WorldWideScience

Sample records for science research program

  1. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  3. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  4. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  5. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  6. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  7. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  8. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  9. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  10. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  11. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  12. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  13. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  14. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  15. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  16. Atmospheric Sciences Program summaries of research in FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  17. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  18. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  19. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  20. Interdisciplinary research and training program in the plant sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1991-01-01

    This document is the compiled progress reports from the Interdisciplinary Research and Training Program in the Plant Sciences funded through the MSU-DOE Plant Research Laboratory. Fourteen reports are included, covering topics such as the molecular basis of plant/microbe symbiosis, cell wall proteins and assembly, gene expression, stress responses, growth regulator biosynthesis, interaction between nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and membrane trafficking, regulation of lipid metabolism, the molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria and hormonal involvement in environmental control of plant growth. 132 refs. (MHB)

  1. A multidisciplinary Earth science research program in China

    Science.gov (United States)

    Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian

    2011-09-01

    Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).

  2. Advancing prion science: guidance for the National Prion Research Program

    National Research Council Canada - National Science Library

    Erdtmann, Rick; Sivitz, Laura

    2004-01-01

    In Advancing Prion Science , the Institute of Medicine’s Committee on Transmissible Spongiform Encephalopathies Assessment of Relevant Science recommends priorities for research and investment to the Department of Defenseâ...

  3. Earth Sciences Division, collected abstracts-1977. [Research programs

    Energy Technology Data Exchange (ETDEWEB)

    Quitiquit, W.A.; Ledbetter, G.P.; Henry, A.L.

    1978-05-24

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1977 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. It is arranged alphabetically by author and includes a cross-reference by subject indicating the areas of research interest of the Earth Sciences Division.

  4. Advancing prion science: guidance for the National Prion Research Program

    National Research Council Canada - National Science Library

    Erdtmann, Rick; Sivitz, Laura

    2004-01-01

    ...€™s National Prion Research Program (NPRP). Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are invariably fatal neurodegenerative infectious diseases that include bovine spongiform encephalopathy...

  5. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    Science.gov (United States)

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  6. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World

    Science.gov (United States)

    1996-01-01

    This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?

  7. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  8. Applied Science Division annual report, Environmental Research Program FY 1983

    International Nuclear Information System (INIS)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring

  9. Research opportunities in photochemical sciences for the DOE Hydrogen Program

    Energy Technology Data Exchange (ETDEWEB)

    Padro, C.E.G. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    For several decades, interest in hydrogen has ebbed and flowed. With the OPEC oil embargo of the 1970`s and the promise of inexpensive nuclear power, hydrogen research focused on fuel applications. The economics and the realities of nuclear power shifted the emphasis to hydrogen as an energy carrier. Environmental benefits took center stage as scientists and politicians agreed on the potential threat of carbon dioxide emissions to global climate change. The U.S. Department of Energy (DOE) Office of Utility Technologies manages the National Hydrogen Program. In this role, the DOE provides national leadership and acts as a catalyst through partnerships with industry. These partnerships are needed to assist in the transition of sustainable hydrogen systems from a government-supported research and development phase to commercial successes in the marketplace. The outcome of the Program is expected to be the orderly phase-out of fossil fuels as a result of market-driven technology advances, with a least-cost, environmentally benign energy delivery system. The program seeks to maintain its balance of high-risk, long-term research in renewable based technologies that address the environmental benefits, with nearer-term, fossil based technologies that address infrastructure and market issues. National laboratories, universities, and industry are encouraged to participate, cooperate, and collaborate in the program. The U.S. Hydrogen Program is poised to overcome the technical and economic challenges that currently limit the impact of hydrogen on our energy picture, through cooperative research, development, and demonstrations.

  10. Atmospheric Science Program. Summaries of research in FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  11. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  12. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  13. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  14. Preliminary Results of Professional Development Program for School Science Research

    Science.gov (United States)

    Wuttiprom, Sura; Wuttisela, Karntarat; Phonchaiya, Sonthi; Athiwaspong, Wanwalai; Chitaree, Ratchapak; Sharma, Manjula Devi

    2016-01-01

    Teachers need to design their courses to be as similar to real-life situations as possible as genuine learning emerges in real life as opposed to studying in class. Research-based learning is an innovative approach exploring many critical strategies for success in the twenty-first century. In it, students drive their own learning through inquiry,…

  15. Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Fecych, W.; Harling, O.K.

    1989-01-01

    A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program

  16. Interdisciplinary Research and Training Program in the Plant Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-01-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  17. An Update on the NASA Planetary Science Division Research and Analysis Program

    Science.gov (United States)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  18. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.

  19. Care of preterm infants: programs of research and their relationship to developmental science.

    Science.gov (United States)

    Holditch-Davis, Diane; Black, Beth Perry

    2003-01-01

    The purpose of this review was to examine the topics covered in current programs of nursing research on the care of the preterm infant and to determine the extent to which this research is informed by developmental science. A researcher was considered to have a current program of research if he or she had at least five publications published since 1990 and was the first author on at least three of them. The infants in a study could be any age from birth throughout childhood; studies focusing on parenting, nursing, or other populations of infants were not included. Seventeen nurse researchers had current programs of research in this area. These programs had four themes. Those of Becker, Evans, Pridham, Shiao, and Zahr focused on infant responses to the neonatal intensive care unit (NICU) environment and treatments. Franck, Johnston, and Stevens focused on pain management. Harrison, Ludington-Hoe, and White-Traut's research focused on infant stimulation. Holditch-Davis, McCain, McGrath, Medoff-Cooper, Schraeder, and Youngblut studied infant behavior and development. These research programs had many strengths, including strong interdisciplinary focus and clinical relevance. However, additional emphasis is needed on the care of the critically ill infant. Also, despite the fact that the preterm infant's neurological system develops rapidly over the first year, only three of these researchers used a developmental science perspective. Only research on infant behavior and development focused on the developmental changes that the infants were experiencing. Most of the studies were longitudinal, but many did not use statistics appropriate for identifying stability and change over time. The response of individual infants and the broader ecological context as evidenced by factors such as gender, ethnic group, culture, and intergenerational effects were rarely examined. Thus research on the care of preterm infants could be expanded if the developmental science perspective

  20. GSD Update: Year in Review: Spotlight on 2013 research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2014-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research priorities of the...

  1. GSD Update: Year in Review: Spotlight on 2015 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah. Finch

    2016-01-01

    In this issue of the GSD Update, we take a look back at selected studies of the Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that depict its strengths and focus areas. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic research...

  2. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  3. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  4. GSD Update: Year in Review: Spotlight on 2017 Research by the Grassland, Shrubland and Desert Ecosystems Science Program

    Science.gov (United States)

    Deborah M. Finch

    2018-01-01

    In this issue of the GSD Update, we feature selected studies of the RMRS Grassland, Shrubland and Desert Ecosystems Science Program (GSD) that focus on the theme of fire. Significant results of recent research and science delivery by GSD scientists are highlighted. We feature program research that lines up with the strategic priorities and goals of the USDA Forest...

  5. An Evaluation of Research Ethics in Undergraduate Health Science Research Methodology Programs at a South African University.

    Science.gov (United States)

    Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm

    2015-10-01

    The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.

  6. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  7. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  8. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  9. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  10. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  11. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    Science.gov (United States)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  12. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE)

    DEFF Research Database (Denmark)

    Raiten, Daniel J; Sakr Ashour, Fayrouz A; Ross, A Catharine

    2015-01-01

    of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs......; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations......./Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible...

  13. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    Science.gov (United States)

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. Epidemiology & Genomics Research Program

    Science.gov (United States)

    The Epidemiology and Genomics Research Program, in the National Cancer Institute's Division of Cancer Control and Population Sciences, funds research in human populations to understand the determinants of cancer occurrence and outcomes.

  15. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  16. progressive problemshifts between different research programs in science education: A lakatosian perspective

    Science.gov (United States)

    Niaz, Mansoor

    Given the importance of epistemology and philosophy of science, the Lakatos (1970) methodology is particularly suited to evaluate competing research programs in science education. This article has two objectives: (a) to evaluate critically the interpretations of Gilbert and Swift (1985) and Rowell and Dawson (1989), and (b) to postulate a progressive problemshift between Piaget's epistemic subject and Pascual-Leone's metasubject. Regarding the Gilbert and Swift interpretation, it is concluded that the alternative conceptions movement at its present stage of development cannot explain the previous success of its rival (Piagetian school) nor supersede it by a further display of heuristic power as required by Lakatos. If we accept the Rowell and Dawson thesis it would amount to the postulation of Piagetian and integrated (Piagetian and schema) theories as rival research programs. It appears that the Rowell and Dawson approach would enrich Piagetian theory with descriptive content rather than explanatory constructs, and thus would not lead to a progressive problemshift. It is concluded that Pascual-Leone's theory extends Piaget's negative heuristic by introducing antecedent variables, and at the same time enriches the positive heuristic by introducing metasubjective task analysis, which leads to a progressive problemshift.

  17. Cooperative Research Projects in the Microgravity Combustion Science Programs Sponsored by NASA and NEDO

    Science.gov (United States)

    Ross, Howard (Compiler)

    2000-01-01

    This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.

  18. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  19. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs

    Directory of Open Access Journals (Sweden)

    Lucy M. Turner

    2017-03-01

    Full Text Available The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs.

  20. SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)

    Science.gov (United States)

    Dong, S.; Li, T.

    2010-12-01

    China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in

  1. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  2. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  3. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  4. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  5. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  6. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  7. A distributed model: redefining a robust research subject advocacy program at the Harvard Clinical and Translational Science Center.

    Science.gov (United States)

    Winkler, Sabune J; Cagliero, Enrico; Witte, Elizabeth; Bierer, Barbara E

    2014-08-01

    The Harvard Clinical and Translational Science Center ("Harvard Catalyst") Research Subject Advocacy (RSA) Program has reengineered subject advocacy, distributing the delivery of advocacy functions through a multi-institutional, central platform rather than vesting these roles and responsibilities in a single individual functioning as a subject advocate. The program is process-oriented and output-driven, drawing on the strengths of participating institutions to engage local stakeholders both in the protection of research subjects and in advocacy for subjects' rights. The program engages stakeholder communities in the collaborative development and distributed delivery of accessible and applicable educational programming and resources. The Harvard Catalyst RSA Program identifies, develops, and supports the sharing and distribution of expertise, education, and resources for the benefit of all institutions, with a particular focus on the frontline: research subjects, researchers, research coordinators, and research nurses. © 2014 Wiley Periodicals, Inc.

  8. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  9. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  10. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  11. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE)12345

    Science.gov (United States)

    Raiten, Daniel J; Ashour, Fayrouz A Sakr; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben

    2015-01-01

    An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. PMID:25833893

  12. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE).

    Science.gov (United States)

    Raiten, Daniel J; Sakr Ashour, Fayrouz A; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben

    2015-05-01

    An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. © 2015 American Society for Nutrition.

  13. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    Science.gov (United States)

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  14. A Model Retention Program for Science and Engineering Students: Contributions of the Institutional Research Office.

    Science.gov (United States)

    Andrade, Sally J.; Stigall, Sam; Kappus, Sheryl S.; Ruddock, Maryann; Oburn, Martha

    This paper asserts that the continuing decline in admissions to science and engineering graduate programs may lead to a shortage of skilled professionals that undermines the U.S. economy and to a shortage in higher education faculty. The Louis Stokes Alliance for Minority Participation (LSAMP) provides academic activities and retention services to…

  15. NanoJapan: international research experience for undergraduates program: fostering U.S.-Japan research collaborations in terahertz science and technology of nanostructures

    Science.gov (United States)

    Phillips, Sarah R.; Matherly, Cheryl A.; Kono, Junichiro

    2014-09-01

    The international nature of science and engineering research demands that students have the skillsets necessary to collaborate internationally. However, limited options exist for science and engineering undergraduates who want to pursue research abroad. The NanoJapan International Research Experience for Undergraduates Program is an innovative response to this need. Developed to foster research and international engagement among young undergraduate students, it is funded by a National Science Foundation Partnerships for International Research and Education (PIRE) grant. Each summer, NanoJapan sends 12 U.S. students to Japan to conduct research internships with world leaders in terahertz (THz) spectroscopy, nanophotonics, and ultrafast optics. The students participate in cutting-edge research projects managed within the framework of the U.S-Japan NSF-PIRE collaboration. One of our focus topics is THz science and technology of nanosystems (or `TeraNano'), which investigates the physics and applications of THz dynamics of carriers and phonons in nanostructures and nanomaterials. In this article, we will introduce the program model, with specific emphasis on designing high-quality international student research experiences. We will specifically address the program curriculum that introduces students to THz research, Japanese language, and intercultural communications, in preparation for work in their labs. Ultimately, the program aims to increase the number of U.S. students who choose to pursue graduate study in this field, while cultivating a generation of globally aware engineers and scientists who are prepared for international research collaboration.

  16. A DOE/Fusion Energy Sciences Research/Education Program at PVAMU Study of Rotamak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Tian-Sen [Prairie View A& M Univ., Prairie View, TX (United States); Saganti, Premkumar [Prairie View A& M Univ., Prairie View, TX (United States)

    2017-02-17

    . Apart from scientific staff members, several students (more than ten undergraduate students and two graduate students from several engineering and science disciplines) were supported and worked on the equipment and experiments during the award period. We also anticipate that these opportunities with current expansions may result in a graduate program in plasma science and propulsion engineering disciplines. *Corresponding Author – Dr. Saganti, Regents Professor and Professor of Physics – pbsaganti@pvamu.edu

  17. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  18. A psycho-historical research program for the integrative science of art.

    Science.gov (United States)

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Critics of the target article objected to our account of art appreciators' sensitivity to art-historical contexts and functions, the relations among the modes of artistic appreciation, and the weaknesses of aesthetic science. To rebut these objections and justify our program, we argue that the current neglect of sensitivity to art-historical contexts persists as a result of a pervasive aesthetic–artistic confound; we further specify our claim that basic exposure and the design stance are necessary conditions of artistic understanding; and we explain why many experimental studies do not belong to a psycho-historical science of art.

  19. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  20. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y

    2007-05-15

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs.

  1. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    International Nuclear Information System (INIS)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y.

    2007-05-01

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs

  2. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  3. AFOSR (Air Force Office of Scientific Research) Chemical & Atmospheric Sciences Program Review (27th).

    Science.gov (United States)

    1983-06-01

    2BT UK 19 -P Studies of Extratropical Cyclonic Peter V. Hobbs Storms ; The CYCLES Project Department of Atmospheric AFOSR-ISSA-83-00018 Sciences...and has been a key focus area for several years. With the planning for, and advent of, the National " STORM " Program (outlined recently by a UCAR...United States, Europe and Japan has established that direct fluorination is the most generally applicable technique for the synthesis of novel fluorine

  4. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  5. Characteristics of Biostatistics, Epidemiology, and Research Design Programs in Institutions With Clinical and Translational Science Awards.

