WorldWideScience

Sample records for science research development

  1. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  2. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of... and Clinical Science Research and Development Services Scientific Merit Review Board will meet on... medical specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  3. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... Science Research and Development Services Scientific Merit Review Board; Notice of Meeting Amendment The... and Clinical Science Research and Development Services Scientific Merit Review Board have been..., behavioral and clinical science research. The panel meetings will be open to the public for approximately one...

  4. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  5. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  6. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  7. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  8. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  9. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    Science and Technology Research for Sustainable Development in Africa: The Imperative ... This has placed African countries at a disadvantage. ... In this paper, effort is made to establish the imperative of education to science and technology.

  10. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    Science.gov (United States)

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  11. Informing the Development of Science Exhibitions through Educational Research

    Science.gov (United States)

    Laherto, Antti

    2013-01-01

    This paper calls for greater use of educational research in the development of science exhibitions. During the past few decades, museums and science centres throughout the world have placed increasing emphasis on their educational function. Although exhibitions are the primary means of promoting visitors' learning, educational research is not…

  12. Development through science: The IAEA research contract programme

    International Nuclear Information System (INIS)

    Benson Wiltschegg, T.; Gillen, V.

    1991-01-01

    The IAEA strives to stimulate the growth of science in developing countries by assuring that the IAEA and the scientific communities of developed and developing countries share their knowledge and experience. If the assistance provided is well organized and in keeping with the needs of developing countries it can make the crucial difference in sustainable development. This booklet provides a survey of the historical development of the IAEA's Research Contract Programme and outlines the aims and achievements of selected Co-ordinated Research Programmes. A complete listing of Co-ordinated Research Programmes is provided

  13. 78 FR 70102 - Clinical Science Research and Development Service Cooperative Studies; Scientific Evaluation...

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... notice under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... Development Officer through the Director of the Clinical Science Research and Development Service on the...

  14. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries

    Science.gov (United States)

    Johnson, Layne M.; Butler, John T.; Johnston, Lisa R.

    2013-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed. PMID:23585706

  15. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries.

    Science.gov (United States)

    Johnson, Layne M; Butler, John T; Johnston, Lisa R

    2012-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed.

  16. 77 FR 72438 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2012-12-05

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... through the Director of the Clinical Science Research and Development Service on the relevance and...

  17. 78 FR 53015 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2013-08-27

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects and...

  18. 77 FR 31072 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2012-05-24

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... Development Officer through the Director of the Clinical Science Research and Development Service on the... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  19. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  20. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  1. Assessment report of research and development activities. Activity: advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2008-08-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for interim assessment of 'Advanced Science Research,' in accordance with General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program of the Advanced Science Research Center (hereinafter referred to as 'ASRC') during the period of two years from October 2005 to September 2007. The Committee evaluated the management and research activities of the ASRC based on the explanatory documents prepared by the ASRC, the oral presentations with questions-and-answers by the Director and the research group leaders, and interviews from group members through on-site visits by the Committee members. One CD-ROM is attached as an appendix. (J.P.N.)

  2. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  3. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  4. Science and Technology Research for Sustainable Development in ...

    African Journals Online (AJOL)

    FIRST LADY

    A fundamental need for development of science, technology, research and national ... that encourages partnership for exchange of people, ideas, and support facilities. .... ii Imagination to apply existing technology to new problems or.

  5. 76 FR 19189 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  6. 76 FR 65781 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... Clinical Science Research and Development Service on the relevance and feasibility of proposed projects and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  7. 75 FR 28686 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  8. 75 FR 79446 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2010-12-20

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... Officer through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  9. 76 FR 73781 - Clinical Science Research and Development Service; Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2011-11-29

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service; Cooperative... Officer through the Director of the Clinical Science Research and Development Service on the relevance and... notice under Public Law 92-463 (Federal Advisory Committee Act) that a meeting of the Clinical Science...

  10. Assessment report on research and development activities. Activity: 'Advanced science research' (Interim report)

    International Nuclear Information System (INIS)

    2012-11-01

    Japan Atomic Energy Agency (hereinafter referred to as “JAEA”) consulted an assessment committee, “Evaluation Committee of Research Activities for Advanced Science Research” (hereinafter referred to as “Committee”) for interim assessment of “Advanced Science Research,” in accordance with “General Guideline for the Evaluation of Government Research and Development (R and D) Activities” by Cabinet Office, Government of Japan, “Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology” and “Regulation on Conduct for Evaluation of R and D Activities” by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as “ASRC”) for the period of two years from April 2010. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  11. Assessment report of research and development activities. Activity: 'Advanced science research' (Pre-review report)

    International Nuclear Information System (INIS)

    2010-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010. The Committee evaluated the management and the research program of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the result of the assessment by the Committee with the Committee report attached from page 7. (author)

  12. 78 FR 41198 - Clinical Science Research and Development Service Cooperative Studies Scientific Evaluation...

    Science.gov (United States)

    2013-07-09

    ... DEPARTMENT OF VETERANS AFFAIRS Clinical Science Research and Development Service Cooperative... under the Federal Advisory Committee Act, 5 U.S.C. App. 2, that the Clinical Science Research and.... The Committee advises the Chief Research and Development Officer through the Director of the Clinical...

  13. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  14. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  15. Developing an agenda to guide forest social science, economics, and utilization research.

    Science.gov (United States)

    Richard W. Haynes

    2005-01-01

    The USDA Forest Service has had a longstanding presence in utilization, economics, and social sciences research and development activities. The magnitude and diversity of these activities have changed as the questions and the people asking them have changed over the past century. These changes challenge the social science and utilization research community to develop...

  16. Basic science research and education: a priority for training and capacity building in developing countries.

    Science.gov (United States)

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Recent developments in life sciences research: Role of bioinformatics

    African Journals Online (AJOL)

    Life sciences research and development has opened up new challenges and opportunities for bioinformatics. The contribution of bioinformatics advances made possible the mapping of the entire human genome and genomes of many other organisms in just over a decade. These discoveries, along with current efforts to ...

  18. Assessment report of research and development activities. Activity: 'Nuclear science and engineering research' (Interim report)

    International Nuclear Information System (INIS)

    2013-11-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consults an assessment committee, 'Evaluation Committee of Research Activities for Nuclear Science and Engineering' (hereinafter referred to as 'Committee') for interim assessment of 'Nuclear Science and Engineering,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by the JAEA. In response to the JAEA's request, the Committee assessed the research program of the Nuclear Science and Engineering Directorate (hereinafter referred to as 'NSED') and Center for Computational Science and e-Systems (hereinafter referred to as 'CCSE') during the period of about four years from September 2008 to September 2012. The Committee evaluated the management and research activities of the NSED and the CCSE based on explanatory documents prepared by the NSED and the CCSE, and oral presentations with questions-and-answers by unit managers etc. A CD-ROM is attached as an appendix. (J.P.N.)

  19. Developing Library GIS Services for Humanities and Social Science: An Action Research Approach

    Science.gov (United States)

    Kong, Ningning; Fosmire, Michael; Branch, Benjamin Dewayne

    2017-01-01

    In the academic libraries' efforts to support digital humanities and social science, GIS service plays an important role. However, there is no general service model existing about how libraries can develop GIS services to best engage with digital humanities and social science. In this study, we adopted the action research method to develop and…

  20. Research and Development for Underground Science at Black Hills State University

    Science.gov (United States)

    Keeter, Kara

    2010-10-01

    The development of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine in Lead, South Dakota has greatly spurred interest in science research and development along with education and outreach. Early science activities at Black Hills State University associated with the Sanford Underground Laboratory and DUSEL include radon emanation studies of iron oxide sludge and in situ, and radioactive background and magnetic field measurements. Work is also underway for R&D development for depleted argon-based dark matter detectors, neutrinoless double beta decay experiments, and a liquid scintillator immersion tank for whole-body low-background assays. Students from BHSU and across the state of South Dakota have been working alongside scientists on these and other projects. Teachers from high schools throughout South Dakota have also participated in these projects through the newly formed QuarkNet Center at BHSU.

  1. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  2. Assessment report of research and development activities FY2014. Activity: 'Advanced science research' (Final report)

    International Nuclear Information System (INIS)

    2015-09-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Advanced Science Research' (hereinafter referred to as 'Committee') for final evaluation and prior assessment of 'Advanced Science Research,' in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research programs and activities of the Advanced Science Research Center (hereinafter referred to as 'ASRC') for the period of five years from April 2010 and the research programs from April 2015. The Committee evaluated the management and the research programs of the ASRC based on the explanatory documents prepared by the ASRC and the oral presentations with questions-and-answers by the Director and the research group leaders. This report summarizes the results of the assessment by the Committee with the Committee report attached. (author)

  3. NASA/First Materials Science Research Rack (MSRR-1) Module Inserts Development for the International Space Station

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    1999-01-01

    The Material Science Research Rack 1 (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit. Two of the NASA MIs being developed for specific material science investigations are described herein.

  4. Science-based health innovation in Uganda: creative strategies for applying research to development

    Directory of Open Access Journals (Sweden)

    Daar Abdallah S

    2010-12-01

    Full Text Available Abstract Background Uganda has a long history of health research, but still faces critical health problems. It has made a number of recent moves towards building science and technology capacity which could have an impact on local health, if innovation can be fostered and harnessed. Methods Qualitative case study research methodology was used. Data were collected through reviews of academic literature and policy documents and through open-ended, face-to-face interviews with 30 people from across the science-based health innovation system, including government officials, researchers in research institutes and universities, entrepreneurs, international donors, and non-governmental organization representatives. Results Uganda has a range of institutions influencing science-based health innovation, with varying degrees of success. However, the country still lacks a coherent mechanism for effectively coordinating STI policy among all the stakeholders. Classified as a least developed country, Uganda has opted for exemptions from the TRIPS intellectual property protection regime that include permitting parallel importation and providing for compulsory licenses for pharmaceuticals. Uganda is unique in Africa in taking part in the Millennium Science Initiative (MSI, an ambitious though early-stage $30m project, funded jointly by the World Bank and Government of Uganda, to build science capacity and encourage entrepreneurship through funding industry-research collaboration. Two universities – Makerere and Mbarara – stand out in terms of health research, though as yet technology development and commercialization is weak. Uganda has several incubators which are producing low-tech products, and is beginning to move into higher-tech ones like diagnostics. Its pharmaceutical industry has started to create partnerships which encourage innovation. Conclusions Science-based health product innovation is in its early stages in Uganda, as are policies for guiding

  5. Preventing biological weapon development through the governance of life science research.

    Science.gov (United States)

    Epstein, Gerald L

    2012-03-01

    The dual-use dilemma in the life sciences-that illicit applications draw on the same science and technology base as legitimate applications-makes it inherently difficult to control one without inhibiting the other. Since before the September 11 attacks, the science and security communities in the United States have struggled to develop governance processes that can simultaneously minimize the risk of misuse of the life sciences, promote their beneficial applications, and protect the public trust. What has become clear over that time is that while procedural steps can be specified for assessing and managing dual-use risks in the review of research proposals, oversight of ongoing research, and communication of research results, the actions or decisions to be taken at each of these steps to mitigate dual-use risk defy codification. Yet the stakes are too high to do nothing, or to be seen as doing nothing. The U.S. government should therefore adopt an oversight framework largely along the lines recommended by the National Science Advisory Board for Biosecurity almost 5 years ago-one that builds on existing processes, can gain buy-in from the scientific community, and can be implemented at modest cost (both direct and opportunity), while providing assurance that a considered and independent examination of dual-use risks is being applied. Without extraordinary visibility into the actions of those who would misuse biology, it may be impossible to know how well such an oversight system will actually succeed at mitigating misuse. But maintaining the public trust will require a system to be established in which reasonably foreseeable dual-use consequences of life science research are anticipated, evaluated, and addressed.

  6. Managing science developing your research, leadership and management skills

    CERN Document Server

    Peach, Ken

    2017-01-01

    Managing science, which includes managing scientific research and, implicitly, managing scientists, has much in common with managing any enterprise, and most of these issues (e.g. annual budget planning and reporting) form the background. Equally, much scientific research is carried in universities ancient and modern, which have their own mores, ranging from professorial autocracy to democratic plurality, as well as national and international with their missions and styles. But science has issues that require a somewhat different approach if it is to prosper and succeed. Society now expects science, whether publicly or privately funded, to deliver benefits, yet the definition of science presumes no such benefit. Managing the expectations of the scientist with those of society is the challenge of the manager of science. The book addresses some issues around science and the organizations that do science. It then deals with leadership, management and communication, team building, recruitment, motivation, managin...

  7. Medical Science and Research in Iran.

    Science.gov (United States)

    Akhondzadeh, Shahin; Ebadifar, Asghar; Baradaran Eftekhari, Monir; Falahat, Katayoun

    2017-11-01

    During the last 3 decades, Iran has experienced a rapid population growth and at the same time the health of Iranian people has improved greatly. This achievement was mainly due to training and availability of health manpower, well organized public health network and medical science and research improvement. In this article, we aimed to report the relevant data about the medical science and research situation in Iran and compare them with other countries. In this study, after reviewing science development and research indicators in medical sciences with participation of key stakeholders, we selected 3 main hybrid indexes consisting of "Research and Development (R&D) expenditures," "Personnel in Science and Technology sector" and "knowledge generation" for evaluation of medical science and research situation. Data was extracted from reliable databases. Over the past decade, Iran has achieved significant success in medical sciences and for the first time in 2015 based on Scopus index, Iran ranked first in the number of published scientific papers and number of citations in the region and among all Islamic countries. Also, 2% of the world's publications belong to Iran. Regarding innovation, the number of Iranian patents submitted to the United States Patent and Trademark Office (USPTO) was 3 and 43 in 2008 and 2013, respectively. In these years, the number of personnel in science and technology sectors including post graduate students, researchers and academic members in universities of medical sciences (UMSs) have increased. The female students in medical sciences field account for about twothirds of all students. Also, women comprise about one-third of faculty members. Since 5 years ago, Iran has had growth in science and technology parks. These achievements were attained in spite of the fact that research spending in Iran was still very low (0.5% of gross domestic product [GDP]) due to economic hardships and sanctions. Medical science and research development has

  8. [The development of European Union common research and development policy and programs with special regard to life sciences].

    Science.gov (United States)

    Pörzse, Gábor

    2009-08-09

    Research and development (R&D) has been playing a leading role in the European Community's history since the very beginning of European integration. Its importance has grown in recent years, after the launch of the Lisbon strategy. Framework programs have always played a considerable part in community research. The aim of their introduction was to fine tune national R&D activities, and to successfully divide research tasks between the Community and the member states. The Community, from the very outset, has acknowledged the importance of life sciences. It is no coincidence that life sciences have become the second biggest priority in the last two framework programs. This study provides a historical, and at the same time analytical and evaluative review of community R&D policy and activity from the starting point of its development until the present day. It examines in detail how the changes in structure, conditional system, regulations and priorities of the framework programs have followed the formation of social and economic needs. The paper puts special emphasis on the analysis of the development of life science research, presenting how they have met the challenges of the age, and how they have been built into the framework programs. Another research area of the present study is to elaborate how successfully Hungarian researchers have been joining the community research, especially the framework programs in the field of life sciences. To answer these questions, it was essential to survey, process and analyze the data available in the national and European public and closed databases. Contrary to the previous documents, this analysis doesn't concentrate on the political and scientific background. It outlines which role community research has played in sustainable social and economic development and competitiveness, how it has supported common policies and how the processes of integration have been deepening. Besides, the present paper offers a complete review of

  9. Design Science Research For Personal Knowledge Management System Development - Revisited

    Directory of Open Access Journals (Sweden)

    Ulrich Schmitt

    2016-11-01

    Thirdly, the development process and resulting prototype are verified against accepted general design science research (DSR guidelines. DSR aims at creating innovative IT artifacts (that extend human and social capabilities and meet desired outcomes and at validating design processes (as evidence of their relevance, utility, rigor, resonance, and publishability. Together with the incorporated references to around thirty prior publications covering technical and methodological details, a kind of ‘Long Discussion Case’ emerges aiming to potentially assist IT researchers and entrepreneurs engaged in similar projects.

  10. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  11. Action learning enhances professional development of research supervisors: an Australian health science exemplar.

    Science.gov (United States)

    Davis, Kierrynn; Brownie, Sonya; Doran, Frances; Evans, Sue; Hutchinson, Marie; Mozolic-Staunton, Beth; Provost, Stephen; van Aken, Rosalie

    2012-03-01

    The worldwide academic workforce is ageing. At the same time, health and human services workforces are expanding. The preparation of educators to fill gaps in expertise and to position the health sciences for future growth is an urgent need. The findings from a recent action learning project that aimed to enhance the professional growth and development of higher degree researcher student supervisors in a School of Health and Human Sciences are presented. Seven early career researchers and the facilitator met for two hours every two to three weeks over 4 months between April and July 2010, in a rural and regional university in New South Wales, Australia. The processes initiated were a combination of experiential knowledge, referral to relevant published reports, use of an effective supervision checklist, and critical conversations. Learning outcomes centered on higher degree management and supervision pedagogy, communities of practice, knowledge translation, and the establishment of a research culture. The contextual barriers and implications of the methodology and learning outcomes for the professional development of health and human science practitioners, researchers and educators is also discussed. © 2012 Blackwell Publishing Asia Pty Ltd.

  12. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  13. Assessment report of research and development activities in FY2014. Activity: 'Quantum beam science research' (Result evaluation)

    International Nuclear Information System (INIS)

    2015-09-01

    Japan Atomic Energy Agency (hereafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Quantum Beam Science' (hereafter referred to as 'Committee') for result evaluation of 'Quantum Beam Science', in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program of the Quantum Beam Science Center (hereafter referred to as 'QuBS') during the period from April 2010 to September 2014. The Committee evaluated the management and research activities of QuBS based on the explanatory documents and oral presentations. (author)

  14. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  15. Developing institutional repository at National Institute for Materials Science : Researchers directory service “SAMURAI” and Research Collection Library

    Science.gov (United States)

    Takaku, Masao; Tanifuji, Mikiko

    National Institute for Materials Science (NIMS) has developed an institutional repository “NIMS eSciDoc” since 2008. eSciDoc is an open source repository software made in Germany, and provides E-Science infrastructures through its flexible data model and rich Web APIs. NIMS eScidoc makes use of eSciDoc functions to benefit for NIMS situations. This article also focuses on researchers directory service “SAMURAI” in addition to NIMS eSciDoc. Successfully launched in October 2010, SAMURAI provides approximately 500 researchers' profile and publication information.

  16. Research opportunities in photochemical sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The workshop entitled {open_quotes}Research Opportunities in Photochemical Sciences{close_quotes} was initiated by the U.S. Department of Energy (DOE), Office of Energy Research (ER), Office of Basic Energy Sciences (BES), Division of Chemical Sciences. The National Renewable Energy Laboratory (NREL) in Golden, Colorado was requested by ER to host the workshop. It was held February 5-8, 1996 at the Estes Park Conference Center, Estes Park, CO, and attended by about 115 leading scientists and engineers from the U.S., Japan, and Europe; program managers for the DOE ER and Energy Efficiency and Renewable Energy (EERE) programs also attended. The purpose of the workshop was to bridge the communication gap between the practioneers and supporters of basic research in photochemical science and the practioneers and supporters of applied research and development in technologies related to photochemical science. For the purposes of the workshop the definition of the term {open_quotes}photochemical science{close_quotes} was broadened to include homogeneous photochemistry, heterogeneous photochemistry, photoelectrochemistry, photocatalysis, photobiology (for example, the light-driven processes of biological photosynthesis and proton pumping), artificial photosynthesis, solid state photochemistry, and solar photochemistry. The technologies under development through DOE support that are most closely related to photochemical science, as defined above, are the renewable energy technologies of photovoltaics, biofuels, hydrogen energy, carbon dioxide reduction and utilization, and photocatalysis for environmental cleanup of water and air. Individual papers were processed separately for the United states Department of Energy databases.

  17. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  18. Assessment report of research and development activities in FY2014. Activity: 'Quantum beam science research' (In-advance evaluation)

    International Nuclear Information System (INIS)

    2015-09-01

    Japan Atomic Energy Agency (hereafter referred to as 'JAEA') consulted an assessment committee, 'Evaluation Committee of Research Activities for Quantum Beam Science' (hereafter referred to as 'Committee') for result evaluation of 'Quantum Beam Science', in accordance with 'General Guideline for the Evaluation of Government Research and Development (R and D) Activities' by Cabinet Office, Government of Japan, 'Guideline for Evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology' and 'Regulation on Conduct for Evaluation of R and D Activities' by JAEA. In response to the JAEA's request, the Committee assessed the research program of the Quantum Beam Science Center (hereafter referred to as 'QuBS') during the period from April 2015 to March 2022. The Committee evaluated the management and research activities of QuBS based on the explanatory documents and oral presentations. (author)

  19. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-08-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education from 1990 to 2007. The multi-stage clustering technique was employed to investigate with what topics, to what development trends, and from whose contribution that the journal publications constructed as a science education research field. This study found that the research topic of Conceptual Change & Concept Mapping was the most studied topic, although the number of publications has slightly declined in the 2000's. The studies in the themes of Professional Development, Nature of Science and Socio-Scientific Issues, and Conceptual Chang and Analogy were found to be gaining attention over the years. This study also found that, embedded in the most cited references, the supporting disciplines and theories of science education research are constructivist learning, cognitive psychology, pedagogy, and philosophy of science.

  20. Editorial: The researcher and the research in criminal sciences in contemporaneity

    Directory of Open Access Journals (Sweden)

    Caíque Ribeiro Galícia

    2017-10-01

    Full Text Available This editorial presents a general analysis of the contemporary reality of the researcher and research in criminal sciences in Brazil. The researcher's profile is sought as an important component to understand the choices of criminal science research guidelines, with a focus on overcoming the false claim of impartiality of the subject-researcher. In this panorama, an analysis of legal research in Brazil is made, highlighting the most important role in the better understanding of legal science, but also as a factor of social, cultural, political and economic development.

  1. Collaborative Action Research in the Context of Developmental Work Research: A Methodological Approach for Science Teachers' Professional Development

    Science.gov (United States)

    Piliouras, Panagiotis; Lathouris, Dimitris; Plakitsi, Katerina; Stylianou, Liana

    2015-01-01

    The paper refers to the theoretical establishment and brief presentation of collaborative action research with the characteristics of "developmental work research" as an effective methodological approach so that science teachers develop themselves professionally. A specific case study is presented, in which we aimed to transform the…

  2. Engineering sciences research highlights. Fiscal year 1983

    International Nuclear Information System (INIS)

    Tucker, E.F.; Dobratz, B.

    1984-05-01

    The Laboratory's overall mission is sixfold. We are charged with developing nuclear warheads for defense, technology for arms control, and new concepts for defense against nuclear attack; with supporting programs for both nonnuclear defense and energy research and development; and with advancing our knowledge of science and technology so that we can respond to other national needs. Major programs in support of this mission involve nuclear weapons, energy, environmental science, and basic research. Specific areas of investigation include the design, development, and testing of nuclear weapons; nuclear safeguards and security; inertial and magnetic fusion and nuclear, solar, fossil, and geothermal energy; and basic research in physics, chemistry, mathematics, engineering, and the computer and life sciences. With the staff and facilities maintained for these and other programs, the Laboratory can respond to specific national needs in virtually all areas of the physical and life sciences. Within the Laboratory's organization, most technical research activities are carried out in three directorates: Engineering Sciences; Physics and Mathematics; and Chemistry, Earth and Life Sciences. The activities highlighted here are examples of unclassified work carried out in the seven divisions that made up the Engineering Sciences Directorate at the end of fiscal year 1983. Brief descriptions of these divisions' goals and capabilities and summaries of selected projects illustrate the diversity of talent, expertise, and facilities maintained within the Engineering Sciences Directorate

  3. A Design Science Research Methodology for Expert Systems Development

    Directory of Open Access Journals (Sweden)

    Shah Jahan Miah

    2016-11-01

    Full Text Available The knowledge of design science research (DSR can have applications for improving expert systems (ES development research. Although significant progress of utilising DSR has been observed in particular information systems design – such as decision support systems (DSS studies – only rare attempts can be found in the ES design literature. Therefore, the aim of this study is to investigate the use of DSR for ES design. First, we explore the ES development literature to reveal the presence of DSR as a research methodology. For this, we select relevant literature criteria and apply a qualitative content analysis in order to generate themes inductively to match the DSR components. Second, utilising the findings of the comparison, we determine a new DSR approach for designing a specific ES that is guided by another result – the findings of a content analysis of examination scripts in Mathematics. The specific ES artefact for a case demonstration is designed for addressing the requirement of a ‘wicked’ problem in that the key purpose is to assist human assessors when evaluating multi-step question (MSQ solutions. It is anticipated that the proposed design knowledge, in terms of both problem class and functions of ES artefacts, will help ES designers and researchers to address similar issues for designing information system solutions.

  4. FEDS : A Framework for Evaluation in Design Science Research

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2015-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  5. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  6. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  7. Researching Undergraduate Social Science Research

    Science.gov (United States)

    Rand, Jane

    2016-01-01

    The experience(s) of undergraduate research students in the social sciences is under-represented in the literature in comparison to the natural sciences or science, technology, engineering and maths (STEM). The strength of STEM undergraduate research learning environments is understood to be related to an apprenticeship-mode of learning supported…

  8. Product Development and Commercialization of Diagnostic or Life Science Products for Scientists and Researchers.

    Science.gov (United States)

    Alonso, Meghan M

    2017-01-01

    Commercializing a diagnostic or life science product often encompasses different goals than that of research and grant funding. There are several necessary steps, and a strategy needs to be well defined in order to be successful. Product development requires input from and between various groups within a company and, for academia, outside entities. The product development stakeholder groups/entities are research, marketing, development, regulatory, manufacturing, clinical, safety/efficacy, and quality. After initial research and development, much of the work in product development can be outsourced or jointly created using public-private partnerships. This chapter serves as an overview of the product development process and provides a guide to best define a product strategy.

  9. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  10. Development of research paper writing skills of poultry science undergraduate students studying food microbiology.

    Science.gov (United States)

    Howard, Z R; Donalson, L M; Kim, W K; Li, X; Zabala Díaz, I; Landers, K L; Maciorowski, K G; Ricke, S C

    2006-02-01

    Because food and poultry industries are demanding an improvement in written communication skills among graduates, research paper writing should be an integral part of a senior undergraduate class. However, scientific writing assignments are often treated as secondary to developing the technical skills of the students. Scientific research paper writing has been emphasized in an undergraduate course on advanced food microbiology taught in the Poultry Science Department at Texas A& M University (College Station, TX). Students' opinions suggest that research paper writing as part of a senior course in Poultry Science provides students with scientific communication skills and useful training for their career, but more emphasis on reading and understanding scientific literature may be required.

  11. Intellectual assets management and transfer in food science sector in Indian research and development organizations.

    Science.gov (United States)

    Singh, Vikram; Chakraborty, Kajal

    2016-05-01

    In recent years, the food science sector has gained importance since the society is focusing on high-quality and safety foods. With a specific end goal to meet this societal need, the research and development organizations in India have adopted innovative technical and research processes, which gave more accentuation on intellectual assessment in food processing industry. The global Intellectual Property regime in food science sector had witnessed an increment in the number of patents filed and granted during 2006-2010. Ever since there has been a gradual increase in the number of patents applied mainly in food processing industries by research organizations related to food sciences, for example, those working under the aegis of ICAR and CSIR in India. In this study, a review has been done on the intellectual assets generated by ICAR and other national research organizations in India, in the food science sector. Emphasis has been given on the global relevance of these assets, modes of IP protection and technology transfer mechanisms followed by different public and private organizations.

  12. Science Policy Research Unit annual report 1984/1985

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report covers the principal research programmes of the Unit, and also describes its graduate and undergraduate teaching, (listing subjects of postgraduate research) and library services. A list of 1984 published papers and staff is presented. The principle research programmes include: the setting up of the Designated Research Centre on Science, Technology and Energy Policy in British Economic Development; policy for technology and industrial innovation in industrialised countries; energy economics, technology and policy (with a sub-section on coal); European science and industrial policy; science policy and research evaluation; technical change and employment opportunities in the UK economy; new technology, manpower and skills; technology and social change; science and technology policy in developing countries; military technology and arms limitation. Short-term projects and consultancy are also covered.

  13. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Science.gov (United States)

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  14. Democratization of Science and Biotechnological Development ...

    African Journals Online (AJOL)

    sulaiman.adebowale

    Council for the Development of Social Science Research in Africa, 2008 ... tendant ideas of Science Communication and Public Understanding of Biotech- .... human development in the new South Africa – no matter how development.

  15. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  16. Building the Science of Research Management: What Can Research Management Learn from Education Research?

    Science.gov (United States)

    Huang, Jun Song; Hung, Wei Loong

    2018-01-01

    Research management is an emerging field of study and its development is significant to the advancement of research enterprise. Developing the science of research management requires investigating social mechanisms involved in research management. Yet, studies on social mechanisms of research management is lacking in the literature. To address…

  17. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  18. Promoting positive human development and social justice: Integrating theory, research and application in contemporary developmental science.

    Science.gov (United States)

    Lerner, Richard M

    2015-06-01

    The bold claim that developmental science can contribute to both enhancing positive development among diverse individuals across the life span and promoting social justice in their communities, nations and regions is supported by decades of theoretical, methodological and research contributions. To explain the basis of this claim, I describe the relational developmental systems (RDS) metamodel that frames contemporary developmental science, and I present an example of a programme of research within the adolescent portion of the life span that is associated with this metamodel and is pertinent to promoting positive human development. I then discuss methodological issues associated with using RDS-based models as frames for research and application. Finally, I explain how the theoretical and methodological ideas associated with RDS thinking may provide the scholarly tools needed by developmental scientists seeking to contribute to human thriving and to advance social justice in the Global South. © 2015 International Union of Psychological Science.

  19. Building a Cohesive Body of Design Knowledge: Developments from a Design Science Research Perspective

    DEFF Research Database (Denmark)

    Cash, Philip; Piirainen, Kalle A.

    2015-01-01

    researchers have identified difficulties in building on past works, and combining insights from across the field. This work starts to dissolve some of these issues by drawing on Design Science Research to propose an integrated approach for the development of design research knowledge, coupled with pragmatic......Design is an extremely diverse field where there has been widespread debate on how to build a cohesive body of scientific knowledge. To date, no satisfactory proposition has been adopted across the field – hampering scientific development. Without this basis for bringing research together design...... advice for design researchers. This delivers a number of implications for researchers as well as for the field as a whole....

