University, Center for Research in Computing Tecnology , TR-1-74, January 1974

  14. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2017. Information and Announcements Volume 21 Issue 9 September 2016 pp 861-861 ...

  15. Science Academies Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 10. Science Academies Summer Research Fellowship Programme for Students and Teachers. Information and Announcements Volume 16 Issue 10 October 2011 pp 999-999 ...

  16. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018. Information and Announcements Volume 22 Issue 11 November 2017 pp 1100-1100 ...

  17. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2015. Information and Announcements Volume 19 Issue 9 September 2014 pp 877-877 ...

  18. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  19. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  20. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    Science.gov (United States)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  1. Science Education Research vs. Physics Education Research: A Structural Comparison

    OpenAIRE

    Akarsu, Bayram

    2011-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and trends (e.g. current research ideas) within PER.

  2. Art in Science Promoting Interest in Research and Exploration (ASPIRE)

    Science.gov (United States)

    Fillingim, M.; Zevin, D.; Thrall, L.; Croft, S.; Raftery, C.; Shackelford, R.

    2015-11-01

    Led by U.C. Berkeley's Center for Science Education at the Space Sciences Laboratory in partnership with U.C. Berkeley Astronomy, the Lawrence Hall of Science, and the YMCA of the Central Bay Area, Art in Science Promoting Interest in Research and Exploration (ASPIRE) is a NASA EPOESS-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. ASPIRE's aim is to motivate more diverse young people (especially African Americans) to learn about Science, Technology, Engineering, and Mathematics (STEM) topics and careers, via 1) Intensive summer workshops; 2) Drop-in after school workshops; 3) Astronomy visualization-focused outreach programming at public venues including a series of free star parties where the students help run the events; and 5) A website and a number of social networking strategies that highlight our youth's artwork.

  3. NASA Earth Science Research and Applications Using UAVs

    Science.gov (United States)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  4. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wootton, Alan James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spaulding, Dylan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winget, Don [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF- relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.

  5. USDA's Plant Genome Research Program.

    Science.gov (United States)

    McCarthy, S

    1993-07-01

    Biotechnology will provide U.S. farmers with another green revolution. The United States Department of Agriculture has put together the Plant Genome Research Program as a coordinated multi-agency effort within the department to help develop the "new agriculture." The Cooperative State Research Service is managing the program's competitive research grants. Research topics include high- and low-resolution chromosomal maps; the isolation and transfer of economically important genes; and new technology developments. The Agricultural Research Service is the lead agency for the Plant Genome Research Program and coordinates data collection and information management resources for the program. Five species groups are collaborating in the database development effort for the program by defining the user needs for their species and collecting and evaluating their species data for the database. A central database for the Plant Genome Research Program is under development at the National Agricultural Library (NAL) and ultimately will contain data for as many as seventy-one different plant species. NAL will provide user access via Internet, dial-up modem, and, at a later date, a CD-ROM product.

  6. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... Researcher and Visiting Fellow Measurement Science and Engineering Program; Availability of Funds AGENCY... establishing a financial assistance program for awardees to develop and implement with the CNST a Postdoctoral Researcher and Visiting Fellow Measurement Science and Engineering Program. This program is intended to...

  7. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  8. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  9. Graphical programming for training natural science teachers

    Directory of Open Access Journals (Sweden)

    Т К Константинян

    2008-06-01

    Full Text Available Problems of applying methods of graphical programming for educational processes of natural sciences teachers training are considered in the article. Deductive problems, approaches and advantages of virtual automatization of laboratory practicals are also discussed.

  10. Schools In Board - Bridging Arctic Research And Environmental Science Education

    Science.gov (United States)

    Barber, D. G.; Barber, L.

    2008-12-01

    Schools on Board (www.arcticnet.ulaval.ca) was created in 2002 to address the outreach objectives of a network of Canadian scientists conducting research in the High Arctic. The program was piloted with great success with the 2004 research program called the Canadian Arctic Shelf Study (CASES). Since then, the S/B program continues as an integral outreach program of the Canadian Network of Centres of Excellence (NCE) known as ArcticNet. The primary objective of the program is to bridge Arctic climate change research with science and environmental education in the public school system. It is a vehicle for scientists and graduate students to share their research program with high schools and the general public. The program encourages schools to include Arctic Sciences into their science programs by linking Arctic research to existing curriculum, providing resources and opportunities to send high school students and teachers into the Arctic to participate in a science expedition on board the Canadian research icebreaker CCGS Amundsen. The field program is an adventure into Arctic research that exposes students and teachers to the objectives and methods of numerous science teams representing a number of research disciplines and institutions from across Canada and beyond. Face-to-face interactions with scientists of all levels (masters, PhD's, researchers, CRC chairs), hands-on experiences in the field and in the labs, and access to state-of-the-art scientific instrumentation, combine to create a powerful learning environment. In addition to hands-on research activities the program introduces participants to many aspects of Canada's North, including local knowledge related to climate change, culture, history, and politics - within the educational program on the ship and the planned visits to Northern communities. During International Polar Year (IPY) Schools on Board collaborated with international researchers and northern agencies from 11 countries to offer one

  11. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  12. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  13. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 -- Report and Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ``Background of the Program,`` provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ``Research Award Selection Process,`` provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ``Linkages to Environmental Cleanup Problems,`` provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ``Capitalizing on Science Investments,`` discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants.

  14. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  15. Environmental Management Science Program (EMSP) for Deactivation and Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2002-03-01

    The mission of the EMSP is to develop and fund targeted, long-term research programs that will result in transformational or breakthrough approaches for solving DOE’s environmental problems. The purpose of this research is to provide the basic science knowledge that will lead to reduced remediation cost, schedule, technical uncertainty, and risk.

  16. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  17. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  18. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health

    National Research Council Canada - National Science Library

    Landrigan, Philip J; Wright, Robert O; Cordero, Jose F; Eaton, David L; Goldstein, Bernard D; Hennig, Bernhard; Maier, Raina M; Ozonoff, David M; Smith, Martyn T; Tukey, Robert H

    2015-01-01

    .... SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research...

  19. Computational science for energy research

    Science.gov (United States)

    Abgrall, Rémi; Koren, Barry

    2017-09-01

    Computational science complements theory and experiments. It can deliver knowledge and understanding in application areas where the latter two can not. Computational science is particularly important for the simulation of various energy-related processes, ranging from classical energy processes as combustion and subsurface oil-reservoir flows to more modern processes as wind-farm aerodynamics, photovoltaics and - very challenging from a computational perspective - tokamak-plasma physics.

  20. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  1. Plutonium research program, fiscal year 1970

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    This report contains a compilation of unclassified plutonium programs underway in FY 1970 in the field of materials science. It includes work in ceramics, metallurgy, solid state physics and physical chemistry. Information on each of the programs is given in five sub-headings: scope of the work; technical effort in manyears; primary class of materials studied; person(s) to contact for further information; and reports and publications. All the work listed is restricted to either research or long range development and not applied or hardware-type projects.

  2. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  3. Research chief wants to make science matter

    CERN Multimedia

    König, R

    1999-01-01

    The new research chief of the European Union, Phillippe Busquin wants to move science into the heart of EU decision-taking. He would like to make European research more 'cohesive, focused, mobile and multilateral' (2 pages).

  4. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  5. Developing a Research Agenda in Science Education

    Science.gov (United States)

    Simmons, Patricia E.; Brunkhorst, Herb; Lunetta, Vincent; Penick, John; Peterson, Jodi; Pietrucha, Barbara; Staver, John

    2005-06-01

    The Science Summit reinforced a question upon which many of us in science education are focused: How can we, the science education community of researchers, practitioners, and consumers, lead policy? We include a brief review of the No Child Left Behind Act and its implications for teachers, and elaborate about one ongoing and growing effort to answer the concerns about the paucity of research expressed at the Summit. We describe a unique and growing collaboration across professional science education and science organizations and societies that focuses on the development of a research agenda. The term `consilience' refers to the "jumping together of knowledge" that leads to scientific advancements, progressive, creative, fluid scientific research and intellectual capacity to move a research community toward an enlightened research agenda. A coherent research agenda enables us to specify what we know, what we need to know, and how research can be employed for creating and implementing policy. The use of a dynamic organizer (such as Pasteur's Quadrant) for a research matrix of topics provides a possible structure for organizing and cataloging research questions, designs, findings from past studies, needed areas for research, and policy implications. Through this unique collaboration, the science education community can better focus on needs and priorities and ensure that teachers, policy makers, scientists, and researchers in education at local through national levels have an important stake in research priorities and actions.

  6. Mapping a research agenda for the science of team science.

    Science.gov (United States)

    Falk-Krzesinski, Holly J; Contractor, Noshir; Fiore, Stephen M; Hall, Kara L; Kane, Cathleen; Keyton, Joann; Klein, Julie Thompson; Spring, Bonnie; Stokols, Daniel; Trochim, William

    2011-06-01

    An increase in cross-disciplinary, collaborative team science initiatives over the last few decades has spurred interest by multiple stakeholder groups in empirical research on scientific teams, giving rise to an emergent field referred to as the science of team science (SciTS). This study employed a collaborative team science concept-mapping evaluation methodology to develop a comprehensive research agenda for the SciTS field. Its integrative mixed-methods approach combined group process with statistical analysis to derive a conceptual framework that identifies research areas of team science and their relative importance to the emerging SciTS field. The findings from this concept-mapping project constitute a lever for moving SciTS forward at theoretical, empirical, and translational levels.

  7. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the

  8. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  9. The ICPSR and Social Science Research

    Science.gov (United States)

    Johnson, Wendell G.

    2008-01-01

    The Inter-university Consortium for Political and Social Research (ICPSR), a unit within the Institute for Social Research at the University of Michigan, is the world's largest social science data archive. The data sets in the ICPRS database give the social sciences librarian/subject specialist an opportunity of providing value-added bibliographic…

  10. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  11. Informing Science Special Issue on Information Science Research

    Directory of Open Access Journals (Sweden)

    Amanda Spink

    2000-01-01

    Full Text Available The papers in this Special Issue of Informing Science highlight research areas in the interdisciplinary field of Information Science. Key research problems for Information Science include: (1 how to model and effectively support human information behaviors, including information seeking and use behaviors, and interaction with information retrieval (IR technologies, (2 how information should be organized intellectually in IR technologies for more effective human information retrieval, and (3 the organizational, social and policy implications for the information society of human information behaviors. Information Scientists are concerned with how people's information problems can be resolved. In this way, information science is an important part of the "informing sciences". Information Science has largely borrowed theories and approaches from other disciplines - but is now attracting attention from other disciplines as a generator of theory and models that delineate key areas of human information-related endeavors. As humans struggle to seek and use information within the plethora of information sources increasingly available via the Web, Information Science research is taking center stage. Each paper in this special issue is written by an expert in their area of Information Science research.