    Science.gov (United States)

    Rahbar, Mohammad H; Dickerson, Aisha S; Ahn, Chul; Carter, Rickey E; Hessabi, Manouchehr; Lindsell, Christopher J; Nietert, Paul J; Oster, Robert A; Pollock, Brad H; Welty, Leah J

    2017-02-01

    To learn the size, composition, and scholarly output of biostatistics, epidemiology, and research design (BERD) units in U.S. academic health centers (AHCs). Each year for four years, the authors surveyed all BERD units in U.S. AHCs that were members of the Clinical and Translational Science Award (CTSA) Consortium. In 2010, 46 BERD units were surveyed; in 2011, 55; in 2012, 60; and in 2013, 61. Response rates to the 2010, 2011, 2012, and 2013 surveys were 93.5%, 98.2%, 98.3%, and 86.9%, respectively. Overall, the size of BERD units ranged from 3 to 86 individuals. The median FTE in BERD units remained similar and ranged from 3.0 to 3.5 FTEs over the years. BERD units reported more availability of doctoral-level biostatisticians than doctoral-level epidemiologists. In 2011, 2012, and 2013, more than a third of BERD units provided consulting support on 101 to 200 projects. A majority of BERD units reported that between 25% and 75% (in 2011) and 31% to 70% (in 2012) of their consulting was to junior investigators. More than two-thirds of BERD units reported their contributions to the submission of 20 or more non-BERD grant or contract applications annually. Nearly half of BERD units reported 1 to 10 manuscripts submitted annually with a BERD practitioner as the first or corresponding author. The findings regarding BERD units provide a benchmark against which to compare BERD resources and may be particularly useful for institutions planning to develop new units to support programs such as the CTSA.

  6. Implementation and Assessment of Undergraduate Experiences in SOAP: An Atmospheric Science Research and Education Program

    Science.gov (United States)

    Hopper, Larry J., Jr.; Schumacher, Courtney; Stachnik, Justin P.

    2013-01-01

    The Student Operational Aggie Doppler Radar Project (SOAP) involved 95 undergraduates in a research and education program to better understand the climatology of storms in southeast Texas from 2006-2010. This paper describes the structure, components, and implementation of the 1-credit-hour research course, comparing first-year participants'…

  7. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  8. Attracting Students Into Science: Insights From a Summer Research Internship Program for Community College Students in Colorado

    Science.gov (United States)

    Anderson, S. P.; Smith, L. K.; Gold, A. U.; Batchelor, R. L.; Monday, B.

    2014-12-01

    Research Experience for Undergraduates (REU) programs commonly serve students already committed to careers in science. To spark student interest in the sciences early in their college career, the CIRES diversity initiative teamed with the Boulder Creek Critical Zone Observatory to build an REU for Colorado community college students. A group of 7 students was selected from consideration of diversity, prior training, and personal statements. Each student was paired with a research science mentor. Field excursions and team-building exercises filled the first week of the 8-week program. Students received weekly training in science communication, responsible conduct of research, use of spreadsheet and graphing software, and statistical analysis. Each student presented their research in a poster session, an oral presentation, and a written report. Several aspects of this pilot program worked well. The students formed a very supportive cohort, despite the fact that they were not in residence. Cohesion grew out of the immersion in field trips, and was reinforced with weekly check-ins. The trainings were essential for seeing projects through to written and oral presentations. Teaming students for fieldwork was an effective strategy to build support, and reduce mentor fatigue. Each student produced useful data. In the future, we would include a workshop on personal finances to address a clear need. Transportation support will be provided. A residential program might attract some but could preclude participation of students with families or other life-issues. Personal tutoring tailored to research projects would address low math skills. All 7 students completed the program; several elected to submit to the undergraduate virtual poster session at Fall AGU. Students all reported enormous personal and academic growth. Some are discussing transfer and graduate school opportunities with their mentors. The enthusiasm and appreciation of the students was unparalleled.

  9. REQUIREMENTS TO AUTOMATIZATION PROCESSING IN THE PROGRAMMING INFORMATION SYSTEM OF SCIENTIFIC RESEARCHES IN ACADEMY OF PEDAGOGICAL SCIENCES OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Alla V. Kilchenko

    2010-08-01

    Full Text Available A construction and introduction of the information systems in a management education is the actual task of forming of modern information society. In the article the results of research of automation of treatment of financial documents, which was conducted within the project «Scientific-methodical providing of the informative system of programming of scientific researches in Academy of Pedagogical Sciences of Ukraine based on the Internet» № 0109U002139 are represented. The article contains methodical principles of automation of treatment programming and financial documents as well as requirements to the information system, which will be the base to next project stages.

  10. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  11. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    International Nuclear Information System (INIS)

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  12. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  13. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed

  14. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  15. Selected achievements, science directions, and new opportunities for the WEBB Small Watershed Research Program

    Science.gov (United States)

    Pierre D. Glynn; Matthew C. Larsen; Earl A. Greene; Heather L. Buss; David W. Clow; Randall J. Hunt; M. Alisa Mast; Sheila F. Murphy; Norman E. Peters; Stephen D. Sebestyen; James B. Shanley; John F. Walker

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric...

  16. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    Science.gov (United States)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  17. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660

  18. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  19. Science programs in Kansas

    Science.gov (United States)

    Kramer, Ariele R.; Kelly, Brian P.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  20. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    Science.gov (United States)

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  1. [Collaborative program of research in engineering sciences]: Progress report, January 1, 1988--December 31, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    Research programs in the following areas are briefly described: High Temperatures Gas-Particle Reactions, heat flow and mass transfer in plasma systems; Multivariable Control of Gas Metal Arc Welding; Metal Transfer in Gas Metal Arc Welding; In-Process Control of Residual Stresses and Distortion in Automatic Welding; Synthesis of Heat and Work Integration Systems for Chemical Process Plants; Parity Simulation of Dynamic Processes; Fracture Mechanics; Fracture in Pressure Vessels Alloys; and Stress and Fracture Analysis of Particles in Crushing Beds. Publications resulting from each program are listed

  2. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  3. Parents of children with chronic health problems: programs of nursing research and their relationship to developmental science.

    Science.gov (United States)

    Miles, Margaret Shandor

    2003-01-01

    This review identified nurse researchers and research teams that have current programs of research focused on parents and parenting of children with chronic health problems. Researchers were included if they had at least five publications since 1990, with at least three of these articles first-authored. These programs of research were critiqued from a developmental science perspective. Multiple methods were used for the search, including examination of previous review articles, hand search of journals, online computer searches, and review of the curriculum vitae of authors. Seven programs of research were identified. Two programs of research focused on childhood cancer--Ida M. Martinson et al. and Marsha H. Cohen. Three programs of research used a noncategorical approach encompassing a variety of childhood chronic conditions--Katherine A. Knafl and Janet A. Deatrick, Sharon O. Burke, and Ann Garwick. One program focused primarily on parents of children with Down syndrome and disabilities--Marsha Van Riper--and another on parents of infants with a variety of chronic health problems--Margaret S. Miles and Diane Holditch-Davis. Diverse theories and conceptual frameworks were used, and most had some focus on ecological systems that might affect parents and parenting. Many used a family perspective and included fathers. Still broader aspects of the family and community ecology and the health care were not generally included. Few examined the bidirectionality of the relationship between the child and aspects of the child's illness and parental responses. There was variability in the extent to which ethnicity and socioeconomic status were considered. Studies provide important insight into the responses of parents and their parenting of children with chronic health problems. The studies provide a sound base for continuing to build a developmentally sensitive body of knowledge related to parents and parenting of the child with chronic health problems.

  4. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  5. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  7. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    Science.gov (United States)

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  8. Student Contributions to Citizen Science Programs As a Foundation for Independent and Classroom-Based Undergraduate Research in the Earth Sciences

    Science.gov (United States)

    Guertin, L. A.

    2014-12-01

    Environmental monitoring projects on the grounds of a campus can serve as data collection sites for undergraduate research. Penn State Brandywine has utilized students in independent study projects to establish two citizen science programs and to begin collecting data, with the data sets serving as a foundation for authentic inquiry-based exercises in introductory-level Earth science courses. The first citizen science program is The Smithsonian Institution's Global Tree Banding Project, which contributes to research about tree biomass by tracking how trees respond to climate. We are going beyond the requirements of the Smithsonian project. Instead of only taking two measurements each in the spring and fall, undergraduate researchers are taking measurements every two weeks throughout the year. We started taking measurements of ten trees on campus in 2012 will continue until each tree outgrows its tree band. The data is available for download in Google Spreadsheets for students to examine changes in tree diameter within one or between growing seasons, supplemented with temperature and precipitation data (see http://sites.psu.edu/treebanding/). A second citizen science program we have begun on campus is the NASA-funded Digital Earth Watch (DEW) Picture Post Project, allowing students to monitor the environment and share observations through digital photography. We established four Picture Post sites on campus, with students taking weekly photos to establish an environmental baseline of the campus landscape and to document future environmental changes pre- and post-construction. We started taking digital photos on campus in 2014 will continue well past the completion of construction to continue to look for changes. The image database is less than a year old, but the images provide enough information for some early analyses, such as the variations in "greenness" over the seasons. We have created a website that shares the purpose of our participation in the Picture Post

  9. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  10. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  11. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  12. Training the next generation of research mentors: the University of California, San Francisco, Clinical & Translational Science Institute Mentor Development Program.

    Science.gov (United States)

    Feldman, Mitchell D; Huang, Laurence; Guglielmo, B Joseph; Jordan, Richard; Kahn, James; Creasman, Jennifer M; Wiener-Kronish, Jeanine P; Lee, Kathryn A; Tehrani, Ariane; Yaffe, Kristine; Brown, Jeanette S

    2009-06-01

    Mentoring is a critical component of career development and success for clinical translational science research faculty. Yet few programs train faculty in mentoring skills. We describe outcomes from the first two faculty cohorts who completed a Mentor Development Program (MDP) at UCSF. Eligibility includes having dedicated research time, expertise in a scientific area and a desire to be a lead research mentor. A post-MDP survey measured the program's impact on enhancement of five key mentoring skills, change in the Mentors-in-Training (MIT) self-rated importance of being a mentor to their career satisfaction, and overall confidence in their mentoring skills. Since 2007, 29 MITs participated in and 26 completed the MDP. Only 15% of the MITs reported any previous mentor training. Overall, 96% of MITs felt that participation in the MDP helped them to become better mentors. A majority reported a significant increase in confidence in mentoring skills and most reported an increased understanding of important mentoring issues at UCSF. MITs reported increased confidence in overall and specific mentoring skills after completion of the MDP. The MDP can serve as a model for other institutions to develop the next generation of clinical-translational research mentors.

  13. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy.

    Science.gov (United States)

    Maton, Kenneth I; Beason, Tiffany S; Godsay, Surbhi; Sto Domingo, Mariano R; Bailey, TaShara C; Sun, Shuyan; Hrabowski, Freeman A

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. © 2016 K. I. Maton et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  15. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  16. A community translational research pilot grants program to facilitate community--academic partnerships: lessons from Colorado's clinical translational science awards.

    Science.gov (United States)

    Main, Deborah S; Felzien, Maret C; Magid, David J; Calonge, B Ned; O'Brien, Ruth A; Kempe, Allison; Nearing, Kathryn

    2012-01-01

    National growth in translational research has increased the need for practical tools to improve how academic institutions engage communities in research. One used by the Colorado Clinical and Translational Sciences Institute (CCTSI) to target investments in community-based translational research on health disparities is a Community Engagement (CE) Pilot Grants program. Innovative in design, the program accepts proposals from either community or academic applicants, requires that at least half of requested grant funds go to the community partner, and offers two funding tracks: One to develop new community-academic partnerships (up to $10,000), the other to strengthen existing partnerships through community translational research projects (up to $30,000). We have seen early success in both traditional and capacity building metrics: the initial investment of $272,742 in our first cycle led to over $2.8 million dollars in additional grant funding, with grantees reporting strengthening capacity of their community- academic partnerships and the rigor and relevance of their research.

  17. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  18. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  19. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department's environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department's environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C

  20. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  1. Program of Research in Aeronautics

    Science.gov (United States)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  2. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this program to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.

  3. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  4. Astronomy in Research-Based Science Education (A-RBSE): A Review of a Decade of Professional Development Programs in Support of Teacher and Student Research at the National Optical Astronomy Observatory

    Science.gov (United States)

    Pompea, S. M.; Garmany, C. D.; Walker, C. E.; Croft, S. K.

    2006-12-01

    We will review the evolution of the Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory over the last eleven years. The program has evolved from an NSF-funded program in teacher enhancement to an observatory-supported core education initiative. The present manifestation of our program is an umbrella of programs designed to aid teachers in doing research with astronomical data archives, small telescopes, large research-grade telescopes, and the Spitzer Space Telescope. The professional development program has addressed basic questions on the nature of research, best techniques to bring it into the classroom, the value of authentic research, and the mix of on-line versus in- person professional development. The current program is used to test new models of teacher professional development that for outreach programs for the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program has been funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  5. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Science.gov (United States)

    2010-03-30

    ... the use of human embryonic stem cells in research. On July 30, 2009, President Obama issued a memorandum directing that agencies that support and conduct stem cell research adopt the ``National Institutes of Health Guidelines for Human Stem Cell Research'' (NIH Guidelines), which became effective on...

  6. Demonstrating the value of a social science research program to a natural resource management agency

    Science.gov (United States)

    Pamela J. Jakes; John F. Dwyer; Deborah S. Carr

    1998-01-01

    With ever tightening resources to address an increased number of diverse and complex issues, it has become common for scientists and managers to be called upon to demonstrate the value of their programs. In the spring of 1995, social scientists at the USDA Forest Service North Central Forest Experiment Station we so called upon. This paper discusses an effort to...

  7. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  8. Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-06-30

    This is a second quarter 1194 progress report on the UNLV Information Science Research Institute. Included is symposium activity; staff activity; document analysis program; text retrieval program; institute activity; and goals.

  9. An International Basic Science and Clinical Research Summer Program for Medical Students

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N.; Anindo, Mohammad Iffat Kabir; AlKukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K.

    2012-01-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to…

  10. Social science in the context of the long term ecological research program

    Science.gov (United States)

    Ted L. Gragson; Morgan Grove

    2006-01-01

    This special issue of Society and Natural Resources brings the results of long-term ecological research with an explicit social dimension to the attention of the social scientific research community. Contributions are from the Baltimore Ecosystem Study LTER, the Central Arizona-Phoenix LTER, the Coweeta LTER and the Northern Temperate Lakes LTER. The range of practice...