  20. AN OVERVIEW OF HUMAN RESOURCES IN SCIENCE AND TECHNOLOGY (HRST FROM RESEARCH DEVELOPMENT AND INNOVATION (RDI SECTOR DURING 1993-2009 IN ROMANIA

    Directory of Open Access Journals (Sweden)

    NICOLOV MIRELA

    2011-12-01

    Full Text Available The present paper present a study done on the Human Resources in Science and Technology (HRST in Research Development and Innovation (RDI sector in Romania during 1993-2009 .This paper started from the elements defined in Canberra Manual based on the qualification and occupation. Labor force in this study refers to university level and technician level as skill from education. These definitions from Canberra Manual for HRST were used in the present paper in reference to all the researchers in Romania for different areas of research as engineering and technology sciences domains, natural and exact sciences, medical sciences, agricultural science, social sciences and humanities. After a short presentation of the US origin of the Human Resources in Science and Technology Management and the situation from Europe, the present paper are dealing with the area of the Human Resources in Science and Technology system from Romania, the sector of Research Development and Innovation. This study is focused on the employees by categories of the activities in research, development and innovation sector. We took into account the employees with different categories of graduation diploma which are working in the fields of research and development activities too. Samples data were took from Tempo online database from National Institute of Statistics from Romania, updated database in 21 of October in 2010.Data were took for simulations in December 2010. We try to do a simulation on the evolution of Human Resources in Science and Technology (HRST in Research Development and Innovation (RDI sector in Romania during this period (1993-2009 and we observed that real data fitting on a regression curve of sixth degree whose coefficients were defined during this study. This type of simulation can be good for future forecasting for Human Resources in Science and Technology in Research Development and Innovation (RDI sector in Romania. The present study is part of Doctoral

  1. Aims of advanced photon science research

    International Nuclear Information System (INIS)

    Kimura, Toyoaki

    2004-01-01

    The Advanced Photon Research Center (APRC) of Japan Atomic Energy Research Institute is pursing the research and development of advanced photon sources such as a compact, ultra-short, high intensity laser, x-ray laser, and a superconducting linac-based free electron laser (FEL) and their applications. These compact and high-intensity lasers have various capabilities of producing radiations with distinguishing characteristics of ultra-short pulse, high coherence, etc. Hence, they can provide novel means of research in the field of nuclear energy applications and industrial and medical technologies. It is important for us to promote these researches on these high-intensity laser applications comprehensively and effectively under the collaborations with nationwide universities and industry. From this point of view it is expected that the APRC plays a role as a COE for these researches. Through these research activities for development of high-intensity lasers and their applications, we will develop ''photon science and technology'' as a leading key technology in the 21st century and contribute the development of science and technology including nuclear energy technology and production of new industries. (author)

  2. GeoBus: sharing science research with schools

    Science.gov (United States)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  3. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  4. Teaching Theory of Science and Research Methodology to Nursing Students: A Practice-Developing Approach

    DEFF Research Database (Denmark)

    Sievert, Anne; Chaiklin, Seth

    , in a principled way, to select subject-matter content for a course for nursing students on theory of science and research methodology. At the same time, the practical organisation of the project was motivated by a practice-developing research perspective. The purpose of the presentation is to illustrate how...... the idea of practice-developing research was realised in this concrete project. A short introduction is first given to explain the practical situation that motivated the need and interest to select subject matter for teaching. Then, the main part of the presentation explains the considerations involved...... developed. On the basis of this presentation, it should be possible to get a concrete image of one form for practice-developing research. The presentation concludes with a discussion that problematises the sense in which general knowledge about development of nursing school teaching practice has been...

  5. Post-doctoral research work developed at the National Institute for Fusion Science - Japan

    International Nuclear Information System (INIS)

    Ueda, M.

    1992-05-01

    This is a research report report on the work developed at the National Institute for Fusion Science - Japan, involving study of Beam Emission Spectroscopy. It describes the use of a fast neutral lithium beam (8 KeV) to measure the density profile in a Compact Helical Device. (A.C.A.S.)

  6. The contribution of behavioural science to primary care research: development and evaluation of behaviour change interventions.

    Science.gov (United States)

    Sutton, Stephen

    2011-10-01

    Behavioural science is concerned with predicting, explaining and changing behaviour. Taking a personal perspective, this article aims to show how behavioural science can contribute to primary care research, specifically in relation to the development and evaluation of interventions to change behaviour. After discussing the definition and measurement of behaviour, the principle of compatibility and theories of behaviour change, the article outlines two examples of behaviour change trials (one on medication adherence and the other on physical activity), which were part of a research programme on prevention of chronic disease and its consequences. The examples demonstrate how, in a multidisciplinary context, behavioural science can contribute to primary care research in several important ways, including posing relevant research questions, defining the target behaviour, understanding the psychological determinants of behaviour, developing behaviour change interventions and selection or development of measures. The article concludes with a number of recommendations: (i) whether the aim is prediction, explanation or change, defining the target behaviour is a crucial first step; (ii) interventions should be explicitly based on theories that specify the factors that need to be changed in order to produce the desired change in behaviour; (iii) intervention developers need to be aware of the differences between different theories and select a theory only after careful consideration of the alternatives assessed against relevant criteria; and (iv) developers need to be aware that interventions can never be entirely theory based.

  7. Research briefing on contemporary problems in plasma science

    International Nuclear Information System (INIS)

    1991-01-01

    An overview is presented of the broad perspective of all plasma science. Detailed discussions are given of scientific opportunities in various subdisciplines of plasma science. The first subdiscipline to be discussed is the area where the contemporary applications of plasma science are the most widespread, low temperature plasma science. Opportunities for new research and technology development that have emerged as byproducts of research in magnetic and inertial fusion are then highlighted. Then follows a discussion of new opportunities in ultrafast plasma science opened up by recent developments in laser and particle beam technology. Next, research that uses smaller scale facilities is discussed, first discussing non-neutral plasmas, and then the area of basic plasma experiments. Discussions of analytic theory and computational plasma physics and of space and astrophysical plasma physics are then presented

  8. The Impact of the Next Generation Science Standards on Future Professional Development and Astronomy Education Research

    Science.gov (United States)

    Buxner, Sanlyn

    2013-06-01

    The Next Generation Science Standards will have a profound impact on the future science education of students and professional development for teachers. The science and engineering practices, crosscutting concepts, and disciplinary core ideas laid out in the Framework for K-12 Science Education (NRC, 2011) will change the focus and methods of how we prepare teachers to meet these new standards. Extending beyond just the use of inquiry in the classroom, teachers will need support designing and implementing integrated experiences for students that require them to apply knowledge of content and practices. Integrating the three dimensions central to the new standards will pose curricular challenges and create opportunities for innovative space science projects and instruction. The science research and technology community will have an important role in supporting authentic classroom practices as well as training and support of teachers in these new ways of presenting science and technology. These changes will require a new focus for teacher professional development and new ways to research impacts of teacher training and changes in classroom practice. In addition, new and innovative tools will be needed to assess mastery of students’ knowledge of practices and the ways teachers effectively help students achieve these new goals. The astronomy education community has much to offer as K-12 and undergraduate level science educators rethink and redefine what it means to be scientifically literate and figure out how to truly measure the success of these new ways of teaching science.

  9. The Development of Qualitative Classroom Action Research Workshop for In-Service Science Teachers

    Science.gov (United States)

    Buaraphan, Khajornsak

    2016-01-01

    In-service science teachers in Thailand are mandated to conduct classroom research, which can be quantitative and qualitative research, to improve teaching and learning. Comparing to quantitative research, qualitative research is a research approach that most of the Thai science teachers are not familiar with. This situation impedes science…

  10. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  11. The value of co-creation through Design Science Research in developing a Digital Health Innovation Ecosystem for South Africa

    CSIR Research Space (South Africa)

    Herselman, Martha E

    2017-06-01

    Full Text Available The purpose of this paper is to indicate what value was co-created with various stakeholders when Design Science Research as a methodology was applied, to develop a Digital Health Innovation Ecosystem (DHIE) for South Africa. Design science research...

  12. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  13. Organizing intelligence: development of behavioral science and the research based model of business education.

    Science.gov (United States)

    Bottom, William P

    2009-01-01

    Conventional history of the predominant, research-based model of business education (RBM) traces its origins to programs initiated by the Ford Foundation after World War II. This paper maps the elite network responsible for developing behavioral science and the Ford Foundation agenda. Archival records of the actions taken by central nodes in the network permit identification of the original vision statement for the model. Analysis also permits tracking progress toward realizing that vision over several decades. Behavioral science was married to business education from the earliest stages of development. The RBM was a fundamental promise made by advocates for social science funding. Appraisals of the model and recommendations for reform must address its full history, not the partial, distorted view that is the conventional account. Implications of this more complete history for business education and for behavioral theory are considered.

  14. Journal of Agricultural Research and Development

    African Journals Online (AJOL)

    The Journal of Agricultural Research and Development aims at publishing research reports, short communications, Critical Reviews in Agricultural Economics and Farm Management, Agronomy, Forestry, Animal Science, Food Technology, Soil Science, Home Economics, Agricultural Extension, Rural development, ...

  15. The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education

    Science.gov (United States)

    Taber, Keith S.

    2017-06-01

    Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach's alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach's alpha statistic as evidence of instrument quality.

  16. Who Are the Science Teachers That Seek Professional Development in Research Experience for Teachers (RET's)? Implications for Teacher Professional Development

    Science.gov (United States)

    Saka, Yavuz

    2013-01-01

    To address the need to better prepare teachers to enact science education reforms, the National Science Foundation has supported a Research Experience for Teachers (RET's) format for teacher professional development. In these experiences, teachers work closely with practicing scientists to engage in authentic scientific inquiry. Although…

  17. Open science, e-science and the new technologies: Challenges and old problems in qualitative research in the social sciences

    Directory of Open Access Journals (Sweden)

    Ercilia García-Álvarez

    2012-12-01

    Full Text Available Purpose: As well as introducing the articles in the special issue titled "Qualitative Research in the Social Sciences", this article reviews the challenges, problems and main advances made by the qualitative paradigm in the context of the new European science policy based on open science and e-Science and analysis alternative technologies freely available in the 2.0 environment and their application to fieldwork and data analysis. Design/methodology: Theoretical review. Practical implications: The article identifies open access technologies with applications in qualitative research such as applications for smartphones and tablets, web platforms and specific qualitative data analysis software, all developed in both the e-Science context and the 2.0 environment. Social implications: The article discusses the possible role to be played by qualitative research in the open science and e-Science context and considers the impact of this new context on the size and structure of research groups, the development of truly collaborative research, the emergence of new ethical problems and quality assessment in review processes in an open environment. Originality/value: The article describes the characteristics that define the new scientific environment and the challenges posed for qualitative research, reviews the latest open access technologies available to researchers in terms of their main features and proposes specific applications suitable for fieldwork and data analysis.

  18. Payoffs of science for development

    Energy Technology Data Exchange (ETDEWEB)

    Frame, J D

    1979-09-01

    An examination is made of the interrelationship between science, technology, productivity, and economic development to determine the economic and non-economic payoffs of science to national development. It is seen that their interactions are complex and difficult to measure. The link between science and technology is also ambiguous, technological developments often having no immediate scientific antecedents or technological applications; and it is evident that an investment in basic science will not automatically yield economic development payoffs. Seven basic payoffs of science to development are identified: (1) indigenous scientific capabilities enable less-developed countries (LDCs) to engage in scientific research that is directed toward national needs; (2) existence of indigenous scientific capabilities facilitates training of professionals who are key personnel in the development process (doctors, medical technicians, teachers, engineers); (3) indigenous science will strengthen the general problem-solving capabilities of LDCs; (4) indigenous scientific capabilities will reduce LDC dependence on outsiders; (5) existence of an indigenous scientific establishment in LDCs may enhance their ability to adapt imported technologies to local conditions; (6) indigenous science can help LDCs improve their foreign trade position; and (7) science will satisfy certain aesthetic and spiritual needs of LDC scientists who engage in it. 33 references.

  19. Valuing Professional Development Components for Emerging Undergraduate Researchers

    Science.gov (United States)

    Cheung, I.

    2015-12-01

    In 2004 the Hatfield Marine Science Center (HMSC) at Oregon State University (OSU) established a Research Experience for Undergraduates (REU) program to engage undergraduate students in hands-on research training in the marine sciences. The program offers students the opportunity to conduct research focused on biological and ecological topics, chemical and physical oceanography, marine geology, and atmospheric science. In partnership with state and federal government agencies, this ten-week summer program has grown to include 20+ students annually. Participants obtain a background in the academic discipline, professional development training, and research experience to make informed decisions about careers and advanced degrees in marine and earth system sciences. Professional development components of the program are designed to support students in their research experience, explore career goals and develop skills necessary to becoming a successful young marine scientist. These components generally include seminars, discussions, workshops, lab tours, and standards of conduct. These componentscontribute to achieving the following professional development objectives for the overall success of new emerging undergraduate researchers: Forming a fellowship of undergraduate students pursuing marine research Stimulating student interest and understanding of marine research science Learning about research opportunities at Oregon State University "Cross-Training" - broadening the hands-on research experience Exploring and learning about marine science careers and pathways Developing science communication and presentation skills Cultivating a sense of belonging in the sciences Exposure to federal and state agencies in marine and estuarine science Academic and career planning Retention of talented students in the marine science Standards of conduct in science Details of this program's components, objectives and best practices will be discussed.

  20. Science, Technology and Innovation as Social Goods for Development: Rethinking Research Capacity Building from Sen's Capabilities Approach.

    Science.gov (United States)

    Mormina, Maru

    2018-03-01

    Science and technology are key to economic and social development, yet the capacity for scientific innovation remains globally unequally distributed. Although a priority for development cooperation, building or developing research capacity is often reduced in practice to promoting knowledge transfers, for example through North-South partnerships. Research capacity building/development tends to focus on developing scientists' technical competencies through training, without parallel investments to develop and sustain the socioeconomic and political structures that facilitate knowledge creation. This, the paper argues, significantly contributes to the scientific divide between developed and developing countries more than any skills shortage. Using Charles Taylor's concept of irreducibly social goods, the paper extends Sen's Capabilities Approach beyond its traditional focus on individual entitlements to present a view of scientific knowledge as a social good and the capability to produce it as a social capability. Expanding this capability requires going beyond current fragmented approaches to research capacity building to holistically strengthen the different social, political and economic structures that make up a nation's innovation system. This has implications for the interpretation of human rights instruments beyond their current focus on access to knowledge and for focusing science policy and global research partnerships to design approaches to capacity building/development beyond individual training/skills building.

  1. Social sciences, scientific research, higher education and social developments - An Albanian inside of dialectics and structured scientific research, in social sciences

    Directory of Open Access Journals (Sweden)

    Nada Kallçiu

    2013-01-01

    At first this will involve the policy makers at the central level, like the Ministry of Education and Sciences and the main research actors in the public and in the private sector. The criteria of the geographical and the subjects coverage has been also used in order to be able to present a public institutions of the higher education and research but even the enterprises that act in the research area are mainly focusing to the integration of these two systems which have been working separately for a long period of time and that must become efficient in order to adapt to the conditions of a country that has limited financial resources. This article is intended to provide a comprehensive overview of the scientific research in Albania, focusing in defining the priority areas for the research in social sciences. The information about the higher education and the potential problems that it faces, is based on a big number of research institutions, selected based on their involvement in scientific research in social sciences. This article brings into evidence the fact that in order to establish a stable and effective infrastructure in scientific research in Albania, is important to work in different directions. A successful way to increase the efficasity through the elements of the “innovative system” is by working with organizations that work in specific sectors of the economy, aiming for a possible cooperation in scientific search, for an important social contribution.

  2. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  3. Working for a not-for-Profit Research and Development Organization in the Earth Sciences

    Science.gov (United States)

    McKague, h L

    2001-12-01

    The Southwest Research Institute (SwRI) is an independent not-for-profit applied engineering and physical sciences research and development organization. This means that SwRI owes no allegiance to organizations other than its clients. As a not-for-profit organization, SwRI reinvests its net income into the organization to improve, strengthen, and expand facilities and to support internal research and development projects. Located in San Antonio, Texas, on 1200 acres, SwRI employs nearly 2800 staff and occupies nearly 2,000,000 square feet of office space. Its business is about equally divided between commercial and government clients, most of whom have specific scientific and technical problems that need to be solved in a timely, cost-effective manner. Governmental clients include local, state, and federal agencies and foreign governments. Commercial clients include local, national, and international businesses. Earth science disciplines at SwRI include geology, geophysics, hydrology, geochemistry, rock mechanics, mining engineering, and natural hazard assessment. Our overall approach is to systematically examine client problems and develop solutions that may include field work, laboratory work, numerical modeling, or some combination of these approaches. This method of problem solving places a strong emphasis on interdisciplinary teamwork. The work environment at SwRI strikes a balance among the freedom to attack technically important problems, consistent support to professional development, and a strong commitment to meeting client's deadlines and goals. Real problems with real consequences are routinely solved on a tight schedule. The diversity of clients gives exposure to an extraordinarily wide range of problems. Successful employees have sound technical backgrounds, are flexible in accommodating varying clients needs, bring creativity and energy to problem solving and applications of technologies, can work on multiple tasks in parallel, and can communicate

  4. What is `Agency'? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-03-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development of this new research agenda and to argue that there is a need for research in science education that attends to agency as a social practice. Despite increasing interest in student agency in educational research, the term 'agency' has lacked explicit operationalisation and, across the varied approaches, such as critical ethnography, ethnographies of communication, discourse analysis and symbolic interactionism, there has been a lack of coherence in its research usage. There has also been argument concerning the validity of the use of the term 'agency' in science education research. This article attempts to structure the variety of definitions of 'student agency' in science education research, identifies problems in the research related to assigning intentionality to research participants and argues that agency is a kind of discursive practice. The article also draws attention to the need for researchers to be explicit in the assumptions they rely upon in their interpretations of social worlds. Drawing upon the discursive turn in the social sciences, a definition of agency is provided, that accommodates the discursive practices of both individuals and the various functional social groups from whose activities classroom practice is constituted. The article contributes to building a focused research agenda concerned with understanding and promoting student agency in science.

  5. Development of an ICT in IBSE course for science teachers: A design-based research

    Science.gov (United States)

    Tran, Trinh-Ba

    2018-01-01

    Integration of ICT tools for measuring with sensors, analyzing video, and modelling into Inquiry-Based Science Education (IBSE) is a need globally recognized. The challenge to teachers is how to turn manipulation of equipment and software into manipulation of ideas. We have developed a short ICT in IBSE course to prepare and support science teachers to teach inquiry-based activities with ICT tools. Within the framework of design-based research, we first defined the pedagogical principles from the literature, developed core materials for teacher learning, explored boundary conditions of the training in different countries, and elaborated set-ups of the course for the Dutch, Slovak, and Vietnamese contexts. Next, we taught and evaluated three iterative cycles of the Dutch course set-ups for pre-service science teachers from four teacher-education institutes nationwide. In each cycle, data on the teacher learning was collected via observations, questionnaires, interviews, and documents. These data were then analyzed for the questions about faithful implementation and effectiveness of the course. Following the same approach, we taught and evaluated two cycles of the Slovak course set-ups for in-service science teachers in the context of the national accreditation programme for teacher professional development. In addition, we investigated applicability of the final Dutch course set-up in the context of the physics-education master program in Vietnam with adaptations geared to educational and cultural difference. Through the iterations of implementation, evaluation, and revision, eventually the course objectives were achieved to certain extent; the pedagogical principles and core materials proved to be effective and applicable in different contexts. We started this research and design project with the pedagogical principles and concluded it with these principles (i.e. complete theory-practice cycle, depth first, distributed learning, and ownership of learning) as the

  6. Promoting Translational Research Among Movement Science, Occupational Science, and Occupational Therapy.

    Science.gov (United States)

    Sainburg, Robert L; Liew, Sook-Lei; Frey, Scott H; Clark, Florence

    2017-01-01

    Integration of research in the fields of neural control of movement and biomechanics (collectively referred to as movement science) with the field of human occupation directly benefits both areas of study. Specifically, incorporating many of the quantitative scientific methods and analyses employed in movement science can help accelerate the development of rehabilitation-relevant research in occupational therapy (OT) and occupational science (OS). Reciprocally, OT and OS, which focus on the performance of everyday activities (occupations) to promote health and well-being, provide theoretical frameworks to guide research on the performance of actions in the context of social, psychological, and environmental factors. Given both fields' mutual interest in the study of movement as it relates to health and disease, the authors posit that combining OS and OT theories and principles with the theories and methods in movement science may lead to new, impactful, and clinically relevant knowledge. The first step is to ensure that individuals with OS or OT backgrounds are academically prepared to pursue advanced study in movement science. In this article, the authors propose 2 strategies to address this need.

  7. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  8. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Shelley (Sam) I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  9. The impact of science shops on university research and education

    DEFF Research Database (Denmark)

    Hende, Merete; Jørgensen, Michael Søgaard

    This report discusses the impact from university-based science shops on curricula and research. Experience from science shops show that besides assisting citizen groups, science shops can also contribute to the development of university curricula and research. This impact has been investigated...... through the SCIPAS questionnaire sent out to science shops and through follow-up interviews with employees from nine different university-based science shops and one university researcher. Not all the cases call themselves science shops, but in the report the term 'science shop' will be used most...... way or the other has had impact on university curricula and/or research. The analysis and the case studies have theoretically been based on literature on universities and education and research as institutions and a few articles about the impact of science shops on education and research. The analysis...

  10. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  11. A methodology to promote business development from research outcomes in food science and technology

    Directory of Open Access Journals (Sweden)

    Eduardo L. Cardoso

    2015-04-01

    Full Text Available Valorization of knowledge produced in research units has been a major challenge for research universities in contemporary societies. The prevailing forces have led these institutions to develop a “third mission”, the facilitation of technology transfer and activity in an entrepreneurial paradigm. Effective management of challenges encountered in the development of academic entrepreneurship and the associated valorization of knowledge produced by universities are major factors to bridge the gap between research and innovation in Europe.The need to improve the existing institutional knowledge valorization processes, concerning entrepreneurship and business development and the processes required were discussed.A case study was designed to describe the institutional knowledge valorization process in a food science and technology research unit and a related incubator, during a five year evaluation period that ended in 2012.The knowledge valorization processes benefited from the adoption of a structured framework methodology that led to ideas and teams from a business model generation to client development, in parallel, when possible, with an agile product/service development.Although academic entrepreneurship engagement could be improved, this case study demonstrated that stronger skills development was needed to enable the researcher to be more aware of business development fundamentals and therefore contribute to research decisions and the valorisation of individual and institutional knowledge assets. It was noted that the timing for involvement of companies in the research projects or programs varied with the nature of the research.

  12. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  13. Handbook of Research on Science Education and University Outreach as a Tool for Regional Development

    Science.gov (United States)

    Narasimharao, B. Pandu, Ed.; Wright, Elizabeth, Ed.; Prasad, Shashidhara, Ed.; Joshi, Meghana, Ed.

    2017-01-01

    Higher education institutions play a vital role in their surrounding communities. Besides providing a space for enhanced learning opportunities, universities can utilize their resources for social and economic interests. The "Handbook of Research on Science Education and University Outreach as a Tool for Regional Development" is a…

  14. [Recent developments on the scientific research in optometry and visual science in China].

    Science.gov (United States)

    Qu, Jia

    2010-10-01

    The current text reviewed the situation of the scientific research in the field of Optometry and visual sciences in the recent 5 to 6 years in our country. It showed the advancement and achievement in the myopic fundamental research and the application research of visual science. In addition, it also analyzed the guidance of research in solving the clinical visual issues and the significance of community service of research in eye care in public. This text indicated by the concrete current situation and the result data of research that the biology and optics, the double property of the eye endowed the distinguished feature to the research in Ophthalmology and Optometry, and that the cross cooperation of multidisciplinary promoted the innovation in the fields of Optometry and visual research. In future, the fields of Optometry and visual science in China will face up to more and more anticipations of the original and systematic research. The prophylaxis and treatment of myopia would be still a long-term and rough exploration theme in these fields.

  15. Digital platforms for research collaboration: using design science in developing a South African open knowledge repository

    CSIR Research Space (South Africa)

    van Biljon, J

    2017-05-01

    Full Text Available ) enabled collaboration through the design and development of a sustainable open knowledge repository (OKR) according to the design science research (DSR) paradigm. OKRs are tools used to support knowledge sharing and collaboration. The theoretical...

  16. Developing Effective Undergraduate Research Experience

    Science.gov (United States)

    Evans, Michael; Ilie, Carolina C.

    2011-03-01

    Undergraduate research is a valuable educational tool for students pursuing a degree in physics, but these experiences can become problematic and ineffective if not handled properly. Undergraduate research should be planned as an immersive learning experience in which the student has the opportunity to develop his/her skills in accordance with their interests. Effective undergraduate research experiences are marked by clear, measurable objectives and frequent student-professor collaboration. These objectives should reflect the long and short-term goals of the individual undergraduates, with a heightened focus on developing research skills for future use. 1. Seymour, E., Hunter, A.-B., Laursen, S. L. and DeAntoni, T. (2004), ``Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three-year study''. Science Education, 88: 493--534. 2. Behar-Horenstein, Linda S., Johnson, Melissa L. ``Enticing Students to Enter Into Undergraduate Research: The Instrumentality of an Undergraduate Course.'' Journal of College Science Teaching 39.3 (2010): 62-70.

  17. Promoting Shifts in Preservice Science Teachers' Thinking through Teaching and Action Research in Informal Science Settings

    Science.gov (United States)

    Wallace, Carolyn S.

    2013-08-01

    The purpose of this study was to investigate the influence of an integrated experiential learning and action research project on preservice science teachers' developing ideas about science teaching, learning, and action research itself. The qualitative, interpretive study examined the action research of 10 master's degree students who were involved in service learning with children in informal education settings. Results indicated that all of the participants enhanced their knowledge of children as diverse learners and the importance of prior knowledge in science learning. In-depth case studies for three of the participants indicated that two developed deeper understandings of science learners and learning. However, one participant was resistant to learning and gained more limited understandings.

  18. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  19. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  20. National soft science research task item-organization and implementation

    International Nuclear Information System (INIS)

    Zhang Yiming

    2014-01-01

    International Thermonuclear Experimental Reactor (ITER) project, as the most large-scale science project and research cooperation plan in the human history, has brought together major world-wide scientific and technological achievements in current controlled magnetic confinement fusion research. The project is aiming at validating the scientific and technological feasibility of the peaceful use of fusion energy, laying a science and technology foundation for the realization of the fusion energy commercialization. Promoted by the ITER project, the nuclear fusion frontier science researches and experiments in China have made a deep development, and have made remarkable achievements. Based on this situation, the Fusion Information Division of the Southwestern Institute of Physics (SWIP) has undertaken the soft science research task item -Prediction of Nuclear Fusion Energy Research and Development Technology in China,issued by the Ministry of Science and Technology of China. The research team has gone through these processes such as documentation collection and investigation, documentation reading and refining, outline determination, the first draft writing, content analysis and optimization for the draft, and the internal trial within the research team, review and revise from the experts at SWIP and out of SWIP, evaluation from China International Nuclear Fusion Energy Program Execution Center (ITER China DA), as well as evaluation from the famous experts in domestic fusion community by means of letters and mail. Finally, the research team has completed the research report successfully. In this report, the fusion development strategies of the world's leading fusion research countries and organizations participating in ITER project have been described. Moreover, some comparisons and analysis in this report have been made in order to provide scientific and technological research, analysis base, as well as strategic decision references for exploring medium and long term

  1. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  2. Sports-science roundtable: does sports-science research influence practice?

    Science.gov (United States)

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  3. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  4. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  5. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  6. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  7. Improving Science and IT Literacy by Providing Urban-Based Environmental Science Research Opportunities

    Science.gov (United States)

    Cuff, K. E.; Corazza, L.; Liang, J.

    2007-12-01

    A U.C. Berkeley-based outreach program known as Environmental Science Information Technology Activities has been in operation over the past four years. The primary aim of the program is to provide opportunities for grades 9 and 10 students in diverse East San Francisco Bay Area communities to develop deeper understandings of the nature and conduct of science, which will increase their capacity to enroll and perform successfully in science, technology, engineering, and mathematics (STEM) courses in the future. Design of the program has been informed by recent research that indicates a close relationship between educational activities that promote the perception of STEM as being relevant and the ability to foster development of deeper conceptual understandings among teens. Accordingly, ESITA includes an important student-led environmental science research project component, which provides participants with opportunities to engage in research investigations that are directly linked to relevant, real-world environmental problems and issues facing their communities. Analysis of evidence gleaned from questionnaires, interviews with participants and specific assessment/evaluation instruments indicates that ESITA program activities, including after-school meetings, summer and school year research projects, and conference preparations and presentations has provided students with high-quality inquiry science experiences that increased their knowledge of STEM and IT concepts, as well as their understanding of the nature of the scientific enterprise. In addition, the program has achieved a high degree of success in that it has: enhanced participants' intellectual self-confidence with regard to STEM; developed deeper appreciation of how scientific research can contribute to the maintenance of healthy local environments; developed a greater interest in participating in STEM-related courses of study and after school programs; and improved attitudes toward STEM. Overall

  8. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  9. Geopolitical research in ukrainian science

    Directory of Open Access Journals (Sweden)

    O. V. Dashevs’ka

    2015-12-01

    Full Text Available The intensity and diversity of political and geopolitical processes in Ukraine give greater empirical basis for Geopolitical Studies. However, the popularity of this research is purely populist currents, leaving only a quarter of all science research. The aim of the study is to examine the specific dynamics and geopolitical studies in modern Ukrainian political thought. This paper reviews the dissertation research of local scientists. It was noted that most of the work falls on political sciences, specialty 23.00.04 - political problems of international systems and global development. The main trends in domestic geopolitical studies: 1. Identification of Ukraine’s place on the geopolitical map of the world by analyzing the geopolitical position and historical and political research; 2. Study regional issues, bilateral relations between countries; 3. Research general issues of international security, terrorism and the role of Ukraine in the system of international security; 4. Analysis of ethnic and political problems in Ukraine and their impact on international relations; 5. Investigation euro integration aspirations of Ukraine as the only right in terms of the geopolitical position; 6. General geopolitical studies that examined the practice of various geopolitical theories and concepts in different times and different countries. The analysis presented dissertations and other scientific literature suggests domestic authors only the first stage of mastering such important political science as geopolitics.

  10. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  11. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  12. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  13. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  14. Field Research in the Teaching of Undergraduate Soil Science

    Science.gov (United States)

    Brevik, Eric C.; Senturklu, Songul; Landblom, Douglas

    2015-04-01

    Several studies have demonstrated that undergraduate students benefit from research experiences. Benefits of undergraduate research include 1) personal and intellectual development, 2) more and closer contact with faculty, 3) the use of active learning techniques, 4) creation of high expectations, 5) development of creative and problem-solving skills, 6) greater independence and intrinsic motivation to learn, and 7) exposure to practical skills. The scientific discipline also benefits, as studies have shown that undergraduates who engage in research experiences are more likely to remain science majors and finish their degree program (Lopatto, 2007). Research experiences come as close as possible to allowing undergraduates to experience what it is like to be an academic or research member of their profession working to advance their discipline. Soils form in the field, therefore, field experiences are very important in developing a complete and holistic understanding of soil science. Combining undergraduate research with field experiences can provide extremely beneficial outcomes to the undergraduate student, including increased understanding of and appreciation for detailed descriptions and data analysis as well as an enhanced ability to see how various parts of their undergraduate education come together to understand a complex problem. The experiences of the authors in working with undergraduate students on field-based research projects will be discussed, along with examples of some of the undergraduate research projects that have been undertaken. In addition, student impressions of their research experiences will be presented. Reference Lopatto, D. 2007. Undergraduate research experiences support science career decisions and active learning. CBE -- Life Sciences Education 6:297-306.