  12. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  13. The NASA Physical Science Program in Reduced Gravity: Combustion and Fluid Physics Work at the NASA Glenn Research Center and the International Space Station

    Science.gov (United States)

    Sacksteder, Kurt

    The completion of the International Space Station (ISS) includes the launching and installa-tion of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR), providing an unprecedented capability for conducting fundamental and applied research in the physical sciences. In addition to ongoing work, NASA has initiated a variety of investigations in combus-tion and fluid physics including ground-based testing and theoretical development to prepare for the utilization of these ISS capabilities. This paper will provide an overview of the CIR and FIR facilities and the portfolio of investigations that are currently aboard the ISS utilizing these facilities and the investigations that are underway for future utilization.

  14. Psychological Sciences Division 1979 Programs.

    Science.gov (United States)

    1979-11-01

    Other abilities over the life span (from childhood to old studies demonstrated that these diffevences are not age)-, genetic and environmental inluences...Rokeach Values Scale, the Rotter, a language designing and implementing leadership training dominance/ bilingualism measure, and an assess- programs

  15. Bridging the Gap: The Role of Research in Science Education

    Science.gov (United States)

    Adams, M. L.; Michael, P. J.

    2001-12-01

    Teaching in K-12 science classrooms across the country does not accurately model the real processes of science. To fill this gap, programs that integrate science education and research are imperative. Teachers Experiencing Antarctica and the Arctic (TEA) is a program sponsored and supported by many groups including NSF, the Division of Elementary, Secondary, and Informal Education (ESIE), and the American Museum of Natural History (AMNH). It places teachers in partnerships with research scientists conducting work in polar regions. TEA immerses K-12 teachers in the processes of scientific investigation and enables conveyance of the experience to the educational community and public at large. The TEA program paired me with Dr. Peter Michael from the University of Tulsa to participate in AMORE (Arctic Mid-Ocean Ridge Expedition) 2001. This international mission, combining the efforts of the USCGC Healy and RV Polarstern, involved cutting-edge research along the geologically and geophysically unsampled submarine Gakkel Ridge. While in the field, I was involved with dredge operations, CTD casts, rock cataloging/ processing, and bathymetric mapping. While immersed in these aspects of research, daily journals documented the scientific research and human aspects of life and work on board the Healy. E-mail capabilities allowed the exchange of hundreds of questions, answers and comments over the course of our expedition. The audience included students, numerous K-12 teachers, research scientists, NSF personnel, strangers, and the press. The expedition interested and impacted hundreds of individuals as it was proceeding. The knowledge gained by science educators through research expeditions promotes an understanding of what research science is all about. It gives teachers a framework on which to build strong, well-prepared students with a greater awareness of the role and relevance of scientific research. Opportunities such as this provide valauble partnerships that bridge

  16. Research on College Science Teaching.

    Science.gov (United States)

    Rowe, Mary Budd, Ed.

    1977-01-01

    Describes 16 psychological types that result from the interaction of four mental powers described by G. G. Jung and the attitudes in which they are expressed. The relevance of psychological type to choice of careers in science and disposition to prefer theoretical or applied emphases are also discussed. (HM)

  17. The pivotal role of the social sciences in environmental health sciences research.

    Science.gov (United States)

    Finn, Symma; Collman, Gwen

    2016-09-06

    Environmental health sciences research seeks to elucidate environmental factors that put human health at risk. A primary aim is to develop strategies to prevent or reduce exposures and disease occurrence. Given this primary focus on prevention, environmental health sciences research focuses on the populations most at risk such as communities of color and/or low socioeconomic status. The National Institute of Environmental Health Sciences research programs incorporate the principles of Community-Based Participatory Research to study health disparities. These programs promote community engagement, culturally appropriate communications with a variety of stakeholders, and consideration of the social determinants of health that interact with environmental factors to increase risk. Multidisciplinary research teams that include social and behavioral scientists are essential to conduct this type of research. This article outlines the history of social and behavioral research funding at National Institute of Environmental Health Sciences and offers examples of National Institute of Environmental Health Sciences-funded projects that exemplify the value of social science to the environmental health sciences. © The Author(s) 2016.

  18. Capacity Building Partnership for Research and Education in Space Science

    Science.gov (United States)

    Kebede, A.; Danagoulian, S.; James, F.; Craft, B.

    2005-05-01

    The goals of the Capacity Building Partnership for Research and Education in Space Science (CB-PRESS) project include 1) establish a viable partnership to develop model education, research outreach programs in space science 2) to enhance existing STEM curricula using space science content 3) to develop a BS/MS space science track or full programs 4) to promote the value of space science within the "underserved" communities 5) to increase STEM majors 6) to develop adequate infrastructure for outreach and observation 7) to conduct ABET accreditation of the Engineering Physics Program. We report the following (1) Courses and programs: We are developing courses in astrophysics, Earth and Space Science, Solar Physics, and Space Radiation. We will begin offering these courses beginning Spring or Fall 2005. The BS/MS space science tracks will be offered beginning Fall 2005 pending approval. (2) Student training: Two students participated directly in NASA related research at Goddard Space Flight Center, and The National Radio Astronomy Observatory. (3) Public and K12 Outreach: We participated in one Teacher's workshop, and we made several trips to several elementary schools with our shows "Colors are Everywhere" We conducted outreach on "Venus Transit" for the public and NASA Sharp students. (4) Infrastructure: We are developing a robotic telescope for public outreach, and astronomy laboratory which non-existent at this time. We are also building the first robotic telescope on campus. (5) The draft proposal for the ABET accreditation of the Engineering Physics program is being studied. This work is supported by Minority University and College Education and Research Partnership Initiative (MUCERPI) in Space Science (NRA 03-OSS-03)

  19. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  20. Scientific Research in Computer Sciences

    Directory of Open Access Journals (Sweden)

    Arwa al-Yasiry

    2007-09-01

    Full Text Available This paper displays the importance of selection research objective and supervisor; In addition this paper suggested the optimal research methods that help researcher to get to optimal results in efficient way. This paper shows the thesis writing style and arrangement in way that to be readable for reader about reality of type and size of the work. The one important result of this paper it's the successful of scientific research must depend about many features that join together and miss one of the research methods that mean unsuccessful research.

  1. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  2. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  3. Abstracts: Energy Sciences programs, January--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    This report presents abstracts of all publications in the Energy Sciences programs of the Department of Energy and Environment from January 1, 1978 through December 31, 1978. It is a companion report to Annual Highlights of Programs in Energy Sciences - (December 1978, BNL 50973). Together, they present scientific and/or technical highlights of the Energy Sciences programs for the past calendar year, detailed descriptions of all the programs, and the publication issuing from the work performed. The following are some of the topics included: porphyrin chemistry; chemistry of energetic compounds; combustion; coal utilization; metal hydrides; cyclic separations process research; trace element analysis; materials properties and structures; radiation damage; superconducting materials; materials of construction for geothermal applications; repair of deteriorated concrete; development of glass--polymer composite sewer pipe; flash hydropyrolysis of coal; desulfurization of high-temperature combustion and fuel gases; and synthetic fuels development. (RWR)

  4. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index (the investigator index is in two parts - laboratory and contract research).

  5. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    Science.gov (United States)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  6. Assessment Study of an Undergraduate Research Training Abroad Program

    Science.gov (United States)

    Nieto-Fernandez, Fernando; Race, Kathryn; Quarless, Duncan A.

    2013-01-01

    The Old Westbury Neuroscience International Research Program (OWNIP) encourages undergraduate students from health disparities populations and underrepresented minorities to pursue careers in basic science, biomedical, clinical, and behavioral health research fields. To evaluate this program, several measures were used tracked through an online…

  7. Summaries of FY 1979 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  8. ALCF Data Science Program: Productive Data-centric Supercomputing

    Science.gov (United States)

    Romero, Nichols; Vishwanath, Venkatram

    The ALCF Data Science Program (ADSP) is targeted at big data science problems that require leadership computing resources. The goal of the program is to explore and improve a variety of computational methods that will enable data-driven discoveries across all scientific disciplines. The projects will focus on data science techniques covering a wide area of discovery including but not limited to uncertainty quantification, statistics, machine learning, deep learning, databases, pattern recognition, image processing, graph analytics, data mining, real-time data analysis, and complex and interactive workflows. Project teams will be among the first to access Theta, ALCFs forthcoming 8.5 petaflops Intel/Cray system. The program will transition to the 200 petaflop/s Aurora supercomputing system when it becomes available. In 2016, four projects have been selected to kick off the ADSP. The selected projects span experimental and computational sciences and range from modeling the brain to discovering new materials for solar-powered windows to simulating collision events at the Large Hadron Collider (LHC). The program will have a regular call for proposals with the next call expected in Spring 2017.http://www.alcf.anl.gov/alcf-data-science-program This research used resources of the ALCF, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

  9. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  10. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  11. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  12. Medical education research as translational science.

    Science.gov (United States)

    McGaghie, William C

    2010-02-17

    Research on medical education is translational science when rigorous studies on trainee clinical skill and knowledge acquisition address key health care problems and measure outcomes in controlled laboratory settings (T1 translational research); when these outcomes transfer to clinics, wards, and offices where better health care is delivered (T2); and when patient or public health improves as a result of educational practices (T3). This Commentary covers features of medical education interventions and environments that contribute to translational outcomes, reviews selected research studies that advance translational science in medical education at all three levels, and presents pathways to improve medical education translational science.

  13. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  14. The U.S. Global Change Research Program

    Energy Technology Data Exchange (ETDEWEB)

    MacCracken, M.C.

    1994-05-04

    The Office of Science and Technology Policy has established the National Science and Technology Council (NSTC) to help solve problems, to improve economic competitiveness, and to provide stimulus for education. Within the NSTC, the Committee on Environment and Natural Resources Research is responsible for seven environmental issues, including all research relating to global change. The US Global Change Research Program supports international protocols and conventions relating to ozone, climate, and biodiversity. It contributes to the advancement of knowledge in science, education, and technology transfer by providing scientific understanding for policy. This program supports the mission of federal agencies in the areas of forecasts, regulations, services, etc.

  15. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  16. High Performance Computing and Communications Act of 1991. Hearing Before the Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. One Hundred Second Congress, First Session on S. 272 To Provide for a Coordinated Federal Research Program To Ensure Continued United States Leadership in High-Performance Computing.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Senate Committee on Commerce, Science, and Transportation.

    This hearing before the Senate Subcommittee on Science, Technology, and Space focuses on S. 272, the High-Performance Computing and Communications Act of 1991, a bill that provides for a coordinated federal research and development program to ensure continued U.S. leadership in this area. Performance computing is defined as representing the…

  17. Partners in Science: A Suggested Framework for Inclusive Research

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and

  18. Assessment of the basic energy sciences program. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  19. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  20. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  1. Science Learning Environments and Action Research

    Science.gov (United States)

    Martin-Dunlop, Catherine

    2006-01-01

    A learning environment survey can be easily used in the science classroom to evaluate new instructional approaches, to spark enthusiasm, and to produce evidence showing that science teachers are indeed becoming a reflective practitioner. Conducting learning environment research in the classroom is personally rewarding as well. It allows science…

  2. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2013-01-01

    This article is designed to point "CBE-Life Sciences Education" readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  3. Science Granting Councils Initiative: Research uptake | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Science Granting Councils Initiative in sub-Saharan Africa aims to strengthen the capacities of science granting councils in sub-Saharan Africa to support research and evidence-based policies that contribute to economic and social development. The initiative's activities include training, regional exchanges and forums, ...