  11. Outline of research program on thorium fuel supported by grant-in-aid for energy research of ministry of education, science and culture

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    Since 1980, the Research Program on Thorium Fuel has been performed under the support of Grant-in-Aid for Energy Research of the Ministry of Education, Science and Culture of Japanese Government on the university basis including several tens professors. The main results have been published in the English-written report, ''Research on Thorium Fuel (SPEY-9, 1984)''. This report describes the outline and review of the symposium held on January 31, 1984. It consists of nuclear data, reactor physics, thorium fuel, irradiation of thorium, down-stream, biological effect, molten salt reactor engineering and others. It has been the first trial to perform such a big systematic cooperative studies in nuclear field on the university basis in Japan. (author)

  12. Fact Sheet on EPA's Science, Technology, Engineering & Math (STEM) Outreach Program in Research Triangle Park

    Science.gov (United States)

    Employees from EPA’s Research Triangle Park (RTP) campus serve as guest speakers at local schools and in the community. Hands-on activities and interactive discussions supplement classroom instruction and promote environmental awareness

  13. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  14. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  15. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program

    Science.gov (United States)

    2006-06-01

    photosynthesis ), evapotranspiration, and energy balance. 12 Climate change recommended research priorities Organic matter inputs to soils and aquatic...may be altered through changes in climate (e.g., coral reefs, seagrass ). Finally, services provided by a number of federally protected areas depend

  16. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  17. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  18. The NASA Applied Science Program Disasters Area: Disaster Applications Research and Response

    Science.gov (United States)

    Murray, J. J.; Lindsay, F. E.; Stough, T.; Jones, C. E.

    2014-12-01

    The goal of the Natural Disaster Application Area is to use NASA's capabilities in spaceborne, airborne, surface observations, higher-level derived data products, and modeling and data analysis to improve natural disaster forecasting, mitigation, and response. The Natural Disaster Application Area applies its remote sensing observations, modeling and analysis capabilities to provide hazard and disaster information where and when it is needed. Our application research activities specifically contribute to 1) Understanding the natural processes that produce hazards, 2)Developing hazard mitigation technologies, and 3)Recognizing vulnerability of interdependent critical infrastructure. The Natural Disasters Application area selects research projects through a rigorous, impartial peer-review process that address a broad spectrum of disasters which afflict populations within the United States, regionally and globally. Currently there are 19 active projects in the research portfolio which address the detection, characterization, forecasting and response to a broad range of natural disasters including earthquakes, tsunamis, volcanic eruptions and ash dispersion, wildfires, hurricanes, floods, tornado damage assessment, oil spills and disaster data mining. The Disasters team works with federal agencies to aid the government in meeting the challenges associated with natural disaster response and to transfer technologies to agencies as they become operational. Internationally, the Disasters Area also supports the Committee on Earth Observations Working Group on Disasters, and the International Charter on Space and Disasters to increase, strengthen, and coordinate contributions of NASA Earth-observing satellites and applications products to disaster risk management. The CEOS group will lead pilot efforts focused on identifying key systems to support flooding, earthquake, and volcanic events.

  19. Review of the research contract programs in the field of nuclear science and technology (1959-1979)

    Energy Technology Data Exchange (ETDEWEB)

    Bonoan, L S; Marasigan, C J; Relunia, E D [Philippine Atomic Energy Commission, Diliman, Quezon City

    1982-01-01

    This paper presents the 20 year span of cooperative services in the form of research contracts availed of by the country with the International Atomic Energy Agency (IAEA). All research contract grants are placed under the direct supervision of educational institutions, industrial laboratories, research centers and other institutions on areas of direct interest of the Agency's work. These areas are generally in the field of: life sciences with emphasis on medical and agricultural applications, radiation biology; nuclear safety; environmental protection; physical sciences such as physics and chemistry; engineering and technology, with special emphasis on nuclear power. Tables and figures graphically present research contracts grants and field classification.

  20. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  1. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual‐Degree Program

    Science.gov (United States)

    Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle

    2015-01-01

    Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704

  2. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    Science.gov (United States)

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  3. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  4. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  5. Library & Information Science Research

    OpenAIRE

    Van Gaasbeck, Kalvin

    2013-01-01

    A brief introduction to the quarterly periodical, Library & Information Science Research (LISR) providing an overview of the scope of the publication. The current paper details the types of articles published in the journal and gives a general overview of the review process for articles published in the journal, concluding with a brief statement of the value of the publication to the LIS field for students.

  6. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  7. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  8. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  9. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  10. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    Science.gov (United States)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  11. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  12. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  13. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    OpenAIRE

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one?s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both researc...

  14. Research Journal of Health Sciences

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns ...

  15. Spacelab Life Sciences Research Panel

    Science.gov (United States)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  16. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  17. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  18. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  19. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  20. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  1. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  2. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  3. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1992-09-01

    The programs of the Office of Energy Research provide basic science support for energy technologies as well as advancing understanding in general science and training future scientists. Energy Research provides insights into fundamental science and associated phenomena and develops new or advanced concepts and techniques. Research of this type has been supported by the Department of Energy and its predecessors for over 40 years and includes research in the natural and physical sciences, including high energy and nuclear physics; magnetic fusion energy; biological and environmental research; and basic energy sciences research in the materials, chemical, and applied mathematical sciences, engineering and geosciences, and energy biosciences. These basic research programs help build the science and technology base that underpins energy development by Government and industry

  4. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Science.gov (United States)

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one’s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  5. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  6. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  7. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    Science.gov (United States)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  8. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  9. Entering the Community of Practitioners: A Science Research Workshop Model

    Science.gov (United States)

    Streitwieser, Bernhard; Light, Gregory; Pazos, Pilar

    2010-01-01

    This article describes the Science Research Workshop Program (SRW) and discusses how it provides students a legitimate science experience. SRW, which is funded by the National Science Foundation, is an apprenticeship-style program in which students write proposals requesting resources to research an original question. The program creates a…

  10. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  11. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  12. Workshop on the ERDA Marine Sciences Research program for the west coast of the U.S

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1976-01-01

    Thirty marine scientists involved in Energy Research and Development Administration (ERDA)-supported marine research on the west coast of the United States met March 17-19, 1976, at the Asilomar Conference Center, Monterey, California. The objective of this workshop was to define the elements of an integrated research program that would contribute to a better knowledge of the potential impact of pollutants on coastal ecosystems from energy-related fuel cycles. One of the long-range objectives of the Division of Biomedical and Environmental Research in ERDA is to support research on processes and mechanisms that occur in the coastal waters that would allow assessment of the impact of energy technology fuel cycles, i.e., nuclear, oil and gas, coal, and solar. Additionally, the research has an objective of providing a basic environmental data base which will aid in the technological development and deployment of energy supply systems. While the research is not designed for the purposes of standard setting or for regulatory processes; nevertheless, it may, in the long term, contribute to a better basis for setting standards that are in the balanced best interest of both energy production and the preservation of our valuable coastal ecosystems. It was recognized that other Federal agencies also have charter responsibilities in this area and support research and monitoring programs that potentially overlap into ERDA programs. One of the working considerations was to identify where any significant overlap was perceived. Three panels were formed: Transport and Diffusion, Sediment Interaction, and Bioavailability and Effects. Each panel was asked to identify the major problem areas and gaps in our knowledge and define the needs of research programs that would increase and enhance our understanding of the mechanisms and processes that occur in each area of concern

  13. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  14. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  15. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  16. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  17. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1984-04-01

    An overview is given for the DOE research programs in high energy and nuclear physics; fusion energy; basic energy sciences; health and environmental research; and advisory, assessment and support activities

  18. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  19. `I Actually Contributed to Their Research': The influence of an abbreviated summer apprenticeship program in science and engineering for diverse high-school learners

    Science.gov (United States)

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-02-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research practices within working university chemistry and engineering laboratories. The experience was supplemented by discussions and activities intended to impact nature of science (NOS) and inquiry understandings and to allow for an exploration of STEM careers and issues of self-identity. Participants completed a NOS questionnaire before and after the experience, were interviewed multiple times, and were observed while working in the laboratories. Findings revealed that as a result of the program, participants (1) demonstrated positive changes in their understandings of certain NOS aspects many of which were informed by their laboratory experiences, (2) had an opportunity to explore and strengthen STEM-related future plans, and (3) examined their self-identities. A majority of participants also described a sense of belonging within the laboratory groups and believed that they were making significant contributions to the ongoing work of those laboratories even though their involvement was necessarily limited due to the short duration of the program. For students who were most influenced by the program, the belonging they felt was likely related to issues of identity and career aspirations.

  20. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  1. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  2. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    Science.gov (United States)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as

  3. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  4. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    Science.gov (United States)

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  5. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  6. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  7. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  8. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  9. The Australian synchrotron research program

    International Nuclear Information System (INIS)

    Garrett, R.F.

    1998-01-01

    Full text: The Australian Synchrotron Research Program (ASRP) was established in 1996 under a 5 year grant from the Australian Government, and is managed by ANSTO on behalf of a consortium of Australian universities and research organisations. It has taken over the operation of the Australian National Beamline Facility (ANBF) at the Photon Factory, and has joined two CATS at the Advanced Photon Source: the Synchrotron Radiation Instrumentation CAT (SRI-CAT) and the Consortium for Advanced Radiation Sources (CARS). The ASRP thus manages a comprehensive range of synchrotron radiation research facilities for Australian science. The ANBF is a general purpose hard X-ray beamline which has been in operation at the Photon Factory since 1993. It currently caters for about 35 Australian research teams per year. The facilities available at the ANBF will be presented and the research program will be summarised. The ASRP facilities at the APS comprise the 5 sectors operated by SRI-CAT, BioCARS and ChemMatCARS. A brief description will be given of the ASRP research programs at the APS, which will considerably broaden the scope of Australian synchrotron science

  10. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  11. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  12. Using a creativity-focused science program to foster general creativity in young children: A teacher action research study

    Science.gov (United States)

    Gomes, Joan Julieanne Mariani

    The importance of thinking and problem-solving skills, and the ability to integrate and analyze information has been recognized and yet may be lacking in schools. Creativity is inherently linked to problem finding, problem solving, and divergent thinking (Arieti, 1976; Csikszentmihalyi, 1990; Milgram, 1990). The importance of early childhood education and its role in the formation of young minds has been recognized (Caine & Caine, 1991; Montessori, 1967a, 1967b; Piaget, 1970). Early childhood education also impacts creativity (Gardner, 1999). The features of brain-based learning (Caine & Caine, 1991; Jensen, 1998; Sousa, 2001; Wolfe, 2001) have a clear connection to nurturing the creative potential in students. Intrinsic motivation and emotions affect student learning and creativity as well (Hennessey & Amabile, 1987). The purpose of this study was to discern if a creativity-focused science curriculum for the kindergarteners at a Montessori early learning center could increase creativity in students. This action research study included observations of the students in two classrooms, one using the creativity-focused science curriculum, and the other using the existing curriculum. The data collected for this interpretive study included interviews with the students, surveys and interviews with their parents and teachers, teacher observations, and the administration of Torrance's (1981) Thinking Creatively in Action and Movement (TCAM) test. The interpretation of the data indicated that the enhanced science curriculum played a role in enhancing the creativity of the children in the creativity-focused group. The results of the TCAM (Torrance, 1981) showed a significant increase in scores for the children in the creativity-focused group. The qualitative data revealed a heightened interest in science and the observation of creative traits, processes, and products in the creativity-focused group children. The implications of this study included the need for meaningful

  13. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  14. Research needed to strengthen science and programs for the control of iron deficiency and its consequences in young children.

    Science.gov (United States)

    Stoltzfus, Rebecca J

    2008-12-01

    The purpose of this article is to highlight critical research needs for the effective prevention and control of iron deficiency and its consequences in children living in low-income countries. Four types of research are highlighted: The first involves scaling up interventions that we know are effective, namely iron supplementation of pregnant women, delayed cord clamping at delivery, immediate and exclusive breast-feeding, and continued exclusive breast-feeding for approximately 6 mo. The second entails evaluation research of alternative interventions that are likely to work, to find the most cost-effective strategies for a given social, economic, and epidemiological context. This research is especially needed to expand the implementation of appropriate complementary feeding interventions. In this area, research needs to be designed to provide causal evidence, to measure cost-effectiveness, and to measure potential effect modifiers. The third is efficacy research to discover promising practices where we lack proven interventions. Examples include how to detect infants younger than 6 mo who are at high risk of iron deficiency, efficacious and safe interventions for those young high-risk infants, and best protocols for the treatment of severe anemia. The fourth includes basic research to elucidate physiological processes and mechanisms underlying the risks and benefits of supplemental iron for children exposed to infectious diseases, especially malaria. Strategic research in all 4 areas will ensure that interventions to control pediatric iron deficiency are integrated into national programs and global initiatives to make pregnancy safer, reduce newborn deaths, and promote child development, health, and survival.

  15. Fermilab Research Program Workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1984-05-01

    The Fermilab Research Program Workbook has been published annually for the past several years to assist the Physics Advisory Committee in the yearly program review conducted during its summer meeting. While this is still a major aim, it is hoped that the Workbook will also prove useful to others seeking information on the current status of Fermilab experiments and the properties of beams at the Laboratory. In addition, short summaries of approved experiments are also included

  16. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    1985-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  17. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  18. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  19. The University Corporation for Atmospheric Research's Significant Opportunities in Atmospheric and Related Sciences (UCAR-SOARS) program: A paradigm case for a research based analysis of elements and attributes of a highly successful research experience for undergraduate (REU) program designed to broaden participation in STEM

    Science.gov (United States)

    Windham, T. L.

    2011-12-01

    REU (research experience for undergraduate) programs in science serve as a centerpiece for: recruitment improved learning, retention and increased graduation rates among students in STEM fields. Structured REUs are highly effective programs for broadening participation and remedying inequities, to increase and diversify the STEM talent pool and professional workforce. Now in its 16th year, SOARS is dedicated to broadening participation in the atmospheric and related sciences. SOARS is an undergraduate through graduate program built on the structure of: a summer research internship, mentoring by professional scientists, and a supportive learning community. SOARS is an exemplar. Its structure serves as a paradigm case for the recruitment, retention, and graduation of students from underserved populations. This research-based examination of SOARS explores its program elements and identifies attributes and practices that contribute to its impact and lasting outcomes.