  15. Science curiosity in learning environments: developing an attitudinal scale for research in schools, homes, museums, and the community

    Science.gov (United States)

    Weible, Jennifer L.; Toomey Zimmerman, Heather

    2016-05-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.

  16. Earth Sciences Division Research Summaries 2006-2007

    International Nuclear Information System (INIS)

    DePaolo, Donald; DePaolo, Donald

    2008-01-01

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  17. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  18. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  19. Research and teaching nuclear sciences at universities in developing countries

    International Nuclear Information System (INIS)

    1981-11-01

    A formulation is given for a set of ground rules to be applied when introducing or improving nuclear science training at the university level in developing countries. Comments are made on the general requirements needed for the teaching of nuclear science at the university and particular suggestions made for the areas of nuclear physics radiochemistry and radiation chemistry and electronics

  20. WTEC Panel Report on International Assessment of Research and Development in Simulation-Based Engineering and Science

    Energy Technology Data Exchange (ETDEWEB)

    Glotzer, S. C.; Kim, S.; Cummings, P. T.; Deshmukh, A.; Head-Gordon, M.; Karniadakis, G.; Petzold, L.; Sagui, C.; Shinozuka, M.

    2013-07-30

    This WTEC panel report assesses the international research and development activities in the field of Simulation- Based Engineering and Science (SBE&S). SBE&S involves the use of computer modeling and simulation to solve mathematical formulations of physical models of engineered and natural systems. SBE&S today has reached a level of predictive capability that it now firmly complements the traditional pillars of theory and experimentation/observation. As a result, computer simulation is more pervasive today – and having more impact – than at any other time in human history. Many critical technologies, including those to develop new energy sources and to shift the cost-benefit factors in healthcare, are on the horizon that cannot be understood, developed, or utilized without simulation. A panel of experts reviewed and assessed the state of the art in SBE&S as well as levels of activity overseas in the broad thematic areas of life sciences and medicine, materials, and energy and sustainability; and in the crosscutting issues of next generation hardware and algorithms; software development; engineering simulations; validation, verification, and uncertainty quantification; multiscale modeling and simulation; and SBE&S education. The panel hosted a U.S. baseline workshop, conducted a bibliometric analysis, consulted numerous experts and reports, and visited 59 institutions and companies throughout East Asia and Western Europe to explore the active research projects in those institutions, the computational infrastructure used for the projects, the funding schemes that enable the research, the collaborative interactions among universities, national laboratories, and corporate research centers, and workforce needs and development for SBE&S.

  1. Building an mlearning research framework through design science research

    CSIR Research Space (South Africa)

    Ford, M

    2014-11-01

    Full Text Available The purpose of this paper is to provide an explanation of how Design Science research has been applied in order to develop a mobile learning framework for the ICT4RED project which is currently in progress in Cofimvaba in the Eastern Cape Province...

  2. Service Evaluation in a Special Library: Supporting Development Research at the Institute of Social Sciences Library, New Delhi.

    Science.gov (United States)

    Ghosh, Sharmila

    2003-01-01

    Discusses the development of special libraries to meet demands of interdisciplinary information and describes the library at The Institute of Social Sciences, New Delhi (India) which establishes a synergy between research and information derived from research through a computerized information management system. Considers evaluation of special…

  3. Reel Science: An Ethnographic Study of Girls' Science Identity Development in and through Film

    Science.gov (United States)

    Chaffee, Rachel L.

    2016-01-01

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and…

  4. 1995 Federal Research and Development Program in Materials Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  5. A profile of sports science research (1983-2003).

    Science.gov (United States)

    Williams, Stephen John; Kendall, Lawrence R

    2007-08-01

    A majority of sports science research is undertaken in universities and dedicated research centres, such as institutes of sport. Reviews of literature analysing and categorising research have been carried out, but categories identified have been limited to research design and data gathering techniques. Hence there is a need to include categories such as discipline, subjects and targeted sport. A study was conducted using document analysis method to gather data that described and categorised performance-based sports science research projects in Australian universities and institutes of sport. An instrument was designed that could be used by researchers to analyse and profile research in the area of sports science. The instrument contained six categories: targeted sport, primary study area, participant type, research setting, methodology and data gathering techniques. Research documents analysed consisted of 725 original unpublished research reports/theses. Results showed that over two-thirds of research projects were targeted to specific sports and, of this group, nearly half involved four sports: cycling, rowing, athletics and swimming. Overall, physiology was the most researched scientific discipline. The most frequently used research method was experimental design, and the most frequently used data gathering technique was physiological (performance) measures. Two-thirds of research was conducted in laboratory settings, and nearly half of the research was conducted with elite or sub-elite athletes as participants/subjects. The findings of this study provide an overall synopsis of performance-based sports science research conducted in Australia over the last 20 years, and should be of considerable importance in the ongoing development of sports science research policy in Australia.

  6. Using Action Research to Engage K-6 Teachers in Nature of Science Inquiry as Professional Development

    Science.gov (United States)

    Cullen, Theresa A.; Akerson, Valarie L.; Hanson, Deborah L.

    2010-12-01

    Teachers are required to work with data on a daily basis to assess the effectiveness of their teaching strategies, but may not approach it as research. This paper presents a reflective discussion of how and when a professional development team used an action research project to help 12 K-6 teachers explore the effectiveness of reform based Nature of Science (NOS) teaching strategies in their classrooms. The team encouraged community development and provided “just in time” supports to scaffold the steps of the action research process for teachers. The discussion includes concerns they addressed and issues related to management and support of the professional development model. Evaluation results are shared to suggest how this approach can be improved in the future.

  7. Validity and Reliability in Social Science Research

    Science.gov (United States)

    Drost, Ellen A.

    2011-01-01

    In this paper, the author aims to provide novice researchers with an understanding of the general problem of validity in social science research and to acquaint them with approaches to developing strong support for the validity of their research. She provides insight into these two important concepts, namely (1) validity; and (2) reliability, and…

  8. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  9. Suborbital Research and Development Opportunities

    Science.gov (United States)

    Davis, Jeffrey R.

    2011-01-01

    This slide presentation reviews the new strategies for problem solving in the life sciences in the suborbital realm. Topics covered are: an overview of the space life sciences, the strategic initiatives that the Space Life Sciences organization engaged in, and the new business model that these initiatives were developed. Several opportunities for research are also reviewed.

  10. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  11. Developing Interpretive Power in Science Teaching

    Science.gov (United States)

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  12. Astronomy in Research-Based Science Education (A-RBSE): A Review of a Decade of Professional Development Programs in Support of Teacher and Student Research at the National Optical Astronomy Observatory

    Science.gov (United States)

    Pompea, S. M.; Garmany, C. D.; Walker, C. E.; Croft, S. K.

    2006-12-01

    We will review the evolution of the Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory over the last eleven years. The program has evolved from an NSF-funded program in teacher enhancement to an observatory-supported core education initiative. The present manifestation of our program is an umbrella of programs designed to aid teachers in doing research with astronomical data archives, small telescopes, large research-grade telescopes, and the Spitzer Space Telescope. The professional development program has addressed basic questions on the nature of research, best techniques to bring it into the classroom, the value of authentic research, and the mix of on-line versus in- person professional development. The current program is used to test new models of teacher professional development that for outreach programs for the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program has been funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  13. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...... with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge...

  14. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge......Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...

  15. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  16. Consultancy research as a barrier to strengthening social science research capacity in Uganda.

    Science.gov (United States)

    Wight, Daniel; Ahikire, Josephine; Kwesiga, Joy C

    2014-09-01

    There is a shortage of senior African social scientists available to lead or manage research in Africa, undermining the continent's ability to interpret and solve its socio-economic and public health problems. This is despite decades of investment to strengthen research capacity. This study investigated the role of individually commissioned consultancy research in this lack of capacity. In 2006 structured interviews (N = 95) and two group discussions (N = 16 total) were conducted with a fairly representative sample of Ugandan academic social scientists from four universities. Twenty-four senior members of 22 Ugandan and international commissioning organizations were interviewed. Eight key actors were interviewed in greater depth. Much of Ugandan social science research appears to take the form of small, individually contracted consultancy projects. Researchers perceived this to constrain their professional development and, more broadly, social science research capacity across Uganda. Conversely, most research commissioners seemed broadly satisfied with the research expertise available and felt no responsibility to contribute to strengthening research capacity. Most consultancy research does not involve institutional overheads and there seems little awareness of, or interest in, such overheads. Although inequalities in the global knowledge economy are probably perpetuated primarily by macro-level factors, in line with Dependency Theory, meso-level factors are also important. The current research market and institutional structures in Uganda appear to create career paths that seriously impede the development of high quality social science research capacity, undermining donor investments and professional effort to strengthen this capacity. These problems are probably generic to much of sub-Saharan Africa. However, both commissioning and research organizations seem ready, in principle, to establish national guidelines for institutional research consultancies. These

  17. Science and Team Development

    Directory of Open Access Journals (Sweden)

    Bryan R. Cole

    2006-07-01

    Full Text Available This paper explores a new idea about the future development of science and teams, and predicts its possible applications in science, education, workforce development and research. The inter-relatedness of science and teamwork developments suggests a growing importance of team facilitators’ quality, as well as the criticality of detailed studies of teamwork processes and team consortiums to address the increasing complexity of exponential knowledge growth and work interdependency. In the future, it will become much easier to produce a highly specialised workforce, such as brain surgeons or genome engineers, than to identify, educate and develop individuals capable of the delicate and complex work of multi-team facilitation. Such individuals will become the new scientists of the millennium, having extraordinary knowledge in variety of scientific fields, unusual mix of abilities, possessing highly developed interpersonal and teamwork skills, and visionary ideas in illuminating bold strategies for new scientific discoveries. The new scientists of the millennium, through team consortium facilitation, will be able to build bridges between the multitude of diverse and extremely specialised knowledge and interdependent functions to improve systems for the further benefit of mankind.

  18. Research | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering & Applied Science. Please explore this webpage to learn about research activities and Associate Dean for Research College of Engineering and Applied Sciences Director, Center for Sustainable magazine. College ofEngineering & Applied Science Academics About People Students Research Business

  19. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  20. Topical Review: Translating Translational Research in Behavioral Science.

    Science.gov (United States)

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Brazilian science communication research: national and international contributions.

    Science.gov (United States)

    Barata, Germana; Caldas, Graça; Gascoigne, Toss

    2017-08-31

    Science communication has emerged as a new field over the last 50 years, and its progress has been marked by a rise in jobs, training courses, research, associations, conferences and publications. This paper describes science communication internationally and the trends and challenges it faces, before looking at the national level. We have documented science communication activities in Brazil, the training courses, research, financial support and associations/societies. By analyzing the publication of papers, dissertations and theses we have tracked the growth of this field, and compared the level of activity in Brazil with other countries. Brazil has boosted its national research publications since 2002, with a bigger contribution from postgraduate programs in education and communication, but compared to its national research activity Brazil has only a small international presence in science communication. The language barrier, the tradition of publishing in national journals and the solid roots in education are some of the reasons for that. Brazil could improve its international participation, first by considering collaborations within Latin America. International publication is dominated by the USA and the UK. There is a need to take science communication to the next level by developing more sophisticated tools for conceptualizing and analyzing science communication, and Brazil can be part of that.

  2. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    Science.gov (United States)

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-12-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on teachers' development of ISI pedagogical knowledge and practices. It centers on documenting diverse teachers' journeys of experiencing ISI as well as developing knowledge of ISI. It was found that there was variation in ISI understanding and practice among the teachers as a result of the combination of teachers' experiences, beliefs, and participation. Thus, in order to help teachers develop ISI knowledge and pedagogy, barriers to ISI knowledge development and implementation must also be addressed. Professional developers must articulate clear program goals to all stakeholders including an explicit definition of ISI and the ability to recognize ISI attributes during research experiences as well as during classroom implementation. Teachers must also be held accountable for participation and reflection in all aspects of professional development. Program developers must also take into consideration teachers' needs, attitudes, and beliefs toward their students when expecting changes in teachers' cognition and behavior to teach inquiry-rich challenging science.

  3. Second-Order Science of Interdisciplinary Research

    DEFF Research Database (Denmark)

    Alrøe, Hugo Fjelsted; Noe, Egon

    2014-01-01

    require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where...... there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory...... of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem...

  4. Operational research as implementation science: definitions, challenges and research priorities.

    Science.gov (United States)

    Monks, Thomas

    2016-06-06

    Operational research (OR) is the discipline of using models, either quantitative or qualitative, to aid decision-making in complex implementation problems. The methods of OR have been used in healthcare since the 1950s in diverse areas such as emergency medicine and the interface between acute and community care; hospital performance; scheduling and management of patient home visits; scheduling of patient appointments; and many other complex implementation problems of an operational or logistical nature. To date, there has been limited debate about the role that operational research should take within implementation science. I detail three such roles for OR all grounded in upfront system thinking: structuring implementation problems, prospective evaluation of improvement interventions, and strategic reconfiguration. Case studies from mental health, emergency medicine, and stroke care are used to illustrate each role. I then describe the challenges for applied OR within implementation science at the organisational, interventional, and disciplinary levels. Two key challenges include the difficulty faced in achieving a position of mutual understanding between implementation scientists and research users and a stark lack of evaluation of OR interventions. To address these challenges, I propose a research agenda to evaluate applied OR through the lens of implementation science, the liberation of OR from the specialist research and consultancy environment, and co-design of models with service users. Operational research is a mature discipline that has developed a significant volume of methodology to improve health services. OR offers implementation scientists the opportunity to do more upfront system thinking before committing resources or taking risks. OR has three roles within implementation science: structuring an implementation problem, prospective evaluation of implementation problems, and a tool for strategic reconfiguration of health services. Challenges facing OR

  5. A Proposal for Marketing Applied Research in Science and Applied Colleges at the Yemeni Universities and Using it in Community Service and Development

    Directory of Open Access Journals (Sweden)

    Eftehan Abdu Frhan Saif Almikhlafi

    2017-10-01

    Full Text Available This study aimed to propose a set of elements and mechanisms of marketing applied research in the Yemeni universities and ways of using such research to support community development. This can be done by assessing the extent of interest in the marketing of applied research and making use of them to serve and community development in the science and applied colleges at the Yemeni government universities, and determining the main obstacles in this regard from the point of view the study sample. The study sample included (287 individuals selected from teachers and researchers at the science and applied colleges in some Yemeni government universities, and research centers affiliated to them. The researchers adopted the descriptive and analytical approach, and designed a questionnaire to gather primary data from the study sample. The researchers used some appropriate statistical methods to analyze the study data and test hypotheses. The study results showed that g science and applied colleges in the Yemeni universities do not pay enough attention to marketing applied scientific research, and to using such research in community service and development. The participants of the study indicated the presence of many obstacles to marketing of applied scientific research in the Yemeni universities. The results also showed that there were no statistically significant differences in the assessments of the study sample regarding the lack of attention paid by scientific and applied colleges in the Yemeni public universities to marketing of their scientific and applied research due to these variables (type, academic degree, and applied colleges of the study sample individuals. The study concluded by providing a proposal covering some elements and mechanisms to be used for marketing applied researches of the science and applied colleges at the Yemeni Universities and to use them in community service and development. It also provided recommendations regarding the

  6. A Framework for a Future Swedish Policy for Research and Development in Information Science and Technology.

    Science.gov (United States)

    Lofstrom, Mats; And Others

    Prepared to stimulate discussion on how to design a Swedish policy in information science and technology, this report presents the state-of-the-art of this field as it pertains to the dissemination of scientific information and outlines a program for future research and development. The review portion examines systems for current information…

  7. Good science, bad science: Questioning research practices in psychological research

    NARCIS (Netherlands)

    Bakker, M.

    2014-01-01

    In this dissertation we have questioned the current research practices in psychological science and thereby contributed to the current discussion about the credibility of psychological research. We specially focused on the problems with the reporting of statistical results and showed that reporting

  8. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  9. Federal Funds for Research and Development. Fiscal Years 1982, 1983, and 1984. Volume XXXII. Detailed Statistical Tables. Surveys of Science Resources Series.

    Science.gov (United States)

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Detailed statistical tables on federal funds for research and development (R&D) are provided in this document. Tables are organized into the following sections: research, development, and R&D plant; R&D--agency, character of work, and performer; total research--agency, performer, and field of science; basic research--agency, performer,…

  10. Learning as Researchers and Teachers: The Development of a Pedagogical Culture for Social Science Research Methods?

    Science.gov (United States)

    Kilburn, Daniel; Nind, Melanie; Wiles, Rose

    2014-01-01

    In light of calls to improve the capacity for social science research within UK higher education, this article explores the possibilities for an emerging pedagogy for research methods. A lack of pedagogical culture in this field has been identified by previous studies. In response, we examine pedagogical literature surrounding approaches for…

  11. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  13. EVEREST: Creating a Virtual Research Environment for Earth Science

    Science.gov (United States)

    Glaves, H.

    2017-12-01

    There is an increasing trend towards researchers working together using common resources whilst being geographically dispersed. The EVER-EST project is developing a range of both generic and domain specific technologies, tailored to the needs of Earth Science (ES) communities, to create a virtual research environment (VRE) that supports this type of dynamic collaborative research. The EVER-EST VRE provides a suite of services to overcome the existing barriers to sharing of Earth Science data and information allowing researchers to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, and with other domains beyond the Earth Sciences. Researchers will be able to seamlessly manage both the data and the scientific methods applied in their observations and modelling that lead to results that need to be attributable, validated and shared both within their communities and more widely in the form of scholarly communications.To ensure that the EVER-EST VRE meets the specific needs of the Earth Science domain, it is being developed and validated in consultation with four pre-selected virtual research communities (VRC) that include ocean observing, natural hazards, land monitoring and volcanic risk management. The requirements of these individual VRCs for data, software, best practice and community interaction are used to customise the VRE platform This user-centric approach allows the EVER-EST infrastructure to be assessed in terms of its capability to satisfy the heterogeneous needs of Earth Science communities for more effective collaboration, greater efficiency and increasingly innovative research. EVER-EST is a three year project funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no 674907.

  14. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  15. LiLEDDA: A Six-Step Forum-Based Netnographic Research Method for Nursing Science

    Directory of Open Access Journals (Sweden)

    MARTIN SALZMANN-ERIKSON

    2012-01-01

    Full Text Available Internet research methods in nursing science are less developed than in other sciences. We choose to present an approach to conducting nursing research on an internet-based forum. This paper presents LiLEDDA, a six-step forum-based netnographic research method for nursing science. The steps consist of: 1. Literature review and identification of the research question(s; 2. Locating the field(s online; 3. Ethical considerations; 4. Data gathering; 5. Data analysis and interpretation; and 6. Abstractions and trustworthiness. Traditional research approaches are limiting when studying non-normative and non-mainstream life-worlds and their cultures. We argue that it is timely to develop more up-to-date research methods and study designs applicable to nursing science that reflect social developments and human living conditions that tend to be increasingly online-based.

  16. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  17. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  18. Spacelab Life Sciences Research Panel

    Science.gov (United States)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  19. Design science research for decision support systems development: recent publication trends in the premier IS journals

    Directory of Open Access Journals (Sweden)

    Shah J Miah

    2016-11-01

    Full Text Available This paper presents a contemporary literature review of design science research (DSR studies in the domain of decision support systems (DSS development. The latest studies in the DSS design domain claim that DSR methodologies are the most popular design approach, but many details are still yet to be revealed for supporting this claim. In particular, it is important to thoroughly investigate the trends in either the form or deeper insights in use of DSR in this field. The aim of this study is to analyse the existing DSS design science studies to reveal insights into the use of DSR, so that we can outline research agenda for a special issue, based on findings of analysis. We selected articles (from 2005 to 2014 that were published in seven selected premier IS journals (ranked as A* in the ABDC journal ranking. The selected 57 sample articles are representative of DSS design studies that used DSR in theorising, designing, implementing, and evaluating DSS solutions. We discuss the theoretical positions of DSR for DSS development through six categories: DSS artefacts, DSR methods, DSR views, user involvement, DSS design innovations and problem domains. The findings indicate that new studies are needed to fill the knowledge gap in DSS design science, for more solid theoretical basis in near future.

  20. THE OPTIMIZATION OF GOVERNMENT'S SPENDING ON RESEARCH AND DEVELOPMENT IN THE ENTREPRENEURIAL SECTOR OF SCIENCE

    Directory of Open Access Journals (Sweden)

    A. M. Khamatkanova

    2015-01-01

    Full Text Available The article suggests that it is critical to optimise the State's expenses on research and development (R&D. The authors suggest that one of the key instruments for increasing efficiency in spending of government's resources on R&D sector would be to introduce new models of financing projects from the entrepreneurial sector of science. This sector uses the largest gross expenditures on R&D (60% and more than half of State resources. According to international practice it is evident that the entrepreneurial sector of science is precisely the one that should take the lead in moving R&D towards new technological milestones. However, a relative analysis of State and entrepreneurial sectors of Russian science has shown that the industrial sector, having spent 60% of National resources on R&D and owing 47% of total scientific personnel, has yet not contributed to re-industrialisation of domestic industry.

  1. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  2. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  3. Research in health sciences library and information science: a quantitative analysis.

    Science.gov (United States)

    Dimitroff, A

    1992-10-01

    A content analysis of research articles published between 1966 and 1990 in the Bulletin of the Medical Library Association was undertaken. Four specific questions were addressed: What subjects are of interest to health sciences librarians? Who is conducting this research? How do health sciences librarians conduct their research? Do health sciences librarians obtain funding for their research activities? Bibliometric characteristics of the research articles are described and compared to characteristics of research in library and information science as a whole in terms of subject and methodology. General findings were that most research in health sciences librarianship is conducted by librarians affiliated with academic health sciences libraries (51.8%); most deals with an applied (45.7%) or a theoretical (29.2%) topic; survey (41.0%) or observational (20.7%) research methodologies are used; descriptive quantitative analytical techniques are used (83.5%); and over 25% of research is funded. The average number of authors was 1.85, average article length was 7.25 pages, and average number of citations per article was 9.23. These findings are consistent with those reported in the general library and information science literature for the most part, although specific differences do exist in methodological and analytical areas.

  4. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  5. Multi-User Hardware Solutions to Combustion Science ISS Research

    Science.gov (United States)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  6. View all initiatives | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Science Granting Councils Initiative in Sub-Saharan Africa is focused on strengthening the capacities of science granting councils in order to support research and evidence-based policies that will contribute to economic and social development in Sub-Saharan Africa. We fund researchers driving global change.

  7. Research Journal of Health Sciences

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... The Research Journal of Health Sciences is dedicated to promoting high quality research work in the field of health and related biological sciences. It aligns ...

  8. Social and ethical dimensions of nanoscale science and engineering research.

    Science.gov (United States)

    Sweeney, Aldrin E

    2006-07-01

    Continuing advances in human ability to manipulate matter at the atomic and molecular levels (i.e. nanoscale science and engineering) offer many previously unimagined possibilities for scientific discovery and technological development. Paralleling these advances in the various science and engineering sub-disciplines is the increasing realization that a number of associated social, ethical, environmental, economic and legal dimensions also need to be explored. An important component of such exploration entails the identification and analysis of the ways in which current and prospective researchers in these fields conceptualize these dimensions of their work. Within the context of a National Science Foundation funded Research Experiences for Undergraduates (REU) program in nanomaterials processing and characterization at the University of Central Florida (2002-2004), here I present for discussion (i) details of a "nanotechnology ethics" seminar series developed specifically for students participating in the program, and (ii) an analysis of students' and participating research faculty's perspectives concerning social and ethical issues associated with nanotechnology research. I conclude with a brief discussion of implications presented by these issues for general scientific literacy and public science education policy.

  9. Symposium Connects Government Problems with State of the Art Network Science Research

    Science.gov (United States)

    2015-10-16

    Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering

  10. Comfort and Content: Considerations for Informal Science Professional Development

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Norman G.; Lederman, Judith S.

    2014-01-01

    This study looked at a life science course that was offered at and taught by education staff of a large informal science institution (ISI) located in the Midwest. The curriculum, materials, and agendas for the course were developed by education staff and complemented a permanent life science exhibition. The researcher developed a content test…

  11. Developing Atmospheric Science Tools for Teachers Based on Research at the Pico Mountain Observatory, Pico Island, Azores

    Science.gov (United States)

    Harkness, L.; Mazzoleni, L. R.; Dzepina, K.; Mazzoleni, C.; China, S.

    2013-12-01

    Atmospheric science and climate change are becoming increasingly important, especially in education, as the Next Generation Science Standards now include climate change. A collaborating team of research scientists and students are studying the free troposphere, specifically the aerosol composition and properties, on the island of Pico in the Azores Archipelago. The research station sits in the caldera of Mount Pico, 2225 meters above sea level. At this elevation, the station is above the marine boundary layer, thus placing it in the free troposphere. In this work, collaboration between a high school Earth Science teacher and university researchers was formed with the goal of developing classroom and outreach materials regarding atmospheric science. Among the materials, a video was created containing: site and project background, explanation of some of the instruments used and candid conversations regarding science and research. The video serves several purposes, such as informing students and the general public about what is happening in the atmosphere and informing students about the importance of science and research. The video could also be used to educate the local island community and tourists. Other materials designed include data directly obtained from the project, such as measurements of aerosol particles in electron microscopy photos (which were imaged for particle morphology and size), and composition of the aerosol particles. Students can use this evidence, as well as other data, to gain a better understanding of aerosols and the overall effect they have on the climate. Students will discover this evidence as they work through a series of experiments and activities. Using the strategy of Claim-Evidence-Reasoning as a way to answer scientific questions, students will use the evidence they gathered to explain their ideas. One such question could be, 'How do aerosols affect the climate?' and the student's 'claim' is their answer to that question. In the

  12. Summative report of the public competition research and development on nuclear science and technology in the fiscal year 1998 through 2003

    International Nuclear Information System (INIS)

    2005-09-01

    Japan Atomic Energy Research Institute started the public competition research and development on nuclear science and technology in 1998, and closed it in 2003. This report describes the system of the competition research and development, application situations, R and D subjects adopted, evaluation findings, outputs produced, achievements and problems, as a summative report of practice of the system for six years. (author)

  13. Development process and achievements of China nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wen Xianfang

    2009-01-01

    This paper outlines the creation of our nuclear agricultural sciences and the development process as well as the main results for agricultural applications of nuclear technology. Nuclear agricultural sciences in China began in 1956, after 50 years of development, the collaborative research network, the academic exchange network, and the international exchange network have been formatted. These three networks comprehensively have promoted the formation and development of China nuclear agricultural sciences. Remarkable results have been achieved in the fields of radiation mutation breeding, space mutation breeding, isotope tracer technique application in agriculture, agricultural products storage and preservation of irradiation processing, irradiation sterile insect technique, low-doses of radiation to stimulate output. In addition, the concept of suggestions on the future development of China nuclear agricultural sciences, as well as the priorities of research fields are put forward. (authors)

  14. Land, Oil Spill, and Waste Management Research Publications in the Science Inventory

    Science.gov (United States)

    Resources from the Science Inventory database of EPA's Office of Research and Development, as well as EPA's Science Matters journal, include research on managing contaminated sites and ground water modeling and decontamination technologies.

  15. Enrolling science teachers in continual professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2010-01-01

    The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest...... that the proposed professional development program, based around group learning, should be formatively assessed, researched and refined over time following the principles of design based research, likewise the teachers' classroom interventions....

  16. Research and development of grid computing technology in center for computational science and e-systems of Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Suzuki, Yoshio

    2007-01-01

    Center for Computational Science and E-systems of the Japan Atomic Energy Agency (CCSE/JAEA) has carried out R and D of grid computing technology. Since 1995, R and D to realize computational assistance for researchers called Seamless Thinking Aid (STA) and then to share intellectual resources called Information Technology Based Laboratory (ITBL) have been conducted, leading to construct an intelligent infrastructure for the atomic energy research called Atomic Energy Grid InfraStructure (AEGIS) under the Japanese national project 'Development and Applications of Advanced High-Performance Supercomputer'. It aims to enable synchronization of three themes: 1) Computer-Aided Research and Development (CARD) to realize and environment for STA, 2) Computer-Aided Engineering (CAEN) to establish Multi Experimental Tools (MEXT), and 3) Computer Aided Science (CASC) to promote the Atomic Energy Research and Investigation (AERI). This article reviewed achievements in R and D of grid computing technology so far obtained. (T. Tanaka)

  17. Genetic Research Methodology Meets Early Childhood Science Education Research: A Cultural-Historical Study of Child’s Scientific Thinking Development

    Directory of Open Access Journals (Sweden)

    Fragkiadaki G.,

    2016-12-01

    Full Text Available The study reported in this paper aims to structure a cultural-historical understanding on how early childhood children experience science and how they develop scientific thinking as they interact with the social, cultural and material world. Moving beyond the cognitive dimensions of learning by interrelating different aspects of the process of children’s scientific thinking development constitutes a research prior- ity for the study. From a wide range of collected data, in the present article one qualitative empirical case study is presented. The detailed single example that is analyzed refers to a kindergarten female student, aged 5.2 years old, from an urban area of Greece. A developmental research methodology as specified from the requirements of cultural-historical theory framework is used. Following four of the main principles of the experimental genetic method, this study creates a fecund ground for a cultural-historical exploration and interpretation of the very processes of the child’s development. The collection of the data was achieved through expanded, open-type conversations conducted at three concrete phases between the case study child, two of her peers and the educator. Drawing upon the system of theoretical concepts of cultural- historical theory the analysis is mainly based on the concept of perezhivanie as analytical tool as well as the concept of the developmental trajectories. The concept of the conceptualization of a precursor model as a theoretical tool that derives from the field of Science Education is also used. The analysis gives insights into how a certain social situation between children and educators in kindergarten settings becomes the unique social situation of a child’s development. Using as a base the dialectic perspective that Vygotsky posed in the analysis of human psyche, the study in this paper offers a creative insight in order to elaborate on a broad and dynamic understanding of the child

  18. Beliefs to practice in postsecondary science education: The value of research/the research value

    Science.gov (United States)

    Mann, Shelley Donna

    The intent of this study was to examine how beliefs of postsecondary science educators about the nature of science, and of education, influence their pedagogical decisions. Data were collected by interviewing six instructors who held Doctoral degrees in physics, chemistry, or biology, and by observing them in their classrooms. Grounded theory methodology guided data collection and analysis. Instructors shared many similarities. During childhood each became interested in a particular area of science, and surprisingly, was influenced by cross-gender role models. Each performed well in school, possessed a strong sense of self-efficacy, and was optimistic about the future. Initially, none chose teaching as their career. The scientific "research" culture into which these individuals were socialized defined success as the acquisition of a prestigious research position. For a variety of reasons they chose to become science educators. Given the pervasiveness of these scientific community norms, tension and discomfort accompanied this transition to teaching. Nevertheless, each developed a deep commitment to teaching excellence. They shared several teaching techniques, including use of the scientific method, historical references, tools for aiding visualization, relevant examples, and storytelling. The instructors were attempting to implement interactive teaching in safe, comfortable, disciplined classrooms. The influence of beliefs about the nature of science and of education was not unexpected, however, what was surprising was the significant impact on pedagogy of the "research" value. The "research" culture, so dominant during their own education, continued to inform their beliefs, and was revealed in their teaching. These instructors shared a series of pedagogical goals for their students, progressing from becoming "knowledgeable," to becoming "educated," and finally to engaging in creative thinking, or having original "ideas." The highest goal-having ideas, asking

  19. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  20. Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation

    Directory of Open Access Journals (Sweden)

    Reidpath Daniel

    2011-01-01

    Full Text Available Abstract Background The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. Method A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Results Of 67 projects analysed, 26 projects (39% were social science related while 41 projects (61% were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. Conclusion The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research.