  4. Outcomes research: science and action.

    Science.gov (United States)

    Ting, Henry H; Xiang, Mei-xiang; Wang, Jian-an

    2013-08-01

    Outcomes research, which investigates the outcomes of health care practices, is intended to provide scientific evidence for clinical decision making and health care. This paper elucidates the goal and domains of outcomes research. Also it shows the potential and promise of outcomes research to provide a methodology to uncover what to do and how to do it, and enable the health care profession to achieve the right care, for the right patient, at the right time, the first time, every time, nothing more, and nothing less.

  5. Evaluating an artifact in design science research

    CSIR Research Space (South Africa)

    Herselman, M

    2015-09-01

    Full Text Available In this paper, we describe the iterative evaluation of an artifact developed through the application of Design Science Research (DSR) methodology in a resource constrained environment. In the DSR process the aspect of evaluation is often done...

  6. Reproducible research in vadose zone sciences

    Science.gov (United States)

    A significant portion of present-day soil and Earth science research is computational, involving complex data analysis pipelines, advanced mathematical and statistical models, and sophisticated computer codes. Opportunities for scientific progress are greatly diminished if reproducing and building o...

  7. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2012) >. Log in or Register to get access to full text downloads.

  8. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (2012) >. Log in or Register to get access to full text downloads.

  9. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2012) >. Log in or Register to get access to full text downloads.

  10. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  11. Sensory science research on taste

    DEFF Research Database (Denmark)

    Mann, Anna

    2018-01-01

    Recent ethnographies from the anthropology of food and the senses have shown how moments in which people taste foods are shaped by scientific knowledge, methods and rationales. Building on approaches developed in science and technology studies, this paper offers an ethnography of the field to which...... this shaping power has been assigned: the scientific study of taste. Detailed tracing and analysis of two laboratory experiments on taste performed in laboratories in Western Europe brings out how both turn moments in which people taste into a bodily response. At the same time, since their technical set......-ups address different societal problems and varying interest groups, they stage diverging versions: a perception versus a reaction to an exposure. The paper, thus, sheds light on how cultural and social norms, ideals, and practices shape the knowledge production about taste and its resulting effects....

  12. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  13. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations

    NARCIS (Netherlands)

    Ullrich, C.; Mahler, C.; Forstner, J.; Szecsenyi, J.; Wensing, M.

    2017-01-01

    BACKGROUND: Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The

  14. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  15. The "art" of science communication in undergraduate research training

    Science.gov (United States)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  16. International Conference on Data Science & Social Research

    CERN Document Server

    Amaturo, Enrica; Grassia, Maria; Aragona, Biagio; Marino, Marina

    2017-01-01

    This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from...

  17. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    Science.gov (United States)

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  18. Research in the chemical sciences. Summaries of FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  19. Science and the Constellation Systems Program Office

    Science.gov (United States)

    Mendell, Wendell

    2007-01-01

    An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known

  20. Human Immunodeficiency Virus Research Program

    Science.gov (United States)

    1993-11-30

    assessment of periodontal changes relative to Walter Reed Staging and CD4/CD8 counts, as well as other co-factors, such as smoking . Assessment of soft...Some commonly held concepts that have greatly influenced the course of HIV-1 vaccine research in the past and that are pertinent to this program are...criteria for reduced severity of disease and transmission potential using an integrated immunologic, virologic, and structural analysis of lymphoid tissues

  1. The Canadian Microgravity Sciences Program - Past present and future

    Science.gov (United States)

    Wetter, Barry; Saghir, Ziad; Mortimer, Alan

    1992-08-01

    An overview is given of the Canadian microgravity sciences program emphasizing the development and progress of microgravity-related research in the areas of materials and life sciences. Activities in the area of materials include: (1) materials processing by means of lasers; (2) crystal growth from melts solutions, and/or biological materials; (3) composite, glass, metal, and alloy materials research; and (4) combustion and fluid physics studies. The life-sciences segment incorporates studies of: cardiovascular/muscular acclimatization, radiation dosimetry, aquatic biology, bone decalcification, neurovestibular adaptations, cell cultures, and metabolism. Experimental payloads and processes are described for such infrastructures as the Mir space station, sounding rockets, drop towers, and the International Microgravity Laboratory. In addition to a significant body of useful scientific data the program contributes to the development of useful R&D hardware such as laser systems and a float-zone furnace.

  2. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  3. Operational research as implementation science: definitions, challenges and research priorities

    National Research Council Canada - National Science Library

    Monks, Thomas

    ...; and many other complex implementation problems of an operational or logistical nature. To date, there has been limited debate about the role that operational research should take within implementation science...

  4. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  5. Nanotechnology research: applications in nutritional sciences.

    Science.gov (United States)

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  6. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  7. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  8. The REVEL Project: an Oceanographic Research Immersion Professional Development Program

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are motivated to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and volcanism, fluid circulation and life on our planet. In addition, the program supports teachers to implement research-based, data-oriented activities in their classrooms, and prepares them to use curriculum that will enhance student learning through the research process. Evaluation for year 2003-2004 of the program reveals that the program is designed as a successful research immersion opportunity during which teachers learn content, process, culture and ethos of authentic research. Qualitative results indicate that teachers who have participated in the program assimilate the scientific process over several years and share their expertise in ways most beneficial for their communities for years to come.

  9. Research in the Optical Sciences.

    Science.gov (United States)

    1979-09-01

    c2dt2 ( + y (dr2 + r2d02 + r2 sin 2O d02 ) r r 2ac + d~dt, (9) where the Schwarzschild radius rs = 2M G/c 2 and a = 1 r P sin The values of the...laser whose efeCtive aperture size param- Acknowledgement eter q is unity, that is, rp = (=nr)"’ at : = 0. For this case the radius of the circle...for a quasihomo- the Army Research Office. United States Army. geneous source whose effective aperture size is 10 times the radius of the laser aperture

  10. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  11. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  12. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  13. Science, Technology and Innovation Policy Research Organization

    International Development Research Centre (IDRC) Digital Library (Canada)

    Soutien organisationnel de la phase 2 de l'Initiative Think tank : Science, Technology and Innovation Policy Research Organization ... This funding will help strengthen the Economic and Social Research Foundation's (ESRF) role as a credible public policy institution in Tanzania by enhancing its ability to provide ...

  14. Educational Technology Research Journals: "Instructional Science,"

    Science.gov (United States)

    Henrie, Curtis R.; Williams, Greg S.; West, Richard E.

    2013-01-01

    The authors analyzed all research articles published between 2002 and 2011 in the international journal "Instructional Science," with a goal to provide an understanding of the type of research being published in this journal, major contributing authors, and the most-cited publications of this time period. They examined research…

  15. The Workshop Program on Authentic Assessment for Science Teachers

    Science.gov (United States)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  16. Cooperative IASCC Research (CIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.L. [Electric Power Research Inst., Palo Alto, CA (United States). Nuclear Power Group

    1998-03-01

    Irradiation assisted stress corrosion cracking (IASCC) describes intergranular environmental cracking of material exposed to ionizing radiation. The implications of IASCC are significant, both in terms of repair and outage costs as well as the potential for cracking in components that may be extremely difficult to repair or replace. Significant advancements have been made in the understanding of IASCC. However, it is clear that major unknowns persist and must be understood and quantified before the life of a reactor component at risk from IASCC can be predicted or significantly extended. Although individual organizations are continuing to effectively address IASCC, it became apparent that a more direct form of cooperation would be more timely and efficient in addressing the technical issues. Thus in 1995 EPRI formed the Cooperative IASCC Research (CIR) Program. This is a cooperative, jointly funded effort with participants from eight countries providing financial support and technical oversight. The efforts of the CIR Program are directed at the highest priority questions in the areas of material susceptibility, water chemistry and material stress. Major research areas of the Program are: (1) evaluation of IASCC mechanisms, (2) development of methodology for predicting IASCC, and (3) quantification of irradiation effects on metallurgy, mechanics and electrochemistry. Studies to evaluate various IASCC mechanisms include work to better understand the possible roles of radiation-induced segregation (RIS), radiation microstructure, bulk and localized deformation effects, overall effects on strength and ductility, hydrogen and helium effects, and others. Experiments are being conducted to isolate individual effects and determine the relative importance of each in the overall IASCC mechanism. Screening tests will be followed by detailed testing to identify the contribution of each effect over a range of conditions. The paper describes the completed and ongoing work being

  17. The Specification of Science Education Programs in the Local Public Library: Focusing on the Programs In G-city

    Directory of Open Access Journals (Sweden)

    In-Ja Ahn*

    2012-06-01

    Full Text Available The city of 'G' has been made a number of achievements with its science program as a part of public library's cultural program during the last 5 years. Recently, the national science centre has been established in the same city, the debate is now needed whether the science program in the public library have reasons to be maintained or to be reduced. The aim of this research is on the operating strategies of the science program in the public library. The research methods include case studies of operational strategies in domestic and foreign science centre, the level of satisfaction of local citizen on the science program, the vision of science program in the advancement of public library in the century. In results, the research proposes that the science program in public library should be maintained, but with locally characterised programs. In addition, the study also advised on the provision of scientific information, the strengthened search functions, and the development of user-centred services for those in science fields.

  18. Joint University Program for Air Transportation Research, 1986

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  19. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Information System (GIS). In addition the Geography department will similarly update the corresponding graduate courses on Remote Sensing, Geog 690D, and Climate Change Geog 620F, and there will be a reciprocal curriculum and data sharing collaboration with the Earth and Environmental Sciences program at Santa Monica College. Throughout the academic year a seminar series offers the students the opportunity to learn about ongoing work on Atmospheric Sciences and Climate and during the summer they have access to research experiences at NASA's Jet Propulsion Laboratory.

  20. Nanotechnology Research: Applications in Nutritional Sciences12

    Science.gov (United States)

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  1. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  2. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  3. 2015 Stewardship Science Academic Programs Annual

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Terri [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States); Mischo, Millicent [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States)

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  4. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  5. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  6. Increase in Science Research Commitment in a Didactic and Laboratory-Based Program Targeted to Gifted Minority High-School Students

    Science.gov (United States)

    Fraleigh-Lohrfink, Kimberly J.; Schneider, M. Victoria; Whittington, Dawayne; Feinberg, Andrew P.

    2013-01-01

    Underrepresentation of ethnic minorities in science, technology, engineering, and mathematics (STEM) fields has been a growing concern. Efforts to ameliorate this have often been directed at college-level enrichment. However, mentoring in the sciences at a high-school age level may have a greater impact on career choices. The Center Scholars…

  7. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  8. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  9. Design science research as research approach in doctoral studies

    CSIR Research Space (South Africa)

    Kotzé, P

    2015-08-01

    Full Text Available Proceedings, Puerto Rico, 13 - 15 August 2015 Design science research as research approach in doctoral studies Paula Kotzé CSIR Meraka Institute and Department of Informatics, University of Pretoria paula.kotze@meraka.org.za Alta van der Merwe...