  20. ANSTO - Program of Research 1993-1994

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993-1994 Program of Research outlines ANSTO's scientific activities in four key research areas, Advanced Materials, Application of Nuclear Physics, Biomedicine and Health and Environmental Science. The effort has been channeled into applied research and development in partnership with industry and appropriate national and international institutions and into interdisciplinary strategic research projects to enhance the scientific base of the key research activities. A list of scientific publications originated from these program areas is also included. ills

  1. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  2. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  3. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  4. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  5. Marine biosurfaces research program

    Science.gov (United States)

    The Office of Naval Research (ONR) of the U.S. Navy is starting a basic research program to address the initial events that control colonization of surfaces by organisms in marine environments. The program “arises from the Navy's need to understand and ultimately control biofouling and biocorrosion in marine environments,” according to a Navy announcement.The program, “Biological Processes Controlling Surface Modification in the Marine Environment,” will emphasize the application of in situ techniques and modern molecular biological, biochemical, and biophysical approaches; it will also encourage the development of interdisciplinary projects. Specific areas of interest include sensing and response to environmental surface (physiology/physical chemistry), factors controlling movement to and retention at surfaces (behavior/hydrodynamics), genetic regulation of attachment (molecular genetics), and mechanisms of attachment (biochemistry/surface chemistry).

  6. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  7. Controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The Plasma Physics and Controlled-Fusion Research Program at the Lawrence Berkeley Laboratory is divided into five projects: Plasma Production and Heating Experiments, Plasma Theory, Atomic Physics Studies, the Tormac Project, and Neutral-Beam Development and Technology listed in order of increasing magnitude, as regards manpower and budget. Some cross sections and yields are shown in atomic physics

  8. DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer A.

    2009-03-24

    The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

  9. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  10. Research Ethics with Undergraduates in Summer Research Training Programs

    Science.gov (United States)

    Cheung, I.; Yalcin, K.

    2016-02-01

    Many undergraduate research training programs incorporate research ethics into their programs and some are required. Engaging students in conversations around challenging topics such as conflict of interest, cultural and gender biases, what is science and what is normative science can difficult in newly formed student cohorts. In addition, discussing topics with more distant impacts such as science and policy, intellectual property and authorship, can be difficult for students in their first research experience that have more immediate concerns about plagiarism, data manipulation, and the student/faculty relationship. Oregon State University's Research Experience for Undergraduates (REU) in Ocean Sciences: From Estuaries to the Deep Sea as one model for incorporating a research ethics component into summer undergraduate research training programs. Weaved into the 10-week REU program, undergraduate interns participate in a series of conversations and a faculty mentor panel focused on research ethics. Topics discussed are in a framework for sharing myths, knowledge and personal experiences on issues in research with ethical implications. The series follows guidelines and case studies outlined from the text, On Being A Scientist: Responsible Conduct In Research Committee on Science, Engineering, and Public Policy, National Academy of Sciences.

  11. A Faculty Development Program can result in an improvement of the quality and output in medical education, basic sciences and clinical research and patient care.

    Science.gov (United States)

    Dieter, Peter Erich

    2009-07-01

    The Carl Gustav Carus Faculty of Medicine, University of Technology Dresden, Germany, was founded in 1993 after the reunification of Germany. In 1999, a reform process of medical education was started together with Harvard Medical International.The traditional teacher- and discipline-centred curriculum was displaced by a student-centred, interdisciplinary and integrative curriculum, which has been named Dresden Integrative Patient/Problem-Oriented Learning (DIPOL). The reform process was accompanied and supported by a parallel-ongoing Faculty Development Program. In 2004, a Quality Management Program in medical education was implemented, and in 2005 medical education received DIN EN ISO 9001:2000 certification. Quality Management Program and DIN EN ISO 9001:2000 certification were/are unique for the 34 medical schools in Germany.The students play a very important strategic role in all processes. They are members in all committees like the Faculty Board, the Board of Study Affairs (with equal representation) and the ongoing audits in the Quality Management Program. The Faculty Development program, including a reform in medical education, the establishment of the Quality Management program and the certification, resulted in an improvement of the quality and output of medical education and was accompanied in an improvement of the quality and output of basic sciences and clinical research and interdisciplinary patient care.

  12. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  13. Advanced maintenance research programs

    International Nuclear Information System (INIS)

    Marston, T.U.; Gelhaus, F.; Burke, R.

    1985-01-01

    The purpose of this paper is to provide the reader with an idea of the advanced maintenance research program at the Electric Power Research Institute (EPRI). A brief description of the maintenance-related activities is provided as a foundation for the advanced maintenance research projects. The projects can be divided into maintenance planning, preventive maintenance program development and implementation, predictive (or conditional) maintenance, and innovative maintenance techniques. The projects include hardware and software development, human factors considerations, and technology promotion and implementation. The advanced concepts include: the incorporation of artificial intelligence into outage planning; turbine and pump maintenance; rotating equipment monitoring and diagnostics with the aid of expert systems; and the development of mobile robots for nuclear power plant maintenance

  14. Global change research: Science and policy

    International Nuclear Information System (INIS)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change

  15. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  16. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  17. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  18. FY 1995 research highlights: PNL accomplishments in OER programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  19. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  20. Good science, bad science: Questioning research practices in psychological research

    NARCIS (Netherlands)

    Bakker, M.

    2014-01-01

    In this dissertation we have questioned the current research practices in psychological science and thereby contributed to the current discussion about the credibility of psychological research. We specially focused on the problems with the reporting of statistical results and showed that reporting

  1. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  2. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  3. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  4. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  5. Materials Sciences Research.

    Science.gov (United States)

    1975-07-01

    the vicinity of the LaCoO composition. Several derivative compounds with structures related to the Perovskite structure have been identified. The...physical, chemical, and electrical properties results. Glass-Ceramics are used as substrates and as insulation in hybrid electronic circuits, as... Photoluminescence Characterization of Laser-Quality (100) In1 Ga P • Journal of Crystal Growth 27, 154-165 (1974) , Supported by the Advanced Research Projects

  6. NRL HIFAR research program

    International Nuclear Information System (INIS)

    1989-01-01

    The use of a beam of heavy ions to ignite a thermonuclear pellet places severe constraints on beam emittance throughout the accelerator system. Nonlinearities which occur during beam transport, acceleration, and focusing, can cause emittance growth which limits spot intensity. Because of the high beam intensities required to achieve ignition, details of the self-consistent evolution of nonlinear space charge forces are generally important in this process. Computer simulations have, in turn, become an important tool in examining beam dynamics in this nonlinear regime. The Naval Research Laboratory HIFAR research program has been a major contributor to the successful use of numerical simulation to understand the detailed mechanisms by which space charge nonlinearities can contribute to emittance growth and the dilution of beam intensity. This program has been conducted in close cooperation with LLNL and LBL personnel to maximize support for those programs. Codes developed at NRL have been extensively shared and models developed at the other laboratories have been incorporated in the NRL codes. Because of the collaborative nature of much of the work over the past year, which has emphasized the development of numerical tools and techniques for general use, progress has generally resulted from shared efforts. The work, as reported here, emphasizes those contributions which can be attributed primarily to the NRL effort

  7. Teacher Research Programs = Increased Student Achievement

    Science.gov (United States)

    Dubner, J.

    2011-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university professional development programs for science teachers in the U.S. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University's research faculty. In addition to the laboratory experience, all teachers meet weekly during the summer for a series of pedagogical activities to assist them in transferring the experience to their classrooms. The primary goal of the program is to provide K-12 science teachers with opportunities to work at the cutting edge of science and engineering, and thus to revitalize their teaching and help them to appreciate the use of inquiry-based methods in their classroom instruction. The secondary goals of the program are to give the pre-college teacher the ability to guide their students toward careers in science and engineering, to develop new teaching strategies, and to foster long-term scholarly collaborations. The last is especially important as it leads to a model of the teacher as active in science yet committed to the pre-college classroom. Since its inception, SRP has focused on an objective assessment of the program's impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors' laboratories, and most importantly, on the impact of their participation in the program has on student interest and performance in science. Our research resulted in a paper published in the journal Science. SRP also facilitates a multi-site survey-based evaluation of other teacher research programs around the country. The author will present the findings of both studies.

  8. Fermilab research program workbook

    International Nuclear Information System (INIS)

    Rubinstein, R.

    1983-05-01

    The Fermilab Research Program Workbook has been produced annually for the past several years, with the original motivation of assisting the Physics Advisory Committee in its yearly program review conducted during its summer meeting. While this is still the primary goal, the Workbook is increasingly used by others needing information on the current status of Fermilab experiments, properties of beams, and short summaries of approved experiments. At the present time, considerable changes are taking place in the facilities at Fermilab. We have come to the end of the physics program using the 400 GeV Main Ring, which is now relegated to be just an injector for the soon-to-be commissioned Tevatron. In addition, the experimental areas are in the midst of a several-year program of upgrading to 1000 GeV capability. Several new beam lines will be built in the next few years; some indications can be given of their properties, although with the caveat that designs for some are by no means final. Already there is considerable activity leading to experiments studying anti p p collisions at √s = 2000 GeV

  9. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  10. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  11. UNLV Information Science Research Institute. Quarterly progress report

    International Nuclear Information System (INIS)

    Nartker, T.A.

    1994-01-01

    This document summarizes the activities and progress for the 1994 Fall quarter for the UNLV Information Science Research Institute. Areas covered include: Symposium activity, Staff activity, Document analysis program, Text-retrieval program, and Institute activity

  12. UNLV Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-12-31

    This document summarizes the activities and progress for the 1994 Fall quarter for the UNLV Information Science Research Institute. Areas covered include: Symposium activity, Staff activity, Document analysis program, Text-retrieval program, and Institute activity.

  13. Base Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett Sondreal; John Hendrikson

    2009-03-31

    In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

  14. University of Maine’s Follow a Researcher™ Program: Using Graduate Student Field Research as a Framework to Incorporate Next Generation Science Standards (NGSS) Practices in the K-12 Classroom

    OpenAIRE

    Kaluzienski, Lynn; Hamley, Catherine; Rodda, Charles; Kranich, Gregory; Wilson, Laura

    2016-01-01

    Follow a Researcher™ is an innovative University of Maine 4-H program that connects youth with a graduate student who is conducting field research in a remote location. Using technology and social media, K-12 classrooms have an unprecedented opportunity to get to know a student researcher. Youth engage in the research process and witness NGSS Science and Engineering Practices in action.

  15. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  16. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  17. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  18. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  19. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  20. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  1. Component fragility research program

    International Nuclear Information System (INIS)

    Tsai, N.C.; Mochizuki, G.L.; Holman, G.S.

    1989-11-01

    To demonstrate how ''high-level'' qualification test data can be used to estimate the ultimate seismic capacity of nuclear power plant equipment, we assessed in detail various electrical components tested by the Pacific Gas ampersand Electric Company for its Diablo Canyon plant. As part of our Phase I Component Fragility Research Program, we evaluated seismic fragility for five Diablo Canyon components: medium-voltage (4kV) switchgear; safeguard relay board; emergency light battery pack; potential transformer; and station battery and racks. This report discusses our Phase II fragility evaluation of a single Westinghouse Type W motor control center column, a fan cooler motor controller, and three local starters at the Diablo Canyon nuclear power plant. These components were seismically qualified by means of biaxial random motion tests on a shaker table, and the test response spectra formed the basis for the estimate of the seismic capacity of the components. The seismic capacity of each component is referenced to the zero period acceleration (ZPA) and, in our Phase II study only, to the average spectral acceleration (ASA) of the motion at its base. For the motor control center, the seismic capacity was compared to the capacity of a Westinghouse Five-Star MCC subjected to actual fragility tests by LLNL during the Phase I Component Fragility Research Program, and to generic capacities developed by the Brookhaven National Laboratory for motor control center. Except for the medium-voltage switchgear, all of the components considered in both our Phase I and Phase II evaluations were qualified in their standard commercial configurations or with only relatively minor modifications such as top bracing of cabinets. 8 refs., 67 figs., 7 tabs

  2. Research in the Optical Sciences

    Science.gov (United States)

    2011-03-21

    Nonimaging Optics , (Elsevier Academic Press, Burlingham, 2005) Chapter 2. S. I. Voropayev and Y. D. Afanasyev. Vortex Structures in a Stratified Fluid...REPORT Research in the Optical Sciences 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: This report decribes the research and results of the activity on...various projects over the period of the grant. The optics of study include atom optics and matter-wave quantum point contacts, theory of optical

  3. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  4. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  5. Smoot Astrophysics Research Program

    Science.gov (United States)

    , institutional, and to some extent scientific support - though the science implications and future potential in music. Following them in 2002 the Archeops balloon-borne detector mapped nearly 1/5 the sky and the input and maps and in terms of its science. Succeeding experiments have had to strive to meet and

  6. Summer Undergraduate Research Program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  7. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  8. Geopolitical research in ukrainian science

    Directory of Open Access Journals (Sweden)

    O. V. Dashevs’ka

    2015-12-01

    Full Text Available The intensity and diversity of political and geopolitical processes in Ukraine give greater empirical basis for Geopolitical Studies. However, the popularity of this research is purely populist currents, leaving only a quarter of all science research. The aim of the study is to examine the specific dynamics and geopolitical studies in modern Ukrainian political thought. This paper reviews the dissertation research of local scientists. It was noted that most of the work falls on political sciences, specialty 23.00.04 - political problems of international systems and global development. The main trends in domestic geopolitical studies: 1. Identification of Ukraine’s place on the geopolitical map of the world by analyzing the geopolitical position and historical and political research; 2. Study regional issues, bilateral relations between countries; 3. Research general issues of international security, terrorism and the role of Ukraine in the system of international security; 4. Analysis of ethnic and political problems in Ukraine and their impact on international relations; 5. Investigation euro integration aspirations of Ukraine as the only right in terms of the geopolitical position; 6. General geopolitical studies that examined the practice of various geopolitical theories and concepts in different times and different countries. The analysis presented dissertations and other scientific literature suggests domestic authors only the first stage of mastering such important political science as geopolitics.

  9. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  10. University Research Consortium annual review meeting program

    International Nuclear Information System (INIS)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators

  11. University Research Consortium annual review meeting program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  12. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  13. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  14. Interdisciplinary Research and Training Program in the Plant Sciences. Technical progress report, February 1, 1991--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C.P.

    1992-07-01

    Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

  15. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  16. ANSTO program of research 1989-1990

    International Nuclear Information System (INIS)

    1989-09-01

    The 1989-1990 Program of Research of the Australian Nuclear Science and Technology Organization identifies the diversity of the organisation's current activities and the role of nuclear science and technology in achieving national goals. Major program areas continue to be biomedicine and health, advanced materials, applications of nuclear physics, environmental science, isotope technology and nuclear technology. Each project in a particular program area is defined in terms of background, objectives recent work and achievements, work planned and resources. External advisory committees which provide advice on research priorities, are viewed as a fundamental part of the ongoing evaluation process of the organization activities in response to changing priorities in industry, government and the community it serves

  17. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  18. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  19. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  20. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. This facility is available to support materials science investigations through programs such as the US National Laboratory, Technology Development, NASA Research Announcements, and others. TBE and MSFC are currently developing NASA Sample Cartridge Assemblies (SCA's) with a planned availability for launch in 2017.