  1. Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation.

    Science.gov (United States)

    Pokhrel, Subhash; Reidpath, Daniel; Allotey, Pascale

    2011-01-06

    The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research.

  2. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  3. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  4. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  5. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  6. Using design science research to develop online enhanced pharmaceutical care services.

    Science.gov (United States)

    Lapão, Luís Velez; Gregório, João; Mello, Diogo; Cavaco, Afonso; Mira Da Silva, Miguel; Lovis, Christian

    2014-01-01

    The ePharmaCare project aims at assessing the potential of eHealth services for the provision of pharmaceutical services interacting actively with patients. The results presented here focus on the first three steps of Design Science Research Methodology. A mixed methods approach was used with an online survey to collect data on use of information technologies in community pharmacy, followed by an exploratory observational time and business processes study, which use the shadowing method to identify and assess the opportunity to lunch online services. Combining this with the Service Experiment Blueprint and the Dáder method an enhanced pharmaceutical service was designed. Next, an artifact is developed and a prototype is implemented to demonstrate the value of online pharmaceutical services' delivery. This new service could represent a new perspective for pharmaceutical services integration within the health system.

  7. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  8. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  9. J-ACTINET activities of training and education for actinide science research

    International Nuclear Information System (INIS)

    Miato, Kazuo; Konashi, Kenji; Yamana, Hajimu; Yamanaka, Shinsuke; Nagasaki, Shinya; Ikeda, Yasuhisa; Sato, Seichi; Arita, Yuji; Idemitsu, Kazuya; Koyama, Tadafumi

    2011-01-01

    Actinide science research is indispensable to maintain sustainable development of innovative nuclear technology, especially advanced fuels, partitioning/reprocessing, and waste management. For actinide science research, special facilities with containment and radiation shields are needed to handle actinide materials since actinide elements are γ-, α- and neutron-emitters. The number of facilities for actinide science research has been decreased, especially in universities, due to the high maintenance cost. J-ACTINET was established in 2008 to promote and facilitate actinide science research in close cooperation with the facilities and to foster many of young scientists and engineers to be actively engaged in the fields of actinide science. The research program was carried out, through which young researchers were expected to learn how to make experiments with advanced experimental tools and to broaden their horizons. The summer schools and computational science school were held to provide students, graduate students, and young researchers with the opportunities to come into contact with actinide science research. In these schools, not only the lectures, but also the practical exercises were made as essential part. The overseas dispatch program was also carried out, where graduate students and young researchers were sent to the international summer schools and conferences. (author)

  10. Institutional Research and Development: (Annual report), FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Strack, B. (ed.)

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards.

  11. Institutional Research and Development: [Annual report], FY 1986

    International Nuclear Information System (INIS)

    Strack, B.

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards

  12. Translational Science Research: Towards Better Health

    Directory of Open Access Journals (Sweden)

    Emir Festic

    2009-10-01

    Full Text Available Even though it is considered a 21st century term, translational research has been present for much longer. Idea of translating experimental discovery to its’ clinical application and use is old as research itself. However, it is the understanding of missing links between the basic science research and clinical research that emerged in the past decade and mobilized scientific and clinical communities and organizations worldwide. Hence term, translational research, which represents an “enterprise of harnessing knowledge from basic sciences to produce new drugs, devices, and treatment options for patients” (1. It has been also characterized as “effective translation of the new knowledge, mechanisms, and techniques generated by advances in basic science research into new approaches for prevention, diagnosis, and treatment of disease, which is essential for improving health” (2.This translation is a complex process and involves more than one step for transfer of research knowledge. At least 3 such roadblocks have been identified (Figure 1 ; T1 translation: “The transfer of new understandings of disease mechanisms gained in the laboratory into the development of new methods for diagnosis, therapy, and prevention and their first testing in humans”, T2 translation: “The translation of results from clinical studies into everyday clinical practice and health decision making”, and T3 translation: “Practice-based research, which is often necessary before distilled knowledge (e.g., systematic reviews, guidelines can be implemented in practice” (3-5.The international research community rapidly recognized importance for promotion of translational research and made it their priority(5. In the USA, National Institutes of Health, (NIH expects to fund 60 translational research centers with a budget of $500 million per year by 2012 (6. Besides academic centers, foundations, industry, disease-related organizations, and individual hospitals and

  13. Evaluating an artifact in design science research

    CSIR Research Space (South Africa)

    Herselman, M

    2015-09-01

    Full Text Available In this paper, we describe the iterative evaluation of an artifact developed through the application of Design Science Research (DSR) methodology in a resource constrained environment. In the DSR process the aspect of evaluation is often done...

  14. An educational ethnography of teacher-developed science curriculum implementation: Enacting conceptual change-based science inquiry with Hispanic students

    Science.gov (United States)

    Brunsell, Eric Steven

    An achievement gap exists between White and Hispanic students in the United States. Research has shown that improving the quality of instruction for minority students is an effective way to narrow this gap. Science education reform movements emphasize that science should be taught using a science inquiry approach. Extensive research in teaching and learning science also shows that a conceptual change model of teaching is effective in helping students learn science. Finally, research into how Hispanic students learn best has provided a number of suggestions for science instruction. The Inquiry for Conceptual Change model merges these three research strands into a comprehensive yet accessible model for instruction. This study investigates two questions. First, what are teachers' perceptions of science inquiry and its implementation in the classroom? Second, how does the use of the Inquiry for Conceptual Change model affect the learning of students in a predominantly Hispanic, urban neighborhood. Five teachers participated in a professional development project where they developed and implemented a science unit based on the Inquiry for Conceptual Change model. Three units were developed and implemented for this study. This is a qualitative study that included data from interviews, participant reflections and journals, student pre- and post-assessments, and researcher observations. This study provides an in-depth description of the role of professional development in helping teachers understand how science inquiry can be used to improve instructional quality for students in a predominantly Hispanic, urban neighborhood. These teachers demonstrated that it is important for professional development to be collaborative and provide opportunities for teachers to enact and reflect on new teaching paradigms. This study also shows promising results for the ability of the Inquiry for Conceptual Change model to improve student learning.

  15. Citizen Science: Opportunities for Girls' Development of Science Identity

    Science.gov (United States)

    Brien, Sinead Carroll

    Many students in the United States, particularly girls, have lost interest in science by the time they reach high school and do not pursue higher degrees or careers in science. Several science education researchers have found that the ways in which youth see themselves and position themselves in relation to science can influence whether they pursue science studies and careers. I suggest that participation in a citizen science program, which I define as a program in which girls interact with professional scientists and collect data that contributes to scientific research, could contribute to changing girls' perceptions of science and scientists, and promote their science identity work. I refer to science identity as self-recognition and recognition by others that one thinks scientifically and does scientific work. I examined a case study to document and analyze the relationship between girls' participation in a summer citizen science project and their development of science identity. I observed six girls between the ages of 16 and 18 during the Milkweed and Monarch Project, taking field notes on focal girls' interactions with other youth, adults, and the scientist, conducted highly-structured interviews both pre-and post- girls' program participation, and interviewed the project scientist and educator. I qualitatively analyzed field notes and interview responses for themes in girls' discussion of what it meant to think scientifically, roles they took on, and how they recognized themselves as thinking scientifically. I found that girls who saw themselves as thinking scientifically during the program seemed to demonstrate shifts in their science identity. The aspects of the citizen science program that seemed to most influence shifts in these girls' science identities were 1) the framing of the project work as "real science, 2) that it involved ecological field work, and 3) that it created a culture that valued data and scientific work. However, some of the girls only

  16. Enrolling science teachers in continual professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2010-01-01

    The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest that t...... that the proposed professional development program, based around group learning, should be formatively assessed, researched and refined over time following the principles of design based research, likewise the teachers' classroom interventions.......The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest...

  17. Proceedings of the meeting and scientific presentations on basic science research and nuclear technology

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the Meeting and Scientific Presentations on Basic Science Research and Nuclear Technology by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 37 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  18. The role of models/and analogies in science education: implications from research

    Science.gov (United States)

    Coll, Richard K.; France, Bev; Taylor, Ian

    2005-02-01

    Models and modelling are key tools for scientists, science teachers and science learners. In this paper we argue that classroom-based research evidence demonstrates that the use of models and analogies within the pedagogy of science education may provide a route for students to gain some understanding of the nature of science. A common theme to emerge from the literature reviewed here is that in order to successfully develop conceptual understandings in science, learners need to be able to reflect on and discuss their understandings of scientific concepts as they are developing them. Pedagogies that involve various types of modelling are most effective when students are able to construct and critique their own and scientists' models. Research also suggests that group work and peer discussion are important ways of enhancing students' cognitive and metacognitive thinking skills. Further we argue that an understanding of science models and the modelling process enables students to develop a metacognitive awareness of knowledge development within the science community, as well as providing the tools to reflect on their own scientific understanding.

  19. Exploring multiple intelligences theory in the context of science education: An action research approach

    Science.gov (United States)

    Goodnough, Karen Catherine

    2000-10-01

    Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a

  20. International Conference on Data Science & Social Research

    CERN Document Server

    Amaturo, Enrica; Grassia, Maria; Aragona, Biagio; Marino, Marina

    2017-01-01

    This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from...

  1. Science teachers' meaning-making of teaching practice, collaboration and professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    The aims of the research presented in the thesis are three-fold: 1) To gain an insight into challenges and needs related to Danish science teachers professional development (PD), 2) to understand Danish science teachers’ meaning-making when involved in PD designed according to criteria from...... international research and 3) a research methodological perspective: to adapt, and discuss the use of a specific tool for analysis and representation of the teachers’ meaning-making. A mixed method approach is taken: The empirical research includes a cohort-survey of graduating science teachers repeated...... to lack of confidence. The case-studies provide examples where science teachers’ develop a growing confidence, and begin to focus on students’ learning by manipulating both science ideas and equipment. The teachers involved in artifact-mediated interactions refer to gaining insight into students...

  2. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  3. Research trends and issues in informal science education

    Science.gov (United States)

    Pinthong, Tanwarat; Faikhamta, Chatree

    2018-01-01

    Research in informal science education (ISE) become more interesting area in science education for a few decades. The main purpose of this research is to analyse research articles in 30 issues of top three international journals in science education; Journal of Research in Science Teaching, Science Education, and the International Journal of Science Education. The research articles during 2007 and 2016 were reviewed and analysed according to the authors' nationality, informal science education's research topics, research paradigms, methods of data collection and data analysis. The research findings indicated that there were 201 published papers related to informal science education, successfully submitted by 469 authors from 27 different countries. In 2008, there was no article related to informal science education. Statistical analyses showed that authors from USA are the most dominant, followed by UK and Israel. The top three ISE's research topics most frequently investigated by the researchers were regarding students' informal learning, public understanding in science, and informal perspectives, policies and paradigms. It is also found that theoretical framework used in informal science education which is becoming more strongly rooted is in a mix of the sociocultural and constructivist paradigms, with a growing acceptance of qualitative research methods and analyses.

  4. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  5. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  6. Remote Sensing Information Sciences Research Group: Santa Barbara Information Sciences Research Group, year 4

    Science.gov (United States)

    Estes, John E.; Smith, Terence; Star, Jeffrey L.

    1987-01-01

    Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.

  7. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    Science.gov (United States)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  8. {cross-disciplinary} Data CyberInfrastructure: A Different Approach to Developing Collaborative Earth and Environmental Science Research Platforms

    Science.gov (United States)

    Lenhardt, W. C.; Krishnamurthy, A.; Blanton, B.; Conway, M.; Coposky, J.; Castillo, C.; Idaszak, R.

    2017-12-01

    An integrated science cyberinfrastructure platform is fast becoming a norm in science, particularly where access to distributed resources, access to compute, data management tools, and collaboration tools are accessible to the end-user scientist without the need to spin up these services on their own. There platforms have various types of labels ranging from data commons to science-as-a-service. They tend to share common features, as outlined above. What tends to distinguish these platforms, however, is their affinity for particular domains, NanoHub - nanomaterials, iPlant - plant biology, Hydroshare - hydrology, and so on. The challenge still remains how to enable these platforms to be more easily adopted for use by other domains. This paper will provide an overview of RENCI's approach to creating a science platform that can be more easily adopted by new communities while also endeavoring to accelerate their research. At RENCI, we started with Hydroshare, but have now worked to generalize the methodology for application to other domains. This new effort is called xDCi, or {cross-disciplinary} Data CyberInfrastructure. We have adopted a broader approach to the challenge of domain adoption and includes two key elements in addition to the technology component. The first of these is how development is operationalized. RENCI implements a DevOps model of continuous development and deployment. This greatly increases the speed by which a new platform can come online and be refined to meet domain needs. DevOps also allows for migration over time, i.e. sustainability. The second element is a concierge model. In addition to the technical elements, and the more responsive development process, RENCI also supports domain adoption of the platform by providing a concierge service— dedicated expertise- in the following areas, Information Technology, Sustainable Software, Data Science, and Sustainability. The success of the RENCI methodology is illustrated by the adoption of the

  9. Science in the Eyes of Preschool Children: Findings from an Innovative Research Tool

    Science.gov (United States)

    Dubosarsky, Mia D.

    How do young children view science? Do these views reflect cultural stereotypes? When do these views develop? These fundamental questions in the field of science education have rarely been studied with the population of preschool children. One main reason is the lack of an appropriate research instrument that addresses preschool children's developmental competencies. Extensive body of research has pointed at the significance of early childhood experiences in developing positive attitudes and interests toward learning in general and the learning of science in particular. Theoretical and empirical research suggests that stereotypical views of science may be replaced by authentic views following inquiry science experience. However, no preschool science intervention program could be designed without a reliable instrument that provides baseline information about preschool children's current views of science. The current study presents preschool children's views of science as gathered from a pioneering research tool. This tool, in the form of a computer "game," does not require reading, writing, or expressive language skills and is operated by the children. The program engages children in several simple tasks involving picture recognition and yes/no answers in order to reveal their views about science. The study was conducted with 120 preschool children in two phases and found that by the age of 4 years, participants possess an emergent concept of science. Gender and school differences were detected. Findings from this interdisciplinary study will contribute to the fields of early childhood, science education, learning technologies, program evaluation, and early childhood curriculum development.

  10. The future of naval ocean science research

    Science.gov (United States)

    Orcutt, John A.; Brink, Kenneth

    The Ocean Studies Board (OSB) of the National Research Council reviewed the changing role of basic ocean science research in the Navy at a recent board meeting. The OSB was joined by Gerald Cann, assistant secretary of the Navy for research, development, and acquisition; Geoffrey Chesbrough, oceanographer of the Navy; Arthur Bisson, deputy assistant secretary of the Navy for antisubmarine warfare; Robert Winokur, technical director of the Office of the Oceanographer of the Navy; Bruce Robinson, director of the new science directorate at the Office of Naval Research (ONR); and Paul Gaffney, commanding officer of the Naval Research Laboratory (NRL). The past 2-3 years have brought great changes to the Navy's mission with the dissolution of the former Soviet Union and challenges presented by conflicts in newly independent states and developing nations. The new mission was recently enunciated in a white paper, “From the Sea: A New Direction for the Naval Service,” which is signed by the secretary of the Navy, the chief of naval operations, and the commandant of the Marine Corps. It departs from previous plans by proposing a heavier emphasis on amphibious operations and makes few statements about the traditional Navy mission of sea-lane control.

  11. Research methods from social science can contribute much to the health sciences.

    Science.gov (United States)

    Wensing, Michel

    2008-06-01

    Research methods from social science, such as social network analysis, random coefficient modeling, and advanced measurement techniques, can contribute much to the health sciences. There is, however, a slow rate of transmission of social science methodology into the health sciences. This paper identifies some of the barriers for adoption and proposes ideas for the future. Commentary. Contributions of social science to the health sciences are not always recognized as such. It may help if the professional profile of social science in the health sciences would be higher and if its focus would be more on making useful predictions. Clinical epidemiologists may assume that their discipline includes all relevant methods and that social science is largely based on qualitative research. These perceptions need to be challenged in order to widen the scope of clinical epidemiology and include relevant methods from other sciences. New methods help to ask new research questions and to provide better to old questions. This paper has sketched challenges for both social science researchers and clinical epidemiologists.

  12. The sustainable development thematic in the research groups

    Directory of Open Access Journals (Sweden)

    Maria Cristina Comunian Ferraz

    2007-11-01

    Full Text Available The technological innovation brought for the debate the question of the sustainable technological development. The article presents an entirety of theoretical reflections on the science, technology and sustainable development themes and to aim the contributions of the Information Science, while interdisciplinary science, with respect to the understanding of the sustainable development. With basis in this reference it was carried through the investigation of descriptive exploratory nature with quanti-qualitative boarding, having as main objective to identify the presence of the sustainable development thematic in research groups of the UFSCar registered in cadastre in the National Directory of Research Groups of the CNPq. The results had shown that the sustainable development thematic is present in eleven researchgroups of the UFSCar distributed in different knowledge areas. Comparing the data gotten with the research groups of the country that had participated of 2004 Census of the National Directory of Research Groups of the CNPq it was verified that it has similarity between both the data. In accordance with scientific literature, confirms that the sustainable development thematic is interdisciplinar and that the knowledge production of the research groups is result to know articulated in some of the knowledge areas.

  13. Student Opinions on Mobile Augmented Reality Application and Developed Content in Science Class

    Directory of Open Access Journals (Sweden)

    Damla Karagozlu

    2017-11-01

    Full Text Available As one of the most important branches of science, natural science studies have never lost their currency. The purpose of this study is to examine the development process of Augmented Reality contents which were developed using a design-based research method with the purpose of using it in teaching of natural science topics and to look into student evaluations. In the study which employed design-based research model, developed contents were applied, analysed and re-designed with students constantly. The study group of the research consisted of forty 7th grade students at a private college in 2016-2017 fall semester. Augmented reality contents developed for science teaching were evaluated by teachers and students as effective. According to the teacher and student opinions, it was concluded that augmented reality contents of science teaching developed during design-based research process was nice, easily applicable and useful. It can be said that while developing educative materials for students, applying design-based research model and paying attention to material design principles secures the effectiveness of the developed material.

  14. The impact of science shops on university research and education

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    2000-01-01

    Science shops are mediating agencies at universities that give citizens and citizen groups access to the resources of the university through co-operation with students and researchers. Science shops have three aims: to support citizens and citizen groups in their efforts getting influence...... to the impact of science shops on universities and on society are discussed. A typology for the different types of knowledge requested by citizens and citizen groups through science shops is presented (documentation, knowledge building, development of new perspectives). As important aspects of the potentials......, prerequisites and limits to the impact of science shops are discussed the networking between the science shop and the researchers and teachers and with the citizens and other external actors, and the content and the structure of the curricula at the university....

  15. Science Curiosity in Learning Environments: Developing an Attitudinal Scale for Research in Schools, Homes, Museums, and the Community

    Science.gov (United States)

    Weible, Jennifer L.; Zimmerman, Heather Toomey

    2016-01-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science…

  16. Research productivity of Pakistan in medical sciences during the period 1996-2012.

    Science.gov (United States)

    Meo, S A; Almasri, A A; Usmani, A M

    2013-11-01

    This study aimed to investigate the degree of research outcome in medical science subjects in Pakistan during the period 1996-2012. In this study, the research papers published in various global science journals during the period 1996-2012 were accessed. We recorded the total number of research documents having an affiliation with a Pakistan. The main source for information was Institute of Scientific Information (ISI) Web of Science, Thomson Reuters and SCI-mago/Scopus. In global science, Pakistan contributed 58133 research papers in all science and social sciences both in ISI and non ISI indexed journals. However, in medical sciences the total number of research papers from Pakistan are 25604, citable documents 23874, citations 128061, mean citations per documents 6.45 and mean Hirsch index is 35.33. In Pakistan, the upward trend of articles published in global medical science was from the period 1996-2008. However, from 2008 the trend is markedly declined. Pakistan significantly improved its international ranking positions in research during the period 2000-2008. However, the upward trend of research papers published in global medical science could not be retained and from the year 2008 the trend started declining. This trend of research papers further declined in year 2012 compared to year 2011. It is suggested that, Pakistan must take strategic steps to enhance the research culture and increase the research and development expenditure in the country.

  17. Reforming primary science assessment practices: A case study of one teacher's professional development through action research

    Science.gov (United States)

    Briscoe, Carol; Wells, Elaine

    2002-05-01

    Calls for reform have suggested that classroom practice can best be changed by teachers who engage in their own research. This interpretive study examines the process of action research and how it contributes to the professional development of a first-grade teacher. The purpose of the study was to explore the research process experienced by the teacher as she examined whether portfolios could be used as an effective means for facilitating and assessing young children's development of science process skills. Data sources included a journal kept by the teacher, documents produced by the teacher and students as part of the portfolio implementation process, hand-written records of teacher's informal interviews with students, and anecdotal records from research team meetings during the study. Data analysis was designed to explore how the teacher's classroom practices and thinking evolved as she engaged in action research and attempted to solve the problems associated with deciding what to assess and how to implement portfolio assessment. We also examined the factors that supported the teacher's learning and change as she progressed through the research process. Data are presented in the form of four assertions that clarify how the action research process was influenced by various personal and contextual factors. Implications address factors that facilitated the teacher as researcher, and how this research project, initiated by the teacher, affected her professional development and professional life.

  18. The Factors that Affect Science Teachers' Participation in Professional Development

    Science.gov (United States)

    Roux, Judi Ann

    Scientific literacy for our students and the possibilities for careers available in Science, Technology, Engineering, and Mathematics (STEM) areas are important topics for economic growth as well as global competitiveness. The achievement of students in science learning is dependent upon the science teachers' effectiveness and experienced science teachers depend upon relevant professional development experiences to support their learning. In order to understand how to improve student learning in science, the learning of science teachers must also be understood. Previous research studies on teacher professional development have been conducted in other states, but Minnesota science teachers comprised a new and different population from those previously studied. The purpose of this two-phase mixed methods study was to identify the current types of professional development in which experienced, Minnesota secondary science teachers participated and the factors that affect their participation in professional development activities. The mixed-methods approach s utilized an initial online survey followed by qualitative interviews with five survey respondents. The results of the quantitative survey and the qualitative interviews indicated the quality of professional development experiences and the factors which affected the science teachers' participation in professional development activities. The supporting and inhibiting factors involved the availability of resources such as time and money, external relationships with school administrators, teacher colleagues, and family members, and personal intrinsic attributes such as desires to learn and help students. This study also describes implications for science teachers, school administrators, policymakers, and professional development providers. Recommendations for future research include the following areas: relationships between and among intrinsic and extrinsic factors, science-related professional development activities

  19. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  20. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  1. Science Teacher Efficacy and Extrinsic Factors toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    Science.gov (United States)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-01-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based…

  2. Community centrality and social science research.

    Science.gov (United States)

    Allman, Dan

    2015-12-01

    Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have.

  3. Considerations on innovation in the development of nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wang Zhidong; Gao Meixu

    2008-01-01

    The development status and existing problems in the field of nuclear agricultural sciences (NAS) are reviewed. Including the application of nuclear technology in mutation breeding by irradiation, isotopic technique application, food irradiation and sterile insect technique, etc. China has made great achievements in the research and application of nuclear technique in agriculture from 1950s to 1990s. Due to lack of enough financial support to the basic research and reformation of science and research system in China, the development of NAS now meets its tough time. Through analyzing the difference and reasons of NAS development between China and the USA, it is recognized that the innovation in research and scientific system is important for promoting the development speed and research level of NAS. (authors)

  4. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  5. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  6. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  7. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  8. Teaching Primary Science: How Research Helps

    Science.gov (United States)

    Harlen, Wynne

    2010-01-01

    The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…

  9. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  10. The "art" of science communication in undergraduate research training

    Science.gov (United States)

    Fatemi, F. R.; Stockwell, J.; Pinheiro, V.; White, B.

    2016-12-01

    Student creation of well-designed and engaging visuals in science communication can enhance their deep learning while streamlining the transmission of information to their audience. However, undergraduate research training does not frequently emphasize the design aspect of science communication. We devised and implemented a new curricular component to the Lake Champlain NSF Research Experiences for Undergraduates (REU) program in Vermont. We took a holistic approach to communication training, with a targeted module in "art and science". Components to the module included: 1) an introduction to environmental themes in fine art, 2) a photography assignment in research documentation, 3) an overview of elements of design (e.g., color, typography, hierarchy), 4) a graphic design workshop using tools in Powerpoint, and 5) an introduction to scientific illustration. As part of the REU program, students were asked to document their work through photographs, and develop an infographic or scientific illustration complementary to their research. The "art and science" training culminated with a display and critique of their visual work. We report on student responses to the "art and science" training from exit interviews and survey questions. Based on our program, we identify a set of tools that mentors can use to enhance their student's ability to engage with a broad audience.

  11. Physical sciences HDR (Accreditation to supervise research) diploma

    International Nuclear Information System (INIS)

    Trocellier, P.

    1987-09-01

    This document briefly reports the educational and professional course, as well as the activities of a researcher in the field of nuclear techniques for surface analysis and micro-analysis. These researches deal with the analytical development of surface characterization analytical tools for solid media in relationship with different application domains: corrosion, volcanology, biology, material science, reprocessing, and so on

  12. Team Science Approach to Developing Consensus on Research Good Practices for Practice-Based Research Networks: A Case Study.

    Science.gov (United States)

    Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-12-01

    Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.

  13. Can complexity science inform physician leadership development?

    Science.gov (United States)

    Grady, Colleen Marie

    2016-07-04

    Purpose The purpose of this paper is to describe research that examined physician leadership development using complexity science principles. Design/methodology/approach Intensive interviewing of 21 participants and document review provided data regarding physician leadership development in health-care organizations using five principles of complexity science (connectivity, interdependence, feedback, exploration-of-the-space-of-possibilities and co-evolution), which were grouped in three areas of inquiry (relationships between agents, patterns of behaviour and enabling functions). Findings Physician leaders are viewed as critical in the transformation of healthcare and in improving patient outcomes, and yet significant challenges exist that limit their development. Leadership in health care continues to be associated with traditional, linear models, which are incongruent with the behaviour of a complex system, such as health care. Physician leadership development remains a low priority for most health-care organizations, although physicians admit to being limited in their capacity to lead. This research was based on five principles of complexity science and used grounded theory methodology to understand how the behaviours of a complex system can provide data regarding leadership development for physicians. The study demonstrated that there is a strong association between physician leadership and patient outcomes and that organizations play a primary role in supporting the development of physician leaders. Findings indicate that a physician's relationship with their patient and their capacity for innovation can be extended as catalytic behaviours in a complex system. The findings also identified limiting factors that impact physicians who choose to lead, such as reimbursement models that do not place value on leadership and medical education that provides minimal opportunity for leadership skill development. Practical Implications This research provides practical

  14. Research in Library and Information Science and the Contribution of Ranganathan.

    Science.gov (United States)

    Mangla, P. B.

    1984-01-01

    Traces historical developments and recent trends in library and information science research in United States, Great Britain, and India; discusses factors contributing to developments in United States and United Kingdom; and reviews Ranganathan's contributions in detail. Some factors hindering research in India and areas which require research are…

  15. Research Misconduct and the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    HM Kerch; JJ Dooley

    1999-10-11

    Research misconduct includes the fabrication, falsification, and plagiarism (FFP) of concepts or ideas; some institutions have expanded this concept to include ''other serious deviations (OSD) from accepted research practice.'' An action can be evaluated as research misconduct if it involves activities unique to the practice of science and could negatively affect the scientific record. Although the number of cases of research misconduct is uncertain (formal records are kept only by the NIH and the NSF), the costs are high in integrity of the scientific record, diversions from research to investigate allegations, ruined careers of those eventually exonerated, and erosion of public confidence in science. Currently, research misconduct policies vary from institution to institution and from government agency to government agency; some have highly developed guidelines that include OSD, others have no guidelines at ail. One result has been that the federal False Claims Act has been used to pursue allegations of research misconduct and have them adjudicated in the federal court, rather than being judged by scientific peers. The federal government will soon establish a first-ever research misconduct policy that would apply to all research funded by the federal government regardless of what agency funded the research or whether the research was carried out in a government, industrial or university laboratory. Physical scientists, who up to now have only infrequently been the subject or research misconduct allegations, must none-the-less become active in the debate over research misconduct policies and how they are implemented since they will now be explicitly covered by this new federal wide policy.

  16. Reel Science: An Ethnographic Study of Girls' Science Identity Development In and Through Film

    Science.gov (United States)

    Chaffee, Rachel L.

    This dissertation study contributes to the research on filmmaking and identity development by exploring the ways that film production provided unique opportunities for a team of four girls to engage in science, to develop identities in science, and to see and understand science differently. Using social practice, identity, and feminist theory and New Literacies Studies as a theoretical lens and grounded theory and multimodality as analytic frameworks, I present findings that suggest that girls in this study authored identities and communicated and represented science in and through film in ways that drew on their social, cultural, and embodied resources and the material resources of the after-school science club. Findings from this study highlight the affordances of filmmaking as a venue for engaging in the disciplinary practices of science and for accessing and authoring identities in science.

  17. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  18. Partners in Science: A Suggested Framework for Inclusive Research

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and

  19. Central Asia | Page 98 | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Saharan Africa: Strengthening Research Capacity. Language English. Read more about Soutien au Conseil arabe des sciences sociales. Language French. Read more about Strengthening Science-based Environmental Policy Development ...