  10. Research in Institutional Economics in Management Science

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    . In (sub-)disciplinary terms, organization, strategy, corporate governance, and international business are the major areas of application of institutional economics ideas. In terms of countries, the EU strongholds are Holland, Denmark, UK, and Germany. There is apparently no or very little relevant......This report maps research in institutional economics in management science in the European Union for the 1995 to 2002 period. The reports applies Internet search based on a university listing, search on journal databases, key informants and an internet-based survey. 195 researchers are identified...... is partly explainable by the highly pragmatic way in which research in management science is typically conducted (so that institutional economics approaches are likely to be merely one type of input among many). Keywords Institutional economics, management science, European union....

  11. Directions in implementation research methods for behavioral and social science.

    Science.gov (United States)

    Irwin, Molly; Supplee, Lauren H

    2012-10-01

    There is a growing interest, by researchers, policymakers, and practitioners, in evidence-based policy and practice. As a result, more dollars are being invested in program evaluation in order to establish "what works," and in some cases, funding is specifically tied to those programs found to be effective. However, reproducing positive effects found in research requires more than simply adopting an evidence-based program. Implementation research can provide guidance on which components of an intervention matter most for program impacts and how implementation components can best be implemented. However, while the body of rigorous research on effective practices continues to grow, research on implementation lags behind. To address these issues, the Administration for Children and Families and federal partners convened a roundtable meeting entitled, Improving Implementation Research Methods for Behavioral and Social Science, in the fall of 2010. This special section of the Journal of Behavioral Health Services & Research includes papers from the roundtable and highlights the role implementation science can play in shedding light on the difficult task of taking evidence-based practices to scale.

  12. Science, Science Signaling, and Science Translational Medicine – AAAS Special Collection on Cancer Research, March 2011

    Directory of Open Access Journals (Sweden)

    Forsythe, Katherine H.

    2011-10-01

    Full Text Available The National Cancer Act, signed in 1971, aimed to eliminate cancer deaths through a massive increase in research funding. The American Association for the Advancement of Science, the publisher of Science, Science Signaling, and Science Translational Medicine, observed the 40th anniversary of the Cancer Act in 2011, with special research articles and features, found in all three journals, on the state of cancer research 40 years later. This collection of articles explores both breakthroughs and the challenges in cancer research over the last four decades, and lets us know what we might expect in the future.

  13. The LTX- β Research Program

    Science.gov (United States)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Hughes, P. E.; Kaita, R.; Kozub, T.; Merino, E.; Zhang, X.; Biewer, T. M.; Canik, J. M.; Elliott, D. B.; Reinke, M. L.; Bialek, J.; Hansen, C.; Jarboe, T.; Kubota, S.; Rhodes, T.; Dorf, M. A.; Rognlien, T.; Scotti, F.; Soukhanovskii, V. A.; Koel, B. E.; Donovan, D.; Maan, A.

    2017-10-01

    LTX- β, the upgrade to the Lithium Tokamak Experiment, approximately doubles the toroidal field (to 3.4 kG) and plasma current (to 150 - 175 kA) of LTX. Neutral beam injection at 20 kV, 30 A will be added in February 2018, with systems provided by Tri-Alpha Energy. A 9.3 GHz, 100 kW, short-pulse (5-10 msec) source will be available in summer 2018 for electron Bernstein wave heating. New lithium evaporation sources will allow between-shots recoating of the walls. Upgrades to the diagnostic set are intended to strengthen the research program in the critical areas of equilibrium, core transport, scrape-off layer physics, and plasma-material interactions. The LTX- β research program will combine the capability for gradient-free temperature profiles, to stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of ∇n-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the TEM include sheared flow stabilization, which can be tested on LTX- β. The goal will be to minimize anomalous transport in a low aspect ratio tokamak, which would lead to a very compact, tokamak-based fusion core. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  14. Program coordinators' perceptions of effective national citizen science programs and their impacts: An exploratory study

    Science.gov (United States)

    Clarke, K. C.; Charlevoix, D. J.

    2011-12-01

    The increasing desire to engage the public in science and research has advanced citizen science as a valuable and popular means to this end. Citizen science, a process by which concerned individuals, agencies, industries or community groups collaborate to monitor, track, and respond to issues of common community concerns, has evolved and grown over the past decade. Much of the citizen science research thus far has primarily focused on the public participants (citizen scientists) and/or organizations themselves. This study looks instead at the people, the coordinators, implementing or coordinating citizen science programs and activities, specifically in the Community Collaborative Rain, Hail & Snow Network (CoCoRaHS), and their perceptions for program effectiveness. CoCoRaHS is a national program in which citizens monitor, record, and report precipitation conditions from backyard observations. Semi-structured interviews and an online survey completed by the program's coordinators in the state of Colorado found that the effectiveness of CoCoRaHS depends less on the interactions of the coordinators with each other or funding impacts on program activities, but rather on the interactions between coordinators and citizen scientists. The effectiveness of CoCoRaHS was perceived to depend more significantly on the connections coordinators have with the community of program users and citizen scientists, and a supportive culture within the program. The next step therefore is to explore these interactions between the coordinators and citizen scientists to develop a better understanding of their nature of participation in the citizen science program, and to describe the characteristics of all participants.

  15. The Space Science Lab: High School Student Solar Research Experience

    Science.gov (United States)

    Castelaz, Michael W.; Whitworth, C.; Harris, B.; David, C.

    2007-12-01

    Native American, Hispanic, African American, and other underrepresented high school students in rural Western North Carolina have the unprecedented opportunity as researchers in the Space Science Lab to conduct visible and radio observations of the Sun. The program involves 90 students over a three year period. The primary goal is to reach students who otherwise would not have this opportunity, and motivate them to develop the critical thinking skills necessary for objective scientific inquiry. Students develop skills in electronics, computer sciences, astronomy, physics and earth sciences. Equally important is the hope that the students will become interested in pursuing careers in research or other science-related areas. We expect their enthusiasm for science will increase by experiencing research investigations that are fun and relevant to their understanding of the world around them. The students conduct their own research, and also interact with scientists around the world. A total of 54 students have spent a week at the Space Science Lab located on the campus of the Pisgah Astronomical Research Institute (PARI) during the Summers of 2006 and 2007. Students construct their own JOVE radio telescopes that they bring home to continue their observations during the academic year. They share their results during four follow-up sessions throughout the school year. The students also have Internet access to radio telescopes and solar monitoring equipment at PARI. We report on results from student evaluations from the first year in 2006 and current session student experiences. We gratefully acknowledge support from the Burroughs Wellcome Fund - Student Science Enrichment Program

  16. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  17. On the Governance of Social Science Research

    DEFF Research Database (Denmark)

    Linneberg, Mai Skjøtt; Nørreklit, Hanne; Schröder, Philipp J.H.

    2009-01-01

    The majority of social science research is conducted within public or semi-public institutions, such as universities. Over the past decades, these institutions have experienced substantial changes in governance structures and an increased focus on performance contracts. Obviously, the new...... study the implications of the current changes in the social science research landscape along with central aspects of mechanism design, validity, employee motivation as well as the ability to establish socially optimal resource allocations. We identify a number of potential problems that may come along...

  18. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  19. NASA's MEaSUREs Program Serving the Earth Science Community

    Science.gov (United States)

    Ramapriyan, H. K.; Tsaoussi, L.; Olding, S. W.

    2014-12-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. NASA has invested in the creation of consistent time series satellite data sets over decades, through both mission science team-based and measurement-based data product reprocessing and through solicitations for merged data products. The NOAA/NASA Pathfinder Program, carried out in the mid-1990's, resulted in the reprocessing of four long time-series datasets from existing archives. The Research, Education and Applications Solutions Network (REASoN) Program, initiated in 2002, consisted of several projects that provided data products, information systems and services capabilities, and/or advanced data systems technologies, to address strategic needs in Earth science research, applications, and education. The Program named Making Earth System data records for Use in Research for Earth Science, or MEaSUREs has had two requests for proposals, the first in 2006 and the second in 2012. With this Program, the Earth Science Division has focused on generating datasets for particular Earth science research measurement needs, and refers to such datasets as Earth System Data Records (ESDRs). Climate Data Records (CDRs) are a particular case of ESDRs. An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements in addressing science questions. Most of the MEaSUREs projects are five years long. They produce ESDRs using mature, peer-reviewed algorithms. The products are vetted by the user community in the respective scientific disciplines. They are made available publicly by the projects during their execution period. Before the projects end, the ESDRs are transferred to one of the NASA-assigned Distributed Active Archive Centers for longer-term archiving and distribution. Tens of millions of

  20. Brazilian science communication research: national and international contributions.

    Science.gov (United States)

    Barata, Germana; Caldas, Graça; Gascoigne, Toss

    2017-08-31

    Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.

  1. Community centrality and social science research.

    Science.gov (United States)

    Allman, Dan

    2015-12-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have.

  2. Overview of NASA's Microgravity Materials Research Program

    Science.gov (United States)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is

  3. Summaries of FY 1982 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  4. Science and Observation Recommendations for Future NASA Carbon Cycle Research

    Science.gov (United States)

    McClain, Charles R.; Collatz, G. J.; Kawa, S. R.; Gregg, W. W.; Gervin, J. C.; Abshire, J. B.; Andrews, A. E.; Behrenfeld, M. J.; Demaio, L. D.; Knox, R. G.

    2002-01-01

    Between October 2000 and June 2001, an Agency-wide planning, effort was organized by elements of NASA Goddard Space Flight Center (GSFC) to define future research and technology development activities. This planning effort was conducted at the request of the Associate Administrator of the Office of Earth Science (Code Y), Dr. Ghassem Asrar, at NASA Headquarters (HQ). The primary points of contact were Dr. Mary Cleave, Deputy Associate Administrator for Advanced Planning at NASA HQ (Headquarters) and Dr. Charles McClain of the Office of Global Carbon Studies (Code 970.2) at GSFC. During this period, GSFC hosted three workshops to define the science requirements and objectives, the observational and modeling requirements to meet the science objectives, the technology development requirements, and a cost plan for both the science program and new flight projects that will be needed for new observations beyond the present or currently planned. The plan definition process was very intensive as HQ required the final presentation package by mid-June 2001. This deadline was met and the recommendations were ultimately refined and folded into a broader program plan, which also included climate modeling, aerosol observations, and science computing technology development, for contributing to the President's Climate Change Research Initiative. This technical memorandum outlines the process and recommendations made for cross-cutting carbon cycle research as presented in June. A separate NASA document outlines the budget profiles or cost analyses conducted as part of the planning effort.

  5. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  6. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  7. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  8. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  9. Research in clinical laboratory science: professionals' educational preparation.