  1. Research in the Optical Sciences

    Science.gov (United States)

    1990-03-12

    Services Optics Program DTIC ELECTE .S FEB 2 419921 Robert R. Shannon, Director Optical Sciences Center University of Arizona Tucson, Arizona 85721...Kearney. A.R. Lampis. Z. Milanovic. D.W. Schulze, J.R. Roberts , J. Kerner. E.B. Saloman. and C.M. Falco. "Multilayer mirrors for 182 A." X-Ray/EUV...Boyd. M. 0. Raymer . P. Narum, and D. J. Harter. Phys. Rev. A 24. 411 (1981). 11. G. Khitrova. Ph.D. dissertation. New York University, 1986

  2. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  3. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  4. ANSTO - program of research 1991-1992

    International Nuclear Information System (INIS)

    1991-01-01

    The direction and priorities of the Australian Nuclear Science and Technology Organisation (ANSTO) research program are outlined. During the period under review. Many of the initiatives of previous years come to fruition, adding significant strength and dimension to the Organisation's research capabilities. The advent of Australian Supercomputing Technology, a joint venture between Fujitsu Australia and ANSTO, will enable the grand challenges of computational science to underpin Ansto research generally but specifically in environmental science. The development of the accelerator mass spectrometry facilities on the tandem accelerator supported new initiatives in environmental research and management. The National Medical Cyclotron opens a new era in radiopharmaceutical research and development. Finally, the recently commissioned hot isostatic press provides a unique national resource for the development of new ceramics and their applications. The direction and priorities of Ansto's research program are determined through a combination of external and internal review. The Program Advisory Committees provide external evaluation against national objectives. New Committees have been formed and membership reflects the national and international nature of the ANSTO research programs. ills

  5. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  6. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    Science.gov (United States)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  7. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  8. Research and development program, fiscal year 1974

    Energy Technology Data Exchange (ETDEWEB)

    1972-04-01

    The biomedical program of the Laboratory of Nuclear Medicine and Radiation Biology for Fiscal Year 1974 is conducted within the scope of the following categories: Effects of Radiation of Living Organisms; Molecular and Cellular Radiobiology; Land and Fresh Water Environmental Sciences; Radiological and Health Physics and Instrumentation; and Nuclear Medical Research. (ACR)

  9. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  10. Small Business Innovation Research Program. Program solicitation FY 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Regulatory Commission (NRC) invites science-based and high-technology small business firms to submit research proposals under this program solicitation entitled Small Business Innovation Research (SBIR). Firms with strong research capabilities in science or engineering in any of the following topic areas are encouraged to participate. NRC will support high-quality research proposals on important scientific or engineering problems and opportunities that could lead to significant advancement in the safety of nuclear operations or nuclear power plants. Objectives of the solicitation include stimulating technological innovation in the private sector, strengthening the role of small business in meeting Federal research and development needs, increasing the commercial application of NRC-supported research results, and improving the return on investment from Federally funded research for economic and social benefits to the Nation

  11. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  12. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    2- 0010 Report Period: 02/06/2012-02/28/2018 4/11/2018, 12:17 PM During the reporting period, the National Academies of Sciences, Engineering , and...to advertise the NRC Research Associateship Programs included the following: 1) attendance at meetings of major scientific and engineering ...professional societies; 2) advertising in programs and career centers for these and other professional society meetings; 3) direct mailing and emailing of

  13. Research Programs & Initiatives

    Science.gov (United States)

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  14. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    IAS Admin

    2013-11-30

    Nov 30, 2013 ... Science Academies' Summer Research Fellowship Programme for. Students and Teachers – 2014. Sponspored by. Indian Academy of Sciences, Bangalore. Indian National Science Academy, New Delhi. The National Academy of Sciences, India, Allahabad. The three national science academies offer ...

  15. 7. Framework Research Program

    International Nuclear Information System (INIS)

    Donghi, C.; Pieri, Alberto; Manzini, G.

    2006-01-01

    The UE it means to face the problem of the deficiency if investments in the RS field. In particular politics of research are turned to pursue three main goals: the strengthening of the scientific excellence in Europe; the increase of total investments for research; the realization of European space of research [it

  16. Undergraduate Research Program Between SCU and SOFIA

    Science.gov (United States)

    Kulas, Kristin Rose; Andersson, B.-G.

    2018-06-01

    We present results on an undergraduate research program run in collaboration between Santa Clara University (SCU), a predominately undergraduate liberal arts college and the SOFIA Science Center/USRA. We have started a synergistic program between SCU and SOFIA (located at NASA Ames) where the students are able to be fully immersed in astronomical research; from helping to write telescope observing proposal; to observing at a world-class telescope; to reducing and analyzing the data that they acquired and ultimately to presenting/publishing their findings. A recently awarded NSF collaborative grant will allow us to execute and expand this program over the next several years. In this poster we present some of our students research and their success after the program. In addition, we discuss how a small university can actively collaborate with a large government-funded program like SOFIA, funded by NASA.

  17. Equipment qualification research program: program plan

    International Nuclear Information System (INIS)

    Dong, R.G.; Smith, P.D.

    1982-01-01

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump

  18. A Summary of the Naval Postgraduate School Research Program, 1982

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1982-01-01

    Approved For Public Release; Distribution Unlimited This report contains 224 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics and Chemistry, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Content...

  19. A Summary of the Naval Postgraduate School Research Program, 1983

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1983-01-01

    Approved For Public Release; Distribution Unlimited This report contains 249 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Contents identifies t...

  20. A Summary of the Naval Postgraduate School Research Program, 1984

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1984-01-01

    Approved for public release; distribution unlimited. This report contains 221 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Contents identifies ...

  1. Program of research 1988-89

    International Nuclear Information System (INIS)

    1988-08-01

    From 1 July 1988, the research activities of ANSTO have reorganised into five programs: advanced materials; applications of nuclear physics; environmental science; applications of radioisotopes and radiation; biomedicine and health. This structure not only groups the main research activities but also identifies the underpinning of ANSTO's commercial activities. This document describes the projects to be undertaken in the 1988-89 financial year. Each project in a particular program area is defined in terms of background, objective, recent work and achievements, work planned, resources and the project manager is identified. Research is also undertaken in areas of the operational activities of the organisation and these also are detailed

  2. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  3. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  4. Ecological Research Division, Marine Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

  5. Ecological Research Division, Marine Research Program

    International Nuclear Information System (INIS)

    1980-05-01

    This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States

  6. Eastern Africa Social Science Research Review: Contact

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Contact. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Contact. Log in or Register to get access to full text downloads.

  7. Remote Sensing Information Science Research

    Science.gov (United States)

    Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin

    2002-01-01

    This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.

  8. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  9. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  10. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

  11. NCI: DCTD: Biometric Research Program

    Science.gov (United States)

    The Biometric Research Program (BRP) is the statistical and biomathematical component of the Division of Cancer Treatment, Diagnosis and Centers (DCTDC). Its members provide statistical leadership for the national and international research programs of the division in developmental therapeutics, developmental diagnostics, diagnostic imaging and clinical trials.

  12. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  13. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  14. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  15. Human Research Program

    Data.gov (United States)

    National Aeronautics and Space Administration — Strategically, the HRP conducts research and technology development that: 1) enables the development or modification of Agency-level human health and performance...

  16. U.S. Global Change Research Program Budget Crosscut

    Data.gov (United States)

    Office of Science and Technology Policy, Executive Office of the President — U.S. Global Change Research Program budget authority for Agency activities in which the primary focus is on:Observations, research, and analysis of climate change...

  17. Radon Research Program, FY-1990

    International Nuclear Information System (INIS)

    1991-03-01

    The Department of Energy (DOE) Office of Health and Environmental Research (OHER) has established a Radon Research Program with the primary objectives of acquiring knowledge necessary to improve estimates of health risks associated with radon exposure and also to improve radon control. Through the Radon Research Program, OHER supports and coordinates the research activities of investigators at facilities all across the nation. From this research, significant advances are being made in our understanding of the health effects of radon. OHER publishes this annual report to provide information to interested researchers and the public about its research activities. This edition of the report summarizes the activities of program researchers during FY90. Chapter 2 of this report describes how risks associated with radon exposure are estimated, what assumptions are made in estimating radon risks for the general public, and how the uncertainties in these assumptions affect the risk estimates. Chapter 3 examines how OHER, through the Radon Research Program, is working to gather information for reducing the uncertainties and improving the risk estimates. Chapter 4 highlights some of the major findings of investigators participating in the Radon Research Program in the past year. And, finally, Chapter 5 discusses the direction in which the program is headed in the future. 20 figs

  18. Tansmutation Research program

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  19. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  20. Research on Automatic Programming

    Science.gov (United States)

    1975-12-31

    Sequential processes, deadlocks, and semaphore primitives , Ph.D. Thesis, Harvard University, November 1974; Center for Research in Computing...verified. 13 Code generated to effect the synchronization makes use of the ECL control extension facility (Prenner’s CI, see [Prenner]). The... semaphore operations [Dijkstra] is being developed. Initial results for this code generator are very encouraging; in many cases generated code is

  1. Biological Defense Research Program

    Science.gov (United States)

    1989-04-01

    difference between life and death. Some recent examples are: BDRP developed VEE vaccine used in Central America, Mexico , and Texas (1969- 1971.) and Rift...Complex, is adn area owned by the Bureau of Land Management, which is available for grazina, and with specific permission, for use by DPG. 2.3...2.01 A Large European Laboratory, 1944-1950 50.00 Tuberculosis Laboratory 4 Technicians, Canada, 1947-1954 19.00 Research Institutes, 1930-1950 4.10

  2. Military Vision Research Program

    Science.gov (United States)

    2011-07-01

    Bietti Eye Foundation, IRCCS Rome, Italy . Word count: 2879 Corresponding author: Reza Dana, M.D., M.P.H., M.Sc. Schepens Eye Research...Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 3 Bietti Eye Foundation, IRCCS Rome, Italy . Word count: 2879...with differentiated properties. Exp Eye Res. 62, 155-169. 18. Marneros A.G., Fan J., Yokoyama Y., Gerber H.P., Ferrara N., Crouch R.K., Olsen B.R

  3. A Summary of the Naval Postgraduate School Research Program, 1981

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1981-01-01

    Approved for public release; distribution unlimited. This report contains 230 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Defense Resources Management, Operations Resear-h, National Security Affairs, Physics and Chemistry, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical...

  4. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  5. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  6. A Graduate Academic Program in Medical Information Science.

    Science.gov (United States)

    Blois, Marsden S., Jr.; Wasserman, Anthony I.

    A graduate academic program in medical information science has been established at the University of California, San Francisco, for the education of scientists capable of performing research and development in information technology in the health care setting. This interdisciplinary program, leading to a Doctor of Philosophy degree, consists of an…

  7. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  8. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  9. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  10. Summaries of FY 1980 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included

  11. Summaries of FY 1980 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  12. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  13. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  14. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  15. Aquatic Sciences and Its Appeal for Expeditionary Research Science Education

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.

  16. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  17. Environmental Sciences Division: Summaries of research in FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  18. International Research and Studies Program

    Science.gov (United States)

    Office of Postsecondary Education, US Department of Education, 2012

    2012-01-01

    The International Research and Studies Program supports surveys, studies, and instructional materials development to improve and strengthen instruction in modern foreign languages, area studies, and other international fields. The purpose of the program is to improve and strengthen instruction in modern foreign languages, area studies and other…

  19. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  20. Science Academies' Summer Research Fellowship Programme

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018. Information and Announcements Volume 22 Issue 11 November 2017 pp 1100-1100 ...

  1. Translational Science Research: Towards Better Health

    Directory of Open Access Journals (Sweden)

    Emir Festic

    2009-10-01

    health systems have also established translational research programs and at least 2 journals (Translational Medicine and the Journal of Translational Medicine are devoted to the topic. In Europe, translational research has become a centerpiece of the European Commission’s €6 billion budget for health related research, and the United Kingdom has invested £450 million over 5 years to establish translational research centers (7.In this issue of Bosnian Journal of Basic Medical Sciences, members of medical section of Bosnian and Herzegovinian-American Academy of Arts and Sciences (BHAAAS, contributed their own work and expertise to bridge the gap between basic and clinical research, between inventing the treatments and getting them used in practice, and laid down foundations for future collaborative development of translational research in Bosnia and Herzegovina, as well as in the region (8.At the first glance of this issue’s table of content, a reader will easily notice the variety and breadth of topics and themes, from medical informatics and genetics, to hematology and oncology, pulmonary and critical care medicine, orthopedics, trauma surgery and neurosurgery. However, all of the articles share common ideas of translation of knowledge, from bench to bedside and back, and individualized approach to medicine, which are the true hallmarks of the 21st century medicine.Deeper under the surface and titles, there lies our common privilege and honor to be part of a broader mission of BHAAAS: to connect with our fellow physicians and scientists, and to build bridges of cooperation with our homeland, to promote the spirit of intellectual diversity and free exchange of ideas with the strong belief that this knowledge sharing will promote betterment of health in Bosnia and Herzegovina

  2. Applied Information Systems Research Program Workshop

    Science.gov (United States)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  3. Research program on regulatory safety research

    International Nuclear Information System (INIS)

    Mailaender, R.

    2010-02-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning regulatory nuclear safety research, as co-ordinated by the Swiss Nuclear Safety Inspectorate ENSI. Work carried out in various areas is reviewed, including that done on reactor safety, radiation protection and waste disposal as well as human aspects, organisation and safety culture. Work done concerning materials, pressure vessel integrity, transient analysis, the analysis of serious accidents in light-water reactors, fuel and material behaviour, melt cooling and concrete interaction is presented. OECD data bank topics are discussed. Transport and waste disposal research at the Mont Terri rock laboratory is looked at. Requirements placed on the personnel employed in nuclear power stations are examined and national and international co-operation is reviewed

  4. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  5. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wootton, Alan James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spaulding, Dylan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winget, Don [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF- relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.

  6. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  7. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  8. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  9. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  10. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  11. Jointly Sponsored Research Program Energy Related Research

    Energy Technology Data Exchange (ETDEWEB)

    Western Research Institute

    2009-03-31

    Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental

  12. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    Science.gov (United States)

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  13. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 -- Report and Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ``Background of the Program,`` provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ``Research Award Selection Process,`` provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ``Linkages to Environmental Cleanup Problems,`` provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ``Capitalizing on Science Investments,`` discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants.