  20. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  1. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    Science.gov (United States)

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  2. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  3. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  4. Management information system of research institute supported by ministry of science and technology

    International Nuclear Information System (INIS)

    1992-12-01

    This book mentions development strategy of MIS. This book contains development strategy of MIS research institute supported by government, computerization of administrative work of research institute, library computer system, methodology on system development, LAN build of ministry science and technology, ocean data base energy data base, computerization of research data management case of construction and analysis for chemical DB, information system of life science, electronic data interchange, queueing theory, biotechnology and computer, comprehensive weather information system, special equipment of data and data processing of oil-hunt operation.

  5. Management information system of research institute supported by ministry of science and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-15

    This book mentions development strategy of MIS. This book contains development strategy of MIS research institute supported by government, computerization of administrative work of research institute, library computer system, methodology on system development, LAN build of ministry science and technology, ocean data base energy data base, computerization of research data management case of construction and analysis for chemical DB, information system of life science, electronic data interchange, queueing theory, biotechnology and computer, comprehensive weather information system, special equipment of data and data processing of oil-hunt operation.

  6. Developing your Career in an Age of Team-Science

    Science.gov (United States)

    Zucker, Deborah

    2013-01-01

    Academic institutions and researchers are becoming increasingly involved in translational research to spur innovation in addressing many complex biomedical and societal problems, and in response to the focus of the NIH and other funders. One approach to translational research is to development interdisciplinary research teams. By bringing together collaborators with diverse research backgrounds and perspectives, these teams seek to blend their science and the workings of the scientists to push beyond the limits of current research. While team-science promises individual and team benefits in creating and implementing innovations, its increased complexity poses challenges. In particular, since academic career advancement commonly focuses on individual achievement, team-science might differentially impact early stage researchers. This need to be recognized for individual accomplishments in order to move forward in an academic career may give rise to research-team conflicts. Raising awareness to career-related aspects of team science will help individuals (particularly trainees and junior faculty) take steps to align their excitement and participation with the success of both the team and their personal career advancement. PMID:22525235

  7. Gaps and strategies in developing health research capacity: experience from the Nigeria Implementation Science Alliance.

    Science.gov (United States)

    Ezeanolue, Echezona E; Menson, William Nii Ayitey; Patel, Dina; Aarons, Gregory; Olutola, Ayodotun; Obiefune, Michael; Dakum, Patrick; Okonkwo, Prosper; Gobir, Bola; Akinmurele, Timothy; Nwandu, Anthea; Khamofu, Hadiza; Oyeledun, Bolanle; Aina, Muyiwa; Eyo, Andy; Oleribe, Obinna; Ibanga, Ikoedem; Oko, John; Anyaike, Chukwuma; Idoko, John; Aliyu, Muktar H; Sturke, Rachel

    2018-02-12

    Despite being disproportionately burdened by preventable diseases than more advanced countries, low- and middle-income countries (LMICs) continue to trail behind other parts of the world in the number, quality and impact of scholarly activities by their health researchers. Our strategy at the Nigerian Implementation Science Alliance (NISA) is to utilise innovative platforms that catalyse collaboration, enhance communication between different stakeholders, and promote the uptake of evidence-based interventions in improving healthcare delivery. This article reports on findings from a structured group exercise conducted at the 2016 NISA Conference to identify (1) gaps in developing research capacity and (2) potential strategies to address these gaps. A 1-hour structured group exercise was conducted with 15 groups of 2-9 individuals (n = 94) to brainstorm gaps for implementation, strategies to address gaps and to rank their top 3 in each category. Qualitative thematic analysis was used. First, duplicate responses were merged and analyses identified emerging themes. Each of the gaps and strategies identified were categorised as falling into the purview of policy-makers, researchers, implementing partners or multiple groups. Participating stakeholders identified 98 gaps and 91 strategies related to increasing research capacity in Nigeria. A total of 45 gaps and an equal number of strategies were ranked; 39 gaps and 43 strategies were then analysed, from which 8 recurring themes emerged for gaps (lack of sufficient funding, poor research focus in education, inadequate mentorship and training, inadequate research infrastructure, lack of collaboration between researchers, research-policy dissonance, lack of motivation for research, lack of leadership buy-in for research) and 7 themes emerged for strategies (increased funding for research, improved research education, improved mentorship and training, improved infrastructure for research, increased collaboration between

  8. Virtual research environments from portals to science gateways

    CERN Document Server

    Allan, Robert N

    2009-01-01

    Virtual Research Environments examines making Information and Communication Technologies (ICT) usable by researchers working to solve "grand challenge” problems in many disciplines from social science to particle physics. It is driven by research the authors have carried out to evaluate researchers' requirements in using information services via web portals and in adapting collaborative learning tools to meet their more diverse needs, particularly in a multidisciplinary study.This is the motivation for what the authors have helped develop into the UK Virtual Research Environments (VRE)

  9. Earth Sciences Division Research Summaries 2002-2003

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.

    2003-01-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  10. Earth Sciences Division Research Summaries 2002-2003

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  11. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    Science.gov (United States)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  12. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  13. AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS’ SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Andrea C. Burrows

    2016-04-01

    Full Text Available Twenty-three pre-collegiate educators of elementary students (ages 5-10 years and secondary students (ages 11-18 years attended a two-week science, technology, engineering, and mathematics (STEM astronomy focused professional development in the summer of 2015 with activities focused on authentic science experiences, inquiry, and partnership building. ‘Authentic’ in this research refers to scientific skills and are defined. The study explores the authentic science education experience of the pre-collegiate educators, detailing the components of authentic science as seen through a social constructionism lens. Using qualitative and quantitative methods, the researchers analyzed the successes and challenges of pre-collegiate science and mathematics educators when immersed in STEM and astronomy authentic science practices, the educators’ perceptions before and after the authentic science practices, and the educators’ performance on pre to post content tests during the authentic science practices. Findings show that the educators were initially engaged, then disengaged, and then finally re-engaged with the authentic experience. Qualitative responses are shared, as are the significant results of the quantitative pre to post content learning scores of the educators. Conclusions include the necessity for PD team delivery of detailed explanations to the participants - before, during, and after – for the entire authentic science experience and partnership building processes. Furthermore, expert structure and support is vital for participant research question generation, data collection, and data analysis (successes, failures, and reattempts. Overall, in order to include authentic science in pre-collegiate classrooms, elementary and secondary educators need experience, instruction, scaffolding, and continued support with the STEM processes.

  14. Bush Pledges Increased Science Research and Education Funding

    Science.gov (United States)

    Kumar, Mohi

    2006-02-01

    In his 31 January State of the Union address, U.S. President George W. Bush announced two new initiatives aimed at galvanizing scientific research and education. For the American Competitiveness Initiative, Bush proposes to ``double the federal commitment to the most critical basic research programs in the physical sciences in the next 10 years. . .[and to] make permanent the research and development tax credit to encourage bolder private-sector initiative in technology.''

  15. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    Science.gov (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  16. Science, Science Signaling, and Science Translational Medicine – AAAS Special Collection on Cancer Research, March 2011

    Directory of Open Access Journals (Sweden)

    Forsythe, Katherine H.

    2011-10-01

    Full Text Available The National Cancer Act, signed in 1971, aimed to eliminate cancer deaths through a massive increase in research funding. The American Association for the Advancement of Science, the publisher of Science, Science Signaling, and Science Translational Medicine, observed the 40th anniversary of the Cancer Act in 2011, with special research articles and features, found in all three journals, on the state of cancer research 40 years later. This collection of articles explores both breakthroughs and the challenges in cancer research over the last four decades, and lets us know what we might expect in the future.

  17. Annual report of Nuclear Science Research Institute, JFY2005

    International Nuclear Information System (INIS)

    2007-04-01

    research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as Nuclear Safety Research Center, Advanced Science Research Center, Nuclear Science and Engineering Directorate, and Quantum Beam Science Directorate, at NSRI. (author)

  18. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  19. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  20. Interdisciplinary research center devoted to molecular environmental science opens

    Science.gov (United States)

    Vaughan, David J.

    In October, a new research center opened at the University of Manchester in the United Kingdom. The center is the product of over a decade of ground-breaking interdisciplinary research in the Earth and related biological and chemical sciences at the university The center also responds to the British governments policy of investing in research infrastructure at key universities.The Williamson Research Centre, the first of its kind in Britain and among the first worldwide, is devoted to the emerging field of molecular environmental science. This field also aims to bring about a revolution in understanding of our environment. Though it may be a less violent revolution than some, perhaps, its potential is high for developments that could affect us all.

  1. Action research in gender issues in science education: Towards an understanding of group work with science teachers

    Science.gov (United States)

    Nyhof-Young, Joyce Marion

    Action research is emerging as a promising means of promoting individual and societal change in the context of university programmes in teacher education. However, significant gaps exist in the literature regarding the use of action research groups for the education of science teachers. Therefore, an action research group, dealing with gender issues in science education, was established within the context of a graduate course in action research at OISE. For reasons outlined in the thesis, action research was deemed an especially appropriate means for addressing issues of gender. The group met 14 times from September 1992 until May 1993 and consisted of myself and five other science teachers from the Toronto area. Two of us were in the primary panel, two in the intermediate panel, and two in the tertiary panel. Five teachers were female. One was male. The experiences of the group form the basis of this study. A methodology of participant observation supported by interviews, classroom visits, journals, group feedback and participant portfolios provides a means of examining experiences from the perspective of the participants in the group. The case study investigates the nature of the support and learning opportunities that the action research group provided for science teachers engaged in curiculum and professional development in the realm of gender issues in science education, and details the development of individuals, the whole group and myself (as group worker, researcher and participant) over the life of the project. The action research group became a resource for science teachers by providing most participants with: A place to personalize learning and research; a place for systematic reflection and research; a forum for discussion; a source of personal/professional support; a source of friendship; and a place to break down isolation and build self-confidence. This study clarifies important relational and political issues that impinge on action research in

  2. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  3. Shallow waters: social science research in South Africa's marine ...

    African Journals Online (AJOL)

    Shallow waters: social science research in South Africa's marine ... certain issues and social interactions in the marine environment but this work is limited ... Keywords: coastal development, economics, governance, human dimensions, society

  4. Outline of quantum beam science research and J-PARC project

    International Nuclear Information System (INIS)

    Okada, Sohei

    2009-01-01

    The word of atomic power indicates the fields of science and technology described by not only nuclear energy but also radiation utilization where Quantum Beam Technology' is intrinsic to both high intensity particles as neutron, proton, ion, electron, muon, for example, and electromagnetic waves as synchrotron radiation and light quantum. The quantum beams have functions to 'observe' with 'nano eyes', to 'create' with 'nano hands' and to 'cure' with 'nano- scalpel'. The applications are widely spread to the industries, research and development (R and D) and medical treatments. The Japan Atomic Energy Agency, JAEA, pursues R and D activities in order to contribute to sustain global environments and energy production, to qualify life science and advanced medical treatment, to develop new materials and to innovate on quantum beam probes. Authors constructed 'J-PARC', the Japan Proton Accelerator Research Complex in cooperation with the High Energy Accelerator Research Organization, and commenced its operation in fiscal 2008. The facilities started to provide neutrons and other secondary particles to each of beam lines at increasing intensities, by proton bombardment onto a target. The objective of this project is to utilize the particles for a variety of areas in science and technology from materials science, life science and particle physics to industrial applications. The completion of the facilities will open new prospects for advanced applications of quantum beams. (K. Kikuchi)

  5. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  6. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  7. The text of an African regional co-operative agreement for research, development and training related to nuclear science and technology

    International Nuclear Information System (INIS)

    1990-04-01

    The document reproduces the text of an African Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology among African Member States that was endorsed by the Board of Governors on 21 February 1990

  8. The typology and development of attitude to primary science education

    Science.gov (United States)

    Gray, Adelaide

    The introduction and development of science within the primary curriculum has been a challenge to teachers, parents and children and a highly politicised decision. Augmenting any difficulties are the images of science within popular culture and the traditions of scientific inquiry that have maintained the Western, male elitist hierarchy of the Vienna circle throughout the last millennium. The Royal Society's committee on the public understanding of science has recognised the difficulty in recruiting students to higher-level science study and embarked on a programme of sponsorship to address this. At the same time major governmental policy changes have provided a new 'market' model of education that has encouraged parental involvement in schools and enforced a new 'transparency' of evaluation on schools through league tables and Ofsted. Set against this backdrop, this research explores the development of attitudes to science and science education in the parent's of primary school aged children. It examines the perceptions of science and science education through the narrative of the parent's and their understanding of the interaction between different areas of science. The use of key events within narrative as a method of exploring attitude and conceptual development is novel to this research and through this exploration the concept of attitude itself is examined and criticised developing a new concept of attitude as process-based rather than static or crystallised. This reconceptualisation allows a more operational understanding of attitude that overcomes the difficulties of the traditional concept, which has only a limited theoretical basis on which to examine behaviour. The research generates a typology for views of science and the more operational compliment to this, stance to science. This framework allows a greater understanding of attitude formation, how science is perceived and how this perception is actualised. It is particularly interesting given the

  9. Science and Technology and Economic Development

    OpenAIRE

    Lamberte, Mario B.

    1988-01-01

    Dealing with science and technology and economic development, this paper describes the relationship between technological capability and the degree of economic development. It analyzes the structure of the Philippine economy and the structural changes that have taken place since the 1970. It also investigates the impact of economic developments and technological advances in other countries on the Philippine economy. A discussion on possible research collaboration among PIDS, DOST and regional...

  10. [Activities of Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  11. Research in Science Education. Volume 21. Selected Refereed Papers from the Annual Conference of the Australasian Science Education Research Association (22nd, Surfers Paradise, Queensland, Australia, July 11-14, 1991).

    Science.gov (United States)

    Forgasz, Helen, Ed.

    1991-01-01

    This annual publication contains 43 research papers on a variety of issues related to science education. Topics include the following: mature-age students; teacher professional development; spreadsheets and science instruction; the Learning in Science Project and putting it into practice; science discipline knowledge in primary teacher education;…

  12. The imagework method in health and social science research.

    Science.gov (United States)

    Edgar, I R

    1999-03-01

    Existing alongside the traditional forms of qualitative social science research, there is a set of potential research methods that derive from experiential groupwork and the humanistic human potential movement and are only slightly used by researchers. Social science research has barely begun to use these powerful strategies that were developed originally for personal and group change but that are potentially applicable to the research domain. This article will locate these methods within the qualitative research domain and propose a novel view of their value. The study of the actual and potential use of one of these methods, imagework, will be the particular focus of this article. References to the use of artwork, sculpting, psychodrama, gestalt, and dreamwork will also be made. The hypothesis underpinning the author's approach is that experiential research methods such as imagework can elicit implicit knowledge and self-identifies of respondents in a way that other methods cannot.

  13. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  14. Nanotechnology research: applications in nutritional sciences.

    Science.gov (United States)

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  15. Connecting Lab-Based Attosecond Science with FEL research

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is perfo...

  16. Development Module Oriented Science Technology Society Indue Science Literacy Assessment for 7th-Grade Junior High School Students in 2nd -Semester

    Science.gov (United States)

    Arbi, Y. R.; Sumarmin, R.; Putri, D. H.

    2018-04-01

    The problem in the science learning process is the application of the scientific approach takes a long time in order to provide conceptual understanding to the students, there is no teaching materials that can measure students reasoning and thinking ability, and the assessment has not measured students reasoning and literacy skills.The effort can be done is to develop science technology society module indue science literacy assessment. The purpose of the research was to produce a module oriented society indue science science technology literacy assessment. The research is development research using Plomp model, consist of preliminary, prototyping, and assessment phase. Data collect by questionnare and documantion. The result there is science technology society module indue science literacy assessment is very valid.

  17. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  18. Summative report of the public competition research and development on software for computational science and engineering in the fiscal year 1997 through 2002

    International Nuclear Information System (INIS)

    2005-09-01

    Japan Atomic Energy Research Institute started the public competition research and development on software for computational science and engineering in 1997, and closed it in 2002. This report describes the system of the competition research and development, application situations, R and D subjects adopted, evaluation findings, outputs produced, achievements and problems, as a summative report of practice of the system for six years. (author)

  19. Making science accessible through collaborative science teacher action research on feminist pedagogy

    Science.gov (United States)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  20. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  1. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  2. International cooperation for promotion of nuclear science and engineering research

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Sugiyama, Kazusuke; Nakazawa, Masaharu; Katoh, Toshio; Kimura, Itsuro.

    1993-01-01

    For promotion of nuclear science and engineering research, examinations were made on the possibilities and necessary measures to extend joint research at international level. The present article is a summary of the reports of investigations performed during FY 1986 through 1991 by the Special Committee of the AESJ for Feasibility Study on International Cooperation for Promotion of Nuclear Science and Engineering Research, under contract with Science and Technology Agency of Japan. Background information was collected on the present status of scientific research facilities in US, European and Asian countries on one hand, and on the expectations and prospects of Japanese scientists on the other hand. Based on the analysis of these data, some measures necessary to expand the international cooperation were proposed. It was emphasized that international joint research on a reciprocal basis would be effective in order to strengthen the technological basis of peaceful uses of nuclear energy. Problems to be solved for the new development were also discussed. (author)

  3. Emerging Science and Research Opportunities for Metals and Metallic Nanostructures

    Science.gov (United States)

    Handwerker, Carol A.; Pollock, Tresa M.

    2014-07-01

    During the next decade, fundamental research on metals and metallic nanostructures (MMNs) has the potential to continue transforming metals science into innovative materials, devices, and systems. A workshop to identify emerging and potentially transformative research areas in MMNs was held June 13 and 14, 2012, at the University of California Santa Barbara. There were 47 attendees at the workshop (listed in the Acknowledgements section), representing a broad range of academic institutions, industry, and government laboratories. The metals and metallic nanostructures (MMNs) workshop aimed to identify significant research trends, scientific fundamentals, and recent breakthroughs that can enable new or enhanced MMN performance, either alone or in a more complex materials system, for a wide range of applications. Additionally, the role that MMN research can play in high-priority research and development (R&D) areas such as the U.S. Materials Genome Initiative, the National Nanotechnology Initiative, the Advanced Manufacturing Initiative, and other similar initiatives that exist internationally was assessed. The workshop also addressed critical issues related to materials research instrumentation and the cyberinfrastructure for materials science research and education, as well as science, technology, engineering, and mathematics (STEM) workforce development, with emphasis on the United States but with an appreciation that similar challenges and opportunities for the materials community exist internationally. A central theme of the workshop was that research in MMNs has provided and will continue to provide societal benefits through the integration of experiment, theory, and simulation to link atomistic, nanoscale, microscale, and mesoscale phenomena across time scales for an ever-widening range of applications. Within this overarching theme, the workshop participants identified emerging research opportunities that are categorized and described in more detail in the

  4. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  5. Action-research and the elaboration of teaching knowledge in sciences

    Directory of Open Access Journals (Sweden)

    Maria Nizete de Azevedo

    Full Text Available In this paper we analyze the way in which a training process, in which the methodological option approaches an action-research in teacher education, contributes with the elaboration of teaching knowledge in sciences by a group of teachers of the initial school years. In colaborative situations of teaching knowledge, those teachers elect education problems, for which they seek for solutions through planned, developed and reflected actions. We explored data obtained from a wide research, realized in a public school which took as basis this formative process. The results analysed under a qualitative approach show that the action-research contributes with the elaboration of the teaching knowledge, creating situations of learning necessary to the organization and development of education. We identified important knowledge related to indicating elements of learning about teaching, such as self-organization and formation, the disposition to study and to research, a way to teach sciences through investigative activities, the construction of cooperative practice at school, the articulation of science teaching with the alphabetization process in the native language, the consideration of the school's social and cultural context in its teaching plans, among others. Those results take us to reinforce the potential of action-research on teacher’s formation and on the improvement of the practiced teaching.

  6. Eastern Africa Social Science Research Review

    African Journals Online (AJOL)

    The Eastern Africa Social Science Research Review (EASSRR) is a bi-annual journal published by the Organization for Social Science Research in Eastern Africa (OSSREA). Since the publication of its maiden ... Emerging regions in Ethiopia: are they catching up with the rest of Ethiopia? EMAIL FULL TEXT EMAIL FULL ...

  7. The newsletter 'European Research in Radiological Sciences'

    International Nuclear Information System (INIS)

    Pihet, P.; D'Errico, F.; Doerr, W.; Gruenberger, M.; Schofield, P.

    2004-01-01

    The newsletter 'European Research in Radiological Sciences' is jointly published by the European Late Effects Project Group and the European Radiation Dosimetry Group to disseminate information about research projects and activities carried out under the EURATOM Framework Programme. Since May 2003, the Newsletter is operated interactively from the Internet. The new site uses a dedicated database that automatically generates HTML pages. This system developed at the Univ. of Cambridge provides an innovative approach to improve the dissemination of project information. (authors)

  8. Journal of Science and Sustainable Development

    African Journals Online (AJOL)

    Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. Journal Homepage Image. Annually, Uganda Martyrs University's School of Postgraduate Studies and Research produces the Journal of Science and Sustainable Development (JSSD) (ISSN: 2070-1748). The goal of the Journal is to ...

  9. FY 1999 Laboratory Directed Research and Development annual report

    International Nuclear Information System (INIS)

    PJ Hughes

    2000-01-01

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems

  10. FY 1999 Laboratory Directed Research and Development annual report

    Energy Technology Data Exchange (ETDEWEB)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  11. Developing networks to support science teachers work

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  12. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  13. Joint federal research and development process to meet state and local needs. Part 1. Science and technology and political decision making

    Energy Technology Data Exchange (ETDEWEB)

    Wise, H F; Smith, L K; Einsweiler, R C; Jensen, D E

    1980-10-01

    This part of the handbook addresses the basic how to do it - how states and local governments can identify complex and cross-cutting issues and develop and manage scientific and technical resources in seeking policy solutions to such issues. The following subjects are discussed: background statement of the issue; the research/decision-making process; defining problems and identifying research components; research and decision-making strategies; how to identify existing knowledge or ongoing research in the area of policy concern; and managing multi-disciplinary research. The fourteen agencies involved in this effort include: US Departments of Energy, Agriculture, Transportation, Housing and Urban Development, Environmental Protection Agency, and National Science Foundation. (PSB)

  14. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  15. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  16. A Research-Based Science Teacher Education Program for a Competitive Tomorrow

    Science.gov (United States)

    Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.

    2009-12-01

    active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.

  17. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  18. Internationalization of science in developing countries

    International Nuclear Information System (INIS)

    Salam, A.

    1980-03-01

    The history of science has gone through cycles among nations. In the period of antiquity the centres of science were in the East; in the middle ages scholars from the underdeveloped West travelled to the centres of study and research of the rich countries in the East to learn from the teachers there. In our century the cycle has turned and it is the East that turns to the West for science. Opportunities for scientists from developing countries are diminishing, however, and it is important that centres like the International Centre for Theoretical Physics in Trieste, supported by the IAEA, UNESCO and the Government of Italy, be provided with continuing and strong support

  19. Eastern Africa Social Science Research Review: Contact

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Contact. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Contact. Log in or Register to get access to full text downloads.

  20. Mass spectrometry in life science research.

    Science.gov (United States)

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  1. The regional co-operative agreement for research, development and training related to nuclear science and technology

    International Nuclear Information System (INIS)

    Fowler, E.

    1978-01-01

    The history of the Agreement, known as the RCA, is given and the operation of the Agreement, its achievements and current projects are described. The Agreement entered into force in 1972 for a period of five years and has been extended for an additional five years. Any IAEA Member State in the area of South Asia, South East Asia, the Pacific and the Far East may become a party to the Agreement. The purpose of the Agreement is to promote and co-ordinate research, development and training projects in nuclear science and technology through co-operation between the appropriate national institutions and with the assistance of the IAEA. The current RCA co-operative projects cover a broad spectrum of technologies and interests, among which are: food and agriculture, medicine, environmental research, industrial applications, training, research reactor use including radioisotope production, and physical research such as nuclear data programs

  2. A Pedagogical Framework for Developing Innovative Science Teachers with ICT

    Science.gov (United States)

    Rogers, Laurence; Twidle, John

    2013-01-01

    Background: The authors have conducted a number of research projects into the use of ICT in science teaching and most recently have collaborated with five European partners in teacher education to develop resources to assist teacher trainers in delivering courses for the professional development of science teachers. Purpose: 1. To describe the…

  3. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  4. Dual use research: investigation across multiple science disciplines.

    Science.gov (United States)

    Oltmann, Shannon

    2015-04-01

    Most recent studies of dual use research have focused on the life sciences, although some researchers have suggested that dual use research occurs across many disciplines. This research is an initial investigation into the prevalence of dual use research in other scientific disciplines by surveying senior editors of scientific journals, drawn from Journal Citation Reports. The survey was emailed to 7,500 journal editors with a response rate of 10.1 %. Approximately 4.8 % of life science editors reported they had to consider whether to publish dual use research and 38.9 % said they decided to not publish the research in question. In disciplines other than the life sciences, 7.2 % of editors from other science disciplines reported that they had to consider whether to publish dual use research, and 48.4 % declined to publish it. The survey investigated relationships between dual use and the journal's source of funding and place of publication, but no relationships were found. Further research is needed to better understand the occurrence of dual use research in other science disciplines.

  5. White paper on science and technology, 1997. Striving for an open research community

    International Nuclear Information System (INIS)

    1997-01-01

    This report concerns the policy measures intended to promote science and technology, pursuant to Article 8 of the Science and Technology Basic Law (Law No. 130), enacted in 1995. This report is constituted from three parts. Part 1 and 2 discuss trends in a wide range of scientific and technological activities to help the reader understand the policy measures implemented to promote science and technology, which are then discussed in Part 3. Part 1, titled 'striving for an open research community', attempt an analysis of reform and current and future issues addressed in the Science and Technology Basic Plan, which was enacted in July, 1996. Part 2 uses various data to compare scientific and technological activities in Japan with those in other selected countries. Part 3 relates to policies implanted for the promotion of science and technology in the Science and Technology Agency, Japan Government. Here is described on science and technology policy development, development of comprehensive and systematic policies and promotion of research activities. (G.K.)

  6. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  7. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  8. Professional development in college science teaching

    Science.gov (United States)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  9. Science youth action research: Promoting critical science literacy through relevance and agency

    Science.gov (United States)

    Coleman, Elizabeth R.

    This three-article dissertation presents complementary perspectives on Science Youth Action Research (Sci-YAR), a K-12 curriculum designed to emphasize relevance and agency to promote youth's science learning. In Sci-YAR, youth conduct action research projects to better understand science-related issues in their lives, schools, or communities, while they simultaneously document, analyze, and reflect upon their own practices as researchers. The first article defines Sci-YAR and argues for its potential to enhance youth's participation as citizens in a democratic society. The second article details findings from a case study of youth engaged in Sci-YAR, describing how the curriculum enabled and constrained youth's identity work in service of critical science agency. The third article provides guidance to science teachers in implementing student-driven curriculum and instruction by emphasizing Sci-YAR's key features as a way to promote student agency and relevance in school science.

  10. Science Academies' Summer Research Fellowship Programme for ...

    Indian Academy of Sciences (India)

    IAS Admin

    2013-11-30

    Nov 30, 2013 ... Science Academies' Summer Research Fellowship Programme for. Students and Teachers – 2014. Sponspored by. Indian Academy of Sciences, Bangalore. Indian National Science Academy, New Delhi. The National Academy of Sciences, India, Allahabad. The three national science academies offer ...

  11. Improving Science Literacy and Earth Science Awareness Through an Intensive Summer Research Experience in Paleobiology

    Science.gov (United States)

    Heim, N. A.; Saltzman, J.; Payne, J.

    2014-12-01

    The chasm between classroom science and scientific research is bridged in the History of Life Internships at Stanford University. The primary foci of the internships are collection of new scientific data and original scientific research. While traditional high school science courses focus on learning content and laboratory skills, students are rarely engaged in real scientific research. Even in experiential learning environments, students investigate phenomena with known outcomes under idealized conditions. In the History of Life Internships, high school youth worked full time during the summers of 2013 and 2014 to collect body size data on fossil Echinoderms and Ostracods, measuring more than 20,000 species in total. These data are contributed to the larger research efforts in the Stanford Paleobiology Lab, but they also serve as a source of data for interns to conduct their own scientific research. Over the course of eight weeks, interns learn about previous research on body size evolution, collect data, develop their own hypotheses, test their hypotheses, and communicate their results to their peers and the larger scientific community: the 2014 interns have submitted eight abstracts to this meeting for the youth session entitled Bright STaRS where they will present their research findings. Based on a post-internship survey, students in the 2013 History of Life cohort had more positive attitudes towards science and had a better understanding of how to conduct scientific research compared to interns in the Earth Sciences General Internship Program, where interns typically do not complete their own research project from start to finish. In 2014, we implemented both pre- and post-internship surveys to determine if these positive attitudes were developed over the course of the internship. Conducting novel research inspires both the students and instructors. Scientific data collection often involves many hours of repetitive work, but answering big questions typically

  12. Visualization in Research and Science Teachers' Professional Development

    Science.gov (United States)

    Chang Rundgren, Shu-Nu; Yao, Bao-Jun

    2014-01-01

    Based on the importance and widely use of visualization in science, this article has a three-fold aim related to the terms of visualization, representation and model that in recent years have been introduced to the field of science education without clear differentiation. Firstly, the three terms are discussed with examples to provide a common…

  13. What science for what kind of society? Reflecting the development of big science

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Lecture will be in English– Translation available in French Without any doubt, CERN can be described as being among the most ambitious scientific enterprises ever undertaken. For 60 years, the Member States have not only invested considerable financial means into this institution, but have also supported the creation of a highly visionary research programme. And this has led to a change in the way science is done, as captured by the idea of "big science". Yet this naturally also raises a number of quite fundamental questions: How did the meaning of "doing science" change? What justifies societal engagement with and support for such a cost-intensive long-term scientific undertaking? And finally, in what ways does (and did) this research enterprise contribute to the development of contemporary societies? By focusing on some key examples, the talk will thus explore how the ways of doing research and scientific and societal relations have undergone change over the ...

  14. EURATOM research and training programme: towards a new way of developing-teaching science, closer to the end-users

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2015-01-01

    important is public information and engagement in energy policy issues, notably in connection with nuclear decision making. In fact, a new way of 'developing - teaching science' is emerging in the EU, closer to the needs of the end-users, i.e.: society and industry. As a result, a strong scientific foundation is being established to support decision making in regulatory and/or industrial organisations, based on confirmed facts and research findings stemming from 'Best Available Science'. The article is followed by the slides of the presentation

  15. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... mission to support the development of nanotechnology through research on measurement and fabrication...