    Science.gov (United States)

    Laudicina, Rebecca; Fenn, JoAnn P; Freeman, Vickie; McCoy, Carol; McLane, Mary Ann; Mundt, Lillian; Polancic, Joan; Randolph, Tim; Shanahan, Kristy

    2011-01-01

    To describe the educational preparation of CLS professionals for conducting research. A link to 3-part online survey was sent by electronic mail to 7,572 members of the American Society for Clinical Laboratory Science and 500 program directors research project. Barriers to participation in research by undergraduates include time limitations within the curriculum, insufficient faculty time, and lack of funds, space, and equipment. Increased emphasis on developing research skills is found in educational programs at the master's degree level. The formal educational background of many CLS professionals may leave them unprepared or underprepared for conducting research. Although there was broad representation among participants across educational levels, employment settings, and job positions, the number of survey respondents was limited. Possible directions for future research include conducting this survey using members of additional professional organizations.

  10. Pottery Instead of Science? One Project's Answer to the Programming Dilemma. Programming in Creative Arts.

    Science.gov (United States)

    Krause, Claire S.

    Creative arts programing for gifted and talented elementary students has incorporated academics (ecology, mathematics, history, genealogy, computer science, and independent research) into activities such as puppetry, creative drama, storytelling, dance, music, pottery, and poetry. The arts classes have been popular with students, parents,…

  11. Assessment of the Fusion Energy Sciences Program. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-05-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study.

  12. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program ...Higa SSC Pacific Lance Lerum Hector Romero Naval Research Enterprise Internship Program Mohammed Fahem San Diego State University Research...Quantum Science and Engineering Program ) by the Advanced Concepts and Applied Research Branch (Code 71730), the Energy and Environmental Sustainability

  13. Multispectral Linear Array (MLA) science and technology program

    Science.gov (United States)

    Barnes, W. L.

    1982-01-01

    A Goddard Space Flight Center program of science studies and technology development to provide the basis for future earth observation sensors employing multispectral linear array (MLA) technology is described. Establishment of MLA performance parameters and performance modeling make up the primary science activities. Critical technologies being developed include: short-wave infrared (SWIR) detector arrays, visible/and near infrared detector arrays, and passive cryogenic coolers. Supporting activities include: test and field instrument development, focal plane research and assessment laboratory, system simulation laboratory, calibration sources and techniques, optics, and thermal infrared arrays.

  14. Advancing global health through regulatory science research: summary of the Global Summit on Regulatory Science Research and Innovation.

    Science.gov (United States)

    Slikker, William; Miller, Margaret Ann; Lou Valdez, Mary; Hamburg, Margaret A

    2012-04-01

    As a first step in the implementation of the Food and Drug Administration's (FDA) Pathway to Global Product Safety and Quality (Anonymous, 2011), FDA's Office of International Programs (OIP) and the National Center for Toxicological Research (NCTR) sponsored a Global Summit on Regulatory Science Research and Innovation. Through a series of presentations and panel discussions, the Global Summit participants explored how research could be used more effectively as a tool for advancing regulatory science, food safety, medical technologies, and public health. Speakers provided an overview of each of the components in the global regulatory-science research initiative, including scientific innovation and modernizing toxicology; and discussed how the integration of these components is needed to achieve the promise of regulatory science at the global level. All participants agreed with the formation of a Global Coalition of Regulatory Research Scientists who will work collaboratively to build knowledge, promote the development of regulatory science, discover novel ways to clearly define research needs, and improve public health. Published by Elsevier Inc.

  15. Handheld technology acceptance in radiologic science education and training programs

    Science.gov (United States)

    Powers, Kevin Jay

    The purpose of this study was to explore the behavioral intention of directors of educational programs in the radiologic sciences to adopt handheld devices to aid in managing student clinical data. Handheld devices were described to participants as a technology representing a class of mobile electronic devices including, but not limited to, personal digital assistants such as a Palm TX, Apple iPod Touch, Apple iPad or Hewlett Packard iPaq, and cellular or smartphones with third generation mobile capabilities such as an Apple iPhone, Blackberry or Android device. The study employed a non-experimental, cross-sectional survey design to determine the potential of adopting handheld technologies based on the constructs of Davis's (1989) Technology Acceptance Model. An online self-report questionnaire survey instrument was used to gather study data from 551 entry level radiologic science programs specializing in radiography, radiation therapy, nuclear medicine and medical sonography. The study design resulted in a single point in time assessment of the relationship between the primary constructs of the Technology Acceptance Model: perceived usefulness and perceived ease of use, and the behavioral intention of radiography program directors to adopt the information technology represented by hand held devices. Study results provide justification for investing resources to promote the adoption of mobile handheld devices in radiologic science programs and study findings serve as a foundation for further research involving technology adoption in the radiologic sciences.

  16. Using Network Science to Support Design Research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2016-01-01

    A network-based perspective on designing permits research on the complexity of product, process, and people interactions. Strengthened by the latest advances in information technologies and accessibility of data, a network-based perspective and use of appropriate network analysis metrics, theories......, and tools allow us to explore new data-driven research approaches in design. These approaches allow us to move from counting to connecting, meaning to explicitly link disconnected pieces of data, information, and knowledge, and thus to answer far-reaching research questions with strong industrial...... and societal impact. This chapter contributes to the use of network science in empirical studies of design organisations. It focuses on introducing a network-based perspective on the design process and in particular on making use of network science to support design research and practice. The main contribution...

  17. SUPRI heavy oil research program

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

    1991-12-01

    The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

  18. The UCAR SOARS Program: Strategies for Supplementing Undergraduate Research Experience

    Science.gov (United States)

    Pandya, R. E.

    2005-12-01

    Many REU programs have a goal of recruiting students to continue in the sciences. Undergraduate research is a successful strategy for engaging talented undergraduates to think about a career in science, encouraging them to purse graduate degrees, and for preparing them to succeed in graduate school. In the Significant Opportunities for Atmospheric Research (SOARS) program, we supplement undergraduate research with several strategies as part of an undergraduate-to-graduate bridge program aimed at broadening participation in the atmospheric and related sciences. In addition to a 10-week research program, SOARS also includes a formal mentoring program, writing workshop, vigorous learning community, and extensive professional development opportunities. Our presentation will describe these research-extending strategies in SOARS in more detail, with an eye toward how such strategies might be adapted for other programs. To do this, we will draw on the results of a major, independent evaluation of the SOARS program to determine the relative importance of these strategies in the overall success of the SOARS program. In the 10 yeas since SOARS creations, 98 students have participated in the program. Of those participants, 18 are still enrolled as undergraduates, and 55 have gone on to purse graduate school in the atmospheric sciences. Overall, this represents a graduate school placement rate of 69% and an overall retention rate of 82%. Of the 27 SOARS participants who have entered the workforce, 23 are in STEM related disciplines. Finally, 3 SOARS participants have already earned their PhD, and 32 have earned Master's. These numbers are especially significant given that SOARS participants come from groups that have been historically under-represented in the atmospheric sciences.

  19. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  20. Environmental Social Sciences: Methods and Research Design

    Directory of Open Access Journals (Sweden)

    Jeremy Spoon

    2012-06-01

    Full Text Available Review of Environmental Social Sciences: Methods and Research Design. Ismael Vaccaro, Eric Alden Smith, and Shankar Aswani, eds. 2010. Cambridge University Press, Cambridge. Pp. 396, 41 b/w illustrations, 20 tables. US$49.99 (paperback. ISBN 9780521125710.

  1. Science Teacher Development through Collaborative Action Research

    Science.gov (United States)

    Fazio, Xavier; Melville, Wayne

    2008-01-01

    This article explores the views and actions of four science teachers participating in a collaborative action research project. A qualitative case study approach was used to describe and analyze the development of these teachers. This development initially involved the teachers critically comparing their extant practices to current developments in…

  2. Chain and network science: A research framework

    NARCIS (Netherlands)

    Omta, S.W.F.; Trienekens, J.H.; Beers, G.

    2001-01-01

    In this first article of the Journal on Chain and Network Science the base-line is set for a discussion on contents and scope of chain and network theory. Chain and network research is clustered into four main ‘streams’: Network theory, social capital theory, supply chain management and business

  3. Big data science: A literature review of nursing research exemplars.

    Science.gov (United States)

    Westra, Bonnie L; Sylvia, Martha; Weinfurter, Elizabeth F; Pruinelli, Lisiane; Park, Jung In; Dodd, Dianna; Keenan, Gail M; Senk, Patricia; Richesson, Rachel L; Baukner, Vicki; Cruz, Christopher; Gao, Grace; Whittenburg, Luann; Delaney, Connie W

    Big data and cutting-edge analytic methods in nursing research challenge nurse scientists to extend the data sources and analytic methods used for discovering and translating knowledge. The purpose of this study was to identify, analyze, and synthesize exemplars of big data nursing research applied to practice and disseminated in key nursing informatics, general biomedical informatics, and nursing research journals. A literature review of studies published between 2009 and 2015. There were 650 journal articles identified in 17 key nursing informatics, general biomedical informatics, and nursing research journals in the Web of Science database. After screening for inclusion and exclusion criteria, 17 studies published in 18 articles were identified as big data nursing research applied to practice. Nurses clearly are beginning to conduct big data research applied to practice. These studies represent multiple data sources and settings. Although numerous analytic methods were used, the fundamental issue remains to define the types of analyses consistent with big data analytic methods. There are needs to increase the visibility of big data and data science research conducted by nurse scientists, further examine the use of state of the science in data analytics, and continue to expand the availability and use of a variety of scientific, governmental, and industry data resources. A major implication of this literature review is whether nursing faculty and preparation of future scientists (PhD programs) are prepared for big data and data science. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A New Model for Climate Science Research Experiences for Teachers

    Science.gov (United States)

    Hatheway, B.

    2012-12-01

    After two years of running a climate science teacher professional development program for secondary teachers, science educators from UCAR and UNC-Greeley have learned the benefits of providing teachers with ample time to interact with scientists, informal educators, and their teaching peers. Many programs that expose teachers to scientific research do a great job of energizing those teachers and getting them excited about how research is done. We decided to try out a twist on this model - instead of matching teachers with scientists and having them do science in the lab, we introduced the teachers to scientists who agreed share their data and answer questions as the teachers developed their own activities, curricula, and classroom materials related to the research. Prior to their summer experience, the teachers took three online courses on climate science, which increased their background knowledge and gave them an opportunity to ask higher-level questions of the scientists. By spending time with a cohort of practicing teachers, each individual had much needed time to interact with their peers, share ideas, collaborate on curriculum, and learn from each other. And because the goal of the program was to create classroom modules that could be implemented in the coming school year, the teachers were able to both learn about climate science research by interacting with scientists and visiting many different labs, and then create materials using data from the scientists. Without dedicated time for creating these classroom materials, it would have been up to the teachers to carve out time during the school year in order to find ways to apply what they learned in the research experience. We feel this approach worked better for the teachers, had a bigger impact on their students than we originally thought, and gave us a new approach to teacher professional development.