  14. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems. Volume 1 of 3 - Report and Appendix A

    International Nuclear Information System (INIS)

    1998-04-01

    This report is submitted in response to a Congressional request and is intended to communicate the nature, content, goals, and accomplishments of the Environmental Management Science Program (EMSP) to interested and affected parties in the Department and its contractors, at Federal agencies, in the scientific community, and in the general public. The EMSP was started in response to a request to mount an effort in longer term basic science research to seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective. Section 1, ''Background of the Program,'' provides information on the evolution of the EMSP and how it is managed, and summarizes recent accomplishments. Section 2, ''Research Award Selection Process,'' provides an overview of the ongoing needs identification process, solicitation development, and application review for scientific merit and programmatic relevance. Section 3, ''Linkages to Environmental Cleanup Problems,'' provides an overview of the major interrelationships (linkages) among EMSP basic research awards, Environmental Management problem areas, and high cost projects. Section 4, ''Capitalizing on Science Investments,'' discusses the steps the EMSP plans to use to facilitate the application of research results in Environmental Management strategies through effective communication and collaboration. Appendix A contains four program notices published by the EMSP inviting applications for grants

  15. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  16. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  17. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  18. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  19. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  20. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  1. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  2. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  3. Teaching Primary Science: How Research Helps

    Science.gov (United States)

    Harlen, Wynne

    2010-01-01

    The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…

  4. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  5. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  6. Teacher Research Experience Programs = Increase in Student Achievement

    Science.gov (United States)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  7. AFOSR International Science Program Office

    Science.gov (United States)

    2013-03-04

    S&T community. What: Biotechnology I f ti S i 7 Power & Energy *Limited direct engagement China n orma on c ences Physical Sciences Singapore...desert, geothermal activity, and Antarctica) provide unique variety for bio studies. Abundant mineral resources. Why: 8th Largest GPD and growing

  8. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  9. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  10. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  11. Early Exposure to Research: Outcomes of the ASTER Certification Program

    Science.gov (United States)

    Griffard, Phyllis Baudoin; Golkowska, Krystyna

    2013-01-01

    This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…

  12. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  13. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  14. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  15. Review of defense display research programs

    Science.gov (United States)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  16. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  17. GRI's Devonian Shales Research Program

    International Nuclear Information System (INIS)

    Guidry, F.K.

    1991-01-01

    This paper presents a summary of the key observations and conclusions from the Gas Research Institute's (GRI's) Comprehensive Study Well (CSW) research program conducted in the Devonian Shales of the Appalachian Basin. Initiated in 1987, the CSW program was a series of highly instrumented study wells drilled in cooperation with industry partners. Seven wells were drilled as part of the program. Extensive data sets were collected and special experiments were run on the CSW's in addition to the operator's normal operations, with the objectives of identifying geologic production controls, refining formation evaluation tools, and improving reservoir description and stimulation practices in the Devonian Shales. This paper highlights the key results from the research conducted in the CSW program in the areas of geologic production controls, formation evaluation, stimulation and reservoir engineering, and field operations. The development of geologic, log analysis, and reservoir models for the Shales from the data gathered and analysis, and reservoir models for the Shales from the data gathered and analyzed during the research is discussed. In addition, on the basis of what was learned in the CSW program, GRI's plans for new research in the Devonian Shales are described

  18. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  19. Nonlinear science as a fluctuating research frontier

    International Nuclear Information System (INIS)

    He Jihuan

    2009-01-01

    Nonlinear science has had quite a triumph in all conceivable applications in science and technology, especially in high energy physics and nanotechnology. COBE, which was awarded the physics Nobel Prize in 2006, might be probably more related to nonlinear science than the Big Bang theory. Five categories of nonlinear subjects in research frontier are pointed out.

  20. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  1. Program of research - 1990-1991

    International Nuclear Information System (INIS)

    1991-01-01

    The 1990-1991 Program of Research reflects the fundamental changes within the Australian Nuclear Science and Technology Organization (ANSTO) over the past three years as it has oriented itself towards being a more commercially driven organization, an organization responding to market demands and pressures. From July 1, 1990 several key projects have been linked together in the new Industrial Technology Program. The Program encompasses projects that have real potential to earn revenue for ANSTO and make measurable improvements in efficiency and productivity for Australian companies. The Isotope Technology project is researching and transferring to industry radioisotope technology for tracing the effectiveness of plant processes, the movement of materials within blast furnaces and leakages and outages in plant pipework. The two important newcomers are the Quality Technology Centre and the Safety and Reliability group. Details about project leaders, project titles and objectives are provided. ills

  2. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  3. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  4. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  5. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  6. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    Science.gov (United States)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  7. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  8. Second-Order Science of Interdisciplinary Research

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where...... there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory...... of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem...

  9. Containment integrity research program plan

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents a plan for research on the question of containment performance in postulated severe accident scenarios. It focuses on the research being performed by the Structural and Seismic Engineering Branch, Division of Engineering, Office of Nuclear Regulatory Research. Summaries of the plans for this work have previously been published in the ''Nuclear Power Plant Severe Accident Research Plan'' (NUREG-0900). This report provides an update to reflect current status. This plan provides a summary of results to date as well as an outline of planned activities and milestones to the contemplated completion of the program in FY 1989

  10. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  11. Annals of Medical and Health Sciences Research

    African Journals Online (AJOL)

    Publication of Research Article: An Art or Science? ... for the relative importance of a journal, is now being considered a misleading tool in assessing ... should be kept in mind before manuscript preparation and submission, so that our research

  12. Research chief wants to make science matter

    CERN Multimedia

    König, R

    1999-01-01

    The new research chief of the European Union, Phillippe Busquin wants to move science into the heart of EU decision-taking. He would like to make European research more 'cohesive, focused, mobile and multilateral' (2 pages).

  13. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  14. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  15. Basic Research in Information Science in France.

    Science.gov (United States)

    Chambaud, S.; Le Coadic, Y. F.

    1987-01-01

    Discusses the goals of French academic research policy in the field of information science, emphasizing the interdisciplinary nature of the field. Areas of research highlighted include communication, telecommunications, co-word analysis in scientific and technical documents, media, and statistical methods for the study of social sciences. (LRW)

  16. Eastern Africa Social Science Research Review

    African Journals Online (AJOL)

    The Eastern Africa Social Science Research Review (EASSRR) is a bi-annual journal published by the Organization for Social Science Research in Eastern Africa (OSSREA). Since the publication of its maiden ... Emerging regions in Ethiopia: are they catching up with the rest of Ethiopia? EMAIL FULL TEXT EMAIL FULL ...

  17. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  18. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  19. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2015-10-01

    STUDENT ENGAGEMENT Welcome 2 UNMC 3 Omaha 4 Arrival 5-6 Living 7 Events 8...Graduates 9-11 Channing Bunch, M.B.A Director of Recruitment and Student Engagement channing.bunch...Program, Eppley Institute, Office of Research and Development, and Recruitment and Student Engagement Responses to Nebraska Prostate

  20. Optimiturve research program in 1991

    International Nuclear Information System (INIS)

    Leinonen, A.

    1992-01-01

    The target of the program is to develop a peat production method, based on solar energy, by which it is possible to double the present annual hectare yield. It has been estimated that if the target of the program can be fulfilled it is possible to decrease the production costs by about 20 %. The target has been strived by intensification of utilization of solar radiation, by improving the collection rate of dry peat, by decreasing the rain effects on production, by lengthening the production season and by decreasing the storage losses. Three new peat production methods have so far been developed in the Optimiturve research program, by which it is possible to obtain the targets of the program. These methods are the new sod peat production method, the ridge drying method and the Multi method

  1. Bridging the Gap: The Role of Research in Science Education

    Science.gov (United States)

    Adams, M. L.; Michael, P. J.

    2001-12-01

    Teaching in K-12 science classrooms across the country does not accurately model the real processes of science. To fill this gap, programs that integrate science education and research are imperative. Teachers Experiencing Antarctica and the Arctic (TEA) is a program sponsored and supported by many groups including NSF, the Division of Elementary, Secondary, and Informal Education (ESIE), and the American Museum of Natural History (AMNH). It places teachers in partnerships with research scientists conducting work in polar regions. TEA immerses K-12 teachers in the processes of scientific investigation and enables conveyance of the experience to the educational community and public at large. The TEA program paired me with Dr. Peter Michael from the University of Tulsa to participate in AMORE (Arctic Mid-Ocean Ridge Expedition) 2001. This international mission, combining the efforts of the USCGC Healy and RV Polarstern, involved cutting-edge research along the geologically and geophysically unsampled submarine Gakkel Ridge. While in the field, I was involved with dredge operations, CTD casts, rock cataloging/ processing, and bathymetric mapping. While immersed in these aspects of research, daily journals documented the scientific research and human aspects of life and work on board the Healy. E-mail capabilities allowed the exchange of hundreds of questions, answers and comments over the course of our expedition. The audience included students, numerous K-12 teachers, research scientists, NSF personnel, strangers, and the press. The expedition interested and impacted hundreds of individuals as it was proceeding. The knowledge gained by science educators through research expeditions promotes an understanding of what research science is all about. It gives teachers a framework on which to build strong, well-prepared students with a greater awareness of the role and relevance of scientific research. Opportunities such as this provide valauble partnerships that bridge

  2. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  3. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  4. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  5. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... mission to support the development of nanotechnology through research on measurement and fabrication...

  6. Sensory science research on taste

    DEFF Research Database (Denmark)

    Mann, Anna

    2018-01-01

    Recent ethnographies from the anthropology of food and the senses have shown how moments in which people taste foods are shaped by scientific knowledge, methods and rationales. Building on approaches developed in science and technology studies, this paper offers an ethnography of the field to which...

  7. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  8. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    Science.gov (United States)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  9. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  10. Summaries of FY 1979 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  11. Summaries of FY 1979 research in the chemical sciences

    International Nuclear Information System (INIS)

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas

  12. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  13. Department of Energy Office of Energy Research Programs: Fiscal year 1996 authorization testimony presented before the Subcommittee on Energy and Environment Committee on Science

    International Nuclear Information System (INIS)

    Baldwin, D.E.

    1995-01-01

    Fusion energy is not as mature as the other energy options. However, in recent years fusion research has focused on its energy mission, and the progress has been impressive. Ten years ago, many observers questioned whether fusion in the laboratory was scientifically feasible. Today, few question fusion's basic feasibility, and the issues have shifted to its economic and environmental aspects. This is a measure of the progress the program has made. For the reasons outlined here, the author requests Congress to support at a minimum the Administration's FY96 budget request of $366 Million for fusion energy. This level permits the program to continue developing the tokamak as its principal fusion concept. The level is, however, insufficient to pursue meaningful development of specialized materials and non-tokamak alternatives which are sure to play important roles in enabling fusion to reach its highest potential attractiveness

  14. Partners in Science: A Suggested Framework for Inclusive Research

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and

  15. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  16. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  17. Overview of research in physics and health sciences at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Milton, J.C.D.

    1988-01-01

    Toxicology research was a logical extension of existing program at Chalk River. Research in radiotoxicology has been going on there since the early forties. An overview of the existing physics and health sciences research programs operating at the Research Company of Atomic Energy of Canada Limited was presented. Programs in nuclear physics, heavy ion nuclear physics, astrophysical neutrino physics, condensed matter physics, fusion, biology, dosimetry, and environmental sciences were briefly described. In addition, a description of the research company organization was provided

  18. Research and development program 1985

    International Nuclear Information System (INIS)

    1984-01-01

    In this report the research and development program of the GSI Darmstadt is described. It concerns heavy ion reactions, nuclear structure studies, exotic nuclei, nuclear theory, atomic collisions with heavy ions, atomic spectroscopy, the interaction of heavy ions with matter, atomic theory, biological studies with heavy ions, nuclear track techniques, UNILAC developments, acquisition of experimental data, and the development of new accelerators, ion sources, targets, and detectors. (HSI) [de

  19. Teaching implementation science in a new Master of Science Program in Germany: a survey of stakeholder expectations

    NARCIS (Netherlands)

    Ullrich, C.; Mahler, C.; Forstner, J.; Szecsenyi, J.; Wensing, M.

    2017-01-01

    BACKGROUND: Implementation science in healthcare is an evolving discipline in German-speaking countries. In 2015, the Medical Faculty of the University of Heidelberg, Germany, implemented a two-year full-time Master of Science program Health Services Research and Implementation Science. The

  20. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  1. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  2. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  3. Summaries of FY 1981 research in the chemical sciences

    International Nuclear Information System (INIS)

    1981-08-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division will find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The contents are as follows: DOE laboratires; chemical physics; atomic physics; chemical energy; separations; analysis; chemical engineering sciences; offsite contracts; equipment funds; topical index; institutional index for offsite contracts; and investigator index

  4. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  5. Summaries of FY 1978 research in the chemical sciences

    International Nuclear Information System (INIS)

    1979-04-01

    This report provides on indexed compilation of individual research projects that make up the DOE Chemical Sciences basic energy research program. The DOE in-house projects and projects supported at university and other non-DOE laboratories are reported in separate sections. An analysis and summary of funding levels are given. The research covers areas such as coal chemistry, catalysis, H 2 , combustion, solar photoconversion, fusion, atmospheric chemistry, and MHD

  6. Bush Pledges Increased Science Research and Education Funding

    Science.gov (United States)

    Kumar, Mohi

    2006-02-01

    In his 31 January State of the Union address, U.S. President George W. Bush announced two new initiatives aimed at galvanizing scientific research and education. For the American Competitiveness Initiative, Bush proposes to ``double the federal commitment to the most critical basic research programs in the physical sciences in the next 10 years. . .[and to] make permanent the research and development tax credit to encourage bolder private-sector initiative in technology.''

  7. Summaries of FY 1978 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Elliot S.

    1979-04-01

    This report provides on indexed compilation of individual research projects that make up the DOE Chemical Sciences basic energy research program. The DOE in-house projects and projects supported at university and other non-DOE laboratories are reported in separate sections. An analysis and summary of funding levels are given. The research covers areas such as coal chemistry, catalysis, H/sub 2/, combustion, solar photoconversion, fusion, atmospheric chemistry, and MHD. (DLC)

  8. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  9. Sciences literacy on nutrition program for improving public wellness

    Science.gov (United States)

    Rochman, C.; Nasrudin, D.; Helsy, I.; Rokayah; Kusbudiah, Y.