  16. Introduction of research and development in Image Information Science Laboratory; Image joho kagaku kenkyusho ni okeru kenkyu kaihatsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-10

    This paper introduces research and development at the Image Information Science Laboratory. This is a joint industry-university research institution for the purpose of making a computer recognize human non-language information, expressing and transmitting it, with the research conducted at two centers, Kanto and Kansai. The following studies are being made at the Kansai research center: man/machine interface making natural communication possible between a man and a machine, with emphasis placed on visual information; sensing technology for measuring human activity, technology for analyzing/forming human sensitivity, and technology of expression; technology by which a work is done by a computer in place of a man and reproduced on the computer, with the skill transferred to a man; and development of a spatial expression media system such as a three-dimensional display device. The Tokyo research center is participating in the following projects: committee for promoting joint industry-university research and development of virtual reality (VR); joint industry-university research, development and implementation project of advanced VR; survey on physiological psychological effect in VR system and the like; and research and development of human media. (NEDO)

  17. Setting research priorities across science, technology, and health sectors: the Tanzania experience.

    Science.gov (United States)

    de Haan, Sylvia; Kingamkono, Rose; Tindamanyire, Neema; Mshinda, Hassan; Makandi, Harun; Tibazarwa, Flora; Kubata, Bruno; Montorzi, Gabriela

    2015-03-12

    Identifying research priorities is key to innovation and economic growth, since it informs decision makers on effectively targeting issues that have the greatest potential public benefit. As such, the process of setting research priorities is of pivotal importance for favouring the science, technology, and innovation (STI)-driven development of low- and middle-income countries. We report herein on a major cross-sectoral nationwide research priority setting effort recently carried out in Tanzania by the Tanzania Commission for Science and Technology (COSTECH) in partnership with the Council on Health Research for Development (COHRED) and the NEPAD Agency. The first of its type in the country, the process brought together stakeholders from 42 sub-sectors in science, technology, and health. The cross-sectoral research priority setting process consisted of a 'training-of-trainers' workshop, a demonstration workshop, and seven priority setting workshops delivered to representatives from public and private research and development institutions, universities, non-governmental organizations, and other agencies affiliated to COSTECH. The workshops resulted in ranked listings of research priorities for each sub-sector, totalling approximately 800 priorities. This large number was significantly reduced by an expert panel in order to build a manageable instrument aligned to national development plans that could be used to guide research investments. The Tanzania experience is an instructive example of the challenges and issues to be faced in when attempting to identify research priority areas and setting an STI research agenda in low- and middle-income countries. As countries increase their investment in research, it is essential to increase investment in research management and governance as well, a key and much needed capacity for countries to make proper use of research investments.

  18. Development of the Learning Health System Researcher Core Competencies.

    Science.gov (United States)

    Forrest, Christopher B; Chesley, Francis D; Tregear, Michelle L; Mistry, Kamila B

    2017-08-04

    To develop core competencies for learning health system (LHS) researchers to guide the development of training programs. Data were obtained from literature review, expert interviews, a modified Delphi process, and consensus development meetings. The competencies were developed from August to December 2016 using qualitative methods. The literature review formed the basis for the initial draft of a competency domain framework. Key informant semi-structured interviews, a modified Delphi survey, and three expert panel (n = 19 members) consensus development meetings produced the final set of competencies. The iterative development process yielded seven competency domains: (1) systems science; (2) research questions and standards of scientific evidence; (3) research methods; (4) informatics; (5) ethics of research and implementation in health systems; (6) improvement and implementation science; and (7) engagement, leadership, and research management. A total of 33 core competencies were prioritized across these seven domains. The real-world milieu of LHS research, the embeddedness of the researcher within the health system, and engagement of stakeholders are distinguishing characteristics of this emerging field. The LHS researcher core competencies can be used to guide the development of learning objectives, evaluation methods, and curricula for training programs. © Health Research and Educational Trust.

  19. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  20. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  1. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  2. The Research Library and the E-Science Challenge: New Roles Building on Expanding Responsibilities in Service of the Science Community

    Science.gov (United States)

    Neal, J. G.

    2008-12-01

    Research libraries provide a set of core services to the scholarly and educational communities. This includes: information acquisition, synthesis, navigation, discovery, dissemination, interpretation, presentation, understanding and archiving. Researchers across the science disciplines and increasingly in multi disciplinary projects are producing massive amounts of data, and they seek the infrastructure, the strategies and the partnerships that will enable rigorous and sustained tools for extraction, distribution, collaboration, application and permanent availability. This paper will address the role of the research library from three perspectives. First, the view of scientific datasets as information assets that would benefit from traditional library collection development practice will be explored. Second, the agenda on e-science developed by the Association of Research Libraries will be outlined with a focus on the need for policy and standards development, for resources assessment and allocation, for new approaches to the preparation of the library professional, and library leadership in campus planning and innovative collaborations for research cyberinfrastructure. And third, the responses to the call for proposals from the National Science Foundation's DataNet program will be analyzed and the role of the research library in these project plans will be summarized as an indicator of the expanding responsibility of the library for research data stewardship.

  3. [Development of sanitary microbiology researches at the A. N. Marzeyev Institute for Hygiene and Medical Ecology, Academy of Medical Sciences of Ukraine (Kiev)].

    Science.gov (United States)

    Serdiuk, A M; Surmasheva, E V; Korchak, G I

    2011-01-01

    The paper describes the main stages of development of sanitary bacteriological studies at the leading hygiene research institute of Ukraine--the A. N Marzeyev Institute for Hygiene and Medical Ecology. These researches have made a substantial contribution to the formation and development of hygiene science in the former Soviet Union. The current and promising areas in sanitary microbiology in Ukraine are considered.

  4. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  5. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  6. Forensic Science Research and Development at the National Institute of Justice: Opportunities in Applied Physics

    Science.gov (United States)

    Dutton, Gregory

    Forensic science is a collection of applied disciplines that draws from all branches of science. A key question in forensic analysis is: to what degree do a piece of evidence and a known reference sample share characteristics? Quantification of similarity, estimation of uncertainty, and determination of relevant population statistics are of current concern. A 2016 PCAST report questioned the foundational validity and the validity in practice of several forensic disciplines, including latent fingerprints, firearms comparisons and DNA mixture interpretation. One recommendation was the advancement of objective, automated comparison methods based on image analysis and machine learning. These concerns parallel the National Institute of Justice's ongoing R&D investments in applied chemistry, biology and physics. NIJ maintains a funding program spanning fundamental research with potential for forensic application to the validation of novel instruments and methods. Since 2009, NIJ has funded over 179M in external research to support the advancement of accuracy, validity and efficiency in the forensic sciences. An overview of NIJ's programs will be presented, with examples of relevant projects from fluid dynamics, 3D imaging, acoustics, and materials science.

  7. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  8. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  9. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  10. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  11. Never the twain shall meet?--a comparison of implementation science and policy implementation research.

    Science.gov (United States)

    Nilsen, Per; Ståhl, Christian; Roback, Kerstin; Cairney, Paul

    2013-06-10

    Many of society's health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. There are many common issues in

  12. Never the twain shall meet? - a comparison of implementation science and policy implementation research

    Science.gov (United States)

    2013-01-01

    Background Many of society’s health problems require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies. However, there has been limited knowledge exchange between implementation science and policy implementation research, which has been conducted since the early 1970s. Based on a narrative review of selective literature on implementation science and policy implementation research, the aim of this paper is to describe the characteristics of policy implementation research, analyze key similarities and differences between this field and implementation science, and discuss how knowledge assembled in policy implementation research could inform implementation science. Discussion Following a brief overview of policy implementation research, several aspects of the two fields were described and compared: the purpose and origins of the research; the characteristics of the research; the development and use of theory; determinants of change (independent variables); and the impact of implementation (dependent variables). The comparative analysis showed that there are many similarities between the two fields, yet there are also profound differences. Still, important learning may be derived from several aspects of policy implementation research, including issues related to the influence of the context of implementation and the values and norms of the implementers (the healthcare practitioners) on implementation processes. Relevant research on various associated policy topics, including The Advocacy Coalition Framework, Governance Theory, and Institutional Theory, may also contribute to improved understanding of the difficulties of implementing evidence in healthcare. Implementation science is at a relatively early stage of development, and advancement of the field would benefit from accounting for knowledge beyond the parameters of the immediate implementation science literature. Summary

  13. Romanian - Swiss cooperative research programme "Environmental Science and Technology in Romania" (ESTROM)

    OpenAIRE

    PANIN, Nicolae; GIGER, Walter

    2008-01-01

    The Romanian Ministry for Education, Research and Youth (MECT), the Swiss Agency for Development and Cooperation (SDC) and the Swiss National Science Foundation had launched in 2004 the Romanian-Swiss research programme known as “Environmental Science and Technology in Romania” (ESTROM). ESTROM was established as a pilot programme of scientific co-operation between Swiss Research and Education Units with similar ones from Romania in the framework of SCOPES – a Swiss national programme for sup...

  14. Information-seeking behavior of basic science researchers: implications for library services.

    Science.gov (United States)

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  15. Public health policy research: making the case for a political science approach.

    Science.gov (United States)

    Bernier, Nicole F; Clavier, Carole

    2011-03-01

    The past few years have seen the emergence of claims that the political determinants of health do not get due consideration and a growing demand for better insights into public policy analysis in the health research field. Several public health and health promotion researchers are calling for better training and a stronger research culture in health policy. The development of these studies tends to be more advanced in health promotion than in other areas of public health research, but researchers are still commonly caught in a naïve, idealistic and narrow view of public policy. This article argues that the political science discipline has developed a specific approach to public policy analysis that can help to open up unexplored levers of influence for public health research and practice and that can contribute to a better understanding of public policy as a determinant of health. It describes and critiques the public health model of policy analysis, analyzes political science's specific approach to public policy analysis, and discusses how the politics of research provides opportunities and barriers to the integration of political science's distinctive contributions to policy analysis in health promotion.

  16. Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia.

    Science.gov (United States)

    Schneider, Maria Victoria; Griffin, Philippa C; Tyagi, Sonika; Flannery, Madison; Dayalan, Saravanan; Gladman, Simon; Watson-Haigh, Nathan; Bayer, Philipp E; Charleston, Michael; Cooke, Ira; Cook, Rob; Edwards, Richard J; Edwards, David; Gorse, Dominique; McConville, Malcolm; Powell, David; Wilkins, Marc R; Lonie, Andrew

    2017-06-30

    EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distributed national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia's capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas-Tools, Data, Standards, Platforms, Compute and Training-are described in this article. © The Author 2017. Published by Oxford University Press.

  17. Science dynamics and research production indicators, indexes, statistical laws and mathematical models

    CERN Document Server

    Vitanov, Nikolay K

    2016-01-01

    This book deals with methods to evaluate scientific productivity. In the book statistical methods, deterministic and stochastic models and numerous indexes are discussed that will help the reader to understand the nonlinear science dynamics and to be able to develop or construct systems for appropriate evaluation of research productivity and management of research groups and organizations. The dynamics of science structures and systems is complex, and the evaluation of research productivity requires a combination of qualitative and quantitative methods and measures. The book has three parts. The first part is devoted to mathematical models describing the importance of science for economic growth and systems for the evaluation of research organizations of different size. The second part contains descriptions and discussions of numerous indexes for the evaluation of the productivity of researchers and groups of researchers of different size (up to the comparison of research productivities of research communiti...

  18. Predictors of trust in the general science and climate science research of US federal agencies.

    Science.gov (United States)

    Myers, Teresa A; Kotcher, John; Stenhouse, Neil; Anderson, Ashley A; Maibach, Edward; Beall, Lindsey; Leiserowitz, Anthony

    2017-10-01

    In this article, we focus on a key strategic objective of scientific organizations: maintaining the trust of the public. Using data from a nationally representative survey of American adults ( n = 1510), we assess the extent to which demographic factors and political ideology are associated with citizens' trust in general science and climate science research conducted by US federal agencies. Finally, we test whether priming individuals to first consider agencies' general science research influences trust in their climate science research, and vice versa. We found that federal agencies' general science research is more trusted than their climate science research-although a large minority of respondents did not have an opinion-and that political ideology has a strong influence on public trust in federal scientific research. We also found that priming participants to consider general scientific research does not increase trust in climate scientific research. Implications for theory and practice are discussed.

  19. Science and Mathematics Teachers Working Toward Equity Through Teacher Research: Tracing Changes Across Their Research Process and Equity Views

    Science.gov (United States)

    Brenner, Mary E.; Bianchini, Julie A.; Dwyer, Hilary A.

    2016-12-01

    We investigated secondary science and mathematics teachers engaged in a two-and-a-half-year professional development effort focused on equity. We examined how teachers conducting research on their own instructional practices—a central learning strategy of the professional development project—informed and/or constrained their views related to three strands of equity: teachers and teaching, students and learning, and students' families and communities. Data collected included recordings of professional development seminars and school-site meetings, three sets of individual interviews with teacher researchers, and drafts and final products of the classroom research teachers conducted. From our qualitative analyses of data, we found that most teachers addressed at least two of the three equity strands in researching their own practice. We also found that most transformed their understandings of teachers and students as a result of their teacher research process. However, teachers' views of families and communities changed in less substantive ways. We close with recommendations for other researchers and professional developers intent on supporting science and mathematics teachers in using teacher research to work toward equity.

  20. ClimateNet: A Machine Learning dataset for Climate Science Research

    Science.gov (United States)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.

    2017-12-01

    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  1. Radiological and Medical Sciences Research Institute (RAMSRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiological and Medical Sciences Research Institute (RAMSRI) is the fourth Research and Development Institute of the Ghana Atomic Energy Commission (GAEC), undertaking research in human health and nutrition. This annual report covers the major activities undertaken by RAMSRI for the year 2015. The activities are grouped under the following headings: Establishment; Personnel and Organisation; Major Activities of Centres; Ongoing IAEA TC Projects; Human Resource Development; IAEA Coordinated Meetings Hosted; Publications; Achievements; Challenges; Projections for the Year 2016; and Recommendations.

  2. Current status of research and development at Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    2015-01-01

    This paper introduces the current state and future prospects of Japan Atomic Energy Agency, with a focus on the main achievements of the research and development as of November FY2014. The items of research and development are as follows; (1) research and development related to measures for the accident of Fukushima Daiichi Nuclear Power Station, (2) technological assistance for ensuring safety in the research and development and utilization of nuclear power, (3) research science related to the research and development and utilization of nuclear power, (4) practical application of FBR cycle, (5) technological development related to back-end measures, (6) research and development of technological system to retrieve nuclear fusion energy, and (7) common projects (computational science / engineering / research, technological development and policy assistance on nuclear non-proliferation and nuclear security, and various activities such as dissemination of the fruits of research and development, human resource development, and technological cooperation). (A.O.)

  3. Mentoring for Inclusion: The Impact of Mentoring on Undergraduate Researchers in the Sciences.

    Science.gov (United States)

    Haeger, Heather; Fresquez, Carla

    Increasing inclusion of underrepresented minority and first-generation students in mentored research experiences both increases diversity in the life sciences research community and prepares students for successful careers in these fields. However, analyses of the impact of mentoring approaches on specific student gains are limited. This study addresses the impact of mentoring strategies within research experiences on broadening access to the life sciences by examining both how these experiences impacted student success and how the quality of mentorship affected the development of research and academic skills for a diverse population of students at a public, minority-serving institution. Institutional data on student grades and graduation rates (n = 348) along with postresearch experience surveys (n = 138) found that students mentored in research had significantly higher cumulative grade point averages and similar graduation rates as a matched set of peers. Examination of the relationships between student-reported gains and mentoring strategies demonstrated that socioemotional and culturally relevant mentoring impacted student development during mentored research experiences. Additionally, extended engagement in research yielded significantly higher development of research-related skills and level of independence in research. Recommendations are provided for using mentoring to support traditionally underrepresented students in the sciences. © 2016 H. Haeger and C. Fresquez. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Harnessing Implementation Science to Increase the Impact of Health Equity Research.

    Science.gov (United States)

    Chinman, Matthew; Woodward, Eva N; Curran, Geoffrey M; Hausmann, Leslie R M

    2017-09-01

    Health disparities are differences in health or health care between groups based on social, economic, and/or environmental disadvantage. Disparity research often follows 3 steps: detecting (phase 1), understanding (phase 2), and reducing (phase 3), disparities. Although disparities have narrowed over time, many remain. We argue that implementation science could enhance disparities research by broadening the scope of phase 2 studies and offering rigorous methods to test disparity-reducing implementation strategies in phase 3 studies. We briefly review the focus of phase 2 and phase 3 disparities research. We then provide a decision tree and case examples to illustrate how implementation science frameworks and research designs could further enhance disparity research. Most health disparities research emphasizes patient and provider factors as predominant mechanisms underlying disparities. Applying implementation science frameworks like the Consolidated Framework for Implementation Research could help disparities research widen its scope in phase 2 studies and, in turn, develop broader disparities-reducing implementation strategies in phase 3 studies. Many phase 3 studies of disparity-reducing implementation strategies are similar to case studies, whose designs are not able to fully test causality. Implementation science research designs offer rigorous methods that could accelerate the pace at which equity is achieved in real-world practice. Disparities can be considered a "special case" of implementation challenges-when evidence-based clinical interventions are delivered to, and received by, vulnerable populations at lower rates. Bringing together health disparities research and implementation science could advance equity more than either could achieve on their own.

  5. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  6. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  7. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  8. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  9. What conceptions of science communication are espoused by science research funding bodies?

    Science.gov (United States)

    Palmer, Sarah E; Schibeci, Renato A

    2014-07-01

    We examine the conceptions of science communication, especially in relation to "public engagement with science" (PES), evident in the literature and websites of science research funding bodies in Europe, North America, South America, Asia and Oceania, and Africa. The analysis uses a fourfold classification of science communication to situate these conceptions: professional, deficit, consultative and deliberative. We find that all bodies engage in professional communication (within the research community); however, engagement with the broader community is variable. Deficit (information dissemination) models still prevail but there is evidence of movement towards more deliberative, participatory models.

  10. Fundamental research in developing countries

    International Nuclear Information System (INIS)

    Moravesik, M.J.

    1964-01-01

    Technical assistance is today a widespread activity. Large numbers of persons with special qualifications in the applied sciences go to the developing countries to work on specific research and development projects, as do educationists on Fulbright or other programmes - usually to teach elementary or intermediate courses. But I believe that until now it has been rare for a person primarily interested in fundamental research to go to one of these countries to help build up advanced education and pure research work. Having recently returned from such an assignment, and having found it a most stimulating and enlightening experience, I feel moved to urge strongly upon others who may be in a position to do so that they should seek similar experience themselves. The first step is to show that advanced education and fundamental research are badly needed in the under-developed countries.

  11. Future Marine Polar Research Capacities - Science Planning and Research Services for a Multi-National Research Icebreaker

    Science.gov (United States)

    Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.

    2011-12-01

    Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen

  12. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  13. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  14. Doctoral research on cadastral development

    DEFF Research Database (Denmark)

    Cagdas, Volkan; Stubkjær, Erik

    2009-01-01

    of the countries concerned. The cadastre, however, is the core of both systems as it provides for systematic and official descriptions of land parcels or real property units. The research mentioned often has a development perspective, and in this article we will motivate the introduction of the research domain...... of cadastral development. This research is multi-disciplinary and draws on elements of theories and methodologies from the natural, the social, the behavioral, and the formal sciences. During the last decade or so, doctoral dissertations have come to constitute a substantial part of this research effort...... with a call for a shared terminology and a shared set of concepts which may contribute to further theory building within the cadastral domain. Udgivelsesdato: OCT...

  15. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    Science.gov (United States)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    preparation in that postdoctoral research scientists are directly involved in the clinical preparation of the teacher candidates7. In this program, professional educators and senior scientists guide and work closely with the postdoctoral scientists in developing lessons and field experiences for the teacher candidates. This exposes the postdoctoral scientists to pedagogical techniques. Furthermore, postdoctoral scientists make regular visits to partner schools and share their research interests with high school science students8. Regular assessments about the quality of the postdoctoral scientist's teaching, in the form of course evaluations and informal discussions with the teacher candidates and professional educators, further augments the postdoctoral scientists teaching skills. These experiences can ultimately improve university level science teaching, should the postdoctoral scientists find positions within a university setting. Here, five postdoctoral researchers present self-studies of changing instructional practice born of their involvement in clinical teacher preparation in the AMNH-MAT program.

  16. Information processing psychology: A promising paradigm for research in science teaching

    Science.gov (United States)

    Stewart, James H.; Atkin, Julia A.

    Three research paradigms, those of Ausubel, Gagné and Piaget, have received a great deal of attention in the literature of science education. In this article a fourth paradigm is presented - an information processing psychology paradigm. The article is composed of two sections. The first section describes a model of memory developed by information processing psychologists. The second section describes how such a model could be used to guide science education research on learning and problem solving.Received: 19 October 1981

  17. Review of research on advanced computational science in FY2016

    International Nuclear Information System (INIS)

    2017-12-01

    Research on advanced computational science for nuclear applications, based on “Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)”, has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2016 (April 1st, 2016 - March 31st, 2017), (2) Results of the evaluation on the R and D by the committee in FY 2016. (author)

  18. Indicators of the development of defense logistics as a science

    Directory of Open Access Journals (Sweden)

    Marko D. Andrejić

    2012-10-01

    Full Text Available In practice, there are several approaches in discussing the achieved level of development of a scientific discipline. One group of them concentrates on external indicators of the development of a scientific discipline, i.e. its research network, while the other group analyzes the science structure, i.e. its elements. The achieved level of the development of the defense system and its (external and internal environment, general knowledge on the development and the systematic treatment of science as well as the present situation in the society require an insight into the internal and external indicators of the development of defense logistics as a scientific discipline (Defense Science. General knowledge on the creation, development and interdependence of sciences as well as internal and external indicators of the achieved development level of Defense Logistics show that it should be developed in the network environment as a multidisciplinary science, in close cooperation with other special disciplines of logistics, within defense science. It could thus contribute to the improvement of the defense as an important public function as well as to closer contacts of the scientific disciplines dealing with technical systems and technologies with the so-called. orthodox military disciplines.

  19. Conducting and publishing design science research : Inaugural essay of the design science department of the Journal of Operations Management

    NARCIS (Netherlands)

    van Aken, Joan; Chandrasekaran, Aravind; Halman, Joop

    2016-01-01

    The new Design Science department at the Journal of Operations Management invites submissions using a design science research strategy for operations management (OM) issues. The objective of this strategy is to develop knowledge that can be used in a direct and specific way to design and implement

  20. Practice-Oriented Research: The Extended Function of Dutch Universities of Applied Sciences

    NARCIS (Netherlands)

    de Weert, Egbert; Leijnse, Frans; Kyvik, Svein; Lepori, Benedetto

    2010-01-01

    This chapter seeks to analyse the legitimate research claims of Dutch universities of applied sciences. It subsequently analyses how the research function has been conceived in national policies, the emerging funding schemes for research, strategies developed by these institutions regarding

  1. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  2. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  3. Why and How Political Science Can Contribute to Public Health? Proposals for Collaborative Research Avenues.

    Science.gov (United States)

    Gagnon, France; Bergeron, Pierre; Clavier, Carole; Fafard, Patrick; Martin, Elisabeth; Blouin, Chantal

    2017-04-05

    Written by a group of political science researchers, this commentary focuses on the contributions of political science to public health and proposes research avenues to increase those contributions. Despite progress, the links between researchers from these two fields develop only slowly. Divergences between the approach of political science to public policy and the expectations that public health can have about the role of political science, are often seen as an obstacle to collaboration between experts in these two areas. Thus, promising and practical research avenues are proposed along with strategies to strengthen and develop them. Considering the interdisciplinary and intersectoral nature of population health, it is important to create a critical mass of researchers interested in the health of populations and in healthy public policy that can thrive working at the junction of political science and public health. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  4. Crowd science and engineering: concept and research framework

    Directory of Open Access Journals (Sweden)

    Yueting Chai

    2017-03-01

    Full Text Available Purpose – The synthetic application and interaction of/between the internet, Internet of Things, cloud computing, big data, Industry 4.0 and other new patterns and new technologies shall breed future Web-based industrial operation system and social operation management patterns, manifesting as a crowd cyber eco-system composed of multiple interconnected intelligent agents (enterprises, individuals and governmental agencies and its dynamic behaviors. This paper aims to explore the basic principles and laws of such a system and its behavior. Design/methodology/approach – The authors propose the concepts of crowd science and engineering (CSE and expound its main content, thus forming a research framework of theories and methodologies of crowd science. Findings – CSE is expected to substantially promote the formation and development of crowd science and thus lay a foundation for the advancement of Web-based industrial operation system and social operation management patterns. Originality/value – This paper is the first one to propose the concepts of CSE, which lights the beacon for the future research in this area.

  5. Developing Tomorrow's Decision-Makers: Opportunities for Biotechnology Education Research

    Science.gov (United States)

    Hilton, Annette; Nichols, Kim; Kanasa, Harry

    2011-01-01

    Globally, science curricula have been described as outdated, and students perceive school science as lacking in relevance. Declines in senior secondary and tertiary student participation in science indicate an urgent need for change if we are to sustain future scientific research and development, and perhaps more importantly, to equip students…

  6. Science, democracy, and the right to research.

    Science.gov (United States)

    Brown, Mark B; Guston, David H

    2009-09-01

    Debates over the politicization of science have led some to claim that scientists have or should have a "right to research." This article examines the political meaning and implications of the right to research with respect to different historical conceptions of rights. The more common "liberal" view sees rights as protections against social and political interference. The "republican" view, in contrast, conceives rights as claims to civic membership. Building on the republican view of rights, this article conceives the right to research as embedding science more firmly and explicitly within society, rather than sheltering science from society. From this perspective, all citizens should enjoy a general right to free inquiry, but this right to inquiry does not necessarily encompass all scientific research. Because rights are most reliably protected when embedded within democratic culture and institutions, claims for a right to research should be considered in light of how the research in question contributes to democracy. By putting both research and rights in a social context, this article shows that the claim for a right to research is best understood, not as a guarantee for public support of science, but as a way to initiate public deliberation and debate about which sorts of inquiry deserve public support.

  7. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    Energy Technology Data Exchange (ETDEWEB)

    Willcuts, Meredith H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-04-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  8. UNISWA Research Journal of Agriculture, Science and Technology ...

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  9. UNISWA Research Journal of Agriculture, Science and Technology

    African Journals Online (AJOL)

    The UNISWA Research Journal of Agriculture, Science and Technology is a publication of the Faculties of Agriculture, Health Sciences and Science of the University of Swaziland. It publishes results of original research or continuations of previous studies that are reproducible. Review articles, short communications and ...

  10. Professional Development Strategically Connecting Mathematics and Science: The Impact on Teachers' Confidence and Practice

    Science.gov (United States)

    Baxter, Juliet A.; Ruzicka, Angie; Beghetto, Ronald A.; Livelybrooks, Dean

    2014-01-01

    The press to integrate mathematics and science comes from researchers, business leaders, and educators, yet research that examines ways to support teachers in relating these disciplines is scant. Using research on science and mathematics professional development, we designed a professional development project to help elementary teachers improve…

  11. Eight statements on environmental research in the social sciences

    International Nuclear Information System (INIS)

    Prittwitz, V.

    1985-01-01

    Social science research on environmental problems has two main tasks: (1) to provide critical practice-oriented contributions to present and threatening environmental problems, and (2) to draw the humans-and-nature problematique into social science concepts and theoretical frameworks. In this paper, the prerequisites for achieving both tasks as well as the theoretical, political, and institutional aspects that affect them are discussed. The focus of the discussion is the interdependence between practical problem solving and development of theory. (orig.) [de

  12. Accelerating Science to Action: NGOs Catalyzing Scientific Research using Philanthropic/Corporate Funding

    Science.gov (United States)

    Hamburg, S.

    2017-12-01

    While government funding of scientific research has been the bedrock of scientific advances in the US, it is seldom quick or directly responsive to societal needs. If we are to effectively respond to the increasingly urgent needs for new science to address the environmental and social challenges faced by humanity and the environment we need to deploy new scientific models to augment government-centric approaches. The Environmental Defense Fund has developed an approach that accelerates the development and uptake of new science in pursuit of science-based policy to fill the gap while government research efforts are initiated. We utilized this approach in developing the data necessary to quantify methane emissions from the oil and gas supply chain. This effort was based on five key principles: studies led by an academic researchers; deployment of multiple methods whenever possible (e.g. top-down and bottom-up); all data made public (identity but not location masked when possible); external scientific review; results released in peer-reviewed scientific journals. The research to quantify methane emissions involved > 150 scientists from 40 institutions, resulting in 35 papers published over four years. In addition to the research community companies operating along the oil and gas value chain participated by providing access to sites/vehicles and funding for a portion of the academic research. The bulk of funding came from philanthropic sources. Overall the use of this alternative research/funding model allowed for the more rapid development of a robust body of policy-relevant knowledge that addressed an issue of high societal interest/value.

  13. Collaborative Inquiry and the Professional Development of Science Teachers.

    Science.gov (United States)

    Erickson, Gaalen L.

    1991-01-01

    Argues that the nature and meaning of collaborative relationships depend upon their particular, practical context. Describes an ongoing collaborative research project, the Students' Intuitions and Science Instruction Group (University of British Columbia), detailing its research agenda, postulates pertaining to teacher development, collaborative…

  14. Enabling Arctic Research Through Science and Engineering Partnerships

    Science.gov (United States)

    Kendall, E. A.; Valentic, T. A.; Stehle, R. H.

    2014-12-01

    Under an Arctic Research Support and Logistics contract from NSF (GEO/PLR), SRI International, as part of the CH2M HILL Polar Services (CPS) program, forms partnerships with Arctic research teams to provide data transfer, remote operations, and safety/operations communications. This teamwork is integral to the success of real-time science results and often allows for unmanned operations which are both cost-effective and safer. The CPS program utilizes a variety of communications networks, services and technologies to support researchers and instruments throughout the Arctic, including Iridium, VSAT, Inmarsat BGAN, HughesNet, TeleGreenland, radios, and personal locator beacons. Program-wide IT and communications limitations are due to the broad categories of bandwidth, availability, and power. At these sites it is essential to conserve bandwidth and power through using efficient software, coding and scheduling techniques. There are interesting new products and services on the horizon that the program may be able to take advantage of in the future such as Iridium NEXT, Inmarsat Xpress, and Omnispace mobile satellite services. Additionally, there are engineering and computer software opportunities to develop more efficient products. We will present an overview of science/engineering partnerships formed by the CPS program, discuss current limitations and identify future technological possibilities that could further advance Arctic science goals.

  15. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  16. Bridging the Divide: Translating Landsat Research Into Usable Science

    Science.gov (United States)

    Rocchio, L. E.; Davis, A. L.