  5. Bachelor of Science in Medical Physics Program at Ryerson University

    Science.gov (United States)

    Antimirova, Tetyana

    2006-12-01

    A new Bachelor of Science in Medical Physics program at Ryerson University, Toronto, Ontario was launched in Fall 2006. The program builds on Ryerson’s strong existing capabilities in biomedical physics research. The program’s point of entry is the common first year during which all students in Biology, Chemistry, Contemporary Science and Medical Physics programs complete the foundation courses that include physics, calculus, biology, chemistry, and introduction to computing. In addition to the foundation courses, the first-year studies include an orientation course that supports the students in making a successful transition to university studies. The courses beyond the first year include such topics as radiation therapy, image analysis, medical diagnostics and computer modeling techniques. In the final year the students will undertake an independent, faculty-supervised thesis project in an area of personal research interest. Co-op and industrial internship options are available. Our program promotes natural interaction between physics, life sciences, mathematics and computing. The flexibility built into our curriculum will open a variety of career options for our graduates.

  6. Geoengineering: Basic science and ongoing research efforts in China

    Directory of Open Access Journals (Sweden)

    Long Cao

    2015-09-01

    Full Text Available Geoengineering (also called climate engineering, which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geoengineering can be broadly divided into two categories: solar geoengineering (also called solar radiation management, or SRM, which aims to reflect more sunlight to space, and carbon dioxide removal (CDR, which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues: 1 climate response to the reduction in solar irradiance and 2 climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep understanding of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  7. Global Biology Research Program: Program plan

    Science.gov (United States)

    1983-01-01

    Biological processes which play a dominant role in these cycles which transform and transfer much of this material throughout the biosphere are examined. A greater understanding of planetary biological processes as revealed by the interaction of the biota and the environment. The rationale, scope, research strategy, and research priorities of the global biology is presented.

  8. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  9. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  10. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  11. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  12. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  13. Research Misconduct and the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    HM Kerch; JJ Dooley

    1999-10-11

    Research misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts or ideas; some institutions have expanded this concept to include ''other serious deviations (OSD) from accepted research practice.'' An action can be evaluated as research misconduct if it involves activities unique to the practice of science and could negatively affect the scientific record. Although the number of cases of research misconduct is uncertain (formal records are kept only by the NIH and the NSF), the costs are high in integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Currently, research misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at ail. One result has been that the federal False Claims Act has been used to pursue allegations of research misconduct and have them adjudicated in the federal court, rather than being judged by scientific peers. The federal government will soon establish a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of what agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject or research misconduct allegations, must none-the-less become active in the debate over research misconduct policies and how they are implemented since they will now be explicitly covered by this new federal wide policy.

  14. Building an mlearning research framework through design science research

    CSIR Research Space (South Africa)

    Ford, M

    2014-11-01

    Full Text Available The purpose of this paper is to provide an explanation of how Design Science research has been applied in order to develop a mobile learning framework for the ICT4RED project which is currently in progress in Cofimvaba in the Eastern Cape Province...

  15. Developmental Programming: State-of-the-Science and Future Directions

    Science.gov (United States)

    Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric

    2016-01-01

    Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645

  16. Developing a comprehensive faculty development program to promote interprofessional education, practice and research at a free-standing academic health science center.

    Science.gov (United States)

    Shrader, Sarah; Mauldin, Mary; Hammad, Sammar; Mitcham, Maralynee; Blue, Amy

    2015-03-01

    There is an on-going transformation in health professions education to prepare students to function as competent members of an interprofessional team in order to increase patient safety and improve patient care. Various methods of health education and practice directed toward students have been implemented, yet descriptions of faculty development initiatives designed to advance interprofessional education and practice are scarce. This article describes a faculty development program at the Medical University of South Carolina, USA, based on the conceptual framework of adult transformational learning theory. Three components comprise the faculty development program: an institute, fellowship and teaching series. Evaluations of the three components indicate that the faculty development program aided in the sustainability of the university's interprofessional program, and built capacity for improvement and growth in interprofessional endeavors.

  17. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  18. Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing

    Science.gov (United States)

    Mack, Elizabeth; Augare, Helen; Cloud-Jones, Linda Different; David, Dominique; Gaddie, Helene Quiver; Honey, Rose E.; Kawagley, Angayuqaq O.; Plume-Weatherwax, Melissa Little; Fight, Lisa Lone; Meier, Gene; Pete, Tachini; Leaf, James Rattling; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; Shibata, Hi'ilani; Valdez, Shelly; Wippert, Rachel

    2012-01-01

    There are a growing number of informal science education (ISE) programs in Native communities that engage youth in science education and that are grounded in Native ways of knowing. There is also a growing body of research focusing on the relationship between culture, traditional knowledge, and science education. However, there is little research…

  19. Social science in the national park service: an evolving mission and program

    Science.gov (United States)

    Richard H. Briceland

    1992-01-01

    In 1988 the director of the National Park Service requested that a social science program be established. Since that time a number of new research initiatives have been developed to address this need. This paper describes seven major steps taken thus far to meet social science needs of park superintendents, program managers, and park planners. Specific examples are...

  20. Research Training in the Biomedical, Behavioral, and Clinical Research Sciences

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    Comprehensive research and a highly-trained workforce are essential for the improvement of health and health care both nationally and internationally. During the past 40 years the National Research Services Award (NRSA) Program has played a large role in training the workforce responsible for dramatic advances in the understanding of various…

  1. A New Direction for the NASA Materials Science Research Using the International Space Station

    Science.gov (United States)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  2. Cognitive and Neural Sciences Division 1991 Programs

    Science.gov (United States)

    1991-08-01

    techniques on a mobile robotic deriveter. Approach: NETROLOGiC will capitalize on its research programs in applying neural networks to problems in pattern...and association fiber differences in STP in piriform cortex. J. Neurophysiol. 64: 179-190. 217 TITLE: Nonlinear Neurodynamics of Biological Pattern

  3. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  4. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  5. Distance Learning Programs to Inspire Students in the Sciences

    Science.gov (United States)

    Durham, Ian; Durham, Alyson

    2000-04-01

    Inspiring students to enter the sciences, in particular more traditional hard sciences and certain engineering disciplines, has become a greater challenge in the days of high tech computer jobs that pay far higher wages. In addition maintaining student interest in the classroom has also become more difficult with the increasing complexity and sophistication of home computer technology. Often students have better technology at home than they have in school. There is no substitute for actually being in an exciting location, but the cost of such elaborate field trips often outweighs the learning advantage. By developing state-of-the-art and inexpensive distance learning tools based on existing technology, Durham Research is bringing remote and exciting places and experiences live into the classroom as a way of inspiring students to eventually enter the sciences. In this presentation we will speak about our cornerstone distance learning program, the Space Experiment Education Kit, and how we hope it helps to inspire a future generation of scientists and people who appreciate science. We will also briefly talk about some of our other related programs. All programs are geared toward all grade levels from elementary through graduate school.

  6. Summer Prostate Cancer Research Training Program

    Science.gov (United States)

    2016-07-01

    Award Number: W81XWH-13-1-0178 TITLE: Summer Prostate Cancer Research Training Program PRINCIPAL INVESTIGATOR: David M. Lubaroff, PhD CONTRACTING...Prostate Cancer Research Training Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0178 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) David M...Distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The HBCU Summer Research Training Program accepted a total of 8 students from Lincoln

  7. Effects of an Inquiry-Based Science Program on Critical Thinking, Science Process Skills, Creativity, and Science Fair Achievement of Middle School Students

    Science.gov (United States)

    Longo, Christopher M.

    This study investigated the impact of an inquiry-based science program on the critical thinking skills, science process skills, creativity, and science fair achievement of middle school students. Although research indicates the connection between inquiry and achievement, there is limited empirical research relating specific inquiry-based programs to critical thinking, creativity, and science fair achievement in middle school classrooms. The research took place in a small, suburban middle school in the northeast from November 2010 to May 2011. A sample of convenience was comprised of seventh and eighth grade students. The study was quasi-experimental in nature, with a pretest-posttest comparison group design using intact classrooms of students. Five instruments were administered related to the elements of science process skills, critical thinking, creative thinking, and science fair achievement. The scores of those students in the inquiry-based science program were compared to those students in the traditional science classroom to determine the impact of each method of delivering instruction. In the multivariate analysis of variance, the inquiry instruction group scored significantly higher for science process skills as measured by the Earthworm Test (p < .001) and Cognitive Integrity, an area of critical thinking measured by the CM3 (p < .025). In multiple regression analysis, program type contributed significantly to the prediction of science fair achievement scores above and beyond the predictor variables of science process skills, critical thinking, and creativity (p < .001). Science fair scores were significantly higher (p < .001) for the treatment as compared to that of the direct instruction group. Overall, science process skills (p < .025) and program type (p < .001) contributed significantly to the prediction of science fair achievement.

  8. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  9. Computer programming: Science, art, or both?

    Science.gov (United States)

    Gum, Sandra Trent

    The purpose of this study was to determine if spatial intelligence contributes to a student's success in a computer science major or if mathematical-logical intelligence is sufficient data on which to base a prediction of success. The study was performed at a small university. The sample consisted of 15 computer science (CS) majors, enrolled in a computer science class, and 15 non-CS-majors, enrolled in a statistics class. Seven of the CS-majors were considered advanced and seven were considered less advanced. The independent measures were: the mathematics and the English scores from the ACT/SAT (CS-majors); a questionnaire to obtain personal information; the major area of study which compared CS-majors to all other majors; and the number of completed computer science classes (CS-majors) to determine advanced and less advanced CS-majors. The dependent measures were: a multiple intelligence inventory for adults to determine perception of intelligences; the GEFT to determine field independence independence; the Card Rotations Test to determine spatial orientation ability; the Maze Tracing Speed Test to determine spatial scanning ability; and the Surface Development test to determine visualization ability. The visualization measure correlated positively and significantly with the GEFT. The year in college correlated positively and significantly with the GEFT and visualization measure for CS-majors and correlated negatively for non-CS-majors. Although non-CS-majors scored higher on the spatial orientation measure, CS-majors scored significantly higher on the spatial scanning measure. The year in college correlated negatively with many of the measures and perceptions of intelligences among both groups; however, there were more significant negative correlations among non-CS-majors. Results indicated that experience in computer programming may increase field independence, visualization ability, and spatial scanning ability while decreasing spatial orientation ability. The

  10. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    Science.gov (United States)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  11. SOARS: Significant Opportunities in Atmospheric Research and Science

    Science.gov (United States)

    Windham, T. L.; Hagan, M. E.

    2001-05-01

    SOARS, a model program, has developed a unique mutli-year mentoring and learning community to support, teach, and guide college students from diverse backgrounds. SOARS is dedicated to increasing the number of African American, American Indian, and Hispanic/Latino students enrolled in master's and doctoral degree programs in the atmospheric and related sciences with the goal of supporting the development of a diverse, internationally competitive and globally engaged workforce within the scientific community. Since its 1996 inception, 51 undergraduates have participated. All 51 completed or are on schedule to complete their undergraduate degrees with a major in an atmospheric or related science. Currently 17 protégés are in graduate programs. Eight have completed M.S. degrees; two are Ph.D. candidates. SOARS has a retention rate of 82 percent. The SOARS learning community provides multi-year programing for protégés that includes educational and research opportunities, mentoring, career counseling and guidance, and the possibility of financial support for a graduate level program. Protégés spend their summers at NCAR, participate in ongoing research projects, an eight week scientific writing and communication workshop, and scientific seminars. They benefit from long-term mentoring from respected scientists and professionals, learn about career opportunities, practice leadership and are encouraged to complete a graduate program in an atmospheric or related science. In this presentation we highlight the SOARS program structure and objectives with particular emphasis on the mentoring model that is fundamental to SOARS. We conclude with a summary of SOARS protégés' contributions to the broader scientific community which include oral and poster presentations at national and regional scientific conferences, as well as co-authorship of refereed journal articles.

  12. Innovative Space Sciences Education Programs for Young People

    Science.gov (United States)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  14. How one teacher research experience program is transforming STEM education

    Science.gov (United States)

    Warburton, J.; Fahnestock, J.; Larson, A.

    2016-12-01

    Celebrating over 10 years of success, the PolarTREC-Teachers and Researchers Exploring and Collaborating program, administered by the Arctic Research Consortium of the United States, is a unique professional development program for United States educators and polar researchers. Through an innovative teacher research experience, utilizing field-based experiences in the polar regions, PolarTREC provides teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry they need to promote authentic scientific research in their classroom. The program evaluation objectives were 1) to better understand the immediate impacts of the program on participating teachers, their students, and the researchers with whom they partnered; and 2) to explore the long-term impacts of the PolarTREC experiences on participating teachers' professional experiences, and in particular their use of authentic scientific research with their students and ongoing relationships with researcher team members and other PolarTREC teachers. In this presentation, we will share our data on how the PolarTREC model is transforming STEM educators not only how they teach science in their classroom but also how they both perceive science, a paradigm shift, that defines their careers.

  15. Undergraduate Research-Methods Training in Political Science: A Comparative Perspective

    Science.gov (United States)

    Parker, Jonathan

    2010-01-01

    Unlike other disciplines in the social sciences, there has been relatively little attention paid to the structure of the undergraduate political science curriculum. This article reports the results of a representative survey of 200 political science programs in the United States, examining requirements for quantitative methods, research methods,…

  16. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  17. Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1997-01-01

    The summer of 1997 will not only be noted by NASA for the mission to Mars by the Pathfinder but also for the 179 brilliant apprentices that participated in the SHARP Program. Apprentice participation increased 17% over last year's total of 153 participants. As indicated by the End-of-the-Program Evaluations, 96% of the programs' participants rated the summer experience from very good to excellent. The SHARP Management Team began the year by meeting in Cocoa Beach, Florida for the annual SHARP Planning Conference. Participants strengthened their Education Division Computer Aided Tracking System (EDCATS) skills, toured the world-renowned Kennedy Space Center, and took a journey into space during the Alien Encounter Exercise. The participants returned to their Centers with the same goals and objectives in mind. The 1997 SHARP Program goals were: (1) Utilize NASA's mission, unique facilities and specialized workforce to provide exposure, education, and enrichment experiences to expand participants' career horizons and inspire excellence in formal education and lifelong learning. (2) Develop and implement innovative education reform initiatives which support NASA's Education Strategic Plan and national education goals. (3) Utilize established statistical indicators to measure the effectiveness of SHARP's program goals. (4) Explore new recruiting methods which target the student population for which SHARP was specifically designed. (5) Increase the number of participants in the program. All of the SHARP Coordinators reported that the goals and objectives for the overall program as well as their individual program goals were achieved. Some of the goals and objectives for the Centers were: (1) To increase the students' awareness of science, mathematics, engineering, and computer technology; (2) To provide students with the opportunity to broaden their career objectives; and (3) To expose students to a variety of enrichment activities. Most of the Center goals and

  18. Data Science at the Defense Personnel and Security Research Center. Mission: Improve the Effectiveness, Efficiency, and Fairness of DoD Personnel Security and Suitability Programs

    Science.gov (United States)

    2015-05-14

    Mission: Improve the Effectiveness, Efficiency, and Fairness of DoD Personnel Security and Suitability Programs Report Documentation Page Form... fairness of personnel security in the DoD In the wake of events like 9-11, Ft. Hood, and the Washington Navy Yard shootings, we expanded our

  19. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  20. Otolaryngology Residency Program Research Resources and Scholarly Productivity.

    Science.gov (United States)

    Villwock, Jennifer A; Hamill, Chelsea S; Nicholas, Brian D; Ryan, Jesse T

    2017-06-01

    Objective To delineate research resources available to otolaryngology residents and their impact on scholarly productivity. Study Design Survey of current otolaryngology program directors. Setting Otolaryngology residency programs. Subjects and Methods An anonymous web-based survey was sent to 98 allopathic otolaryngology training program directors. Fisher exact tests and nonparametric correlations were used to determine statistically significant differences among various strata of programs. Results Thirty-nine percent (n = 38) of queried programs responded. Fourteen (37%) programs had 11 to 15 full-time, academic faculty associated with the residency program. Twenty (53%) programs have a dedicated research coordinator. Basic science lab space and financial resources for statistical work were present at 22 programs (58%). Funding is uniformly provided for presentation of research at conferences; a minority of programs (13%) only funded podium presentations. Twenty-four (63%) have resident research requirements beyond the Accreditation Council for Graduate Medical Education (ACGME) mandate of preparing a "manuscript suitable for publication" prior to graduation. Twenty-five (67%) programs have residents with 2 to 3 active research projects at any given time. None of the investigated resources were significantly associated with increased scholarly output. There was no uniformity to research curricula. Conclusions Otolaryngology residency programs value research, evidenced by financial support provided and requirements beyond the ACGME minimum. Additional resources were not statistically related to an increase in resident research productivity, although they may contribute positively to the overall research experience during training. Potential future areas to examine include research curricula best practices, how to develop meaningful mentorship and resource allocation that inspires continued research interest, and intellectual stimulation.

  1. An open science cloud for scientific research

    Science.gov (United States)

    Jones, Bob

    2016-04-01

    The Helix Nebula initiative was presented at EGU 2013 (http://meetingorganizer.copernicus.org/EGU2013/EGU2013-1510-2.pdf) and has continued to expand with more research organisations, providers and services. The hybrid cloud model deployed by Helix Nebula has grown to become a viable approach for provisioning ICT services for research communities from both public and commercial service providers (http://dx.doi.org/10.5281/zenodo.16001). The relevance of this approach for all those communities facing societal challenges in explained in a recent EIROforum publication (http://dx.doi.org/10.5281/zenodo.34264). This presentation will describe how this model brings together a range of stakeholders to implement a common platform for data intensive services that builds upon existing public funded e-infrastructures and commercial cloud services to promote open science. It explores the essential characteristics of a European Open Science Cloud if it is to address the big data needs of the latest generation of Research Infrastructures. The high-level architecture and key services as well as the role of standards is described. A governance and financial model together with the roles of the stakeholders, including commercial service providers and downstream business sectors, that will ensure a European Open Science Cloud can innovate, grow and be sustained beyond the current project cycles is described.

  2. Chronic Disease Control Research Fellowship Program (Guatemala ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Program will recruit and mentor research fellows to study policy-relevant issues and translate the resulting knowledge into action. The program will focus initially on tobacco control research (smoking prevention, cessation), in recognition that tobacco use is the leading cause of chronic disease. However, as the program ...

  3. U.S. Climate Change Science Program. Vision for the Program and Highlights of the Scientific Strategic Plan

    Science.gov (United States)

    2003-01-01

    The vision document provides an overview of the Climate Change Science Program (CCSP) long-term strategic plan to enhance scientific understanding of global climate change.This document is a companion to the comprehensive Strategic Plan for the Climate Change Science Program. The report responds to the Presidents direction that climate change research activities be accelerated to provide the best possible scientific information to support public discussion and decisionmaking on climate-related issues.The plan also responds to Section 104 of the Global Change Research Act of 1990, which mandates the development and periodic updating of a long-term national global change research plan coordinated through the National Science and Technology Council.This is the first comprehensive update of a strategic plan for U.S. global change and climate change research since the origal plan for the U.S. Global Change Research Program was adopted at the inception of the program in 1989.

  4. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  5. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  6. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  7. Joint University Program for Air Transportation Research, 1988-1989

    Science.gov (United States)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  8. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  9. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  10. Sonic boom research. [computer program

    Science.gov (United States)

    Zakkay, V.; Ting, L.

    1976-01-01

    A computer program for CDC 6600 is developed for the nonlinear sonic boom analysis including the asymmetric effect of lift near the vertical plane of symmetry. The program is written in FORTRAN 4 language. This program carries out the numerical integration of the nonlinear governing equations from the input data at a finite distance from the airplane configuration at a flight altitude to yield the pressure signitude at ground. The required input data and the format for the output are described. A complete program listing and a sample calculation are given.

  11. Qualitative Descriptive Methods in Health Science Research.

    Science.gov (United States)

    Colorafi, Karen Jiggins; Evans, Bronwynne

    2016-07-01

    The purpose of this methodology paper is to describe an approach to qualitative design known as qualitative descriptive that is well suited to junior health sciences researchers because it can be used with a variety of theoretical approaches, sampling techniques, and data collection strategies. It is often difficult for junior qualitative researchers to pull together the tools and resources they need to embark on a high-quality qualitative research study and to manage the volumes of data they collect during qualitative studies. This paper seeks to pull together much needed resources and provide an overview of methods. A step-by-step guide to planning a qualitative descriptive study and analyzing the data is provided, utilizing exemplars from the authors' research. This paper presents steps to conducting a qualitative descriptive study under the following headings: describing the qualitative descriptive approach, designing a qualitative descriptive study, steps to data analysis, and ensuring rigor of findings. The qualitative descriptive approach results in a summary in everyday, factual language that facilitates understanding of a selected phenomenon across disciplines of health science researchers. © The Author(s) 2016.

  12. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    astronomy knowledge and experience. To answer this demand, BRIEF is developing additional astronomy research courses with partners in advanced astrometry, photometry, and exoplanets. The program provides a significant opportunity for schools, teachers, and advanced amateur astronomers to introduce high school and college students to astronomy, science, and STEM careers.

  13. Industrial science and technology frontier program progress reports for fiscal 1998. Research and development of synergy ceramics; 1998 nendo synergy ceramics no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In relation with research and development of 'synergy ceramics' which have begun since fiscal 1994 under a joint organization of the industries, Government and academic circles, reports were given on the achievement status of the whole of the first stage of the project, together with the results of researches made in fiscal 1998. With regard to high-order structure control technologies, reports were given on the following subjects: precursor design, structure formation design, nano-structure process and structuring reaction process as the basic technologies for structure creation, and inter-hierarchy deposition reaction control, phase boundary formation control, anisotropic particle interface control and high-order space production control as the structural element control technologies. With respect to analysis and evaluation technologies, reports were given on research achievements in fundamental technologies for analysis and evaluation, and property developing element evaluation technologies. In the field of overall survey and study, various committees and study meetings were held, research projects were planned, and technological trends were surveyed, whose results were reported. In the joint researches, reports were given on the survey and study on new material creation by means of high-order structure control, and the research on high-order structure control of ceramics by means of structuring reaction process control. (NEDO)

  14. Chemistry and materials science research report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  15. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  16. The Stanford Medical Youth Science Program: Educational and Science-Related Outcomes

    Science.gov (United States)

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A.

    2015-01-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer…

  17. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  18. U.S. Global Change Research Program

    Science.gov (United States)

    ... 2021: A Triennial Update, a report on the Program's progress since 2012. Read the Update Our Changing ... NASA NSF SI USAID U.S. Global Change Research Program 1800 G Street, NW, Suite 9100 Washington, D. ...

  19. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  20. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    Science.gov (United States)

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  1. Training program attracts work and health researchers

    DEFF Research Database (Denmark)

    Skakon, Janne

    2007-01-01

    to examining work disability prevention issues. An innovative program that attracts international students, the Work Disability Prevention Canadian Institutes of Health Research (CIHR) Strategic Training Program, aims to build research capacity in young researchers and to create a strong network that examines...

  2. Toward a science of transdisciplinary action research.

    Science.gov (United States)

    Stokols, Daniel

    2006-09-01

    This paper offers a conceptual framework for establishing a science of transdisciplinary action research. Lewin's (1951) concept of action research highlights the scientific and societal value of translating psychological research into community problem-solving strategies. Implicit in Lewin's formulation is the importance of achieving effective collaboration among behavioral researchers, community members and policy makers. The present analysis builds on Lewin's analysis by outlining programmatic directions for the scientific study of transdisciplinary research and community action. Three types of collaboration, and the contextual circumstances that facilitate or hinder them, are examined: (1) collaboration among scholars representing different disciplines; (2) collaboration among researchers from multiple fields and community practitioners representing diverse professional and lay perspectives; and (3) collaboration among community organizations across local, state, national, and international levels. In the present analysis, transdisciplinary action research is viewed as a topic of scientific study in its own right to achieve a more complete understanding of prior collaborations and to identify strategies for refining and sustaining future collaborations (and their intended outcomes) among researchers, community members and organizations.

  3. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    Science.gov (United States)

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  4. Low Gravity Materials Science Research for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed

  5. Aeronautics research and technology program and specific objectives

    Science.gov (United States)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  6. Conceptual planning for Space Station life sciences human research project

    Science.gov (United States)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  7. Social science and health research: growth at the National Institutes of Health.

    Science.gov (United States)

    Bachrach, Christine A; Abeles, Ronald P

    2004-01-01

    Programs within the National Institutes of Health (NIH) have recently taken steps to enhance social science contributions to health research. A June 2000 conference convened by the NIH Office of Behavioral and Social Sciences Research highlighted the role of the social sciences in health research and developed an agenda for advancing such research. The conference and agenda underscored the importance of research on basic social scientific concepts and constructs, basic social science research on the etiology of health and illness, and the application of basic social science constructs in health services, treatment, and prevention research. Recent activities at NIH suggest a growing commitment to social science research and its integration into interdisciplinary multilevel studies of health.

  8. Improving Science and IT Literacy by Providing Urban-Based Environmental Science Research Opportunities

    Science.gov (United States)

    Cuff, K. E.; Corazza, L.; Liang, J.

    2007-12-01

    A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall

  9. Development of nature of science ideas through authentic scientific research

    Science.gov (United States)

    Burgin, Stephen Randall

    Understanding the ways in which scientific knowledge develops, or the epistemology of science, is believed to be a crucial component of scientific literacy. This construct is more formally known as Nature of Science (NOS) within the science education community. The merits of three different approaches to NOS teaching and learning in the context of authentic scientific research on high school student participants' NOS ideas were explored in this study. These approaches were an explicit/reflective approach, a reflective approach and an implicit approach. The effectiveness of explicit approaches over implicit approaches has been demonstrated in school contexts, but little is known regarding the merits of these approaches when the practices that learners engage in are highly authentic in the ways in which they model the work of professional scientists. If an implicit approach yields positive impacts in authentic contexts, then which specific factors within those contexts are influential in doing so? The Authentic Experiences in Science Program (AESP), a summer program designed for high school students offered at a major research university, offered a wonderful context for an investigation of these issues. In this program, high school students worked for an extended period of time in a research scientist's laboratory on an authentic research project. Additionally, seminars offered through the program provided a venue for the implementation of the three aforementioned NOS teaching and learning approaches. An open-ended questionnaire designed to assess respondent NOS ideas was administered to 30 participants of the AESP both at the beginning and again at the end of the program. From those thirty, six case study participants were selected, and through a series of observations and interviews, influential factors impacting their NOS ideas within their specific laboratory placements were identified. Results of categorical data analysis of the questionnaires revealed that the

  10. Research frontiers in the physical sciences

    Science.gov (United States)

    Thompson, J. M. T.

    2002-12-01

    As a prestigious generalist journal with a high scholarly reputation and a long influential history, the Philosophical Transactions of the Royal Society (Series A: Mathematical, Physical and Engineering Sciences), is an ideal vehicle for charting research frontiers across the physical sciences. It is the world's longest running scientific journal, and all issues since its foundation in 1665 are archived electronically by JSTOR in the USA (see http://www.jstor.org/) and are accessible through most university libraries. This archive gives facsimile access, and search facilities, to the works of many famous scientists. In this brief editorial I give first an introduction to the special Christmas issues by young scientists, followed by an overview of the fields covered.

  11. Research and Practical Trends in Geospatial Sciences

    Science.gov (United States)

    Karpik, A. P.; Musikhin, I. A.

    2016-06-01

    In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  12. RESEARCH AND PRACTICAL TRENDS IN GEOSPATIAL SCIENCES

    Directory of Open Access Journals (Sweden)

    A. P. Karpik

    2016-06-01

    Full Text Available In recent years professional societies have been undergoing fundamental restructuring brought on by extensive technological change and rapid evolution of geospatial science. Almost all professional communities have been affected. Communities are embracing digital techniques, modern equipment, software and new technological solutions at a staggering pace. In this situation, when planning financial investments and intellectual resource management, it is crucial to have a clear understanding of those trends that will be in great demand in 3-7 years. This paper reviews current scientific and practical activities of such non-governmental international organizations as International Federation of Surveyors, International Cartographic Association, and International Society for Photogrammetry and Remote Sensing, analyzes and groups most relevant topics brought up at their scientific events, forecasts most probable research and practical trends in geospatial sciences, outlines topmost leading countries and emerging markets for further detailed analysis of their activities, types of scientific cooperation and joint implementation projects.

  13. ARCHES: Advancing Research & Capacity in Hydrologic Education and Science

    Science.gov (United States)

    Milewski, A.; Fryar, A. E.; Durham, M. C.; Schroeder, P.; Agouridis, C.; Hanley, C.; Rotz, R. R.

    2013-12-01

    Educating young scientists and building capacity on a global scale is pivotal towards better understanding and managing our water resources. Based on this premise the ARCHES (Advancing Research & Capacity in Hydrologic Education and Science) program has been established. This abstract provides an overview of the program, links to access information, and describes the activities and outcomes of student participants from the Middle East and North Africa. The ARCHES program (http://arches.wrrs.uga.edu) is an integrated hydrologic education approach using online courses, field programs, and various hands-on workshops. The program aims to enable young scientists to effectively perform the high level research that will ultimately improve quality of life, enhance science-based decision making, and facilitate collaboration. Three broad, interlinked sets of activities are incorporated into the ARCHES program: (A1) the development of technical expertise, (A2) the development of professional contacts and skills, and (A3) outreach and long-term sustainability. The development of technical expertise (A1) is implemented through three progressive instructional sections. Section 1: Students were guided through a series of online lectures and exercises (Moodle: http://wrrs.uga.edu/moodle) covering three main topics (Remote Sensing, GIS, and Hydrologic Modeling). Section 2: Students participated in a hands-on workshop hosted at the University of Georgia's Water Resources and Remote Sensing Laboratory (WRRSL). Using ENVI, ArcGIS, and ArcSWAT, students completed a series of lectures and real-world applications (e.g., Development of Hydrologic Models). Section 3: Students participated in field studies (e.g., measurements of infiltration, recharge, streamflow, and water-quality parameters) conducted by U.S. partners and international collaborators in the participating countries. The development of professional contacts and skills (A2) was achieved through the promotion of networking

  14. WFIRST: Science from the Guest Investigator and Parallel Observation Programs

    Science.gov (United States)

    Postman, Marc; Nataf, David; Furlanetto, Steve; Milam, Stephanie; Robertson, Brant; Williams, Ben; Teplitz, Harry; Moustakas, Leonidas; Geha, Marla; Gilbert, Karoline; Dickinson, Mark; Scolnic, Daniel; Ravindranath, Swara; Strolger, Louis; Peek, Joshua; Marc Postman

    2018-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST) mission will provide an extremely rich archival dataset that will enable a broad range of scientific investigations beyond the initial objectives of the proposed key survey programs. The scientific impact of WFIRST will thus be significantly expanded by a robust Guest Investigator (GI) archival research program. We will present examples of GI research opportunities ranging from studies of the properties of a variety of Solar System objects, surveys of the outer Milky Way halo, comprehensive studies of cluster galaxies, to unique and new constraints on the epoch of cosmic re-ionization and the assembly of galaxies in the early universe.WFIRST will also support the acquisition of deep wide-field imaging and slitless spectroscopic data obtained in parallel during campaigns with the coronagraphic instrument (CGI). These parallel wide-field imager (WFI) datasets can provide deep imaging data covering several square degrees at no impact to the scheduling of the CGI program. A competitively selected program of well-designed parallel WFI observation programs will, like the GI science above, maximize the overall scientific impact of WFIRST. We will give two examples of parallel observations that could be conducted during a proposed CGI program centered on a dozen nearby stars.

  15. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  16. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  17. Citizen Science as a Tool for Scientific Research and Societal Benefit at NASA

    Science.gov (United States)

    Kaminski, Amy

    2018-01-01

    NASA's strategic goals include advancing knowledge and opportunity in space and improving life on Earth. We support these goals through extensive programs in space and Earth science research accomplished via space-based missions and research funding. NASA's "system" is configured to conduct science using (1) in-house personnel and (2) grants, contracts, and agreements with external entities (academia, industry, international space agencies.

  18. A New Direction for NASA Materials Science Research Using the International Space Station

    Science.gov (United States)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  19. Researching sustainable agriculture: The role of values in systemic science

    OpenAIRE

    Alrøe, Hugo Fjelsted

    2000-01-01

    This paper presents a specific perspective on the science demarcation issue, the perspective of systemic science. A systemic science is a science that influences its own subject area. Agricultural science is an example of such a science - a point that is particularly evident in connection with research in organic farming, which forms the practical context of this paper. Far from the ideal of being 'value-free' and objective, the systemic science must, upon recognising itself as systemic, ack...

  20. DoD Science and Engineering Apprenticeship Program for High School Students, 1996-'97 Activities

    National Research Council Canada - National Science Library

    Pfeffer, Richard

    1997-01-01

    The year 1996-97 represented our fifteenth successful DoD Science and Engineering Apprenticeship Program for High School Students at Florida State University, sponsored by the Office of Naval Research...