    2018-05-01

    Increased wellness for a person becomes a necessity now and for the future. Various ways people do to get fit include following and understanding nutrition. This review will inventory the concepts of science involved to understand the nutritional program and its impact on fitness levels. The method used is a quantitative and qualitative descriptive mixed method based on treatment to a number of nutrition group participants in a nutrition group in Bandung. The concepts of science that are the subject of study are the concepts of physics, chemistry, and biology. The results showed that the ability of science literacy and respondent's wellness level varies and there is a relationship between science literacy with one's wellness level. The implications of this research are the need for science literacy and wellness studies for community based on educational level and more specific scientific concepts.

  10. Medical Research Volunteer Program (MRVP): innovative program promoting undergraduate research in the medical field.

    Science.gov (United States)

    Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R

    2016-06-06

    Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand

  11. A Mentoring Program in Environmental Science for Underrepresented Groups

    Science.gov (United States)

    Stevens, L.; Rizzo, D. M.

    2009-12-01

    We developed a four-year program, combining educational and career support and research activities, to recruit and retain students from underrepresented groups in environmental sciences. Specifically, the program: ○ Assigns each student a faculty or graduate student mentor with whom the student conducts research activities. ○ Includes a weekly group meeting for team building and to review professional development and academic topics, such as time management and research ethics. ○ Requires students to make multiple formal presentations of their research proposals and results. ○ Provides scholarships and stipends for both the academic year and to engage students in summer research. The program seeks to achieve several goals including: ● Enhance academic performance. ● Encourage continued study in environmental science. ● Facilitate students completing their studies at UVM. ● Increase students’ interest in pursuing science careers. ● Create a more welcoming academic environment. To assess progress toward achievement of these goals, we conducted individual structured interviews with participating undergraduate students, graduate students, and faculty members at two points in time. First, interviews were conducted in the fall of 2007 after two years, and again in spring 2009, after four years. An independent research consultant, Dr. Livingston, conducted the interviews. In 2009, over the course of three days, the interviews included three graduate student and two faculty mentors, and six of the seven undergraduate students. Of the six students, three were juniors and three were graduating seniors. Results of the 2009 interviews echoed those of 2007. Both students and their mentors are quite satisfied with the program. The student presentations, weekly meetings, mentoring relationships, and summer research experiences all get high ratings from program participants. Students give high praise to their mentors and the program directors for providing

  12. Using Random Numbers in Science Research Activities.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    1996-01-01

    Discusses the importance of science process skills and describes ways to select sets of random numbers for selection of subjects for a research study in an unbiased manner. Presents an activity appropriate for grades 5-12. (JRH)

  13. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 1 (2012) >. Log in or Register to get access to full text downloads.

  14. Evaluating an artifact in design science research

    CSIR Research Space (South Africa)

    Herselman, M

    2015-09-01

    Full Text Available In this paper, we describe the iterative evaluation of an artifact developed through the application of Design Science Research (DSR) methodology in a resource constrained environment. In the DSR process the aspect of evaluation is often done...

  15. Science, Technology and Arts Research Journal

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 2 (2012) >. Log in or Register to get access to full text downloads.

  16. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  17. Validity and Reliability in Social Science Research

    Science.gov (United States)

    Drost, Ellen A.

    2011-01-01

    In this paper, the author aims to provide novice researchers with an understanding of the general problem of validity in social science research and to acquaint them with approaches to developing strong support for the validity of their research. She provides insight into these two important concepts, namely (1) validity; and (2) reliability, and…

  18. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  19. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    Science.gov (United States)

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  20. The "art" of science communication in undergraduate research training

    Science.gov (United States)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  1. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  2. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  3. Laser Science and Technology Program Update 2002

    International Nuclear Information System (INIS)

    Hackel, L A; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LSandT activities during 2002 focused on seven major areas: (1) NIF Project--LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3ω optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  4. Research in the chemical sciences. Summaries of FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  5. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  6. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  7. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  8. International Conference on Data Science & Social Research

    CERN Document Server

    Amaturo, Enrica; Grassia, Maria; Aragona, Biagio; Marino, Marina

    2017-01-01

    This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from...

  9. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  10. Medical Science and Research in Iran.

    Science.gov (United States)

    Akhondzadeh, Shahin; Ebadifar, Asghar; Baradaran Eftekhari, Monir; Falahat, Katayoun

    2017-11-01

    During the last 3 decades, Iran has experienced a rapid population growth and at the same time the health of Iranian people has improved greatly. This achievement was mainly due to training and availability of health manpower, well organized public health network and medical science and research improvement. In this article, we aimed to report the relevant data about the medical science and research situation in Iran and compare them with other countries. In this study, after reviewing science development and research indicators in medical sciences with participation of key stakeholders, we selected 3 main hybrid indexes consisting of "Research and Development (R&D) expenditures," "Personnel in Science and Technology sector" and "knowledge generation" for evaluation of medical science and research situation. Data was extracted from reliable databases. Over the past decade, Iran has achieved significant success in medical sciences and for the first time in 2015 based on Scopus index, Iran ranked first in the number of published scientific papers and number of citations in the region and among all Islamic countries. Also, 2% of the world's publications belong to Iran. Regarding innovation, the number of Iranian patents submitted to the United States Patent and Trademark Office (USPTO) was 3 and 43 in 2008 and 2013, respectively. In these years, the number of personnel in science and technology sectors including post graduate students, researchers and academic members in universities of medical sciences (UMSs) have increased. The female students in medical sciences field account for about twothirds of all students. Also, women comprise about one-third of faculty members. Since 5 years ago, Iran has had growth in science and technology parks. These achievements were attained in spite of the fact that research spending in Iran was still very low (0.5% of gross domestic product [GDP]) due to economic hardships and sanctions. Medical science and research development has

  11. Research Centers & Consortia | College of Engineering & Applied Science

    Science.gov (United States)

    Academics Admission Student Life Research Schools & Colleges Libraries Athletics Centers & ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to content Academics Undergraduate Programs Majors Minors Integrated Bachelor/Master Degree Applied Computing

  12. Science Matters Podcast: Climate Change Research

    Science.gov (United States)

    Listen to a podcast with Dr. Andy Miller, the Associate Director for Climate for the Agency's Air, Climate, and Energy Research Program, as he answers questions about climate change research, or read some of the highlights from the conversation here.

  13. 75 FR 38100 - National Institute of Environmental Health Sciences Superfund Hazardous Substance Research and...

    Science.gov (United States)

    2010-07-01

    ...- traditional communication methods to make the significance and applicability of SRP-funded research... and Social Sciences Research, and National Institute of Biomedical Imaging and Bioengineering. [cir... Superfund Hazardous Substance Research and Training Program Strategic Plan; Request for Comments ACTION...

  14. The women in science and engineering scholars program

    Science.gov (United States)

    Falconer, Etta Z.; Guy, Lori Ann

    1989-01-01

    The Women in Science and Engineering Scholars Program provides scientifically talented women students, including those from groups underrepresented in the scientific and technical work force, with the opportunity to pursue undergraduate studies in science and engineering in the highly motivating and supportive environment of Spelman College. It also exposes students to research training at NASA Centers during the summer. The program provides an opportunity for students to increase their knowledge of career opportunities at NASA and to strengthen their motivation through exposure to NASA women scientists and engineers as role models. An extensive counseling and academic support component to maximize academic performance supplements the instructional and research components. The program is designed to increase the number of women scientists and engineers with graduate degrees, particularly those with an interest in a career with NASA.

  15. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  16. Summaries of FY 1983 research in the chemical sciences

    International Nuclear Information System (INIS)

    1983-09-01

    These summaries provide a means for becoming acquainted, either generally or in some depth, with the US DOE Chemical Sciences Program. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge generated in this program can be seen in the index and again in the summaries

  17. The Specification of Science Education Programs in the Local Public Library: Focusing on the Programs In G-city

    Directory of Open Access Journals (Sweden)

    In-Ja Ahn*

    2012-06-01

    Full Text Available The city of 'G' has been made a number of achievements with its science program as a part of public library's cultural program during the last 5 years. Recently, the national science centre has been established in the same city, the debate is now needed whether the science program in the public library have reasons to be maintained or to be reduced. The aim of this research is on the operating strategies of the science program in the public library. The research methods include case studies of operational strategies in domestic and foreign science centre, the level of satisfaction of local citizen on the science program, the vision of science program in the advancement of public library in the century. In results, the research proposes that the science program in public library should be maintained, but with locally characterised programs. In addition, the study also advised on the provision of scientific information, the strengthened search functions, and the development of user-centred services for those in science fields.

  18. The Workshop Program on Authentic Assessment for Science Teachers

    Science.gov (United States)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  19. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Information System (GIS). In addition the Geography department will similarly update the corresponding graduate courses on Remote Sensing, Geog 690D, and Climate Change Geog 620F, and there will be a reciprocal curriculum and data sharing collaboration with the Earth and Environmental Sciences program at Santa Monica College. Throughout the academic year a seminar series offers the students the opportunity to learn about ongoing work on Atmospheric Sciences and Climate and during the summer they have access to research experiences at NASA's Jet Propulsion Laboratory.

  20. Nanotechnology research: applications in nutritional sciences.

    Science.gov (United States)

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  1. The science commons in health research: structure, function, and value.

    Science.gov (United States)

    Cook-Deegan, Robert

    The "science commons," knowledge that is widely accessible at low or no cost, is a uniquely important input to scientific advance and cumulative technological innovation. It is primarily, although not exclusively, funded by government and nonprofit sources. Much of it is produced at academic research centers, although some academic science is proprietary and some privately funded R&D enters the science commons. Science in general aspires to Mertonian norms of openness, universality, objectivity, and critical inquiry. The science commons diverges from proprietary science primarily in being open and being very broadly available. These features make the science commons particularly valuable for advancing knowledge, for training innovators who will ultimately work in both public and private sectors, and in providing a common stock of knowledge upon which all players-both public and private-can draw readily. Open science plays two important roles that proprietary R&D cannot: it enables practical benefits even in the absence of profitable markets for goods and services, and its lays a shared foundation for subsequent private R&D. The history of genomics in the period 1992-2004, covering two periods when genomic startup firms attracted significant private R&D investment, illustrates these features of how a science commons contributes value. Commercial interest in genomics was intense during this period. Fierce competition between private sector and public sector genomics programs was highly visible. Seemingly anomalous behavior, such as private firms funding "open science," can be explained by unusual business dynamics between established firms wanting to preserve a robust science commons to prevent startup firms from limiting established firms' freedom to operate. Deliberate policies to create and protect a large science commons were pursued by nonprofit and government funders of genomics research, such as the Wellcome Trust and National Institutes of Health. These

  2. Magnetic Fusion Science Fellowship program: Summary of program activities for calendar year 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This report describes the 1985-1986 progress of the Magnetic Fusion Science Fellowship program (MFSF). The program was established in January of 1985 by the Office of Fusion Energy (OFE) of the US Department of Energy (DOE) to encourage talented undergraduate and first-year graduate students to enter qualified graduate programs in the sciences related to fusion energy development. The program currently has twelve fellows in participating programs. Six new fellows are being appointed during each of the program's next two award cycles. Appointments are for one year and are renewable for two additional years with a three year maximum. The stipend level also continues at a $1000 a month or $12,000 a year. The program pays all tuition and fee expenses for the fellows. Another important aspect of the fellowship program is the practicum. During the practicum fellows receive three month appointments to work at DOE designated fusion science research and development centers. The practicum allows the MFSF fellows to directly participate in on-going DOE research and development programs

  3. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  4. Development of a Self-Rated Mixed Methods Skills Assessment: The National Institutes of Health Mixed Methods Research Training Program for the Health Sciences.

    Science.gov (United States)

    Guetterman, Timothy C; Creswell, John W; Wittink, Marsha; Barg, Fran K; Castro, Felipe G; Dahlberg, Britt; Watkins, Daphne C; Deutsch, Charles; Gallo, Joseph J

    2017-01-01

    Demand for training in mixed methods is high, with little research on faculty development or assessment in mixed methods. We describe the development of a self-rated mixed methods skills assessment and provide validity evidence. The instrument taps six research domains: "Research question," "Design/approach," "Sampling," "Data collection," "Analysis," and "Dissemination." Respondents are asked to rate their ability to define or explain concepts of mixed methods under each domain, their ability to apply the concepts to problems, and the extent to which they need to improve. We administered the questionnaire to 145 faculty and students using an internet survey. We analyzed descriptive statistics and performance characteristics of the questionnaire using the Cronbach alpha to assess reliability and an analysis of variance that compared a mixed methods experience index with assessment scores to assess criterion relatedness. Internal consistency reliability was high for the total set of items (0.95) and adequate (≥0.71) for all but one subscale. Consistent with establishing criterion validity, respondents who had more professional experiences with mixed methods (eg, published a mixed methods article) rated themselves as more skilled, which was statistically significant across the research domains. This self-rated mixed methods assessment instrument may be a useful tool to assess skills in mixed methods for training programs. It can be applied widely at the graduate and faculty level. For the learner, assessment may lead to enhanced motivation to learn and training focused on self-identified needs. For faculty, the assessment may improve curriculum and course content planning.

  5. Development of a Self-Rated Mixed Methods Skills Assessment: The NIH Mixed Methods Research Training Program for the Health Sciences

    Science.gov (United States)

    Guetterman, Timothy C.; Creswell, John W.; Wittink, Marsha; Barg, Fran K.; Castro, Felipe G.; Dahlberg, Britt; Watkins, Daphne C.; Deutsch, Charles; Gallo, Joseph J.

    2017-01-01

    Introduction Demand for training in mixed methods is high, with little research on faculty development or assessment in mixed methods. We describe the development of a Self-Rated Mixed Methods Skills Assessment and provide validity evidence. The instrument taps six research domains: “Research question,” “Design/approach,” “Sampling,” “Data collection,” “Analysis,” and “Dissemination.” Respondents are asked to rate their ability to define or explain concepts of mixed methods under each domain, their ability to apply the concepts to problems, and the extent to which they need to improve. Methods We administered the questionnaire to 145 faculty and students using an internet survey. We analyzed descriptive statistics and performance characteristics of the questionnaire using Cronbach’s alpha to assess reliability and an ANOVA that compared a mixed methods experience index with assessment scores to assess criterion-relatedness. Results Internal consistency reliability was high for the total set of items (.95) and adequate (>=.71) for all but one subscale. Consistent with establishing criterion validity, respondents who had more professional experiences with mixed methods (e.g., published a mixed methods paper) rated themselves as more skilled, which was statistically significant across the research domains. Discussion This Self-Rated Mixed Methods Assessment instrument may be a useful tool to assess skills in mixed methods for training programs. It can be applied widely at the graduate and faculty level. For the learner, assessment may lead to enhanced motivation to learn and training focused on self-identified needs. For faculty, the assessment may improve curriculum and course content planning. PMID:28562495

  6. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  7. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  8. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  9. 2015 Stewardship Science Academic Programs Annual

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Terri [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States); Mischo, Millicent [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States)

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  10. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  11. Using Network Science to Support Design Research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2016-01-01

    and societal impact. This chapter contributes to the use of network science in empirical studies of design organisations. It focuses on introducing a network-based perspective on the design process and in particular on making use of network science to support design research and practice. The main contribution...... of this chapter is an overview of the methodological challenges and core decision points when embarking on network-based design research, namely defining the overall research purpose and selecting network features. We furthermore highlight the potential for using archival data, the opportunities for navigating...

  12. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    Science.gov (United States)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  13. Science, democracy, and the right to research.

    Science.gov (United States)

    Brown, Mark B; Guston, David H

    2009-09-01

    Debates over the politicization of science have led some to claim that scientists have or should have a "right to research." This article examines the political meaning and implications of the right to research with respect to different historical conceptions of rights. The more common "liberal" view sees rights as protections against social and political interference. The "republican" view, in contrast, conceives rights as claims to civic membership. Building on the republican view of rights, this article conceives the right to research as embedding science more firmly and explicitly within society, rather than sheltering science from society. From this perspective, all citizens should enjoy a general right to free inquiry, but this right to inquiry does not necessarily encompass all scientific research. Because rights are most reliably protected when embedded within democratic culture and institutions, claims for a right to research should be considered in light of how the research in question contributes to democracy. By putting both research and rights in a social context, this article shows that the claim for a right to research is best understood, not as a guarantee for public support of science, but as a way to initiate public deliberation and debate about which sorts of inquiry deserve public support.

  14. Increase in Science Research Commitment in a Didactic and Laboratory-Based Program Targeted to Gifted Minority High-School Students

    Science.gov (United States)

    Fraleigh-Lohrfink, Kimberly J.; Schneider, M. Victoria; Whittington, Dawayne; Feinberg, Andrew P.

    2013-01-01

    Underrepresentation of ethnic minorities in science, technology, engineering, and mathematics (STEM) fields has been a growing concern. Efforts to ameliorate this have often been directed at college-level enrichment. However, mentoring in the sciences at a high-school age level may have a greater impact on career choices. The Center Scholars…

  15. Building a Mentorship-Based Research Program Focused on Individual Interests, Curiosity, and Professional Skills at the North Carolina School of Science and Mathematics

    Science.gov (United States)

    Shoemaker, Sarah E.; Thomas, Christopher; Roberts, Todd; Boltz, Robin

    2016-01-01

    The North Carolina School of Science and Mathematics (NCSSM) offers students a wide variety of real-world opportunities to develop skills and talent critical for students to gain the essential professional and personal skills that lead to success in science, technology, engineering, and mathematics (STEM) careers. One of the key avenues available…

  16. INEL BNCT research program publications, 1993

    International Nuclear Information System (INIS)

    1994-05-01

    This document is a collection of the published reports describing research supporting the Idaho National Engineering Laboratory Boron Neutron Capture Therapy Research Program for calendar year 1993. Contributions from the principal investigators are included, covering chemistry (pituitary tumor studies, boron drug development including liposomes, lipoproteins, and carboranylalanine derivatives), pharmacology (murine screenings, toxicity testing, ICP-AES analysis of biological samples), physics (radiation dosimetry software, neutron beam and filter design, neutron beam measurement dosimetry), and radiation biology (tissue and efficacy studies of small and large animal models). These reports have previously appeared in the book: Advances in Neutron Capture Therapy, edited by A. H. Soloway, R. F. Barth, D. E. Carpenter, Plenum Press, 1993. Reports have also appeared in three journals: Angewandte Chemie, Strahlentherapie und Onkologie, and Nuclear Science and Engineering. This individual papers have been indexed separately elsewhere

  17. Forschungszentrum Karlsruhe Technik und Umwelt. Research and development program 2002

    International Nuclear Information System (INIS)

    2001-01-01

    The five main fields of research and the activities under the R and D program 2002 are explained in great detail in five chapters with the following captions: 1. ENVIRONMENT. Programs: - Sustainable development, energy and environmental engineering (UMWELT). - Earth atmosphere and climate research (ATMO). 2. PUBLIC HEALTH. Programs: - Biomedical research (BIOMED). - Medical engineering (MEDTECH). 3. ENERGY. Programs: - Thermonuclear fusion (FUSION). - Nuclear safety (NUKLEAR). 4. KEY TECHNOLOGIES. Programs: - Microsystems engineering (MIKRO). - Nanotechnology (NANO). - Materials science (MATERIAL). - Chemical process engineering (CHEMIE). - Superconductivity (SUPRA). 5. MATTER and STRUCTURE. Program: The structure of matter (STRUKTUR). The sixth chapter presents cross-cutting activities under the program: Technology transfer and marketing (TTM). The concluding chapter lists and briefly presents the activities of the scientific and technical institutes of the Karlsruhe Research Center. (CB) [de

  18. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  19. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  20. Nanotechnology Research: Applications in Nutritional Sciences12

    Science.gov (United States)

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  1. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  2. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  3. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  4. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  5. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  6. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  7. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  8. Directions in implementation research methods for behavioral and social science.

    Science.gov (United States)

    Irwin, Molly; Supplee, Lauren H

    2012-10-01

    There is a growing interest, by researchers, policymakers, and practitioners, in evidence-based policy and practice. As a result, more dollars are being invested in program evaluation in order to establish "what works," and in some cases, funding is specifically tied to those programs found to be effective. However, reproducing positive effects found in research requires more than simply adopting an evidence-based program. Implementation research can provide guidance on which components of an intervention matter most for program impacts and how implementation components can best be implemented. However, while the body of rigorous research on effective practices continues to grow, research on implementation lags behind. To address these issues, the Administration for Children and Families and federal partners convened a roundtable meeting entitled, Improving Implementation Research Methods for Behavioral and Social Science, in the fall of 2010. This special section of the Journal of Behavioral Health Services & Research includes papers from the roundtable and highlights the role implementation science can play in shedding light on the difficult task of taking evidence-based practices to scale.

  9. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  10. Museum nuclear science programs during the past 30 years

    International Nuclear Information System (INIS)

    Marsee, M.D.

    1990-01-01

    The American Museum of Atomic Energy was opened as a program of the Atomic Energy Commission. The name was changed in 1977 to the American Museum of Science and Energy to reflect an expanded roll of the Department of Energy. From 1954 until 1980 the museum was the base for a Traveling Exhibit Program that visited schools, state fairs, shopping centers and malls, libraries, summer camps, and science museums throughout the United States. Today the museum transfers information on the research and development of all the energy sources, the environmental impact of these sources and possible solutions to these impacts. The museum also manages an Outreach Program to area schools and coordinates several special events for student visits to the museum

  11. Design science research as research approach in doctoral studies

    CSIR Research Space (South Africa)

    Kotzé, P

    2015-08-01

    Full Text Available Since the use of design science research (DSR) gained momentum as a research approach in information systems (IS), the adoption of a DSR approach in postgraduate studies became more acceptable. This paper reflects on a study to investigate how a...

  12. Science, Science Signaling, and Science Translational Medicine – AAAS Special Collection on Cancer Research, March 2011

    Directory of Open Access Journals (Sweden)

    Forsythe, Katherine H.

    2011-10-01

    Full Text Available The National Cancer Act, signed in 1971, aimed to eliminate cancer deaths through a massive increase in research funding. The American Association for the Advancement of Science, the publisher of Science, Science Signaling, and Science Translational Medicine, observed the 40th anniversary of the Cancer Act in 2011, with special research articles and features, found in all three journals, on the state of cancer research 40 years later. This collection of articles explores both breakthroughs and the challenges in cancer research over the last four decades, and lets us know what we might expect in the future.

  13. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  14. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  15. Brazilian science communication research: national and international contributions.

    Science.gov (United States)

    Barata, Germana; Caldas, Graça; Gascoigne, Toss

    2017-08-31

    Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.

  16. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  17. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    Science.gov (United States)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  18. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  19. Professor Barry Fraser's contributions to science education research

    Science.gov (United States)

    Aldridge, Jill M.

    2011-09-01

    In this article, I endeavour to convey the depth of Barry Fraser's contributions to science education research, including his tireless endeavours to promote and advance research, especially the field of learning environments, the realisation of his vision to create one of the largest doctoral programs in science and mathematics education in the world, his leadership capacity in terms of guiding and leading an internationally renowned centre and large-scale cross-national and cross-cultural studies, his dedication towards human capacity building in Africa, Asia and elsewhere, his capacity as a mentor and editor that have seen the publication of numerous journal articles and books and the ongoing success of science education research journals.

  20. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  1. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  2. Japanese program of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Hasiguti, R.R.

    1982-01-01

    The Japanese program of materials research for fusion reactors is described based on the report to the Nuclear Fusion Council, the project research program of the Ministry of Education, Science and Culture, and other official documents. The alloy development for the first wall and its radiation damage are the main topics discussed in this paper. Materials viewpoints for the Japanese Tokamak facilities and the problems of irradiation facilities are also discussed. (orig.)

  3. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  4. Improving Defense Health Program Medical Research Processes

    Science.gov (United States)

    2017-08-08

    research , including a Business Cell; 87 Research Development, 88 Research Oversight, 89 and Research Compliance offices;90 and the Center...needed for DHP medical research , such as the Army’s Clinical and Translational Research Program Office, 38 the Navy’s Research Methods Training Program... research stated, “key infrastructure for a learning health system will encompass three core elements: data networks, methods , and workforce.” 221

  5. Summaries of FY 1982 research in the chemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  6. Summaries of FY 1982 research in the chemical sciences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index

  7. Community centrality and social science research.

    Science.gov (United States)

    Allman, Dan

    2015-12-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have.

  8. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  9. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  10. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  11. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  12. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program. Research funded and its linkages to environmental cleanup problems. High out-year cost environmental management project descriptions. Volume 3 of 3 - Appendix C

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix C provides details about each of the Department's 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research

  13. National soft science research task item-organization and implementation

    International Nuclear Information System (INIS)

    Zhang Yiming

    2014-01-01

    International Thermonuclear Experimental Reactor (ITER) project, as the most large-scale science project and research cooperation plan in the human history, has brought together major world-wide scientific and technological achievements in current controlled magnetic confinement fusion research. The project is aiming at validating the scientific and technological feasibility of the peaceful use of fusion energy, laying a science and technology foundation for the realization of the fusion energy commercialization. Promoted by the ITER project, the nuclear fusion frontier science researches and experiments in China have made a deep development, and have made remarkable achievements. Based on this situation, the Fusion Information Division of the Southwestern Institute of Physics (SWIP) has undertaken the soft science research task item -Prediction of Nuclear Fusion Energy Research and Development Technology in China,issued by the Ministry of Science and Technology of China. The research team has gone through these processes such as documentation collection and investigation, documentation reading and refining, outline determination, the first draft writing, content analysis and optimization for the draft, and the internal trial within the research team, review and revise from the experts at SWIP and out of SWIP, evaluation from China International Nuclear Fusion Energy Program Execution Center (ITER China DA), as well as evaluation from the famous experts in domestic fusion community by means of letters and mail. Finally, the research team has completed the research report successfully. In this report, the fusion development strategies of the world's leading fusion research countries and organizations participating in ITER project have been described. Moreover, some comparisons and analysis in this report have been made in order to provide scientific and technological research, analysis base, as well as strategic decision references for exploring medium and long term

  14. Establishing a Student Research and Publishing Program in High School Physics

    Science.gov (United States)

    Eales, Jonathan; Laksana, Sangob

    2016-01-01

    Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…

  15. Big data science: A literature review of nursing research exemplars.

    Science.gov (United States)

    Westra, Bonnie L; Sylvia, Martha; Weinfurter, Elizabeth F; Pruinelli, Lisiane; Park, Jung In; Dodd, Dianna; Keenan, Gail M; Senk, Patricia; Richesson, Rachel L; Baukner, Vicki; Cruz, Christopher; Gao, Grace; Whittenburg, Luann; Delaney, Connie W

    Big data and cutting-edge analytic methods in nursing research challenge nurse scientists to extend the data sources and analytic methods used for discovering and translating knowledge. The purpose of this study was to identify, analyze, and synthesize exemplars of big data nursing research applied to practice and disseminated in key nursing informatics, general biomedical informatics, and nursing research journals. A literature review of studies published between 2009 and 2015. There were 650 journal articles identified in 17 key nursing informatics, general biomedical informatics, and nursing research journals in the Web of Science database. After screening for inclusion and exclusion criteria, 17 studies published in 18 articles were identified as big data nursing research applied to practice. Nurses clearly are beginning to conduct big data research applied to practice. These studies represent multiple data sources and settings. Although numerous analytic methods were used, the fundamental issue remains to define the types of analyses consistent with big data analytic methods. There are needs to increase the visibility of big data and data science research conducted by nurse scientists, further examine the use of state of the science in data analytics, and continue to expand the availability and use of a variety of scientific, governmental, and industry data resources. A major implication of this literature review is whether nursing faculty and preparation of future scientists (PhD programs) are prepared for big data and data science. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Report of the Science and Engineering Research Council, 1 April 1993 - 31 March 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This final Annual Report of the Science and Engineering Research Council (SERC) covers the work of the organization for 1993-1994 and explains the structures and missions of the organizations which replace it. SERC funds and supports United Kingdom research programs covering many aspects of science and engineering. Its work will be split between the new Engineering and Physical Sciences Research Council, the Particle Physics and Astronomy Research Council, the Biotechnology and Biological Sciences Research Council and the Natural Environment Research Council. Research achievements and training initiatives are reported for each of SERC's current Boards. (UK)

  17. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1983-05-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division. These activities constitute about one-fourth of the research and development conducted by the division. The major elements of the Materials Sciences Program can be grouped under the areas of (1) structural characterization, (2) high-temperature alloy studies, (3) structural ceramics, and (4) radiation effects

  18. Social science in the national park service: an evolving mission and program

    Science.gov (United States)

    Richard H. Briceland

    1992-01-01

    In 1988 the director of the National Park Service requested that a social science program be established. Since that time a number of new research initiatives have been developed to address this need. This paper describes seven major steps taken thus far to meet social science needs of park superintendents, program managers, and park planners. Specific examples are...

  19. Chain and network science: A research framework

    NARCIS (Netherlands)

    Omta, S.W.F.; Trienekens, J.H.; Beers, G.

    2001-01-01

    In this first article of the Journal on Chain and Network Science the base-line is set for a discussion on contents and scope of chain and network theory. Chain and network research is clustered into four main ‘streams’: Network theory, social capital theory, supply chain management and business

  20. Social and ethical dimensions of nanoscale science and engineering research.

    Science.gov (United States)

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.