    2006-12-01

    Science has long served humankind. Breakthroughs in medicine have increased longevity and advances in technology have made modern-day conveniences possible. Yet, social benefits begotten by the environmental sciences, although critical for the survival of humanity, have not always been as widely recognized or used. To benefit today's rapidly growing population, the divides between environmental research, applied environmental science, and use of this information by decision makers must be bridged. Lessons about the translation from research to usable science can be learned from the four decades of Landsat history, and these lessons can serve as useful models for bridging the gaps between new technology, scientific research, and the use of that research and technology in real-world problem solving. In 1965, William Pecora, then-director of the U.S. Geological Survey, proposed the idea of a remote sensing satellite program to gather facts about natural resources of Earth. For the next seven years, an intense campaign showing the depth and diversity of satellite imagery applications was waged. This led to the 1972 launch of the first civilian land-observing satellite, Landsat 1. By 1975, successful application research based on Landsat 1 imagery prompted then-NASA Administrator Dr. James Fletcher to proclaim that if one space age development would save the world, it would be Landsat and its successor satellites. Thirty-four years of continual Landsat imaging and related-research has lead to the implementation of many socially beneficial applications, such as improved water management techniques, crop insurance fraud reduction, illicit crop inventories, natural disaster relief planning, continent-scale carbon estimates, and extensive cartographic advances. Despite these successes, the challenge of translating Landsat research into realized social benefits remains. Even in this geospatially-savvy era, the utility of Landsat largely escapes policymakers. Here, in an

  17. Nurturing transdisciplinary research - lessons from live experiments in prioritising and supporting novel risk science (Invited)

    Science.gov (United States)

    Rees, J.; Armstrong, C.; Barclay, J.; Moores, A.; Whitaker, D.

    2013-12-01

    The benefits of specialization over the last 150 years have meant that science has evolved within several distinct disciplines, such as physical, social or environmental. These have generated their own cultures, languages, agendas, institutions, measures of success and cohorts of suitably branded scientists. However, we increasingly see that society and the environment are exposed to many complex, interdependent and rapidly changing risks - not only from natural hazards, but also those associated with fast expanding and ageing populations, highly interconnected and interdependent economies, rapid climate change, and increasingly limited resources. Risks derived from such interacting drivers commonly generate non-linear effects or repercussions and future risks may be very different to those of today; significantly, they span many traditional science disciplines. We thus need to have a fresh look at transdisciplinary risk science, bring in novel ideas and new blood. But what are the best practical ways of sowing the seeds and fertilizing such approaches? The presentation describes novel practical steps to achieve this, all related to building and resourcing transdisciplinary research which incorporates natural hazard science within the UK over the last 5 years. These comprise instruments to prioritise science gaps and provide funding for transdisciplinary research by a) Academic research funders - the Research Councils UK (RCUK) Risk Research Network and current research programmes; b) Government and non-governmental research funders - the Living with Environmental Change Initiative, and the UK Flooding and coastal erosion risk management research strategy - and the UK Collaborative for Development Science sponsored Disasters Research Group; and c) Business funding - through integrated risk modelling for the insurance industry. Whilst young, all these initiatives are healthy and seek to build a portfolio of small scale initiatives that will breed success and develop

  18. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  19. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  20. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  1. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  2. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  3. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Science.gov (United States)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  4. New Public Management, science policy and the orchestration of university research – academic science the loser

    Directory of Open Access Journals (Sweden)

    Aant Elzinga

    2010-03-01

    Full Text Available In many countries - during the past three decades - there has been increasing alignment of public administration with neoliberal modes of governance driven by processes of globalization and privatization. Key is New Public Management (NPM as an instrument for applying private sector or market-based techniques to public services. The paper concerns the implications and impact of these developments as they relate to the university sector where we are seeing an influx of bibliometrics to assess performativity with measures that are frequently far from adequate. These changes are related to the broader context of a globalized privatization doctrine of science policy that has gained currency in many countries. The analysis presented here probes and discusses a nexus between NPM, bibliometric performance audits, and a new paradigm in science policy. As such the paper seeks to fill an important gap in science policy studies and the literature on New Public Management more generally. It summarizes various characteristics associated with NPM, and expl icates the connection with methods of research evaluation now being introduced in academic ins titutions . It also takes up varying responses evoked within academe by the use of bibliometrics and current methods of ranking of tertiary educational institutions. Apart from gaining a better understanding of significant changes in the higher educational and research landscapes or disciplines and the interplay of these with broader economic and political trends in society at large, the aim of the paper is also to stimulate discussion and debate on current priorities, perceptions and policies governing knowledge production. Keywords: New Public management; research policy; transdisciplinarity; postnormal science; Audit Society Agencification; Accountingization; peer review evaluation Disciplines:Public Management and Governance; Management Studies and Research Management. Science Policy; Science Studies

  5. Science For Sendai - Bridging the gap between research and application

    Science.gov (United States)

    Rees, J.

    2015-12-01

    Disasters have an enormous cost in lives and livelihoods, but the use of rigorous evidence-based scientific approaches to minimise their impact remains poor. Vast amounts of science which could be readily applied for disaster risk reduction (DRR) is under-utilised, if used at all. Previous international agreements have failed to change this picture, but there is a clear call from the international community that the 2015 Sendai framework should make a difference; it is thus re-appraising how to bridge the chasm that exists between DRR relevant scientists and potential users of their research. There is widespread recognition of the need for risk affected countries and communities to engage in science-based decision-making, but several barriers, such as a lack of infrastructure or necessary skills, institutions, and enforcement of science-based policies require significant attention. There are now incentives for governments to respond: the framework has science embedded throughout and it sets-out national targets against which science uptake can be monitored; similarly, widening access to insurance also demands sound science. Advances such as open-data and models, increasing computational capacity, expanding networks, evolving diverse mobile technologies and the other multiple facets of the big data agenda, also should drive change. So, how does the scientific community need to adapt? Whilst vast amounts of 'DRR-relevant' science has been produced, too little of it can be readily used in DRR science. Much remains highly disciplinary and focused on analysis of limited distributions or single processes with a small number of agents; by contrast real-world DRR problems are commonly complex, with multiple drivers and uncertainties. There is a major need for a trans-disciplinary DRR-focused risk research agenda to evolve. Not only do research funders need to develop and resource risk research, but researchers themselves need to identify that focussing on the bigger risk

  6. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  7. Developing the science of end-of-life and palliative care research: National Institute of Nursing Research summit.

    Science.gov (United States)

    Csikai, Ellen L

    2011-01-01

    A rare opportunity to examine accomplishments and identify ways to advance research in end-of-life and palliative care was offered by the National Institute of Nursing Research (NINR) through a summit meeting held in August 2011. The Science of Compassion: Future Directions in End-of-Life and Palliative Care brought together nationally recognized leaders in end-of-life and palliative care research, including grantees of NINR, as well as more than 700 attendees from all disciplines. It was an exciting affirmation of the importance of moving forward in the field. Presented in this article is a summary of the summit and a call to action for end-of-life and palliative care social workers to engage in seeking funding to conduct needed research and to ensure our unique perspective is represented.

  8. Science Academies' Summer Research Fellowship Programme

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018. Information and Announcements Volume 22 Issue 11 November 2017 pp 1100-1100 ...

  9. Basic Research in Information Science in France.

    Science.gov (United States)

    Chambaud, S.; Le Coadic, Y. F.

    1987-01-01

    Discusses the goals of French academic research policy in the field of information science, emphasizing the interdisciplinary nature of the field. Areas of research highlighted include communication, telecommunications, co-word analysis in scientific and technical documents, media, and statistical methods for the study of social sciences. (LRW)

  10. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  11. Why Understanding Science Matters: The IES Research Guidelines as a Case in Point

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    The author outlines the rise of a hard-science model advocated by the Institute for Education Sciences, including the application of research and development approaches to education following the Second World War, and describes the attraction of these hard-science approaches for education policymakers. He notes that in the face of complex and…

  12. Statistical thinking: tool for development of nursing as a science

    Directory of Open Access Journals (Sweden)

    Sonia Patricia Carreño Moreno

    2017-09-01

    Full Text Available Objective: To integrate findings of scientific literature that report on the importance of statistical thinking for development of nursing as a science.  Content synthesis: Literature review of articles published in indexed scientific journals between 1998 and 2017 in databases lilacs, sage Journals, Wiley Online Library, Scopus, bireme, Scielo, ScienceDirect, PubMed, cuiden® y ProQuest. 22 publications were included and findings were extracted, classified, and simplified using descriptor codes, nominal codes, and emerging topics. The following six topics emerged from searches: Education for statistical thinking; Statistical thinking for decision-making in practice; Obstacles to the statistical thinking development; Skills necessary to statistical thinking; Statistics in creating scientific knowledge; and Challenges for statistical thinking development. Conclusion: In the current development of nursing as a science, statistical thinking has primarily been a useful tool for the research field and training of researchers. The existence of obstacles to the statistical thinking development in nurse practitioners has been reported, revealing the need to bound statistics with nursing practice. For this purpose, it is essential to prepare texts and subject of statistics applied to the context of discipline and practice. Descriptors: Biostatistics; Statistics as Topic; Statistics; Science; Nursing(source: decs, bireme.

  13. Pedagogy before Technology: A Design-Based Research Approach to Enhancing Skills Development in Paramedic Science Using Mixed Reality

    OpenAIRE

    Michael Cowling; James Birt

    2018-01-01

    In health sciences education, there is growing evidence that simulation improves learners’ safety, competence, and skills, especially when compared to traditional didactic methods or no simulation training. However, this approach to simulation becomes difficult when students are studying at a distance, leading to the need to develop simulations that suit this pedagogical problem and the logistics of this intervention method. This paper describes the use of a design-based research (DBR) method...

  14. EVER-EST: European Virtual Environment for Research in Earth Science Themes

    Science.gov (United States)

    Glaves, H.; Albani, M.

    2016-12-01

    EVER-EST is an EC Horizon 2020 project having the goal to develop a Virtual Research Environment (VRE) providing a state-of-the-art solution to allow Earth Scientists to preserve their work and publications for reference and future reuse, and to share with others. The availability of such a solution, based on an innovative concept and state of art technology infrastructure, will considerably enhance the quality of how Earth Scientists work together within their own institution and also across other organizations, regions and countries. The concept of Research Objects (ROs), used in the Earth Sciences for the first time, will form the backbone of the EVER-EST VRE infrastructure. ROs will enhance the ability to preserve, re-use and share entire or individual parts of scientific workflows and all the resources related to a specific scientific investigation. These ROs will also potentially be used as part of the scholarly publication process. EVER-EST is building on technologies developed during almost 15 years of research on Earth Science data management infrastructures. The EVER-EST VRE Service Oriented Architecture is being meticulously designed to accommodate at best the requirements of a wide range of Earth Science communities and use cases: focus is put on common requirements and on minimising the level of complexity in the EVER-EST VRE to ensure future sustainability within the user communities beyond the end of the project. The EVER-EST VRE will be validated through its customisation and deployment by four Virtual Research Communities (VRCs) from different Earth Science disciplines and will support enhanced interaction between data providers and scientists in the Earth Science domain. User community will range from bio-marine researchers (Sea Monitoring use case), to common foreign and security policy institutions and stakeholders (Land Monitoring for Security use case), natural hazards forecasting systems (Natural Hazards use case), and disaster and risk

  15. Application of micro-PIXE and imaging technology to life science (Joint research)

    International Nuclear Information System (INIS)

    Satoh, Takahiro; Ishii, Keizo

    2011-03-01

    The joint research on 'Application of micro-PIXE and imaging technology to life science' supported by the Inter-organizational Atomic Energy Research Program, had been performed for three years, from 2006FY to 2009FY. Aiming to apply in-air micro-PIXE analytical system to life science, the research was consisting of 7 collaborative themes related to beam engineering for micro-PIXE and applied technology of element mapping in biological/medical fields. The system, so-called micro-PIXE camera, to acquire spatial element mapping in living cells was originally developed by collaborative research between the JAEA and the department of engineering of Tohoku University. This review covers these research results. (author)

  16. Bridging the Gap between Research and Practice: Implementation Science

    Science.gov (United States)

    Olswang, Lesley B.; Prelock, Patricia A.

    2015-01-01

    Purpose: This article introduces implementation science, which focuses on research methods that promote the systematic application of research findings to practice. Method: The narrative defines implementation science and highlights the importance of moving research along the pipeline from basic science to practice as one way to facilitate…

  17. The Need for Paradigms in Science Education Research

    Science.gov (United States)

    Bowen, Barbara L.

    1975-01-01

    Suggests that the absence of conceptually based research in science education may derive from an attempt to conduct scientific research based on misperceptions of the nature of science and an inability to identify a suitable conceptual model. Suggests that Ausubel's model of meaningful learning may serve as a candidate for a science education…

  18. A phenomenological investigation of science center exhibition developers' expertise development

    Science.gov (United States)

    Young, Denise L.

    The purpose of this study was to examine the exhibition developer role in the context of United States (U.S.) science centers, and more specifically, to investigate the way science center exhibition developers build their professional expertise. This research investigated how successfully practicing exhibition developers described their current practices, how they learned to be exhibition developers, and what factors were the most important to the developers in building their professional expertise. Qualitative data was gathered from 10 currently practicing exhibition developers from three science centers: the Exploratorium, San Francisco, California; the Field Museum, Chicago, Illinois; and the Science Museum of Minnesota, St. Paul, Minnesota. In-depth, semistructured interviews were used to collect the data. The study embraced aspects of the phenomenological tradition and sought to derive a holistic understanding of the position and how expertise was built for it. The data were methodically coded and organized into themes prior to analysis. The data analysis found that the position consisted of numerous and varied activities, but the developers' primary roles were advocating for the visitor, storytelling, and mediating information and ideas. They conducted these activities in the context of a team and relied on an established exhibition planning process to guide their work. Developers described a process of learning exhibition development that was experiential in nature. Learning through daily practice was key, though they also consulted with mentors and relied on visitor studies to gauge the effectiveness of their work. They were adept at integrating prior knowledge gained from many aspects of their lives into their practice. The developers described several internal factors that contributed to their expertise development including the desire to help others, a natural curiosity about the world, a commitment to learning, and the ability to accept critique. They

  19. Review of research on advanced computational science in FY2015

    International Nuclear Information System (INIS)

    2017-01-01

    Research on advanced computational science for nuclear applications, based on 'Plan to Achieve Medium- to Long-term Objectives of the Japan Atomic Energy Agency (Medium- to Long-term Plan)', has been performed at Center for Computational Science and e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established the committee consisting of outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the followings. (1) Results of the R and D performed at CCSE in FY 2015 (April 1st, 2015 - March 31st, 2016), (2) Results of the evaluation on the R and D by the committee in FY 2015 (April 1st, 2015 - March 31st, 2016). (author)

  20. Children's Oncology Group's 2013 blueprint for research: behavioral science.

    Science.gov (United States)

    Noll, Robert B; Patel, Sunita K; Embry, Leanne; Hardy, Kristina K; Pelletier, Wendy; Annett, Robert D; Patenaude, Andrea; Lown, E Anne; Sands, Stephen A; Barakat, Lamia P

    2013-06-01

    Behavioral science has long played a central role in pediatric oncology clinical service and research. Early work focused on symptom relief related to side effects of chemotherapy and pain management related to invasive medical procedures. As survival rates improved, the focused has shifted to examination of the psychosocial impact, during and after treatment, of pediatric cancer and its treatment on children and their families. The success of the clinical trials networks related to survivorship highlights an even more critical role in numerous domains of psychosocial research and care. Within the cooperative group setting, the field of behavioral science includes psychologists, social workers, physicians, nurses, and parent advisors. The research agenda of this group of experts needs to focus on utilization of psychometrically robust measures to evaluate the impact of treatment on children with cancer and their families during and after treatment ends. Over the next 5 years, the field of behavioral science will need to develop and implement initiatives to expand use of standardized neurocognitive and behavior batteries; increase assessment of neurocognition using technology; early identification of at-risk children/families; establish standards for evidence-based psychosocial care; and leverage linkages with the broader behavioral health pediatric oncology community to translate empirically supported research clinical trials care to practice. Copyright © 2012 Wiley Periodicals, Inc.

  1. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  2. Mentoring the Next Generation of Science Gateway Developers and Users

    Science.gov (United States)

    Hayden, L. B.; Jackson-Ward, F.

    2016-12-01

    The Science Gateway Institute (SGW-I) for the Democratization and Acceleration of Science was a SI2-SSE Collaborative Research conceptualization award funded by NSF in 2012. From 2012 through 2015, we engaged interested members of the science and engineering community in a planning process for a Science Gateway Community Institute (SGCI). Science Gateways provide Web interfaces to some of the most sophisticated cyberinfrastructure resources. They interact with remotely executing science applications on supercomputers, they connect to remote scientific data collections, instruments and sensor streams, and support large collaborations. Gateways allow scientists to concentrate on the most challenging science problems while underlying components such as computing architectures and interfaces to data collection changes. The goal of our institute was to provide coordinating activities across the National Science Foundation, eventually providing services more broadly to projects funded by other agencies. SGW-I has succeeded in identifying two underrepresented communities of future gateway designers and users. The Association of Computer and Information Science/Engineering Departments at Minority Institutions (ADMI) was identified as a source of future gateway designers. The National Organization for the Professional Advancement of Black Chemists and Chemical Engineers (NOBCChE) was identified as a community of future science gateway users. SGW-I efforts to engage NOBCChE and ADMI faculty and students in SGW-I are now woven into the workforce development component of SGCI. SGCI (ScienceGateways.org ) is a collaboration of six universities, led by San Diego Supercomputer Center. The workforce development component is led by Elizabeth City State University (ECSU). ECSU efforts focus is on: Produce a model of engagement; Integration of research into education; and Mentoring of students while aggressively addressing diversity. This paper documents the outcome of the SGW

  3. Implementation science approaches for integrating eHealth research into practice and policy.

    Science.gov (United States)

    Glasgow, Russell E; Phillips, Siobhan M; Sanchez, Michael A

    2014-07-01

    To summarize key issues in the eHealth field from an implementation science perspective and to highlight illustrative processes, examples and key directions to help more rapidly integrate research, policy and practice. We present background on implementation science models and emerging principles; discuss implications for eHealth research; provide examples of practical designs, measures and exemplar studies that address key implementation science issues; and make recommendations for ways to more rapidly develop and test eHealth interventions as well as future research, policy and practice. The pace of eHealth research has generally not kept up with technological advances, and many of our designs, methods and funding mechanisms are incapable of providing the types of rapid and relevant information needed. Although there has been substantial eHealth research conducted with positive short-term results, several key implementation and dissemination issues such as representativeness, cost, unintended consequences, impact on health inequities, and sustainability have not been addressed or reported. Examples of studies in several of these areas are summarized to demonstrate this is possible. eHealth research that is intended to translate into policy and practice should be more contextual, report more on setting factors, employ more responsive and pragmatic designs and report results more transparently on issues important to potential adopting patients, clinicians and organizational decision makers. We outline an alternative development and assessment model, summarize implementation science findings that can help focus attention, and call for different types of more rapid and relevant research and funding mechanisms. Published by Elsevier Ireland Ltd.

  4. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  5. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  6. Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    Science.gov (United States)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-02-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.

  7. Science research with high-brilliance synchrotron light source

    International Nuclear Information System (INIS)

    Sanyal, Milan K.

    2013-01-01

    Synchrotron-science has changed dramatically since the development of high brilliance electron accelerator-based light sources in 1990s. In the last twenty years or so, several such facilities have come up, particularly in developed countries, as material characterizations in relevant atmosphere and protein crystallography with tiny-crystals have strong implications in industrial competitiveness. Moreover several new techniques have been developed recently over the entire spectral range of emitted light, from infra-red to high energy X-rays, which have altered our basic understanding of various materials like biomaterials, nanomaterials, soft-matter and semiconductor quantum structures. In addition, rapid development of various X-ray imaging techniques for nondestructive evaluation of compositional/structural homogeneity of engineering materials with nanometer resolution will have tremendous impact in manufacturing industries. As India becomes a developed country, it must have access to such an advanced synchrotron facility in the country that enables knowledge generation in the ever-expanding fields of design-characterization-production of advanced materials and modern medicines. Development of such state-of-the art facility will also enable us to carry out frontier-basic-research in our own country and help us to retain and bring back Indian talents to India. Here we shall discuss briefly the characteristics of a high brilliance synchrotron source and outline the nature of basic and applied science research that can be done with such a state-of-the-art facility. (author)

  8. Science teachers' knowledge development in the context of educational innovation

    NARCIS (Netherlands)

    Henze-Rietveld, Francina Adriana

    2006-01-01

    The research reported in this thesis is concerned with the knowledge development of a small sample of experienced science teachers in the context of a broad innovation in Dutch secondary education, including the introduction of a new syllabus on Public Understanding of Science. The aim of the study

  9. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  10. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  11. Making graduate research in science education more scientific

    Science.gov (United States)

    Firman, Harry

    2016-02-01

    It is expected that research conducted by graduate students in science education provide research findings which can be utilized as evidence based foundations for making decisions to improve science education practices in schools. However, lack of credibility of research become one of the factors cause idleness of thesis and dissertation in the context of education improvement. Credibility of a research is constructed by its scientificness. As a result, enhancement of scientific characters of graduate research needs to be done to close the gap between research and practice. A number of guiding principles underlie educational researchs as a scientific inquiry are explored and applied in this paper to identify common shortages of some thesis and dissertation manuscripts on science education reviewed in last two years.

  12. Changes in science classrooms resulting from collaborative action research initiatives

    Science.gov (United States)

    Oh, Phil Seok

    Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a

  13. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  14. Materials Science: A Spin-off in Research and Development

    International Nuclear Information System (INIS)

    Aduda, B.O.

    2006-01-01

    The scope materials science is wide since it is a multi/trans-disciplinary subject, and is based on physics and chemistry of solid state. It embraces all aspects of engineering materials, from the most basic to the most novel, and is concerned with how a material is assembled from the basic units, can be used, can be modified or improved to perform specific tasks. Further, it is concerned with proper selection of materials for specific applications, and development of new and improved materials with unique properties for the ever increasing and more demanding applications, e.g., aerogels, ceramic membranes for fuel cells, bioceramics for hip bone replacements, nanostructured photoactive thin films for solar cell, sensors and photocatalysis applications etc

  15. Fostering Collaborations towards Integrative Research Development

    Directory of Open Access Journals (Sweden)

    Leonie Valentine

    2013-05-01

    Full Text Available The complex problems associated with global change processes calls for close collaboration between science disciplines to create new, integrated knowledge. In the wake of global change processes, forests and other natural environments have been rapidly changing, highlighting the need for collaboration and integrative research development. Few tools are available to explore the potential for collaborations in research ventures that are just starting up. This study presents a useful approach for exploring and fostering collaborations between academics working in research teams and organizations comprising multiple science disciplines (i.e., multi-disciplinary. The research aim was to reveal potential barriers, common ground, and research strengths between academics working in a new centre focused on forest and climate change research. This aim was based on the premise that raising awareness and working with this acquired knowledge fosters collaborations and integrative research development. An email survey was deployed amongst the academics to obtain: (i their understanding of common themes (e.g., climate change, scale of investigation, woodland/forest health/decline; (ii descriptions of the spatial and temporal scales of their research; and (iii their approach and perceived contributions to climate change research. These data were analysed using a semi-quantitative content analysis approach. We found that the main potential barriers were likely to be related to differences in understanding of the common research themes, whilst similarities and disciplinary strengths provided critical elements to foster collaborations. These findings were presented and discussed amongst the centre academics to raise awareness and create a dialogue around these issues. This process resulted in the development of four additional research projects involving multiple disciplines. The approach used in this study provides a useful methodology of broader benefit to

  16. Eastern Africa Social Science Research Review: Site Map

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review: Site Map. Journal Home > About the Journal > Eastern Africa Social Science Research Review: Site Map. Log in or Register to get access to full text downloads.

  17. Science, Technology and Arts Research Journal: Site Map

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Site Map. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Site Map. Log in or Register to get access to full text downloads.

  18. Science, Technology and Arts Research Journal: Journal Sponsorship

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal: Journal Sponsorship. Journal Home > About the Journal > Science, Technology and Arts Research Journal: Journal Sponsorship. Log in or Register to get access to full text downloads.

  19. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  20. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  1. Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers

    Science.gov (United States)

    Lartigue, J.; Parker, F.; Allee, R.; Young, C.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.

  2. An exploratory survey of design science research amongst South African computing scholars

    CSIR Research Space (South Africa)

    Naidoo, R

    2012-10-01

    Full Text Available The debate ensues as to whether the traditional focus of computing research on theory development and verification and therefore has adequate immediate practical relevance. Despite increasing claims of the potential of design science research (DSR...

  3. Citizen Science and Biomedical Research: Implications for Bioethics Theory and Practice

    Directory of Open Access Journals (Sweden)

    Chris W Callaghan

    2016-10-01

    Full Text Available Certain trends in scientific research have important relevance to bioethics theory and practice. A growing stream of literature relates to increasing transparency and inclusivity of populations (stakeholders in scientific research, from high volume data collection, synthesis, and analysis to verification and ethical scrutiny. The emergence of this stream of literature has implications for bioethics theory and practice. This paper seeks to make explicit these streams of literature and to relate these to bioethical issues, through consideration of certain extreme examples of scientific research where bioethical engagement is vital. Implications for theory and practice are derived, offering useful insights derived from multidisciplinary theory. Arguably, rapidly developing fields of citizen science such as informing science and others seeking to maximise stakeholder involvement in both research and bioethical engagement have emerged as a response to these types of issues; radically enhanced stakeholder engagement in science may herald a new maximally inclusive and transparent paradigm in bioethics based on lessons gained from exposure to increasingly uncertain ethical contexts of biomedical research.

  4. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    Science.gov (United States)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    than 100 papers published each year from the group. These papers are written by and for scientists, but they often contain information that is of wider interest. The SD communications team faces the challenge of distilling these 2,000+ word science papers into short and readable summaries that allow non-scientists access to that information (with the ability to obtain the full paper if they are interested). In this process, a key challenge is to find a balance between accuracy and understanding: how can a summary briefly convey the key points of a paper without explaining every detail? That challenge also requires a culture shift for researchers who are dedicated to accuracy and detail, and again the SD communications team is important to the success of this process. This paper will share several examples of SD visual presentation techniques and will discuss our revitalized effort to write lay research summaries that can provide an accessible on-ramp to our collection of research writings in the newly-mandated scientific publication repository. It will also discuss our interactions with the NASA Office of Public Affairs, including Legislative Affairs and Business Development, and how both visual presentations and lay summaries can be used in external promotion activities.

  5. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  6. Supporting pre-service science teachers in developing culturally relevant pedagogy

    Science.gov (United States)

    Krajeski, Stephen

    This study employed a case study methodology to investigate a near-authentic intervention program designed to support the development of culturally relevant pedagogy and its impact on pre-service science teachers' notions of culturally relevant pedagogy. The unit of analysis for this study was the discourse of pre-service science teachers enrolled in a second semester science methods course, which was the site of the intervention program. Data for this study was collected from videos of classroom observations, audio recordings of personal interviews, and artifacts created by the pre-service science teachers during the class. To determine how effective science teacher certification programs are at supporting the development of culturally relevant pedagogy without an immersion aspect, two research questions were investigated: 1) How do pre-service science teachers view and design pedagogy while participating in an intervention designed to support the development of culturally relevant pedagogy? 2) How do pre-service science teachers view the importance of culturally relevant pedagogy for supporting student learning? How do their practices in the field change these initial views?

  7. Status and developmental strategy of nuclear agricultural sciences in researches of eco-environmental sciences in agriculture

    International Nuclear Information System (INIS)

    Hua Luo; Wang Xunqing

    2001-01-01

    The concept, research scopes, research progress and achievement of nuclear agricultural sciences in past several decades in China, as well as the relationship between nuclear agriculture research and eco-environmental sciences were described. The disciplinary frontier, major research fields and priority developmental fields of nuclear agriculture in eco-environmental sciences was displayed. Suggestions were made to improve and strengthen nuclear agriculture research. Those provided basic source materials and consideration for application developmental strategy of nuclear agriculture in eco-environmental sciences

  8. Significance and impact of nuclear research in developing countries

    International Nuclear Information System (INIS)

    1987-01-01

    The main purpose of this conference was to gather representatives of universities, research institutes, governmental agencies and industry, as well as IAEA staff, to report on and to assess the significance and impact of nuclear science and technology in developing countries. Thirty-four papers from 17 countries were presented, which are included in the proceedings, as well as reports of three workshops on ''Basic and applied research'', on ''The IAEA's involvement in the implementation of national nuclear programmes'', and on ''Policy and management issues''. The presentation of these reports clearly reflects the fact that all the nuclear activities involved in the programmes of industrialized countries are in progress in developing countries, i.e. most of the aspects of applications in the field of nuclear power, research reactors, food and agriculture, industry and earth sciences, and life sciences. A separate abstract was prepared for each of these papers

  9. Examining the literacy component of science literacy: 25 years of language arts and science research

    Science.gov (United States)

    Yore, Larry D.; Bisanz, Gay L.; Hand, Brian M.

    2003-06-01

    This review, written to celebrate the 25th anniversary of the International Journal of Science Education, revealed a period of changes in the theoretical views of the language arts, the perceived roles of language in science education, and the research approaches used to investigate oral and written language in science, science teaching, and learning. The early years were dominated by behavioralist and logico-mathematical interpretations of human learning and by reductionist research approaches, while the later years reflected an applied cognitive science and constructivist interpretations of learning and a wider array of research approaches that recognizes the holistic nature of teaching and learning. The early years focus on coding oral language into categories reflecting source of speech, functional purpose, level of question and response, reading research focused on the readability of textbooks using formulae and the reader's decoding skills, and writing research was not well documented since the advocates for writing in service of learning were grass roots practitioners and many science teachers were using writing as an evaluation technique. The advent of applied cognitive science and the constructivist perspectives ushered in interactive-constructive models of discourse, reading and writing that more clearly revealed the role of language in science and in science teaching and learning. A review of recent research revealed that the quantity and quality of oral interactions were low and unfocused in science classrooms; reading has expanded to consider comprehension strategies, metacognition, sources other than textbooks, and the design of inquiry environments for classrooms; and writing-to-learn science has focused on sequential writing tasks requiring transformation of ideas to enhance science learning. Several promising trends and future research directions flow from the synthesis of this 25-year period of examining the literacy component of science literacy

  10. Integrating research into clinical internship training bridging the science/practice gap in pediatric psychology.

    Science.gov (United States)

    McQuaid, Elizabeth L; Spirito, Anthony

    2012-03-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a "capstone experience"; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the "business of science." Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists.

  11. Integrating Research Into Clinical Internship Training Bridging the Science/Practice Gap in Pediatric Psychology

    Science.gov (United States)

    Spirito, Anthony

    2012-01-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a “capstone experience”; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the “business of science.” Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists. PMID:22286345

  12. Advancing nursing science through health trajectory research: an introduction.

    Science.gov (United States)

    Wyman, Jean F; Henly, Susan J

    2011-01-01

    The Minnesota Center for Health Trajectory Research has focused on developing ways to better understand how interventions influence health trajectories during transitional, acute, or chronic health challenges across the life span. The health trajectory perspective advances nursing science by providing a person-centered point of view that emphasizes change in health over time within individuals, families, groups, or communities. Theoretical considerations and statistical modeling approaches used in studying health trajectories, along with exemplars from nursing research studies from this special issue of Nursing Research, are highlighted.

  13. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  14. Staff development and secondary science teachers: Factors that affect voluntary participation

    Science.gov (United States)

    Corley, Theresa Roebuck

    2000-10-01

    A researcher-designed survey assessed the perceptions of Alabama secondary science public school teachers toward the need for staff development and toward certain staff development strategies and programs. Factors that encouraged or discouraged attendance at voluntary staff development programs and opinions regarding effective and ineffective features of programs were identified. Data were analyzed using descriptive techniques. Percentages and frequencies were noted. Average rankings were computed for the staff development techniques considered most and least effective and for the preferred designs of future staff development offerings. Chi squares were computed to respond to each of the 4 research hypotheses. Narrative discussions and tables were utilized to report the data and provide clarification. This study related demographic information to the research hypotheses. Analysis of the research hypotheses revealed that experienced teachers agree more strongly about the features of staff development programs that they consider effective and about the factors that may affect participation in staff development programs. Analysis of the research questions revealed that secondary science teachers in Alabama agree that staff development is a personal responsibility but that the school systems are responsible for providing staff development opportunities. Teachers believe that staff development is needed annually in both science content and teaching strategies and favor lengthening the school year for staff development. Teachers identified interest level, graduate credit, ability to implement material, scheduling factors, and the reputation of the organizer as the most important factors in determining participation in voluntary staff development programs. Hands-on workshops were identified as the most effective type of voluntary staff development and teachers requested that future staff development experiences include hands-on workshops, networking, curriculum

  15. Science, Social Work, and Intervention Research: The Case of "Critical Time Intervention"

    Science.gov (United States)

    Jenson, Jeffrey M.

    2014-01-01

    Intervention research is an important, yet often neglected, focus of social work scholars and investigators. The purpose of this article is to review significant milestones and recent advances in intervention research. Methodological and analytical developments in intervention research are discussed in the context of science and social work.…

  16. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  17. Teacher training on the nature of science through action-research

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez-Alonso

    2014-01-01

    Full Text Available Nature of science teaching is essential for scientific and technological literacy, but teacher training is poor due to the lack of pedagogical content knowledge (PCK of topics on the nature of science and technology (NS&,T. This article addresses the development of the PCK through the self-training of a teacher, by describing the process of curriculum ownership, change and self-regulation, to teach the students the topic “observation in science”. Since action-research is the frame of this study, the teacher reflects and researches his own practice, with the help of some tools to make explicit the developed PCK. The results show the features of the PCK developed by the teacher, and how the teacher becomes aware that the PCK-NS&,T integrative model, the different teaching contexts in the classroom, and the reflective and explicit teaching processes are effective to teach NS&,T, as they improve students’ understanding of the theory-laden of observations and develop motivation towards consensus argumentation and decision making, autonomous learning, sharing team work, self-reflection and dialogue.

  18. Undergraduate Research in Quantum Information Science

    Science.gov (United States)

    Lyons, David W.

    2017-01-01

    Quantum Information Science (QIS) is an interdisciplinary field involving mathematics, computer science, and physics. Appealing aspects include an abundance of accessible open problems, active interest and support from government and industry, and an energetic, open, and collaborative international research culture. We describe our student-faculty…

  19. Books | Page 25 | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... to improving lives and livelihoods by supporting research that addresses critical international development issues. ... Any -, Miscellaneous, Development, Science and Technology, Social Policy, Economics ... Book cover Marketing Information Products and Services: A Primer for Librarians and Information Professionals.

  20. Emerging Challenges and Opportunities for Education and Research in Weed Science

    Directory of Open Access Journals (Sweden)

    Bhagirath S. Chauhan

    2017-09-01

    Full Text Available In modern agriculture, with more emphasis on high input systems, weed problems are likely to increase and become more complex. With heightened awareness of adverse effects of herbicide residues on human health and environment and the evolution of herbicide-resistant weed biotypes, a significant focus within weed science has now shifted to the development of eco-friendly technologies with reduced reliance on herbicides. Further, with the large-scale adoption of herbicide-resistant crops, and uncertain climatic optima under climate change, the problems for weed science have become multi-faceted. To handle these complex weed problems, a holistic line of action with multi-disciplinary approaches is required, including adjustments to technology, management practices, and legislation. Improved knowledge of weed ecology, biology, genetics, and molecular biology is essential for developing sustainable weed control practices. Additionally, judicious use of advanced technologies, such as site-specific weed management systems and decision support modeling, will play a significant role in reducing costs associated with weed control. Further, effective linkages between farmers and weed researchers will be necessary to facilitate the adoption of technological developments. To meet these challenges, priorities in research need to be determined and the education system for weed science needs to be reoriented. In respect of the latter imperative, closer collaboration between weed scientists and other disciplines can help in defining and solving the complex weed management challenges of the 21st century. This consensus will provide more versatile and diverse approaches to innovative teaching and training practices, which will be needed to prepare future weed science graduates who are capable of handling the anticipated challenges of weed science facing in contemporary agriculture. To build this capacity, mobilizing additional funding for both weed research and

  1. Evaluation of Research in Engineering Science in Norway

    DEFF Research Database (Denmark)

    Van Brussel, Hendrik Van Brussel; Lindberg, Bengt; Cederwall, Klas

    This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway .......This report presents the conclusions of Panel 1: Construction engineering, Production and Operation. The Research Council of Norway (NFR) appointed three expert panels to evaluate Research in Engineering Science in Norway ....

  2. Design science research as research approach in doctoral studies

    CSIR Research Space (South Africa)

    Kotzé, P

    2015-08-01

    Full Text Available Since the use of design science research (DSR) gained momentum as a research approach in information systems (IS), the adoption of a DSR approach in postgraduate studies became more acceptable. This paper reflects on a study to investigate how a...

  3. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, J. F.; Durachka, C. D.; Behnke, J.

    2015-12-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational

  4. Developing the Next Generation of Science Data System Engineers

    Science.gov (United States)

    Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.

    2016-01-01

    At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data

  5. THE DEVELOPMENT OF BOOK SCIENCE IN LITHUANIA: DIVISION INTO PERIODS AND CHRONOLOGY

    Directory of Open Access Journals (Sweden)

    Navickiene, Ausra

    2006-12-01

    Full Text Available It is possible to distinguish two main periods in the history of Lithuanian book science: the initial period of formation of the book science started at the beginning of the 19th century and ended by the first decades of the 20th century; the period of the independent, autonomous development of book science from the beginning of the 20th century till now. The first period is also known as a bibliographic period of book science, because the disciplines investigating a book were concentrated around bibliography, which was understood as a universal encyclopaedic science of book at that time. The border between the two periods is marked by a change in the book researchworks: the wide concept of bibliography stopped dominating the discourse; book science and bibliography were understood as two disciplines with specific objects of research, their own structures and methods. It is difficult to point out a specific date of this change but it is certain that it must have happened not later than in the 20s of the 20th century. Within these two periods, it is possible to distinguish a variety of factors that influenced the development of book science.In Lithuania, book science has emerged and was formed within the European model of development. Just after a decade since the first courses in book science delivered in France at the end of the 18th century, the subject of book science was included into the programme at Vilnius University and later the lectures were read. The most significant European (French and German book science works were known to the academic faculty at Vilnius University and collected in its library. They were used as a foundation to create the first works of book history and theory in Lithuania. These works disseminated widely popular theoretical concepts enriched by original research, which helped the formation of independent disciplines of book science, bibliography and history of literature.The development of the autonomous book

  6. Building capacity in implementation science research training at the University of Nairobi.

    Science.gov (United States)

    Osanjo, George O; Oyugi, Julius O; Kibwage, Isaac O; Mwanda, Walter O; Ngugi, Elizabeth N; Otieno, Fredrick C; Ndege, Wycliffe; Child, Mara; Farquhar, Carey; Penner, Jeremy; Talib, Zohray; Kiarie, James N

    2016-03-08

    Health care systems in sub-Saharan Africa, and globally, grapple with the problem of closing the gap between evidence-based health interventions and actual practice in health service settings. It is essential for health care systems, especially in low-resource settings, to increase capacity to implement evidence-based practices, by training professionals in implementation science. With support from the Medical Education Partnership Initiative, the University of Nairobi has developed a training program to build local capacity for implementation science. This paper describes how the University of Nairobi leveraged resources from the Medical Education Partnership to develop an institutional program that provides training and mentoring in implementation science, builds relationships between researchers and implementers, and identifies local research priorities for implementation science. The curriculum content includes core material in implementation science theory, methods, and experiences. The program adopts a team mentoring and supervision approach, in which fellows are matched with mentors at the University of Nairobi and partnering institutions: University of Washington, Seattle, and University of Maryland, Baltimore. A survey of program participants showed a high degree satisfaction with most aspects of the program, including the content, duration, and attachment sites. A key strength of the fellowship program is the partnership approach, which leverages innovative use of information technology to offer diverse perspectives, and a team model for mentorship and supervision. As health care systems and training institutions seek new approaches to increase capacity in implementation science, the University of Nairobi Implementation Science Fellowship program can be a model for health educators and administrators who wish to develop their program and curricula.

  7. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  8. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  9. The use of design science research in the development of a performance management system for hospitality

    Directory of Open Access Journals (Sweden)

    N. António

    2015-11-01

    Full Text Available Since no Performance Management (PM systems specific for the hospitality industry seem to exist in the market, it was decided to evaluate the commercial viability of such a system by developing one and making it available to hotels in the form of Software as a Service (SaaS. Software deployed in the cloud, delivered and licensed as a service is becoming increasingly common and accepted in a business context. Although PM and Decision Support Systems (DSS are not usually distributed in the SaaS mode, there are some examples that this is changing. To evaluate the system in both the technical and business perspectives, a prototype was developed using the Design Science Research (DSR methodology and made available to four hotels. The results revealed that hotels were very satisfied with the system and that building a prototype is a good method to develop and assess PM systems.

  10. Technology research and development

    International Nuclear Information System (INIS)

    Haas, G.M.; Abdov, M.A.; Baker, C.C.; Beuligmann, R.F.

    1985-01-01

    The U.S. Dept. of Energy discusses the new program plan, the parameters of which are a broad scientific and technology knowledge base, an attractive plasma configuration to be determined, and other issues concerning uncertainty as to what constitutes attractive fusion options to be determined in the future, and increased collaboration. Tables show changing directions in magnetic fusion energy, two examples of boundary condition impacts on long-term technology development, and priority classes of the latter. The Argonne National Laboratory comments on the relationship between science, technology and the engineering aspects of the fusion program. UCLA remarks on the role of fusion technology in the fusion program plan, particularly on results from the recent studies of FINESSE. General Dynamics offers commentary on the issues of a reduced budget, and new emphasis on science which creates an image of the program. A table illustrates technology research and development in the program plan from an industrial perspective

  11. A review of second law techniques applicable to basic thermal science research

    Science.gov (United States)

    Drost, M. Kevin; Zamorski, Joseph R.

    1988-11-01

    This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.

  12. Nanotechnology Research: Applications in Nutritional Sciences12

    Science.gov (United States)

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  13. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  14. Researching the Real: Transforming the Science Fair through Relevant and Authentic Research

    Science.gov (United States)

    Davidson, Rosemary McBryan

    This teacher research study documents the processes used to help students in an all-female, religious-based high school create science fair projects that are personally meaningful, scientifically sophisticated and up-to date in terms of science content. One-hundred sixteen young women in an honors chemistry class were introduced by their teacher to the methods used by science journalists when researching and crafting articles. The students then integrated these strategies into their science fair research through collaborative classroom activities designed by their teacher. Data collected during the process included audio and video tapes of classroom activities, student interviews, process work, finished projects, email conversations and the reflective journaling, annotated lesson plans, and memories of the lived experience by the teacher. The pedagogical changes which resulted from this project included the use of Read Aloud-Think Alouds (RATA) to introduce content and provide relevance, a discussion based topic selection process, the encouragement of relevant topic choices, the increased use of technology for learning activities and for sharing research, and an experimental design process driven by the student's personally relevant, topic choice. Built in feedback loops, provided by the teacher, peer editors and an outside editor, resulted in multiple revisions and expanded opportunities for communicating results to the community-at-large. Greater student engagement in science fair projects was evident: questioning for understanding, active involvement in decision making, collaboration within the classroom community, experience and expertise with reading, writing and the use of technology, sense of agency and interest in science related activities and careers all increased. Students communicated their evolving practices within the school community and became leaders who promoted the increased use of technology in all of their classes. Integrating journalistic

  15. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  16. Developing a framework for critical science agency through case study in a conceptual physics context

    Science.gov (United States)

    Basu, Sreyashi Jhumki; Calabrese Barton, Angela; Clairmont, Neil; Locke, Donya

    2009-06-01

    In this manuscript we examine how two students develop and express agency in and through high school physics. We tell the stories of two youth from a low-income, urban community to elucidate the important components of critical science agency in a physics context, and to situate a set of claims about how youth develop and express this concept. This research is part of a larger multiyear study of democratic practice in middle- and high-school science. We present three claims: (a) that critical science agency is intimately related to the leveraging and development of identity, (b) that critical science agency involves the strategic deployment of resources , and (c) that developing critical science agency is an iterative and generative process. Two university researchers have co-written this paper with the two students whose experiences serve as the cases under investigation, to provide both an "emic" perspective and student-focused voices that complement and challenge the researchers' voices.

  17. Aquatic Sciences and Its Appeal for Expeditionary Research Science Education

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Our multi-program team studies aim to develop specific "hard" and "soft" STEM skills that integrate, literally, both disciplinary and socio-economic aspects of students lives to include peer mentoring, advisement, enabling, and professional mentorship, as well as honestly productive, career-developing hands-on research. Specifically, we use Interdependent, multidisciplinary research experiences; Development and honing of specific disciplinary skill (you have to have something TO network); Use of skill in a team to produce big picture product; Interaction with varied, often outside professionals; in order to Finish with self-confidence and a marketable skill. In a given year our umbrella projects involve linked aquatic science disciplines: Analytical Chemistry; Geology; Geochemistry; Microbiology; Engineering (Remotely Operated Vehicles); and recently Policy (scientist-public engagement). We especially use expeditionary research activities aboard our research vessel in Lake Michigan, during which (a dozen at a time, from multiple programs) students: Experience ocean-scale research cruise activities; Apply a learned skill in real time to characterize a large lake; Participate in interdisciplinary teamwork; Learn interactions among biology, chemistry, geology, optics, physics for diverse aquatic habitats; and, importantly, Experience leadership as "Chief Scientist-for-a-station". These team efforts achieve beneficial outcomes: Develop self-confidence in application of skills; Enable expression of leadership capabilities; Provide opportunity to assess "love of big water"; Produce invaluable long-term dataset for the studied region (our benefit); and they are Often voted as a top influence for career decisions. These collectively have led to some positive outcomes for "historical" undergraduate participants - more than half in STEM graduate programs, only a few not still involved in a STEM career at some level, or involved as for example a lawyer in environmental policy.

  18. NEEMO 20: Science Training, Operations, and Tool Development

    Science.gov (United States)

    Graff, T.; Miller, M.; Rodriguez-Lanetty, M.; Chappell, S.; Naids, A.; Hood, A.; Coan, D.; Abell, P.; Reagan, M.; Janoiko, B.

    2016-01-01

    The 20th mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated evaluation of operational protocols and tools designed to enable future exploration beyond low-Earth orbit. NEEMO 20 was conducted from the Aquarius habitat off the coast of Key Largo, FL in July 2015. The habitat and its surroundings provide a convincing analog for space exploration. A crew of six (comprised of astronauts, engineers, and habitat technicians) lived and worked in and around the unique underwater laboratory over a mission duration of 14-days. Incorporated into NEEMO 20 was a diverse Science Team (ST) comprised of geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center (JSC), as well as marine scientists from the Department of Biological Sciences at Florida International University (FIU). This team trained the crew on the science to be conducted, defined sampling techniques and operational procedures, and planned and coordinated the science focused Extra Vehicular Activities (EVAs). The primary science objectives of NEEMO 20 was to study planetary sampling techniques and tools in partial gravity environments under realistic mission communication time delays and operational pressures. To facilitate these objectives two types of science sites were employed 1) geoscience sites with available rocks and regolith for testing sampling procedures and tools and, 2) marine science sites dedicated to specific research focused on assessing the photosynthetic capability of corals and their genetic connectivity between deep and shallow reefs. These marine sites and associated research objectives included deployment of handheld instrumentation, context descriptions, imaging, and sampling; thus acted as a suitable proxy for planetary surface exploration activities. This abstract briefly summarizes the scientific training, scientific operations, and tool

  19. Research-based Curricula in the Context of 21st Century Data Science

    Science.gov (United States)

    Fox, P. A.

    2017-12-01

    When the Informatics revolution began again a little more than 10 years ago (longer for bio-informatics) geosciences (or Earth and Space Sciences) was paying attention via international attention from the Electronic Geophysical Year (eGY) and related endeavours (IPY, IYPE, IHY). The research agenda was in the spotlight, or moreso what Earth and Space Science informatics, cast in emergent escience or cyber-infrastructures, could benefit from was the main focus of attention and funding. At the time almost all "Xinformatics" efforts were novel in their discipline or traditionally defined. However, a broader research and education agenda was clearly needed. At the same time, a much more cross-disciplinary field; data science emerged. In this presentation, we relate the development, delivery and assessment of research oriented informatics, data science and their specializations into geoscience education in generak and as undertaken at RPI over the last nine years. We conclude with a longitudinal view of the impacts on career paths in the 21st century

  20. Science and technology, development factors

    International Nuclear Information System (INIS)

    Nascimento, J.O.

    1982-01-01

    Attention is drawn to the present effort in science, technology, research and development in the countries of the northern hemisphere. In the ligh to the data collected, some predictions are made about advances, especially in the metallugical field. The corresponding activities in Brazil are examined, both the more important official and state-controlled ones and those of private companies. Finally, a detailed presentation is given of what has been achieved in the specific case of niobium, whose prospects are examined. (Author) [pt

  1. Alliance for Earth Sciences, Engineering and Development in Africa

    Science.gov (United States)

    Barron, E. J.; Adewumi, M.

    2004-12-01

    Penn State University, with a significant number of African University partners (University of Ibadan, University of Lagos, University of Cape Town, University of Witwatersrand, and Agustino Neto University) as well as HBCUs (Howard University and the Mississippi Consortium for International Development - a consortium of four HBCUs in Mississippi), has established the Alliance for Earth Sciences, Engineering and Development in Africa (AESEDA). AESEDA is designed to enable the integration of science, engineering, and social sciences in order to develop human resources, promote economic vitality and enable environmental stewardship in Africa. The Alliance has a coherent and significant multidisciplinary focus, namely African georesources. Education is a central focus, with research collaboration as one element of the vehicle for education. AESEDA is focused on building an environment of intellectual discourse and pooled intellectual capital and developing innovative and enabling educational programs and enhancing existing ones. AESEDA also has unique capabilities to create role models for under-represented groups to significantly enable the utilization of human potential. The efforts of the Alliance center around specific activities in support of its objectives: (1) Focused research collaboration among partner institutions, (2) Development of an international community of scholars, and (3) Joint development of courses and programs and instructional innovation. Penn State has a unique ability to contribute to the success of this program. The College of Earth and Mineral Sciences contains strong programs in the areas of focus. More than 25 faculty in the College have active research and educational efforts in Africa. Hence, the Alliance has natural and vigorous support within the College. The College is also providing strong institutional support for AESEDA, by establishing a Director and support staff and creating permanent funds for a unique set of new faculty hires

  2. The science, technology and research network (STARNET) a searchable thematic compilation of web resources

    Science.gov (United States)

    Blados, W.R.; Cotter, G.A.; Hermann, T.

    2007-01-01

    International alliances in space efforts have resulted in a more rapid diffusion of space technology. This, in turn, increases pressure on organizations to push forward with technological developments and to take steps to maximize their inclusion into the research and development (R&D) process and the overall advancement and enhancement of space technology. To cope with this vast and rapidly growing amount of data and information that is vital to the success of the innovation, the Information Management Committee (IMC) of the Research Technology Agency (RTA) developed the science, technology and research network (STARNET). The purpose of this network is to facilitate access to worldwide information elements in terms of science, technology and overall research. It provides a virtual library with special emphasis on international security; a "one stop" information resource for policy makers, program managers, scientists, engineers, researchers and others. ?? 2007 IEEE.

  3. Fundamental Science with Pulsed Power: Research Opportunities and User Meeting.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wootton, Alan James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spaulding, Dylan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winget, Don [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The fifth Fundamental Science with Pulsed Power: Research Opportunities and User Meeting was held in Albuquerque, NM, July 20-­23, 2014. The purpose of the workshop was to bring together leading scientists in four research areas with active fundamental science research at Sandia’s Z facility: Magnetized Liner Inertial Fusion (MagLIF), Planetary Science, Astrophysics, and Material Science. The workshop was focused on discussing opportunities for high-­impact research using Sandia’s Z machine, a future 100 GPa class facility, and possible topics for growing the academic (off-Z-campus) science relevant to the Z Fundamental Science Program (ZFSP) and related projects in astrophysics, planetary science, MagLIF- relevant magnetized HED science, and materials science. The user meeting was for Z collaborative users to: a) hear about the Z accelerator facility status and plans, b) present the status of their research, and c) be provided with a venue to meet and work as groups. Following presentations by Mark Herrmann and Joel Lash on the fundamental science program on Z and the status of the Z facility where plenary sessions for the four research areas. The third day of the workshop was devoted to breakout sessions in the four research areas. The plenary-­ and breakout sessions were for the four areas organized by Dan Sinars (MagLIF), Dylan Spaulding (Planetary Science), Don Winget and Jim Bailey (Astrophysics), and Thomas Mattsson (Material Science). Concluding the workshop were an outbrief session where the leads presented a summary of the discussions in each working group to the full workshop. A summary of discussions and conclusions from each of the research areas follows and the outbrief slides are included as appendices.

  4. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  5. Pedagogy before Technology: A Design-Based Research Approach to Enhancing Skills Development in Paramedic Science Using Mixed Reality

    Directory of Open Access Journals (Sweden)

    Michael Cowling

    2018-01-01

    Full Text Available In health sciences education, there is growing evidence that simulation improves learners’ safety, competence, and skills, especially when compared to traditional didactic methods or no simulation training. However, this approach to simulation becomes difficult when students are studying at a distance, leading to the need to develop simulations that suit this pedagogical problem and the logistics of this intervention method. This paper describes the use of a design-based research (DBR methodology, combined with a new model for putting ‘pedagogy before technology’ when approaching these types of education problems, to develop a mixed reality education solution. This combined model is used to analyse a classroom learning problem in paramedic health sciences with respect to student evidence, assisting the educational designer to identify a solution, and subsequently develop a technology-based mixed reality simulation via a mobile phone application and three-dimensional (3D printed tools to provide an analogue approximation for an on-campus simulation experience. The developed intervention was tested with students and refined through a repeat of the process, showing that a DBR process, supported by a model that puts ‘pedagogy before technology’, can produce over several iterations a much-improved simulation that results in a simulation that satisfies student pedagogical needs.

  6. Fiction as an Introduction to Computer Science Research

    Science.gov (United States)

    Goldsmith, Judy; Mattei, Nicholas

    2014-01-01

    The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…

  7. Malaysian perspective on the contribution of nuclear science and technology to national development

    Energy Technology Data Exchange (ETDEWEB)

    Alang Md Rashid, Nahrul Khair [Unit Tenaga Nuklear, Bangi, Selangor (Malaysia)

    1994-04-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN`s establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN`s mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers.

  8. Malaysian perspective on the contribution of nuclear science and technology to national development

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    1994-01-01

    The development of nuclear science and technology in Malaysia began with the inception of The Nuclear Energy Unit (UTN) in 1972. In 1985, the Atomic Energy Licensing Board was set up as a regulatory body to enforce the Atomic Energy Licensing Act. Ten years after UTN's establishment, the first of its major facilities, a one Megawatt TRIGA MkII nuclear research reactor (RTP), was commissioned. This is the first step of any type of nuclear reactor for Malaysia. The healthy development of peaceful uses of nuclear science and technology in malaysia has enabled UTN to acquire several other major facilities. These facilities support research and development, in line with UTN's mission, viz, to enhance national development through the applications of nuclear science and technology. This paper describes selected activities at UTN and some of its successes in linking the results of research and development to real-world applications through services and/or technology transfers

  9. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  10. Is Mixed Methods Research Used in Australian Career Development Research?

    Science.gov (United States)

    Cameron, Roslyn

    2010-01-01

    Mixed methods research has become a substantive and growing methodological force that is growing in popularity within the human and social sciences. This article reports the findings of a study that has systematically reviewed articles from the "Australian Journal of Career Development" from 2004 to 2009. The aim of the study was to…

  11. Educational Aspects of Undergraduate Research on Smartphone Application Development

    Directory of Open Access Journals (Sweden)

    Joseph Gibson

    2013-12-01

    Full Text Available Smartphones have become commonplace in today's society. There seems to be a mobile application for every conceivable use, expect one. Smartphones have been conspicuously absent in higher education. This research examines the use of mobile applications (apps in the higher education setting. In addition, it evaluates the potential for including smartphone application development in undergraduate computer science curriculum. This paper will present a variety of smartphone apps that were developed by undergraduate researchers for use for use by students and faculty in a university environment, and apps developed to enhance the educational experience in the classroom. We also study the efficacy of the inclusion of smartphone app development in the computer science curriculum and modes for its inclusion.

  12. U.S. Institutional Research Productivity in Major Science Education Research Journals: Top 30 for 2000's

    Science.gov (United States)

    Barrow, Lloyd H.; Tang, Nai-en

    2013-01-01

    VonAalst (2010) used Google Scholar to identify the top four science education research journals: "Journal of Research in Science Teaching," "Science Education," "International Journal of Science Education," and "Journal of Science Teacher Education." U.S. institutional productivity for 2000-2009 for the…

  13. Transformative science education through action research and self-study practices

    Science.gov (United States)

    Calderon, Olga

    The research studies human emotions through diverse methods and theoretical lenses. My intention in using this approach is to provide alternative ways of perceiving and interpreting emotions being experienced in the moment of arousal. Emotions are fundamental in human interactions because they are essential in the development of effective relationships of any kind and they can also mediate hostility towards others. I begin by presenting an impressionist auto-ethnography, which narrates a personal account of how science and scientific inquiry has been entrenched in me since childhood. I describe how emotions are an important part of how I perceive and respond to the world around me. I describe science in my life in terms of natural environments, which were the initial source of scientific wonder and bafflement for me. In this auto-ethnography, I recount how social interactions shaped my perceptions about people, the world, and my education trajectory. Furthermore, I illustrate how sociocultural structures are used in different contexts to mediate several life decisions that enable me to pursue a career in science and science education. I also reflect on how some of those sociocultural aspects mediated my emotional wellness. I reveal how my life and science are interconnected and I present my story as a segue to the remainder of the dissertation. In chapters 2 and 3, I address a methodology and associated methods for research on facial expression of emotion. I use a facial action coding system developed by Paul Ekman in the 1970s (Ekman, 2002) to study facial representation of emotions. In chapters 4 and 5, I review the history of oximetry and ways in which an oximeter can be used to obtain information on the physiological expression of emotions. I examine oximetry data in relation to emotional physiology in three different aspects; pulse rate, oxygenation of the blood, and plethysmography (i.e., strength of pulse). In chapters 3 and 5, I include data and

  14. Basic science research in urology training.

    Science.gov (United States)

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  15. State and Perspectives of Research in Bulgaria: Problems and Weacknesses in Science Policy [In Bulgarian

    Directory of Open Access Journals (Sweden)

    B.V. Toshev

    2014-12-01

    Full Text Available The current status of the Bulgarian research sector is analyzed. There are alarming trends both in the system of higher education as well as in the research organizations; some of them are listed. The main problems and weaknesses of the educational and research policy in Bulgaria are under the critic. Phenomena as mcdonaldization of higher education, mass higher education, integration processes in science of XXth century, the transition from the normal to post-normal science, appearance and development of surrogate science, increasing the number of marginal scientific sources, are considered in details. The basic normative science documents are considered and their weak features are exhibited.

  16. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  17. Teaching Research Methods in the Social Sciences: Expert Perspectives on Pedagogy and Practice

    Science.gov (United States)

    Lewthwaite, Sarah; Nind, Melanie

    2016-01-01

    Capacity building in social science research methods is positioned by research councils as crucial to global competitiveness. The pedagogies involved, however, remain under-researched and the pedagogical culture under-developed. This paper builds upon recent thematic reviews of the literature to report new research that shifts the focus from…

  18. Insert Concepts for the Material Science Research Rack (MSRR-1) of the Material Science Research Facility (MSRF) on the International Space Station (ISS)

    Science.gov (United States)

    Crouch, Myscha; Carswell, Bill; Farmer, Jeff; Rose, Fred; Tidwell, Paul

    2000-01-01

    The Material Science Research Rack I (MSRR-1) of the Material Science Research Facility (MSRF) contains an Experiment Module (EM) being developed collaboratively by NASA and the European Space Agency (ESA). This NASA/ESA EM will accommodate several different removable and replaceable Module Inserts (MIs) which are installed on orbit NASA's planned inserts include the Quench Module Insert (QMI) and the Diffusion Module Insert (DMI). The QMI is a high-gradient Bridgman-type vacuum furnace with quench capabilities used for experiments on directional solidification of metal alloys. The DMI is a vacuum Bridgman-Stockbarger-type furnace for experiments on Fickian and Soret diffusion in liquids. This paper discusses specific design features and performance capabilities of each insert. The paper also presents current prototype QMI hardware analysis and testing activities and selected results.

  19. Lesson study: Professional development and its impact on science teacher self-efficacy

    Science.gov (United States)

    Roberts, Megan Rae

    This study focuses on an analysis of a professional development program known as lesson study via data obtained during an in-service professional development program for secondary school science teachers. The purpose of this study was to examine the self-efficacy beliefs of one group of science teachers related to their experiences in a lesson study. Another purpose for this research, aligned with the first, included a theoretical analysis of the lesson study construct to see if its design promoted positive self-efficacy beliefs of its participants. The research is framed within the context of social constructivism and self-efficacy and is qualitative in nature and utilized descriptive analysis as a means of research. Case studies were conducted detailing two of the six participants. Data sources included researcher field notes and transcriptions of all planning and debriefing sessions; individual interviews with each participant and the schools' principal; a participant questionnaire, and the Science Teaching Efficacy Belief Instrument. Themes that emerged included the positive perceptions of lesson study as a collaborative and teacher-centered experience; the understanding that lesson study can instill a sense of professionalism to those who participate in the process; the sense that discussing student learning using objective observations from classroom is a powerful way to assess learning and uncover personal teacher beliefs; and the insight that the time commitment that lesson study requires can inhibit teachers and schools from sustaining it as a form of on-going professional development. Although these themes are consistent with the research on lesson study in Japan and elsewhere in the United States, they also extend the research on self-efficacy and science teacher professional development. In the end, this study supported some of the conclusions of the self-efficacy research as it relates to professional development while also adding that interpersonal

  20. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives