WorldWideScience

Sample records for science related image

  1. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Choosing and Using Images in Environmental Science Education

    Science.gov (United States)

    Muthersbaugh, Debbie Smick

    2012-01-01

    Although using images for teaching has been a common practice in science classrooms (Gordon & Pea, 1995) understanding the purpose or how to choose images has not typically been intentional. For this dissertation three separate studies relating to choosing and using images are prepared with environmental science in mind. Each of the studies…

  3. What Images Reveal: a Comparative Study of Science Images between Australian and Taiwanese Junior High School Textbooks

    Science.gov (United States)

    Ge, Yun-Ping; Unsworth, Len; Wang, Kuo-Hua; Chang, Huey-Por

    2017-07-01

    From a social semiotic perspective, image designs in science textbooks are inevitably influenced by the sociocultural context in which the books are produced. The learning environments of Australia and Taiwan vary greatly. Drawing on social semiotics and cognitive science, this study compares classificational images in Australian and Taiwanese junior high school science textbooks. Classificational images are important kinds of images, which can represent taxonomic relations among objects as reported by Kress and van Leeuwen (Reading images: the grammar of visual design, 2006). An analysis of the images from sample chapters in Australian and Taiwanese high school science textbooks showed that the majority of the Taiwanese images are covert taxonomies, which represent hierarchical relations implicitly. In contrast, Australian classificational images included diversified designs, but particularly types with a tree structure which depicted overt taxonomies, explicitly representing hierarchical super-ordinate and subordinate relations. Many of the Taiwanese images are reminiscent of the specimen images in eighteenth century science texts representing "what truly is", while more Australian images emphasize structural objectivity. Moreover, Australian images support cognitive functions which facilitate reading comprehension. The relationships between image designs and learning environments are discussed and implications for textbook research and design are addressed.

  4. Imaging Sciences Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1996-11-21

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  5. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  6. Application of automatic image analysis in wood science

    Science.gov (United States)

    Charles W. McMillin

    1982-01-01

    In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...

  7. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members....... The most common image was the usefulness of science which displays science in an unproblematic and single-dimensioned way. In order to explore what underlying assumptions and factors which affect how science is constituted, 17 staff members who worked with planning and constructing new exhibitions...

  8. Images of time mind, science, reality

    CERN Document Server

    Jaroszkiewicz, George

    2016-01-01

    Have you ever wondered about Time: what it is or how to discuss it? If you have, then you may have been bewildered by the many different views and opinions in many diverse fields to be found, such as physics, mathematics, philosophy, religion, history, and science fiction novels and films. This book will help you unravel fact from fiction. It provides a broad survey of many of these views, these images of time, covering historical, cultural, philosophical, biological, mathematical and physical images of time, including classical and quantum mechanics, special and general relativity and cosmology. This book gives you more than just a review of such images. It provides the reader a basis for judging the scientific soundness of these various images. It develops the reader's critical ability to distinguish Images of Time in terms of its contextual completeness. Differentiating between metaphysical images (which cannot be scientifically validated) and those that could, in principle, be put to empirical test. Showi...

  9. ART AND SCIENCE OF IMAGE MAPS.

    Science.gov (United States)

    Kidwell, Richard D.; McSweeney, Joseph A.

    1985-01-01

    The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.

  10. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  11. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  12. A forensic science perspective on the role of images in crime investigation and reconstruction.

    Science.gov (United States)

    Milliet, Quentin; Delémont, Olivier; Margot, Pierre

    2014-12-01

    This article presents a global vision of images in forensic science. The proliferation of perspectives on the use of images throughout criminal investigations and the increasing demand for research on this topic seem to demand a forensic science-based analysis. In this study, the definitions of and concepts related to material traces are revisited and applied to images, and a structured approach is used to persuade the scientific community to extend and improve the use of images as traces in criminal investigations. Current research efforts focus on technical issues and evidence assessment. This article provides a sound foundation for rationalising and explaining the processes involved in the production of clues from trace images. For example, the mechanisms through which these visual traces become clues of presence or action are described. An extensive literature review of forensic image analysis emphasises the existing guidelines and knowledge available for answering investigative questions (who, what, where, when and how). However, complementary developments are still necessary to demystify many aspects of image analysis in forensic science, including how to review and select images or use them to reconstruct an event or assist intelligence efforts. The hypothetico-deductive reasoning pathway used to discover unknown elements of an event or crime can also help scientists understand the underlying processes involved in their decision making. An analysis of a single image in an investigative or probative context is used to demonstrate the highly informative potential of images as traces and/or clues. Research efforts should be directed toward formalising the extraction and combination of clues from images. An appropriate methodology is key to expanding the use of images in forensic science. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  14. Earth Science World ImageBank (ESWIB): A Comprehensive Collection of Geoscience Images Being Developed by the American Geological Institute

    Science.gov (United States)

    Howe, A. W.; Keane, C. M.

    2003-12-01

    Although there are geoscience images available in numerous locations around the World Wide Web, there is no universal comprehensive digital archive where teachers, students, scientists, and the general public can gather images related to the Earth Sciences. To fill this need, the American Geological Institute (AGI) is developing the largest image database available: the Earth Science World ImageBank (ESWIB). The goal of ESWIB is to provide a variety of users with free access to high-quality geoscience images and technical art gathered from photographers, government organizations, and scientists. Each image is cataloged by location, author, image rights, and a detailed description of what the image shows. Additionally, images are cataloged using keywords from AGI's precise Georef indexing methodology. Students, teachers, and the general public can search or browse and download these images for use in slide show presentations, lectures, papers, or for other educational and outreach uses. This resource can be used for any age level, in any kind of educational venue. Users can also contribute images of their own to the database through the ESWIB website. AGI is scanning these images at a very high resolution (16 x 20 inches) and depending on the author's rights, is making high-resolution copies (digital or print) available for non-commercial and commercial purposes. This ImageBank is different from other photo sites available in that the scope has more breadth and depth than other image resources, and the images are cataloged with a very high grade of detail and precision, which makes finding needed images fast and easy. The image services offered by ESWIB are also unique, such as the low-cost commercial options and high quality image printouts. AGI plans on adding more features to ESWIB in the future, including connecting this resource to the up-coming online Glossary of Geology, a geospatial search option, using the images to make generic PowerPoint presentations

  15. How to change students' images of science and technology

    Science.gov (United States)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  16. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    Science.gov (United States)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  17. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  18. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  19. Enacting the social relations of science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    2008-01-01

    This article investigates the writings of Danish science journalist Børge Michelsen from 1939 to 1956. As part of the international social relations of science movement in the period, Michelsen transformed science journalism from mere reporting on issues pertaining to science into performing...... the social function of science journalism: advancing and enacting the social relations of science. Based on analyses of Michelsen's articles and other initiatives, this study suggests that the social function of science journalism practiced by Michelsen showed many new and conflicting aspects. From...... new links to reinforce mutual relations between scientists and policy-makers, between scientists and journalists, and between science and the public. Finally, in the concluding remarks, the contemporary significance of Michelsen's social function of science journalism is discussed....

  20. Revisiting the "American Social Science" – Mapping the Geography of International Relations

    DEFF Research Database (Denmark)

    Kristensen, Peter Marcus

    2015-01-01

    International Relations (IR) knows itself as an American social science. The paper first traces how the self-image as a uniquely dividing and American social science was established in the postwar period and is reproduced to this day. Second, it employs bibliometric methods to challenge this image....... It confirms the dominance of Americans in a comprehensive sample of IR journals, but in contrast to previous studies, the paper also compares IR to other disciplines only to find that it is actually one of the least American social sciences. It further studies the geography of IR over time and finds that IR...... has become less American since the 1960s—mainly because Anglo-Saxon and European countries account for a larger share of IR production. The final part uses novel visualization tools to map the geographical network structures of authorship and coauthorship in the discipline’s leading journals...

  1. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    Science.gov (United States)

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  2. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  3. Reinventing Image Detective: An Evidence-Based Approach to Citizen Science Online

    Science.gov (United States)

    Romano, C.; Graff, P. V.; Runco, S.

    2017-12-01

    Usability studies demonstrate that web users are notoriously impatient, spending as little as 15 seconds on a home page. How do you get users to stay long enough to understand a citizen science project? How do you get users to complete complex citizen science tasks online?Image Detective, a citizen science project originally developed by scientists and science engagement specialists at the NASA Johnson Space center to engage the public in the analysis of images taken from space by astronauts to help enhance NASA's online database of astronaut imagery, partnered with the CosmoQuest citizen science platform to modernize, offering new and improved options for participation in Image Detective. The challenge: to create a web interface that builds users' skills and knowledge, creating engagement while learning complex concepts essential to the accurate completion of tasks. The project team turned to usability testing for an objective understanding of how users perceived Image Detective and the steps required to complete required tasks. A group of six users was recruited online for unmoderated and initial testing. The users followed a think-aloud protocol while attempting tasks, and were recorded on video and audio. The usability test examined users' perception of four broad areas: the purpose of and context for Image Detective; the steps required to successfully complete the analysis (differentiating images of Earth's surface from those showing outer space and identifying common surface features); locating the image center point on a map of Earth; and finally, naming geographic locations or natural events seen in the image.Usability test findings demonstrated that the following best practices can increase participation in Image Detective and can be applied to the successful implementation of any citizen science project:• Concise explanation of the project, its context, and its purpose;• Including a mention of the funding agency (in this case, NASA);• A preview of

  4. Picturing science: The who, what, and where of images in children's award-winning science trade books

    Science.gov (United States)

    Neutze, Donna Lee

    Educators, students, and parents are among those who have stereotypical preconceived ideas about science and scientists. The study reports on a content analysis of graphic images in 303 of the "Outstanding Science Trade Books for Students K-12" from the years 1973 through 2005. Using quantitative and qualitative content analysis, all of the images in these books were analyzed according to the presence of humans, the characteristics of those humans (gender, race, age) the style of the graphics, the setting of the images, and the actions performed in the images. The results reveal that Caucasian males are still presented most frequently as scientists. Males appear in more total illustrations than do females (66% to 44%); the main characters are more often male than female (48 to 24); and biographies are most often written about males than females (75% to 25%). Images of Caucasians appear in more books than do people of color (54.5% to 45.5%); Caucasians appear in more total images than do people of color (84.3% to 15.7%); more main characters are Caucasians than people of color (87.5% to 12.5%); and more Caucasians are the subject of biographies than are people of color (72 to 7). Children appear in less than half of the total images, although they make up over 50% of the main characters in the sample. The images found in the sampled texts are wide-ranging as far as the setting in which science takes place; they definitely dispel the stereotype of science only occurring in a laboratory. Moreover, as a body of images, there are illustrations or photographs which capture people engaged in active scientific processes such as making observations, measuring, gathering data and samples, experimenting, and recording information.

  5. Imaging Sciences Workshop, Proceedings, November 15-16, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1995-11-01

    Welcome to the Imaging Sciences Workshop sponsored by C.A.S.I.S., the Center for Advanced Signal & Image Sciences. Many programs at LLNL use advanced signal and image processing techniques, and the Center was established to encourage the exchange of ideas and to promote collaboration by individuals from these programs. This Workshop is an opportunity for LLNL personnel and invited speakers from other organizations not only to present new work, but, perhaps more importantly, to discuss problems in an informal and friendly setting. This year marks the opening of the CASIS Reference Library in Building 272, and we encourage all attendees to stop by for a look and to make use of it in the future. The Technical Program covers a wide variety of applications at LLNL including physical systems for collecting data and processing techniques for recovering and enhancing images. We hope that you enjoy the presentations, and we encourage you to participate in the discussions. Thanks for attending.

  6. Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks

    Science.gov (United States)

    Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline

    2017-07-01

    This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.

  7. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  8. Not letting the perfect be the enemy of the good: steps toward science-ready ALMA images

    Science.gov (United States)

    Kepley, Amanda A.; Donovan Meyer, Jennifer; Brogan, Crystal; Moullet, Arielle; Hibbard, John; Indebetouw, Remy; Mason, Brian

    2016-07-01

    Historically, radio observatories have placed the onus of calibrating and imaging data on the observer, thus restricting their user base to those already initiated into the mysteries of radio data or those willing to develop these skills. To expand its user base, the Atacama Large Millimeter/submillimeter Array (ALMA) has a high- level directive to calibrate users' data and, ultimately, to deliver scientifically usable images or cubes to principle investigators (PIs). Although an ALMA calibration pipeline is in place, all delivered images continue to be produced for the PI by hand. In this talk, I will describe on-going efforts at the Northern American ALMA Science Center to produce more uniform imaging products that more closely meet the PI science goals and provide better archival value. As a first step, the NAASC imaging group produced a simple imaging template designed to help scientific staff produce uniform imaging products. This script allowed the NAASC to maximize the productivity of data analysts with relatively little guidance by the scientific staff by providing a step-by-step guide to best practices for ALMA imaging. Finally, I will describe the role of the manually produced images in verifying the imaging pipeline and the on-going development of said pipeline. The development of the imaging template, while technically simple, shows how small steps toward unifying processes and sharing knowledge can lead to large gains for science data products.

  9. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  10. The effects of gender stereotypic and counter-stereotypic textbook images on science performance.

    Science.gov (United States)

    Good, Jessica J; Woodzicka, Julie A; Wingfield, Lylan C

    2010-01-01

    We investigated the effect of gender stereotypic and counter-stereotypic images on male and female high school students' science comprehension and anxiety. We predicted stereotypic images to induce stereotype threat in females and impair science performance. Counter-stereotypic images were predicted to alleviate threat and enhance female performance. Students read one of three chemistry lessons, each containing the same text, with photograph content varied according to stereotype condition. Participants then completed a comprehension test and anxiety measure. Results indicate that female students had higher comprehension after viewing counter-stereotypic images (female scientists) than after viewing stereotypic images (male scientists). Male students had higher comprehension after viewing stereotypic images than after viewing counter-stereotypic images. Implications for alleviating the gender gap in science achievement are discussed.

  11. Communicating knowledge in science, science journalism and art

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    Richter. The specialized knowledge about the image is communicated in three very different contexts with three very different outcomes. The paper uses Niklas Luhmann's system theory to describe science, science journalism, and art as autonomous social subsystems of communication. Also, Luhmann's notions...... of irritation and interference are employed to frame an interpretation of the complex relations between communicating knowledge about the image in science, science journalism, and art. Even though the functional differentiation between the communication systems of science, science journalism, and art remains...... that Richter's Erster Blick ends up questioning the epistemological and ontological grounds for communication of knowledge in science and in science journalism....

  12. Lightning Imaging Sensor (LIS) on TRMM Science Data V4

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lightning Imaging Sensor (LIS) Science Data was collected by the Lightning Imaging Sensor (LIS), which was an instrument on the Tropical Rainfall Measurement...

  13. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  14. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  15. Application of micro-PIXE and imaging technology to life science (Joint research)

    International Nuclear Information System (INIS)

    Satoh, Takahiro; Ishii, Keizo

    2011-03-01

    The joint research on 'Application of micro-PIXE and imaging technology to life science' supported by the Inter-organizational Atomic Energy Research Program, had been performed for three years, from 2006FY to 2009FY. Aiming to apply in-air micro-PIXE analytical system to life science, the research was consisting of 7 collaborative themes related to beam engineering for micro-PIXE and applied technology of element mapping in biological/medical fields. The system, so-called micro-PIXE camera, to acquire spatial element mapping in living cells was originally developed by collaborative research between the JAEA and the department of engineering of Tohoku University. This review covers these research results. (author)

  16. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  17. T. S. KUHN: FROM REVOLUTIONARY TO SOCIAL DEMOCRAT. KUHN AND THE IMAGE OF SCIENCE

    Directory of Open Access Journals (Sweden)

    W. H. NEWTON-SMITH

    2014-11-01

    Full Text Available T.S. Kuhn’s The Structure of Scientific Revolutions begins with the observation that our image of science might well undergo a complete transformation if we took a dispassionate look at the actual history of science. The image he has in mind is the one characterized in Chapter I in which the scientific community is pictured as the very paradigm of institutionalized rationality. On this picture the scientist disinterestedly applies his special tool, the scientific method, and each application takes him further on the road to truth. In making this observation Kuhn is not simply looking forward to his own conclusion that between the ideology of science and the realities of scientific practice there falls a vast shadow. Rather he is suggesting that mere reflection on the source of our image of science is likely to prompt the conjecture that the image is gravely distorted. For the vast majority of us acquire our image either through contemporaryscientific textbooks or through popular accounts of science the authors of which in turn derive their image from the standard texts. Such texts are designed to present contemporary scientific beliefs and techniques. In so far as we learn thereby anything about the history of science, it is through cleaned-up versions of past scientific triumphs.

  18. Observation and visualization: reflections on the relationship between science, visual arts, and the evolution of the scientific image.

    Science.gov (United States)

    Kolijn, Eveline

    2013-10-01

    The connections between biological sciences, art and printed images are of great interest to the author. She reflects on the historical relevance of visual representations for science. She argues that the connection between art and science seems to have diminished during the twentieth century. However, this connection is currently growing stronger again through digital media and new imaging methods. Scientific illustrations have fuelled art, while visual modeling tools have assisted scientific research. As a print media artist, she explores the relationship between art and science in her studio practice and will present this historical connection with examples related to evolution, microbiology and her own work. Art and science share a common source, which leads to scrutiny and enquiry. Science sets out to reveal and explain our reality, whereas art comments and makes connections that don't need to be tested by rigorous protocols. Art and science should each be evaluated on their own merit. Allowing room for both in the quest to understand our world will lead to an enriched experience.

  19. Lesson from my dinners with the giants of modern image science

    International Nuclear Information System (INIS)

    Wagner, R. F.

    2005-01-01

    The author traces some critical moments in the history of Image Science in the last half century from first-hand or once-removed experience. The Image Science used in the field of medical imaging today had its origins in the analysis of photon detection developed for modern television, conventional photography, and the human visual system. Almost all 'model observers' used in image assessment today converge to the model originally used by Albert Rose in his analysis of those classic photo-detectors. A more general statistical analysis of the various 'defects' of conventional and unconventional photon-imaging technologies was provided by Shaw. A number of investigators in medical imaging elaborated the work of these pioneers into a synthesis with the general theory of signal detectability and extended this work to the various forms of CT, energy-spectral-dependent imaging, and the further complication of anatomical-background-noise limited imaging. The author calls for further extensions of this work to the problem of under-sampled and thus artefact-limited imaging that will be important issues for high-speed CT and MRI. (authors)

  20. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  1. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    Science.gov (United States)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  2. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Directory of Open Access Journals (Sweden)

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  3. DAE-BRNS workshop on applications of image processing in plant sciences and agriculture: lecture notes

    International Nuclear Information System (INIS)

    1998-10-01

    Images form important data and information in biological sciences. Until recently photography was the only method to reproduce and report such data. It is difficult to quantify or treat the photographic data mathematically. Digital image processing and image analysis technology based on recent advances in microelectronics and computers circumvents these problems associated with traditional photography. WIPSA (Workshop on Applications of Image Processing in Plant Sciences and Agriculture) will feature topics on the basic aspects of computers, imaging hardware and software as well advanced aspects such as colour image processing, high performance computing, neural networks, 3-D imaging and virtual reality. Imaging done using ultrasound, thermal, x-rays and γ rays, neutron radiography and the film-less phosphor-imager technology will also be discussed. Additionally application of image processing/analysis in plant sciences, medicine and satellite imagery are discussed. Papers relevant to INIS are indexed separately

  4. Science and Its Images--Promise and Threat: From Classic Literature to Contemporary Students' Images of Science and "The Scientist"

    Science.gov (United States)

    Koren, Pazit; Bar, Varda

    2009-01-01

    The physical and social image of the scientist among school children, student teachers, and teachers over the last 50 years was investigated. Interest has also been shown in the perception of the personality behind the physical stereotype. Nevertheless, the value judgments of science and scientists and the positive and negative mind-sets attaching…

  5. Use of images in Social Studies and Science lessons: Teaching through visual semiotic potential

    Directory of Open Access Journals (Sweden)

    Valentina Haas Prieto

    2015-07-01

    Full Text Available Learners access the school curriculum through meanings created among a variety of semiotic modes (diagrams, photographs, drawings, writing, etc., this learning enables them to join a worldview as they do in each curricular discipline. From a pedagogical and semiotic gaze to classroom interaction, we focus on the use of images in teaching, in relation to their potential to create meaning in social studies and science lessons. This article is part of Fondecyt 1130684 and systematizes methodological tools from Social Semiotics and multimodality used to explore the semiotic potential of a set images used by teachers of elementary and secondary in a public school. From an audiovisual corpus of lessons of a complete curricular unit, we analyze Social Studies and Science videos from the two subjects in 3rd, 6th grade of elementary and 1st grade of secondary school. Through a Multimodal Discourse Analysis using the concepts of ideational or representational metafunction and the categories of Visual Grammar Design, we show examples of situated images anylisis. The results show how the meaning in the image is modified when teachers use them in face to face interaction. This analysis should help teachers to select and deploy images in terms of improving the learning process and teaching materials they prepare for students.

  6. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    Science.gov (United States)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  7. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  8. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  9. JunoCam Images of Jupiter: Science from an Outreach Experiment

    Science.gov (United States)

    Hansen, C. J.; Orton, G. S.; Caplinger, M. A.; Ravine, M. A.; Rogers, J.; Eichstädt, G.; Jensen, E.; Bolton, S. J.; Momary, T.; Ingersoll, A. P.

    2017-12-01

    The Juno mission to Jupiter carries a visible imager on its payload primarily for outreach, and also very useful for jovian atmospheric science. Lacking a formal imaging science team, members of the public have volunteered to process JunoCam images. Lightly processed and raw JunoCam data are posted on the JunoCam webpage at https://missionjuno.swri.edu/junocam/processing. Citizen scientists download these images and upload their processed contributions. JunoCam images through broadband red, green and blue filters and a narrowband methane filter centered at 889 nm mounted directly on the detector. JunoCam is a push-frame imager with a 58 deg wide field of view covering a 1600 pixel width, and builds the second dimension of the image as the spacecraft rotates. This design enables capture of the entire pole of Jupiter in a single image at low emission angle when Juno is 1 hour from perijove (closest approach). At perijove the wide field of view images are high-resolution while still capturing entire storms, e.g. the Great Red Spot. Juno's unique polar orbit yields polar perspectives unavailable to earth-based observers or most previous spacecraft. The first discovery was that the familiar belt-zone structure gives way to more chaotic storms, with cyclones grouped around both the north and south poles [1, 2]. Recent time-lapse sequences have enabled measurement of the rotation rates and wind speeds of these circumpolar cyclones [3]. Other topics are being investigated with substantial, in many cases essential, contributions from citizen scientists. These include correlating the high resolution JunoCam images to storms and disruptions of the belts and zones tracked throughout the historical record. A phase function for Jupiter is being developed empirically to allow image brightness to be flattened from the subsolar point to the terminator. We are studying high hazes and the stratigraphy of the upper atmosphere, utilizing the methane filter, structures illuminated

  10. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  11. Planet Formation Imager (PFI): science vision and key requirements

    Science.gov (United States)

    Kraus, Stefan; Monnier, John D.; Ireland, Michael J.; Duchêne, Gaspard; Espaillat, Catherine; Hönig, Sebastian; Juhasz, Attila; Mordasini, Chris; Olofsson, Johan; Paladini, Claudia; Stassun, Keivan; Turner, Neal; Vasisht, Gautam; Harries, Tim J.; Bate, Matthew R.; Gonzalez, Jean-François; Matter, Alexis; Zhu, Zhaohuan; Panic, Olja; Regaly, Zsolt; Morbidelli, Alessandro; Meru, Farzana; Wolf, Sebastian; Ilee, John; Berger, Jean-Philippe; Zhao, Ming; Kral, Quentin; Morlok, Andreas; Bonsor, Amy; Ciardi, David; Kane, Stephen R.; Kratter, Kaitlin; Laughlin, Greg; Pepper, Joshua; Raymond, Sean; Labadie, Lucas; Nelson, Richard P.; Weigelt, Gerd; ten Brummelaar, Theo; Pierens, Arnaud; Oudmaijer, Rene; Kley, Wilhelm; Pope, Benjamin; Jensen, Eric L. N.; Bayo, Amelia; Smith, Michael; Boyajian, Tabetha; Quiroga-Nuñez, Luis Henry; Millan-Gabet, Rafael; Chiavassa, Andrea; Gallenne, Alexandre; Reynolds, Mark; de Wit, Willem-Jan; Wittkowski, Markus; Millour, Florentin; Gandhi, Poshak; Ramos Almeida, Cristina; Alonso Herrero, Almudena; Packham, Chris; Kishimoto, Makoto; Tristram, Konrad R. W.; Pott, Jörg-Uwe; Surdej, Jean; Buscher, David; Haniff, Chris; Lacour, Sylvestre; Petrov, Romain; Ridgway, Steve; Tuthill, Peter; van Belle, Gerard; Armitage, Phil; Baruteau, Clement; Benisty, Myriam; Bitsch, Bertram; Paardekooper, Sijme-Jan; Pinte, Christophe; Masset, Frederic; Rosotti, Giovanni

    2016-08-01

    The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

  12. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  13. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  14. Image processing in diabetic related causes

    CERN Document Server

    Kumar, Amit

    2016-01-01

    This book is a collection of all the experimental results and analysis carried out on medical images of diabetic related causes. The experimental investigations have been carried out on images starting from very basic image processing techniques such as image enhancement to sophisticated image segmentation methods. This book is intended to create an awareness on diabetes and its related causes and image processing methods used to detect and forecast in a very simple way. This book is useful to researchers, Engineers, Medical Doctors and Bioinformatics researchers.

  15. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  16. Development of phase-contrast imaging technique for material science and medical science applications

    International Nuclear Information System (INIS)

    Kashyap, Y.S.; Roy, Tushar; Sarkar, P.S; Shukla, Mayank; Yadav, P.S; Sinha, Amar; Verma, Vishnu; Ghosh, A.K.

    2007-07-01

    In-line phase contrast imaging technique is an emerging method for study of materials such as carbon fibres, carbon composite materials, polymers etc. These represent the class of materials for which x-ray attenuation cross-section is very small. Similarly, this technique is also well suited for imaging of soft materials such as tissues, distinguishing between tumour and normal tissue. Thus this method promises a far better contrast for low x-ray absorbing substances than the conventional radiography method for material and medical science applications. Though the conventional radiography technique has been carried out for decades, the phase-imaging technique is being demonstrated for the first time within, the country. We have set up an experimental facility for phase contrast imaging using a combination of x-ray CCD detector and a microfocus x-ray source. This facility is dedicated for micro-imaging experiments such as micro-tomography and high resolution phase contrast experiments. In this report, the results of phase contrast imaging using microfocus source and ELETTRA, synchrotron source are discussed. We have also discussed the basic design and heat load calculation for upcoming imaging beamline at Indus-II, RRCAT, Indore. (author)

  17. Applications of Novel X-Ray Imaging Modalities in Food Science

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou

    science for understanding and designing food products. In both of these aspects, X-ray imaging methods such as radiography and computed tomography provide a non-destructive solution. However, since the conventional attenuation-based modality suers from poor contrast in soft matter materials, modalities...... with improved contrast are needed. Two possible candidates in this regard are the novel X-ray phase-contrast and X-ray dark-eld imaging modalities. The contrast in phase-contrast imaging is based on dierences in electron density which is especially useful for soft matter materials whereas dark-eld imaging....... Furthermore, the process of translating the image in image analysis was addressed. For improved handling of multimodal image data, a multivariate segmentation scheme of multimodal X-ray tomography data was implemented. Finally, quantitative data analysis was applied for treating the images. Quantitative...

  18. RAID: a relation-augmented image descriptor

    KAUST Repository

    Guerrero, Paul; Mitra, Niloy J.; Wonka, Peter

    2016-01-01

    As humans, we regularly interpret scenes based on how objects are related, rather than based on the objects themselves. For example, we see a person riding an object X or a plank bridging two objects. Current methods provide limited support to search for content based on such relations. We present RAID, a relation-augmented image descriptor that supports queries based on inter-region relations. The key idea of our descriptor is to encode region-to-region relations as the spatial distribution of point-to-region relationships between two image regions. RAID allows sketch-based retrieval and requires minimal training data, thus making it suited even for querying uncommon relations. We evaluate the proposed descriptor by querying into large image databases and successfully extract nontrivial images demonstrating complex inter-region relations, which are easily missed or erroneously classified by existing methods. We assess the robustness of RAID on multiple datasets even when the region segmentation is computed automatically or very noisy.

  19. RAID: a relation-augmented image descriptor

    KAUST Repository

    Guerrero, Paul

    2016-07-11

    As humans, we regularly interpret scenes based on how objects are related, rather than based on the objects themselves. For example, we see a person riding an object X or a plank bridging two objects. Current methods provide limited support to search for content based on such relations. We present RAID, a relation-augmented image descriptor that supports queries based on inter-region relations. The key idea of our descriptor is to encode region-to-region relations as the spatial distribution of point-to-region relationships between two image regions. RAID allows sketch-based retrieval and requires minimal training data, thus making it suited even for querying uncommon relations. We evaluate the proposed descriptor by querying into large image databases and successfully extract nontrivial images demonstrating complex inter-region relations, which are easily missed or erroneously classified by existing methods. We assess the robustness of RAID on multiple datasets even when the region segmentation is computed automatically or very noisy.

  20. Recent developments in plant science involving use of gamma-ray imaging technology

    International Nuclear Information System (INIS)

    Kawachi, Naoki

    2014-01-01

    Gamma-ray imaging technologies based on the use of radiotracers enable us to clearly determine the physiological function of an organ not only during pre-clinical and clinical studies but also in the field of plant science. Serial time-course images can be used to indicate the changing spatial distribution of a radiotracer within a living plant system and to describe the dynamics and kinetics of a substance in an intact plant. Gamma-rays almost completely penetrate a plant body, and the image data obtained using them can potentially be used to quantitatively analyze physiological function parameters. This paper briefly reviews recent progress in the field of plant science to explore the use of positron emission tomography, a gamma camera, and the positron-emitting tracer imaging system, which is one of the most advanced gamma-ray imaging systems available for studying plant physiology, for solving problems in the field of environment and agriculture. (author)

  1. Dreaming and immanence: rejecting the dogmatic image of thought in science education

    Science.gov (United States)

    Bazzul, Jesse; Wallace, Maria F. G.; Higgins, Marc

    2018-02-01

    In this article, we, a multivocal-thinking-assemblage, trouble what we feel is the dogmatic image of thought in science education. Beginning with Lars Bang's (Cult Stud Sci Educ, 2017) dramatic and disruptive imagery of the Ouroboros as a means to challenge scientific literacy we explore the importance of dreams, thinking with both virtual and actual entities, and immanent thinking to science education scholarship. Dreaming as movement away from a dogmatic image of thought takes the authors in multiple directions as they attempt to open Deleuzian horizons of difference, immanence, and self-exploration.

  2. THE DELINEATION OF AN IMAGE AND AUDIOVISUALS RESEARCH IN INFORMATION SCIENCE: TAGGING AS THE FOURTH DIMENSION

    Directory of Open Access Journals (Sweden)

    Rosa Inês de Novais Cordeiro

    2018-04-01

    Full Text Available Introduction: There are four converging dimensions when delineating an image and audiovisuals research in the field of Information Science and, more particularly, in the context of visual information organization. Objective: To indicate that an images and audiovisuals study is more densely substantiated when the following dimensions are pondered on during the research: the specialty of the Information Science involved, as well as the interface areas or chosen operational field; the nature of the analysis corpus; related social, cultural, economic scenarios, among others, to physical or digital informational environments; the state of the art of the literature. Methodology: Theoretical reflection based on the literature addressing indexing for the representation and the access of the object of study in information environments. Results: The four dimensions have an impact on the variables determination that must be considered in a research concerning visual information and reached results, considering that this information universe is gigantic and full of peculiarities. Regarding the fourth dimension, the articles on collaborative/social tagging that try to determine the cognitive relation of tag attribution (free labelling during searches, stand out from the rest of the literature on image and audiovisuals in the context of indexing and information search. Conclusion: In the analyzed literature, the three mentioned dimensions are observable. However, the problematization dimension of the characterization of the scenarios lack a bigger exposure.

  3. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  4. Application of cone beam computed tomography in facial imaging science

    Institute of Scientific and Technical Information of China (English)

    Zacharias Fourie; Janalt Damstra; Yijin Ren

    2012-01-01

    The use of three-dimensional (3D) methods for facial imaging has increased significantly over the past years.Traditional 2D imaging has gradually being replaced by 3D images in different disciplines,particularly in the fields of orthodontics,maxillofacial surgery,plastic and reconstructive surgery,neurosurgery and forensic sciences.In most cases,3D facial imaging overcomes the limitations of traditional 2D methods and provides the clinician with more accurate information regarding the soft-tissues and the underlying skeleton.The aim of this study was to review the types of imaging methods used for facial imaging.It is important to realize the difference between the types of 3D imaging methods as application and indications thereof may differ.Since 3D cone beam computed tomography (CBCT) imaging will play an increasingly importanl role in orthodontics and orthognathic surgery,special emphasis should be placed on discussing CBCT applications in facial evaluations.

  5. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  6. The relationship of mentoring on middle school girls' science-related attitudes

    Science.gov (United States)

    Clark, Lynette M.

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These theories emphasize social and learning experiences that may impact the science-related attitudes of middle school girls. The research questions examined the science-related attitudes of middle school girls who participate in a science-related mentoring program. The hypotheses suggested that there are significant differences that exist between the attitudes of middle school female participants in a science-related mentoring program and female participants in a traditional mentoring program. The quantitative data were collected through a survey entitled the Test of Science-Related Attitudes (TOSRA) which measures science-related attitudes. The population of interest for this study is 11-15 year old middle school girls of various racial and socio-economic backgrounds. The sample groups for the study were middle school girls participating in either a science-focused mentoring program or a traditional mentoring program. Results of the study indicated that no significant difference existed between the science-related attitudes of middle school girls in a science-related mentoring program and the attitudes of those in a traditional mentoring program. The practical implications for examining the concerns of the study would be further investigations to increase middle school girls' science-related attitudes.

  7. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology

    International Nuclear Information System (INIS)

    Doi, Kunio

    2006-01-01

    Over the last 50 years, diagnostic imaging has grown from a state of infancy to a high level of maturity. Many new imaging modalities have been developed. However, modern medical imaging includes not only image production but also image processing, computer-aided diagnosis (CAD), image recording and storage, and image transmission, most of which are included in a picture archiving and communication system (PACS). The content of this paper includes a short review of research and development in medical imaging science and technology, which covers (a) diagnostic imaging in the 1950s, (b) the importance of image quality and diagnostic performance, (c) MTF, Wiener spectrum, NEQ and DQE, (d) ROC analysis, (e) analogue imaging systems, (f) digital imaging systems, (g) image processing, (h) computer-aided diagnosis, (i) PACS, (j) 3D imaging and (k) future directions. Although some of the modalities are already very sophisticated, further improvements will be made in image quality for MRI, ultrasound and molecular imaging. The infrastructure of PACS is likely to be improved further in terms of its reliability, speed and capacity. However, CAD is currently still in its infancy, and is likely to be a subject of research for a long time. (review)

  8. Undergraduate female science-related career choices: A phenomenological study

    Science.gov (United States)

    Curry, Kathy S.

    This qualitative phenomenological study used a modified Groenewald's five steps method with semi-structured, recorded, and transcribed interviews to focus on the underrepresentation of females in science-related careers. The study explored the lived experiences of a purposive sample of 25 senior female college students attending a college in Macon, Georgia. Ten major themes emerged from the research study that included (a) journey to a science-related career; (b) realization of career interest; (c) family support (d) society's role; (e) professors' treatment of students; (f) lack of mentors and models; (g) gender and career success; (h) females and other disadvantages in science-related careers; (i) rewards of the journey; and (j) advice for the journey. The three minor themes identified were (a) decision-making; (b) career awareness; and (c) guidance. The key findings revealed that females pursuing a science degree or subsequent science-related career, shared their experience with other females interested in science as a career choice, dealt with barriers standing in the way of their personal goals, lack role models, and received little or no support from family and friends. The study findings may offer information to female college students interested in pursuing science-related careers and further foundational research on gender disparities in career choice.

  9. An evaluation of an enquiry based learning strategy for the science of imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, Sarah, E-mail: Sarah.Naylor@shu.ac.uk [Diagnostic Imaging, Sheffield Hallam University, Collegiate Campus, Sheffield (United Kingdom)

    2011-11-15

    Diagnostic radiography is a science based health course. Due to the variation in science background of the students at entry level the imaging science modules can be problematic. Enquiry based learning (EBL) was introduced as teaching strategy in an imaging science module in order to promote learner autonomy and enhance the student experience. The module was evaluated using a questionnaire containing both open and closed questions. The impact of working as a team was a strong theme emerging from the evaluation of the project, with the majority of students viewing teamwork as beneficial to their learning. It was identified that they gained support from the team, and this assisted their learning. The enhancement of transferable skills and the promotion of learner autonomy were achieved. Areas for further investigation are the utilisation of peer assessment and a science event for the summative assessment.

  10. An evaluation of an enquiry based learning strategy for the science of imaging technology

    International Nuclear Information System (INIS)

    Naylor, Sarah

    2011-01-01

    Diagnostic radiography is a science based health course. Due to the variation in science background of the students at entry level the imaging science modules can be problematic. Enquiry based learning (EBL) was introduced as teaching strategy in an imaging science module in order to promote learner autonomy and enhance the student experience. The module was evaluated using a questionnaire containing both open and closed questions. The impact of working as a team was a strong theme emerging from the evaluation of the project, with the majority of students viewing teamwork as beneficial to their learning. It was identified that they gained support from the team, and this assisted their learning. The enhancement of transferable skills and the promotion of learner autonomy were achieved. Areas for further investigation are the utilisation of peer assessment and a science event for the summative assessment.

  11. Global Journal of Agricultural Sciences

    African Journals Online (AJOL)

    Journal Homepage Image. Global Journal of Agricultural Sciences is aimed at promoting research in all areas of Agricultural Sciences including Animal Production, Fisheries, Agronomy, Processing and Agricultural Mechanization. Related ...

  12. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  13. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    Science.gov (United States)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS

  14. BioImg.org: A Catalog of Virtual Machine Images for the Life Sciences.

    Science.gov (United States)

    Dahlö, Martin; Haziza, Frédéric; Kallio, Aleksi; Korpelainen, Eija; Bongcam-Rudloff, Erik; Spjuth, Ola

    2015-01-01

    Virtualization is becoming increasingly important in bioscience, enabling assembly and provisioning of complete computer setups, including operating system, data, software, and services packaged as virtual machine images (VMIs). We present an open catalog of VMIs for the life sciences, where scientists can share information about images and optionally upload them to a server equipped with a large file system and fast Internet connection. Other scientists can then search for and download images that can be run on the local computer or in a cloud computing environment, providing easy access to bioinformatics environments. We also describe applications where VMIs aid life science research, including distributing tools and data, supporting reproducible analysis, and facilitating education. BioImg.org is freely available at: https://bioimg.org.

  15. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  16. Science and diplomacy a new dimension of international relations

    CERN Document Server

    Ruffini, Pierre-Bruno

    2017-01-01

    This book examines in depth science diplomacy, a particular field of international relations, in which the interests of science and those of foreign policy intersect. Building on a wealth of examples drawn from history and contemporary international relations, it analyzes and discusses the links between the world of scientists and that of diplomats. Written by a professor of economics and former Embassy counselor for science and technology, the book sets out to answer the following questions: Can science issues affect diplomatic relations between countries? Is international scientific cooperation a factor for peace? Are researchers good ambassadors for their countries? Is scientific influence a particular form of cultural influence on the world stage? Do diplomats really listen to what experts say when negotiating on the future of the planet? Is the independence of the scientist threatened by science diplomacy? What is a scientific attaché for?

  17. Nighttime Environmental Products from the Visible Infrared Imaging Radiometer Suite: Science Rationale

    Science.gov (United States)

    Roman, M. O.; Wang, Z.; Kalb, V.; Cole, T.; Oda, T.; Stokes, E.; Molthan, A.

    2016-12-01

    A new generation of satellite instruments, represented by the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), offer global measurements of nocturnal visible and near-infrared light suitable for urban science research. While many promising urban-focused applications have been developed using nighttime satellite imagery in the past 25 years, most studies to-date have been limited by the quality of the captured imagery and the retrieval methods used in heritage (DMSP/OLS) products. Instead, science-quality products that are temporally consistent, global in extent, and local in resolution were needed to monitor human settlements worldwide —particularly for studies within dense urban areas. Since the first-light images from the VIIRS were received in January 2012, the NASA Land Science Investigator-led Processing System (Land SIPS) team has worked on maximizing the capabilities of these low-light measurements to generate a wealth of new information useful for understanding urbanization processes, urban functions, and the vulnerability of urban areas to climate hazards. In a recent case study, our team demonstrated that tracking daily dynamic VIIRS nighttime measurements can provide valuable information about the character of the human activities and behaviors that shape energy consumption and vulnerability (Roman and Stokes, 2015). Moving beyond mapping the physical qualities of urban areas (e.g. land cover and impervious area), VIIRS measurements provide insight into the social, economic, and cultural activities that shape energy and infrastructure use. Furthermore, as this time series expands and is merged with other sources of optical remote sensing data (e.g., Landsat-8 and Sentinel 2), VIIRS has the potential to increase our understanding of changes in urban form, structure, and infrastructure—factors that may also influence urban resilience—and how the increasing frequency and severity of climate-related

  18. A perspective on the future role of brain pet imaging in exercise science.

    Science.gov (United States)

    Boecker, Henning; Drzezga, Alexander

    2016-05-01

    Positron Emission Tomography (PET) bears a unique potential for examining the effects of physical exercise (acute or chronic) within the central nervous system in vivo, including cerebral metabolism, neuroreceptor occupancy, and neurotransmission. However, application of Neuro-PET in human exercise science is as yet surprisingly sparse. To date the field has been dominated by non-invasive neuroelectrical techniques (EEG, MEG) and structural/functional magnetic resonance imaging (sMRI/fMRI). Despite PET having certain inherent disadvantages, in particular radiation exposure and high costs limiting applicability at large scale, certain research questions in human exercise science can exclusively be addressed with PET: The "metabolic trapping" properties of (18)F-FDG PET as the most commonly used PET-tracer allow examining the neuronal mechanisms underlying various forms of acute exercise in a rather unconstrained manner, i.e. under realistic training scenarios outside the scanner environment. Beyond acute effects, (18)F-FDG PET measurements under resting conditions have a strong prospective for unraveling the influence of regular physical activity on neuronal integrity and potentially neuroprotective mechanisms in vivo, which is of special interest for aging and dementia research. Quantification of cerebral glucose metabolism may allow determining the metabolic effects of exercise interventions in the entire human brain and relating the regional cerebral rate of glucose metabolism (rCMRglc) with behavioral, neuropsychological, and physiological measures. Apart from FDG-PET, particularly interesting applications comprise PET ligand studies that focus on dopaminergic and opioidergic neurotransmission, both key transmitter systems for exercise-related psychophysiological effects, including mood changes, reward processing, antinociception, and in its most extreme form 'exercise dependence'. PET ligand displacement approaches even allow quantifying specific endogenous

  19. Government Relations: It's Not Rocket Science

    Science.gov (United States)

    Radway, Mike

    2007-01-01

    Many people in the early childhood education field are afraid of government relations work, intimidated by politicians, and believe the whole process is unseemly. The author asserts that they should not be afraid nor be intimidated because government relations is not rocket science and fundamentally officeholders are no different from the rest of…

  20. Technologies for Medical Sciences

    CERN Document Server

    Tavares, João; Barbosa, Marcos; Slade, AP

    2012-01-01

    This book presents novel and advanced technologies for medical sciences in order to solidify knowledge in the related fields and define their key stakeholders.   The fifteen papers included in this book were written by invited experts of international stature and address important technologies for medical sciences, including: computational modeling and simulation, image processing and analysis, medical imaging, human motion and posture, tissue engineering, design and development medical devices, and mechanic biology. Different applications are treated in such diverse fields as biomechanical studies, prosthesis and orthosis, medical diagnosis, sport, and virtual reality.   This book is of interest to researchers, students and manufacturers from  a wide range of disciplines related to bioengineering, biomechanics, computational mechanics, computational vision, human motion, mathematics, medical devices, medical image, medicine and physics.

  1. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  2. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  3. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  4. Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education

    Science.gov (United States)

    Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio

    2018-04-01

    This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.

  5. Association between eating disorders and body image in athletes and non-athlete students in Qazvin University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    M. Miri

    2016-06-01

    Full Text Available Background: Body image dissatisfaction and eating disorders are of common problems in adolescence and adulthood especially among athletes. Objective: The aim of this study was to determine the association of eating disorders and body image in athletes and non-athlete students in Qazvin University of Medical Sciences. Methods: This cross-sectional study was conducted on 226 athlete students and 350 non-athlete students of Qazvin University of Medical Sciences during 2013-2014. Students who followed a specific sport field and had participated in at least one sport event were considered as athlete students. All athlete students were entered the study by census method. Non-athlete students were selected among students who had not any exercise activity and by random sampling method. Data were collected through demographic questionnaire, Eating Attitudes Test (EAT-26, and Multidimensional Body-Self Relations Questionnaire (MBSRQ. Data were analyzed using T-test and Chi-square test. Results: Mean age was 21.92±3.19 years and mean body mass index (BMI was 22.24±3.18 kg/m2. The frequency of eating disorders was 11.5% among the athlete students and 11.2% among the non-athlete students. Anorexia nervosa was found to be more prevalent than bulimia nervosa in both groups. The students with normal BMI had better body image perception and less eating disorders symptoms than other students. The association of age, educational level, and gender with eating disorders and body image was not statistically significant. The association of eating disorders and body image was not statistically significant. Eating disorders were more prevalent in males than females but the difference was not statistically significant. Conclusion: With regards to the results, it seems that eating disorders and body image dissatisfaction are relatively prevalent among both athletes and non-athlete students and BMI is predictor of eating disorders.

  6. Seeding science success: Relations of secondary students' science self-concepts and motivation with aspirations and achievement

    Science.gov (United States)

    Chandrasena, Wanasinghe Durayalage

    This research comprises three inter-related synergistic studies. Study 1 aims to develop a psychometrically sound tool to measure secondary students' science self-concepts, motivation, and aspirations in biology, chemistry, earth and environmental methodology to explicate students' and teachers' views, practices, and personal experiences, to identify the barriers to undertaking science for secondary students and to provide rich insights into the relations of secondary students' science self-concepts and motivation with their aspirations and achievement. Study 3 will detect additional issues that may not necessarily be identifiable from the quantitative findings of Study 2. The psychometric properties of the newly developed instrument demonstrated that students' science self-concepts were domain specific, while science motivation and science aspirations were not. Students' self-concepts in general science, chemistry, and physics were stronger for males than females. Students' self-concepts in general science and biology became stronger for students in higher years of secondary schooling. Students' science motivation did not vary across gender and year levels. Though students' science aspirations did not vary across gender, they became stronger with age. In general, students' science self-concepts and science motivation were positively related to science aspirations and science achievement. Specifically, students' year level, biology self-concept, and physics self concept predicted their science and career aspirations. Biology self-concept predicted teacher ratings of students' achievement, and students' general science self-concepts predicted their achievement according to students' ratings. Students' year level and intrinsic motivation in science were predictors of their science aspirations, and intrinsic motivation was a greater significant predictor of students' achievement, according to student ratings. Based upon students' and teachers' perceptions, the

  7. What science are you singing? A study of the science image in the mainstream music of Taiwan.

    Science.gov (United States)

    Huang, Chun-Ju; Allgaier, Joachim

    2015-01-01

    Previous research showed that pop music bands in the Western world have sometimes included science imagery in their lyrics. Their songs could potentially be helpful facilitators for science communication and public engagement purposes. However, so far no systematic research has been conducted for investigating science in popular music in Eastern cultures. This study explores whether science has been regarded as an element in the creation of popular mainstream music, and examines the content and quantity of distribution through an analysis of mainstream music lyrics, to reflect on the conditions of the absorption of science into popular culture. The results indicate that expressions related to astronomy and space science feature very prominently. Most of the lyrics are connected to emotional states and mood expressions and they are only very rarely related to actual issues of science. The implications for science communication and further research are discussed in the final section. © The Author(s) 2014.

  8. Understanding Science Teaching Effectiveness: Examining How Science-Specific and Generic Instructional Practices Relate to Student Achievement in Secondary Science Classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-01-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student…

  9. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    International Nuclear Information System (INIS)

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  10. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, Jeffrey H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Traylor Building, Room 718, 720 Rutland Avenue, Baltimore, MD 21205 (United States)

    2011-08-21

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions-for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  11. Understanding science teaching effectiveness: examining how science-specific and generic instructional practices relate to student achievement in secondary science classrooms

    Science.gov (United States)

    Mikeska, Jamie N.; Shattuck, Tamara; Holtzman, Steven; McCaffrey, Daniel F.; Duchesneau, Nancy; Qi, Yi; Stickler, Leslie

    2017-12-01

    In order to create conditions for students' meaningful and rigorous intellectual engagement in science classrooms, it is critically important to help science teachers learn which strategies and approaches can be used best to develop students' scientific literacy. Better understanding how science teachers' instructional practices relate to student achievement can provide teachers with beneficial information about how to best engage their students in meaningful science learning. To address this need, this study examined the instructional practices that 99 secondary biology teachers used in their classrooms and employed regression to determine which instructional practices are predictive of students' science achievement. Results revealed that the secondary science teachers who had well-managed classroom environments and who provided opportunities for their students to engage in student-directed investigation-related experiences were more likely to have increased student outcomes, as determined by teachers' value-added measures. These findings suggest that attending to both generic and subject-specific aspects of science teachers' instructional practice is important for understanding the underlying mechanisms that result in more effective science instruction in secondary classrooms. Implications about the use of these observational measures within teacher evaluation systems are discussed.

  12. Alien or alike? How the perceived similarity between the typical science teacher and a student's self-image correlates with choosing science at school.

    NARCIS (Netherlands)

    Kessels, U.; Taconis, R.

    2011-01-01

    By applying the self-to-prototype matching theory to students’ academic choices, this study links the unpopularity of science in many industrialized countries with the perceived gap between typical persons representing science (e.g. physics teachers) on the one hand and students’ self-image on the

  13. God, design, and naturalism: Implications of methodological naturalism in science for science-religion relation

    OpenAIRE

    Piotr Bylica; Dariusz Sagan

    2015-01-01

    The aim of this paper is to analyze the implications flowing from adopting methodological naturalism in science, with special emphasis on the relation between science and religion. Methodological naturalism, denying supernatural and teleological explanations, influences the content of scientific theories, and in practice leads to vision of science as compatible with ontological naturalism and in opposition to theism. Ontological naturalism in turn justifies the acceptance of methodological na...

  14. 'The kind of mildly curious sort of science interested person like me': Science bloggers' practices relating to audience recruitment.

    Science.gov (United States)

    Ranger, Mathieu; Bultitude, Karen

    2016-04-01

    With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers' self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). © The Author(s) 2014.

  15. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    Science.gov (United States)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality

  16. Automated conversion of Docker images to CVMFS for LIGO and the Open Science Grid

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In this lightning talk, I will discuss the development of a webhook-based tool for automatically converting Docker images from DockerHub and private registries to CVMFS filesystems. The tool is highly reliant on previous work by the Open Science Grid for scripted nightly conversion of images from DockerHub.

  17. Enhancing forensic science with spectroscopic imaging

    Science.gov (United States)

    Ricci, Camilla; Kazarian, Sergei G.

    2006-09-01

    This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging

  18. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  19. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  20. Eating disorders risk and its relation to self-esteem and body image in Iranian university students of medical sciences.

    Science.gov (United States)

    Naeimi, Alireza Farsad; Haghighian, Hossein Khadem; Gargari, Bahram Pourghassem; Alizadeh, Mohammad; Rouzitalab, Tohid

    2016-12-01

    Eating disorders are rapidly increasing in young adults. But, a few studies have examined the risk of eating disorders and body image in university students of non-Western societies. The current study aimed to assess eating disorders risk in relation to body image and self-esteem among Iranian university students. The participants were 430 students from Tabriz, between April and May 2015. The 26-item Eating Attitude Test (EAT-26), Multidimensional Body-Self Relations Questionnaire (MBSRQ) and Rosenberg's Self-Esteem Questionnaires were used. EAT-26 score of 20 or more was considered as eating disorders risk cutoff. Majority of the students (68 %) were females. The overall eating disorders risk was 9.5 % (7.5 and 10.5 % in men and women, respectively). Further, the prevalence of poor body image and low self-esteem was 34.2 and 16 %, respectively. Neither of the gender differences was statistically significant (p > 0.05). In simple logistic regression, there were significant associations between self-esteem, body image, parental education and eating disorders risk (p self-esteem (OR = 0.37, 95 % = 0.16-0.87) and mother's education level (OR = 2.78, 95 % = 1.30-5.93) were predictors of eating disorders risk. The findings revealed that low self-esteem and mother's higher education may increase eating disorders risk and the predictive role of body image possibly is by other mediators such as self-esteem. This warrants awareness improvement and developing appropriate interventions targeting self-esteem and self-respect of students.

  1. Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment.

    Science.gov (United States)

    Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A

    2016-01-01

    The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Characterization of the new neutron imaging and materials science facility IMAT

    Science.gov (United States)

    Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried

    2018-04-01

    IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.

  3. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  4. First Images from VLT Science Verification Programme

    Science.gov (United States)

    1998-09-01

    Two Weeks of Intensive Observations Successfully Concluded After a period of technical commissioning tests, the first 8.2-m telescope of the ESO VLT (UT1) has successfully performed an extensive series of "real science" observations , yielding nearly 100 hours of precious data. They concern all possible types of astronomical objects, from distant galaxies and quasars to pulsars, star clusters and solar system objects. This intensive Science Verification (SV) Programme took place as planned from August 17 to September 1, 1998, and was conducted by the ESO SV Team at the VLT Observatory on Paranal (Chile) and at the ESO Headquarters in Garching (Germany). The new giant telescope lived fully up to the high expectations and worked with spectacular efficiency and performance through the entire period. All data will be released by September 30 via the VLT archive and the web (with some access restrictions - see below). The Science Verification period Just before the beginning of the SV period, the 8.2-m primary mirror in its cell was temporarily removed in order to install the "M3 tower" with the tertiary mirror [1]. The reassembly began on August 15 and included re-installation at the Cassegrain focus of the VLT Test Camera that was also used for the "First Light" images in May 1998. After careful optical alignment and various system tests, the UT1 was handed over to the SV Team on August 17 at midnight local time. The first SV observations began immediately thereafter and the SV Team was active 24 hours a day throughout the two-week period. Video-conferences between Garching and Paranal took place every day at about noon Garching time (6 o'clock in the morning on Paranal). Then, while the Paranal observers were sleeping, data from the previous night were inspected and reduced in Garching, with feedback on what was best to do during the following night being emailed to Paranal several hours in advance of the beginning of the observations. The campaign ended in the

  5. Image Gently(SM): a national education and communication campaign in radiology using the science of social marketing.

    Science.gov (United States)

    Goske, Marilyn J; Applegate, Kimberly E; Boylan, Jennifer; Butler, Priscilla F; Callahan, Michael J; Coley, Brian D; Farley, Shawn; Frush, Donald P; Hernanz-Schulman, Marta; Jaramillo, Diego; Johnson, Neil D; Kaste, Sue C; Morrison, Gregory; Strauss, Keith J

    2008-12-01

    Communication campaigns are an accepted method for altering societal attitudes, increasing knowledge, and achieving social and behavioral change particularly within public health and the social sciences. The Image Gently(SM) campaign is a national education and awareness campaign in radiology designed to promote the need for and opportunities to decrease radiation to children when CT scans are indicated. In this article, the relatively new science of social marketing is reviewed and the theoretical basis for an effective communication campaign in radiology is discussed. Communication strategies are considered and the type of outcomes that should be measured are reviewed. This methodology has demonstrated that simple, straightforward safety messages on radiation protection targeted to medical professionals throughout the radiology community, utilizing multiple media, can affect awareness potentially leading to change in practice.

  6. Overview of the Joint NASA ISRO Imaging Spectroscopy Science Campaign in India

    Science.gov (United States)

    Green, R. O.; Bhattacharya, B. K.; Eastwood, M. L.; Saxena, M.; Thompson, D. R.; Sadasivarao, B.

    2016-12-01

    In the period from December 2015 to March 2016 the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) was deployed to India for a joint NASA ISRO science campaign. This campaign was conceived to provide first of their kind high fidelity imaging spectroscopy measurements of a diverse set of Asian environments for science and applications research. During this campaign measurements were acquired for 57 high priority sites that have objectives spanning: snow/ice of the Himalaya; coastal habitats and water quality; mangrove forests; soils; dry and humid forests; hydrocarbon alteration; mineralogy; agriculture; urban materials; atmospheric properties; and calibration/validation. Measurements from the campaign have been processed to at-instrument spectral radiance and atmospherically corrected surface reflectance. New AVIRIS-NG algorithms for retrieval of vegetation canopy water and for estimation of the fractions of photosynthetic, non-photosynthetic vegetation have been tested and evaluated on these measurements. An inflight calibration validation experiment was performed on the 11thof December 2015 in Hyderabad to assess the spectral and radiometric calibration of AVIRIS-NG in the flight environment. We present an overview of the campaign, calibration and validation results, and initial science analysis of a subset of these unique and diverse data sets.

  7. Standard practice for determining relative image quality response of industrial radiographic imaging systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This standard provides a practice whereby industrial radiographic imaging systems may be comparatively assessed using the concept of relative image quality response (RIQR). The RIQR method presented within this practice is based upon the use of equivalent penetrameter sensitivity (EPS) described within Practice E 1025 and subsection 5.2 of this practice. Figure 1 illustrates a relative image quality indicator (RIQI) that has four different steel plaque thicknesses (.015, .010, .008, and .005 in.) sequentially positioned (from top to bottom) on a ¾-in. thick steel plate. The four plaques contain a total of 14 different arrays of penetrameter-type hole sizes designed to render varied conditions of threshold visibility ranging from 1.92 % EPS (at the top) to .94 % EPS (at the bottom) when exposed to nominal 200 keV X-ray radiation. Each “EPS” array consists of 30 identical holes; thus, providing the user with a quantity of threshold sensitivity levels suitable for relative image qualitative response com...

  8. Sokoto Journal of Veterinary Sciences

    African Journals Online (AJOL)

    Journal Homepage Image. The Journal publishes original research articles related to veterinary sciences, including livestock health and production, diseases of wild life and fish, preventive veterinary medicine and zoonoses among others. Case reports, review articles and editorials are also accepted. Other sites related to ...

  9. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to detect the...

  10. Contesting nonfiction: Fourth graders making sense of words and images in science information book discussions

    Science.gov (United States)

    Belfatti, Monica A.

    Recently developed common core standards echo calls by educators for ensuring that upper elementary students become proficient readers of informational texts. Informational texts have been theorized as causing difficulty for students because they contain linguistic and visual features different from more familiar narrative genres (Lemke, 2004). It has been argued that learning to read informational texts, particularly those with science subject matter, requires making sense of words, images, and the relationships among them (Pappas, 2006). Yet, conspicuously absent in the research are empirical studies documenting ways students make use of textual resources to build textual and conceptual understandings during classroom literacy instruction. This 10-month practitioner research study was designed to investigate the ways a group of ethnically and linguistically diverse fourth graders in one metropolitan school made sense of science information books during dialogically organized literature discussions. In this nontraditional instructional context, I wondered whether and how young students might make use of science informational text features, both words and images, in the midst of collaborative textual and conceptual inquiry. Drawing on methods of constructivist grounded theory and classroom discourse analysis, I analyzed student and teacher talk in 25 discussions of earth and life science books. Digital voice recordings and transcriptions served as the main data sources for this study. I found that, without teacher prompts or mandates to do so, fourth graders raised a wide range of textual and conceptual inquiries about words, images, scientific figures, and phenomena. In addition, my analysis yielded a typology of ways students constructed relationships between words and images within and across page openings of the information books read for their sense-making endeavors. The diversity of constructed word-image relationships aided students in raising, exploring

  11. A generalized approach for producing, quantifying, and validating citizen science data from wildlife images.

    Science.gov (United States)

    Swanson, Alexandra; Kosmala, Margaret; Lintott, Chris; Packer, Craig

    2016-06-01

    Citizen science has the potential to expand the scope and scale of research in ecology and conservation, but many professional researchers remain skeptical of data produced by nonexperts. We devised an approach for producing accurate, reliable data from untrained, nonexpert volunteers. On the citizen science website www.snapshotserengeti.org, more than 28,000 volunteers classified 1.51 million images taken in a large-scale camera-trap survey in Serengeti National Park, Tanzania. Each image was circulated to, on average, 27 volunteers, and their classifications were aggregated using a simple plurality algorithm. We validated the aggregated answers against a data set of 3829 images verified by experts and calculated 3 certainty metrics-level of agreement among classifications (evenness), fraction of classifications supporting the aggregated answer (fraction support), and fraction of classifiers who reported "nothing here" for an image that was ultimately classified as containing an animal (fraction blank)-to measure confidence that an aggregated answer was correct. Overall, aggregated volunteer answers agreed with the expert-verified data on 98% of images, but accuracy differed by species commonness such that rare species had higher rates of false positives and false negatives. Easily calculated analysis of variance and post-hoc Tukey tests indicated that the certainty metrics were significant indicators of whether each image was correctly classified or classifiable. Thus, the certainty metrics can be used to identify images for expert review. Bootstrapping analyses further indicated that 90% of images were correctly classified with just 5 volunteers per image. Species classifications based on the plurality vote of multiple citizen scientists can provide a reliable foundation for large-scale monitoring of African wildlife. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  12. Out-of-School Activities Related to Science and Technology

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2007-05-01

    Full Text Available Artificial and natural environments constitute an extensive educational resource in whose framework the basic experiences that contribute to the development process of human beings occur. These experiences are the source of previous knowledge that students bring to school and that are key for building scientific school learning. This article reports the results of a study that addresses out-of-school experiences related to science and technology, through the application of an inventory list to a sample of students who were in their last year of compulsory education. The results show a relatively low overall frequency of experiences, characterized by some qualitative and quantitative differences according to a few grouping variables such as gender, the choice of an elective science subject, and different scientific topics and disciplines. In spite of its importance for learning, the school curriculum often ignores students’ previous experiences. Finally, we discuss the relevance of these results for developing a more equitable science and technology curriculum, from a perspective of a universal, humanistic science education.

  13. MR imaging in sports-related glenohumeral instability

    International Nuclear Information System (INIS)

    Woertler, Klaus; Waldt, Simone

    2006-01-01

    Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions. (orig.)

  14. Identification of Age-Related Macular Degeneration Using OCT Images

    Science.gov (United States)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  15. Welcome to health information science and systems.

    Science.gov (United States)

    Zhang, Yanchun

    2013-01-01

    Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.

  16. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  17. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Duncan, J.S.; Yale Univ., New Haven, CT; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  18. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering]|[Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  19. Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?

    Science.gov (United States)

    Milford, Todd M.; Tippett, Christine D.

    2013-01-01

    This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by…

  20. Interfacial and Surface Science | Materials Science | NREL

    Science.gov (United States)

    Science group within the Material Science Center. He oversees research studies of surfaces and interfaces Interfacial and Surface Science Interfacial and Surface Science Image of irregular-outlined, light address a broad range of fundamental and applied issues in surface and interfacial science that are

  1. TCIA: An information resource to enable open science.

    Science.gov (United States)

    Prior, Fred W; Clark, Ken; Commean, Paul; Freymann, John; Jaffe, Carl; Kirby, Justin; Moore, Stephen; Smith, Kirk; Tarbox, Lawrence; Vendt, Bruce; Marquez, Guillermo

    2013-01-01

    Reusable, publicly available data is a pillar of open science. The Cancer Imaging Archive (TCIA) is an open image archive service supporting cancer research. TCIA collects, de-identifies, curates and manages rich collections of oncology image data. Image data sets have been contributed by 28 institutions and additional image collections are underway. Since June of 2011, more than 2,000 users have registered to search and access data from this freely available resource. TCIA encourages and supports cancer-related open science communities by hosting and managing the image archive, providing project wiki space and searchable metadata repositories. The success of TCIA is measured by the number of active research projects it enables (>40) and the number of scientific publications and presentations that are produced using data from TCIA collections (39).

  2. The Advanced Rapid Imaging and Analysis (ARIA) Project: Status of SAR products for Earthquakes, Floods, Volcanoes and Groundwater-related Subsidence

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.

    2017-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano

  3. Prospects for Reconciling Sellars' World Images | Collier | South ...

    African Journals Online (AJOL)

    The Manifest Image is an idealization of common sense aided by critical philosophy, whereas the Scientific Image is the product of our best science. The methodologies of the two images are very different: the Manifest Image deals with experience and looks only at relations among bits of experience and analysis of ...

  4. Imaging diagnosis of bronchial asthma and related diseases

    International Nuclear Information System (INIS)

    Sakai, Fumikazu; Fujimura, Mikihiko; Kimura, Fumiko; Fujimura, Kaori; Hayano, Toshio; Nishii, Noriko; Machida, Haruhiko; Toda, Jo; Saito, Naoko

    2002-01-01

    We describe imaging features of bronchial asthma and related diseases. The practical roles of imaging diagnosis are the evaluation of severity and complications of bronchial asthma and differential diagnosis of diseases showing asthmatic symptoms other than bronchial asthma. (author)

  5. Russian Science and Russian State: Image of a Scientist in Modern Russian Cinema

    Directory of Open Access Journals (Sweden)

    Svetlana M. Medvedeva

    2014-01-01

    Full Text Available The article analyses the image of a scientist represented in recent Russian movies. The article discusses two groups of questions: (1 nature and role of popular science in the life of society; (2 national features of scientific cultures. The article agues that popular science should not be conceived as a week copy of the real science. On the contrary, modern models of science communication assume that popular science have its own value and is able to influence scientific practices. Simultaneously we assume, that since popular science is less integrated with international scientific norms, it can easer reveal national traditions of scientific life. As a result, the analyze of recent Russian movies shows that the tradition established in Peter I times for Russian scientists to work out their self-identity in concern with Russian state still exists (scientist- state supporter/scientist- oppositionist. Actually the modern interpretation of dilemma between state patriotism and liberalism given by modern movies shows that Russian scientist don't have real choice, because they loose anyway whereas the state always wins. So owing to recent movies this representation of hopeless destiny of a scientist is becoming widespread in Russian public culture.

  6. Images as tools. On visual epistemic practices in the biological sciences.

    Science.gov (United States)

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. God, design, and naturalism: Implications of methodological naturalism in science for science-religion relation

    Directory of Open Access Journals (Sweden)

    Piotr Bylica

    2015-03-01

    Full Text Available The aim of this paper is to analyze the implications flowing from adopting methodological naturalism in science, with special emphasis on the relation between science and religion. Methodological naturalism, denying supernatural and teleological explanations, influences the content of scientific theories, and in practice leads to vision of science as compatible with ontological naturalism and in opposition to theism. Ontological naturalism in turn justifies the acceptance of methodological naturalism as the best method to know the reality. If we accept realistic interpretation of scientific theories, then methodological naturalism conflicts science with religion. Theistic evolution does not seem to be a proper way to reconcile Darwinism and methodological naturalism with theism. Many of such propositions are boiled down to deism. Although evolution can be interpreted theistically, it is not the way in which majority of modern scientists and respectable scientific institutions understand it.

  8. In Defense of Engineering Sciences: On the Epistemological Relations Between Science and Technology

    NARCIS (Netherlands)

    Boon, Mieke

    2011-01-01

    This article presents an overview of discussions in the philosophy of technology on epistemological relations between science and technology, illustrating that often several mutually entangled issues are at stake. The focus is on conceptual and ideological issues concerning the relationship between

  9. Overuse of Diagnostic Imaging for Work-Related Injuries.

    Science.gov (United States)

    Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace

    2017-02-01

    Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.

  10. RapidEye constellation relative radiometric accuracy measurement using lunar images

    Science.gov (United States)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  11. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  12. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  13. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  14. The application of computer image analysis in life sciences and environmental engineering

    Science.gov (United States)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  15. Secondary school students' perceptions of working life skills in science-related careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-07-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were 144 Finnish 7th graders (aged 13-14 years). Using a questionnaire and qualitative content analysis, we examined their perceptions of working life skills in 'careers in science' and 'careers with science'. Results reveal that although students have a great deal of knowledge about working life skills, it is often just stereotyped. Sector-specific knowledge and skills were highlighted in particular but skills related to society, organisation, time and higher order thinking, were often omitted. Results also indicate that students do not associate 'careers in science' with creativity, innovation, collaboration or technology and ICT skills. Conversely, according to the students, these careers demand more sector-specific knowledge and responsibility than 'careers with science'. We conclude that students need more wide-ranging information about scientific careers and the competencies demanded; such information can be acquired by e.g. interacting with professionals and their real working life problems.

  16. The imaging science of positron emission tomography

    International Nuclear Information System (INIS)

    Jones, T.

    1996-01-01

    To meet the goals of converging molecular imaging with molecular biology and molecular medicine, there is a need to define the strategy and structure for perfecting the accuracy of functional images derived using PET. This also relates directly to how clinical research, diagnostic questions and challenges from the pharmaceutical industry are addressed. In order to exploit the sensitivity and specificity of PET, an integrated, multidisciplinary approach is imperative. The structure to provide this needs to been seen in the context of an institutional approach, collaborations within the academic and industrial sectors and the funding needed to meet the challenges of addressing difficult questions. (orig.)

  17. Frequency and Efficacy of Talk-Related Tasks in Primary Science

    Science.gov (United States)

    Braund, Martin; Leigh, Joanne

    2013-04-01

    Pupil talk and discussion are seen as having important social and cognitive outcomes. In science classes, pupils' collaborative talk supports the construction of meaning and helps examine the status of evidence, theory and knowledge. However, pupil interactive talk in groups is rare in science lessons. The research reported is part of a project to increase the amount of pupil-pupil talk in primary schools through a programme of teaching and professional development. Pupils' self-reports of the frequency and learning efficacies of talk related activities in science lessons were collected before and after a programme of teaching in 24 schools in one of the most socially and educationally deprived areas of England. Findings showed pupils valued talking about their ideas over listening to those of other pupils. Science talk frequency (STF) was closely correlated with science talk efficacy (STE) and both were positively correlated with pupils' attitudes to school science. Analysis of covariance (ANCOVA) of the correlation of STF with STE showed values were independent of gender and ability but that school experience was a significant factor. After the teaching programme and, contrary to expectations, the frequency of talk activities in science lessons appeared to have decreased but varied according to class grades. The degree of correlation between STF and STE was stronger after the teaching in over half of the schools. Schools where STF/STE strengthened most as a result of teaching were those involved in an additional initiative to use modelled talk related to industrial contexts.

  18. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences

    OpenAIRE

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2016-01-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for ...

  19. Secondary School Students' Perceptions of Working Life Skills in Science-Related Careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-01-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were…

  20. Examining classroom interactions related to difference in students' science achievement

    Science.gov (United States)

    Zady, Madelon F.; Portes, Pedro R.; Ochs, V. Dan

    2003-01-01

    The current study examines the cognitive supports that underlie achievement in science by using a cultural historical framework (L. S. Vygotsky (1934/1986), Thought and Language, MIT Press, Cambridge, MA.) and the activity setting (AS) construct (R. G. Tharp & R. Gallimore (1988), Rousing minds to life: Teaching, learning and schooling in social context, Cambridge University Press, Cambridge, MA.) with its five features: personnel, motivations, scripts, task demands, and beliefs. Observations were made of the classrooms of seventh-grade science students, 32 of whom had participated in a prior achievement-related parent-child interaction or home study (P. R. Portes, M. F. Zady, & R. M. Dunham (1998), Journal of Genetic Psychology, 159, 163-178). The results of a quantitative analysis of classroom interaction showed two features of the AS: personnel and scripts. The qualitative field analysis generated four emergent phenomena related to the features of the AS that appeared to influence student opportunity for conceptual development. The emergent phenomenon were science activities, the building of learning, meaning in lessons, and the conflict over control. Lastly, the results of the two-part classroom study were compared to those of the home science AS of high and low achievers. Mismatches in the AS features in the science classroom may constrain the opportunity to learn. Educational implications are discussed.

  1. Task-related signal decrease on functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamaki, Norihiko; Tamura, Shogo; Kitamura, Junji

    2001-01-01

    An atypical pattern of signal change was identified on functional magnetic resonance (fMR) imaging in pathologic patients. Three normal volunteers and 34 patients with pathologic lesions near the primary motor cortex underwent fMR imaging with echo-planar imaging while performing a hand motor task. Signal intensities were evaluated with the z-score method, and the time course and changes of the signal intensity were calculated. Nine of the 34 patients with pathologic lesions displayed a significant task-related signal reduction in motor-related areas. They also presented a conventional task-related signal increase in other motor-related areas. The time courses of the increase and decrease were the inverse of each other. There was no significant difference between rates of signal increase and decrease. Our findings suggest that this atypical signal decrease is clinically significant, and that impaired vascular reactivity and altered oxygen metabolism could contribute to the task-related signal reduction. Brain areas showing such task-related signal decrease should be preserved at surgery. (author)

  2. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  3. An Investigation of Zimbabwe High School Chemistry Students' Laboratory Work-Based Images of the Nature of Science

    Science.gov (United States)

    Vhurumuku, Elaosi; Holtman, Lorna; Mikalsen, Oyvind; Kolsto, Stein D.

    2006-01-01

    This study investigates the proximal and distal images of the nature of science (NOS) that A-level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the…

  4. Attitudes toward Science: Measurement and Psychometric Properties of the Test of Science-Related Attitudes for Its Use in Spanish-Speaking Classrooms

    Science.gov (United States)

    Navarro, Marianela; Förster, Carla; González, Caterina; González-Pose, Paulina

    2016-01-01

    Understanding attitudes toward science and measuring them remain two major challenges for science teaching. This article reviews the concept of attitudes toward science and their measurement. It subsequently analyzes the psychometric properties of the "Test of Science-Related Attitudes" (TOSRA), such as its construct validity, its…

  5. Craniofacial imaging informatics and technology development.

    Science.gov (United States)

    Vannier, M W

    2003-01-01

    'Craniofacial imaging informatics' refers to image and related scientific data from the dentomaxillofacial complex, and application of 'informatics techniques' (derived from disciplines such as applied mathematics, computer science and statistics) to understand and organize the information associated with the data. Major trends in information technology determine the progress made in craniofacial imaging and informatics. These trends include industry consolidation, disruptive technologies, Moore's law, electronic atlases and on-line databases. Each of these trends is explained and documented, relative to their influence on craniofacial imaging. Craniofacial imaging is influenced by major trends that affect all medical imaging and related informatics applications. The introduction of cone beam craniofacial computed tomography scanners is an example of a disruptive technology entering the field. An important opportunity lies in the integration of biologic knowledge repositories with craniofacial images. The progress of craniofacial imaging will continue subject to limitations imposed by the underlying technologies, especially imaging informatics. Disruptive technologies will play a major role in the evolution of this field.

  6. Imaging science at El Leoncito, Argentina

    Directory of Open Access Journals (Sweden)

    C. Martinis

    2006-07-01

    Full Text Available Thermospheric and mesospheric structures are studied using an all-sky imager located at El Leoncito, Argentina (31.8° S, 69.3° W, –18° mag lat. This site has relatively high geographic latitude for a location under the crest of the equatorial ionization anomaly (EIA, and thus observations can be used to study the intrusion of several equatorial processes into the midlatitude domain. In addition, it has a conjugate point close to the field of view of our companion imager at Arecibo, PR, allowing for the study of inter-hemispheric effects. Four types of phenomena were studied using 630.0 nm and 777.4 nm observations: (1 highly-structured airglow depletions associated with the Rayleigh-Taylor instability/equatorial spread-F (RTI/ESF process, (2 brightness waves (BW associated with the midnight temperature maximum (MTM, (3 strong airglow enhancements associated with the positive phase of ionospheric storms, and (4 simple (non-structured bands of airglow depletions with characteristics matching a Perkins-like instability. Using 557.7 nm mesospheric observations, a fifth category of study deals with gravity waves probably generated by lower atmospheric disturbances, and mesospheric bores related to strong vertical temperature gradients. While ESF depletions and BW events are detected fairly frequently, the mid-latitude bands are not, and thus their successful imaging at El Leoncito offers the first example of the coupling from mid-latitudes to low-latitudes in the South American longitude sector. Preliminary results on these features are presented in this paper. Taken together, these five types of optical structures offer the opportunity to investigate coupling, both in altitude and latitude, of aeronomic processes at low latitudes in an under-sampled longitude sector in the Southern Hemisphere.

  7. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  8. ScienceOrganizer System and Interface Summary

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2001-01-01

    ScienceOrganizer is a specialized knowledge management tool designed to enhance the information storage, organization, and access capabilities of distributed NASA science teams. Users access ScienceOrganizer through an intuitive Web-based interface that enables them to upload, download, and organize project information - including data, documents, images, and scientific records associated with laboratory and field experiments. Information in ScienceOrganizer is "threaded", or interlinked, to enable users to locate, track, and organize interrelated pieces of scientific data. Linkages capture important semantic relationships among information resources in the repository, and these assist users in navigating through the information related to their projects.

  9. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to...

  10. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  11. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  12. Adolescent Girls' Experiences and Gender-Related Beliefs in Relation to Their Motivation in Math/Science and English

    Science.gov (United States)

    Leaper, Campbell; Farkas, Timea; Brown, Christia Spears

    2012-01-01

    Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…

  13. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    Science.gov (United States)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  14. The Gemini Planet Imager: From Science to Design to Construction

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Graham, J R; Palmer, D; Doyon, R; Dunn, J; Gavel, D; Larkin, J; Oppenheimer, B; Saddlemyer, L; Sivaramakrishnan, A; Wallace, J K; Bauman, B; Erickson, D; Marois, C; Poyneer, L; Soummer, R

    2008-07-01

    The Gemini Planet Imager (GPI) is a facility instrument under construction for the 8-m Gemini South telescope. It combines a 1500 subaperture AO system using a MEMS deformable mirror, an apodized-pupil Lyot coronagraph, a high-accuracy IR interferometer calibration system, and a near-infrared integral field spectrograph to allow detection and characterization of self-luminous extrasolar planets at planet/star contrast ratios of 10{sup -7}. I will discuss the evolution from science requirements through modeling to the final detailed design, provide an overview of the subsystems and show models of the instrument's predicted performance.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  16. Ultrasound imaging of sports-related musculoskeletal injuries

    International Nuclear Information System (INIS)

    Craig, J.G.; Holsbeek, M.T. van; Gauthier, T.P.; Cook, W.J.

    2006-01-01

    Sports-related injuries of the musculoskeletal system affect millions of individuals every year. Integrating high-frequency Tissue Harmonic Imaging ultrasound with MRI and CT gives the greatest opportunity for diagnosing specific injuries. (orig.)

  17. Adolescents' Motivation to Select an Academic Science-Related Career: The Role of School Factors, Individual Interest, and Science Self-Concept

    Science.gov (United States)

    Taskinen, Päivi H.; Schütte, Kerstin; Prenzel, Manfred

    2013-01-01

    Many researchers consider a lacking interest in science and the students' belief that science is too demanding as major reasons why young people do not strive for science-related careers. In this article, we first delineated a theoretical framework to investigate the importance of interest, self-concept, and school factors regarding students'…

  18. Body Image, Self-Esteem, and Weight-Related Criticism from Romantic Partners.

    Science.gov (United States)

    Befort, Christie; Kurpius, Sharon E. Robinson; Hull-Blanks, Elva; Nicpon, Megan Foley; Huser, Laura; Sollenberger, Sonja

    2001-01-01

    Examines weight-related criticism from romantic partners and the importance of the romantic relationship in relation to the body image and self esteem for college freshmen women. Results reveal that self esteem and body image were positively related. Partner importance also predicted self esteem, whereas criticism did not. (Contains 55 references…

  19. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  20. Radiation-related information at science exhibitions

    Energy Technology Data Exchange (ETDEWEB)

    Bannai, Tadaaki [Inst. for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-09-01

    The aim of the present report was to promote an efficient utilization of science museums providing with educational information concerning radiations. Investigations were made on radiation-related materials exhibited at 38 museums including PR event sites between April 1996 and July 1998 mainly located on Kanto and Tohoku area in Japan. The investigation concerned as to whether the displays on radiation-related material (cosmic rays, X-rays, etc) existed or not, and as to the background of the display as well. As the result, 14 locations had no relevant displays, 10 of them not having things about atomic energy at all. The locations belonging to electricity company mostly had displays related to radiations and atomic energy power generation. A spark chamber was exhibited at 9 locations and a cloud chamber at 3 locations, but only one location among them displayed both. Displays on the actual use of X-radiation were found at 4 locations. Needs to prepare further improved displays exist at the sites visited. (S. Ohno)

  1. Starguides plus a world-wide directory of organizations in astronomy and related space sciences

    CERN Document Server

    Heck, André

    2004-01-01

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, en...

  2. Modern Imaging Technology: Recent Advances

    International Nuclear Information System (INIS)

    Welch, Michael J.; Eckelman, William C.

    2004-01-01

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area

  3. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  4. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  5. Using Brain Imaging for Lie Detection: Where Science, Law and Research Policy Collide

    Science.gov (United States)

    Langleben, Daniel D.; Moriarty, Jane Campbell

    2012-01-01

    Progress in the use of functional magnetic resonance imaging (fMRI) of the brain to evaluate deception and differentiate lying from truth-telling has created anticipation of a breakthrough in the search for technology-based methods of lie detection. In the last few years, litigants have attempted to introduce fMRI lie detection evidence in courts. This article weighs in on the interdisciplinary debate about the admissibility of such evidence, identifying the missing pieces of the scientific puzzle that need to be completed if fMRI-based lie detection is to meet the standards of either legal reliability or general acceptance. We believe that the Daubert’s “known error rate” is the key concept linking the legal and scientific standards. We posit that properly-controlled clinical trials are the most convincing means to determine the error rates of fMRI-based lie detection and confirm or disprove the relevance of the promising laboratory research on this topic. This article explains the current state of the science and provides an analysis of the case law in which litigants have sought to introduce fMRI lie detection. Analyzing the myriad issues related to fMRI lie detection, the article identifies the key limitations of the current neuroimaging of deception science as expert evidence and explores the problems that arise from using scientific evidence before it is proven scientifically valid and reliable. We suggest that courts continue excluding fMRI lie detection evidence until this potentially useful form of forensic science meets the scientific standards currently required for adoption of a medical test or device. Given a multitude of stakeholders and, the charged and controversial nature and the potential societal impact of this technology, goodwill and collaboration of several government agencies may be required to sponsor impartial and comprehensive clinical trials that will guide the development of forensic fMRI technology. PMID:23772173

  6. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  7. Science in the everyday world: Why perspectives from the history of science matter.

    Science.gov (United States)

    Pandora, Katherine; Rader, Karen A

    2008-06-01

    The history of science is more than the history of scientists. This essay argues that various modem "publics" should be counted as belonging within an enlarged vision of who constitutes the "scientific community"--and describes how the history of science could be important for understanding their experiences. It gives three examples of how natural knowledge-making happens in vernacular contexts: Victorian Britain's publishing experiments in "popular science" as effective literary strategies for communicating to lay and specialist readers; twentieth-century American science museums as important and contested sites for conveying both scientific ideas and ideas about scientific practice; and contemporary mass-mediated images of the "ideal" scientist as providing counternarratives to received professional scientific norms. Finally, it suggests how humanistic knowledge might help both scientists and historians grapple more effectively with contemporary challenges presented by science in public spheres. By studying the making and elaboration of scientific knowledge within popular culture, historians of science can provide substantively grounded insights into the relations between the public and professionals.

  8. GPU-based relative fuzzy connectedness image segmentation

    International Nuclear Information System (INIS)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ ∞ -based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  9. GPU-based relative fuzzy connectedness image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W. [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506 (United States) and Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2013-01-15

    Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  10. GPU-based relative fuzzy connectedness image segmentation.

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W

    2013-01-01

    Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.

  11. GPU-based relative fuzzy connectedness image segmentation

    Science.gov (United States)

    Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.

    2013-01-01

    Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094

  12. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    Ma Jing-Feng; Chen Chun; Hou Kai; Bao Shang-Lian

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  13. Nuclear medicine and quantitative imaging research (quantitative studies in radiopharmaceutical science): Comprehensive progress report, April 1, 1986-December 31, 1988

    International Nuclear Information System (INIS)

    Cooper, M.D.; Beck, R.N.

    1988-06-01

    This document describes several years research to improve PET imaging and diagnostic techniques in man. This program addresses the problems involving the basic science and technology underlying the physical and conceptual tools of radioactive tracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The overall objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice in order that individual patients and society as a whole will receive the maximum net benefit from the new knowledge gained. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. The reports in the study were processed separately for the data bases

  14. Intending to Stay: Images of Scientists, Attitudes Toward Women, and Gender as Influences on Persistence among Science and Engineering Majors

    Science.gov (United States)

    Wyer, Mary

    Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.

  15. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  16. Imaging geographic atrophy in age-related macular degeneration.

    Science.gov (United States)

    Göbel, Arno P; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Brinkmann, Christian K; Holz, Frank G

    2011-01-01

    Advances in retinal imaging technology have largely contributed to the understanding of the natural history, prognostic markers and disease mechanisms of geographic atrophy (GA) due to age-related macular degeneration. There is still no therapy available to halt or slow the disease process. In order to evaluate potential therapeutic effects in interventional trials, there is a need for precise quantification of the GA progression rate. Fundus autofluorescence imaging allows for accurate identification and segmentation of atrophic areas and currently represents the gold standard for evaluating progressive GA enlargement. By means of high-resolution spectral-domain optical coherence tomography, distinct microstructural alterations related to GA can be visualized. Copyright © 2011 S. Karger AG, Basel.

  17. Graph comprehension in science and mathematics education: Objects and categories

    DEFF Research Database (Denmark)

    Voetmann Christiansen, Frederik; May, Michael

    types of registers. In the second part of the paper, we consider how diagrams in science are often composites of iconic and indexical elements, and how this fact may lead to confusion for students. In the discussion the utility of the Peircian semiotic framework for educational studies......, the typological mistake of considering graphs as images is discussed related to litterature, and two examples from engineering education are given. The educational implications for science and engineering are discussed, with emphasis on the need for students to work explicitly with conversions between different...... of representational forms in science is discussed, and how the objects of mathematics and science relate to their semiotic representations....

  18. Storyboard GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid encounters

    Science.gov (United States)

    1989-01-01

    Storyboard with mosaicked image of an asteroid and entitled GALILEO CRUISE SCIENCE OPPORTUNITIES describes asteroid objectives. These objectives include: first asteroid encounter; surface geology, composition size, shape, mass; and relation of primitive bodies to meteorites.

  19. Materials Science | NREL

    Science.gov (United States)

    microscopy and imaging science, interfacial and surface science, materials discovery, and thin-film material Science Materials Science Illustration with bottom row showing a ball-and-stick model and top row dense black band. State-of-the-art advances in materials science come from a combination of experiments

  20. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  1. Philosophy, history and sociology of science: interdisciplinary relations and complex social identities.

    Science.gov (United States)

    Riesch, Hauke

    2014-12-01

    Sociology and philosophy of science have an uneasy relationship, while the marriage of history and philosophy of science has--on the surface at least--been more successful I will take a sociological look at the history of the relationships between philosophy and history as well as philosophy and sociology of science. Interdisciplinary relations between these disciplines will be analysed through social identity complexity theory in oider to draw out some conclusions on how the disciplines interact and how they might develop. I will use the relationships between the disciplines as a pointer for a more general social theory of interdisciplinarity which will then be used to sound a caution on how interdisciplinary relations between the three disciplines might be managed.

  2. Diagnostic imaging of sport related musculoskeletal system injuries

    International Nuclear Information System (INIS)

    Fernandes, Artur da Rocha Correa; Schivartche, Vivian

    1998-01-01

    The authors review the literature about musculoskeletal injuries related to sports, emphasizing the main findings with different imaging methods. They also present the specific characteristics of each method. (author)

  3. Sports-related muscle injuries of the lower extremity: MR imaging appearances

    International Nuclear Information System (INIS)

    Sanchez-Marquez, A.; Gil-Garcia, M.; Valls, C.; Narvaez-Garcia, J.; Andia-Navarro, E.; Pozuelo-Segura, O.; Portabella-Blavia, F.

    1999-01-01

    Sports-related injuries of the lower extremity are frequent. Before magnetic resonance (MR) imaging was available, ultrasound, radionuclide scintigraphy and computed tomography were used to evaluate muscle trauma. Although relatively inexpensive, these imaging modalities are limited by their low specificity. The high degree of soft tissue contrast and multiplanar capability of MR imaging, allow direct visualization as well as characterization of traumatic muscle lesions. This pictorial review highlights the spectrum of traumatic muscle lesions on MRI, with emphasis on its typical appearances. (orig.)

  4. Despeckling Polsar Images Based on Relative Total Variation Model

    Science.gov (United States)

    Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.

    2018-04-01

    Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.

  5. Angular relational signature-based chest radiograph image view classification.

    Science.gov (United States)

    Santosh, K C; Wendling, Laurent

    2018-01-22

    In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.

  6. Breakthrough Science Enabled by Smallsat Optical Communication

    Science.gov (United States)

    Gorjian, V.

    2017-12-01

    The recent NRC panel on "Achieving Science with Cubesats" found that "CubeSats have already proven themselves to be an important scientific tool. CubeSats can produce high-value science, as demonstrated by peer-reviewed publications that address decadal survey science goals." While some science is purely related to the size of the collecting aperture, there are plentiful examples of new and exciting experiments that can be achieved using the relatively inexpensive Cubesat platforms. We will present various potential science applications that can benefit from higher bandwidth communication. For example, on or near Earth orbit, Cubesats could provide hyperspectral imaging, gravity field mapping, atmospheric probing, and terrain mapping. These can be achieved either as large constellations of Cubesats or a few Cubesats that provide multi-point observations. Away from the Earth (up to 1AU) astrophysical variability studies, detections of solar particles between the Earth and Venus, mapping near earth objects, and high-speed videos of the Sun will also be enabled by high bandwidth communications.

  7. Relations of image quality in on-line portal images and individual patient parameters for pelvic field radiotherapy

    International Nuclear Information System (INIS)

    Heuvel, F. van den; Neve, W. de; Coghe, M.; Verellen, D.; Storme, G.

    1992-01-01

    The aims of the present study involving 566 pelvic fields on 13 patients were: 1. To study the machine- and patient-related factors influencing image quality. 2. To study the factors related to machine, patient and patient set-up, influencing the errors of field set-up. 3. To develop a method for predicting the camera settings. The OPI device consisted of a fluorescent screen scanned by a video camera. An image quality score on a scale 0-5 was given for 546/566 fields. In a univariate analysis, open field subtraction adversely affected the score. The image score of anterior fields was significantly better than that of posterior fields. Multivariate stepwise logistic regression showed that, in addition to anterior or posterior field and subtraction, gender was also a significant predictor of image score. Errors requiring field adjustments were detected on 289/530 (54.5%) evaluable fields or 229/278 (82.4%) evaluable patient set-ups. Multivariate logistic regression showed that the probability of performing an adjustment was significantly related to gender, image quality and AP-PA diameter. The magnitude of adjustments made in the lateral direction correlated significantly with patient bulk. The camera kV level with gain held constant showed an exponential dependency on dose rate at the image detector plate and can thus be predicted by treatment planning. (orig.)

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... 835 215, India. Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012, India. Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560 012, India. Laboratoire Image Ville Environnement, UMR 7362CNRS/UDS, 3, rue de l'Argonne, 67000 Strasbourg, France.

  9. Age-related changes in normal adult pancreas: MR imaging evaluation

    International Nuclear Information System (INIS)

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Sone, Teruki; Noda, Yasufumi; Higaki, Atsushi; Kanki, Akihiko; Tanimoto, Daigo; Higashi, Hiroki

    2012-01-01

    Objective: To investigate age-related changes in normal adult pancreas as identified by magnetic resonance imaging (MRI). Materials and methods: We examined 115 patients without pancreatic diseases (21–90 years) who underwent upper abdominal MRI to evaluate the normal pancreatic MRI findings related to aging. The parameters examined were the pancreatic anteroposterior (AP) diameter, pancreatic lobulation, pancreatic signal intensity (SI), depiction of the main pancreatic duct (MPD), grade of the visual SI decrease on the opposed-phase T1-weighted images compared with in-phase images, and enhancement effect of the pancreas in the arterial phase of dynamic imaging. Results: The pancreatic AP diameter significantly reduced (head, p = 0.0172; body, p = 0.0007; tail, p < 0.0001), and lobulation (p < 0.0001) and parenchymal fatty change (p < 0.0001) became more evident with aging. No significant correlation was observed between aging and pancreatic SI, however the SI on the in-phase T1-weighted images tended to decrease with aging. No significant correlation was observed between aging and the depiction of the MPD as well as aging and contrast enhancement. Conclusion: MRI findings of pancreatic atrophy, lobulation, and fatty degeneration are characteristic changes related to aging, and it is necessary to recognize these changes in the interpretation of abdominal MRI in patients with and without pancreatic disease

  10. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  11. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution - an application in higher education.

    Science.gov (United States)

    Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan

    2015-11-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  12. Integrating Vygotsky's theory of relational ontology into early childhood science education

    Science.gov (United States)

    Kirch, Susan A.

    2014-03-01

    In Science Education during Early Childhood: A Cultural- Historical Perspective, Wolff-Michael Roth, Maria Inês Mafra Goulart and Katerina Plakitsi explore the practical application of Vygotsky's relational ontological theory of human development to early childhood science teaching and teacher development. In this review, I interrogate how Roth et al. conceptualize "emergent curriculum" within the Eurocentric cultural-historical traditions of early childhood education that evolved primarily from the works of Vygotsky and Piaget and compare it to the conceptualizations from other prominent early childhood researchers and curriculum developers. I examine the implications of the authors' interpretation of emergence for early childhood science education and teacher preparation.

  13. Combustion process science and technology

    Science.gov (United States)

    Hale, Robert R.

    1989-01-01

    An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 3 ... proposed to reconstruct the ionospheric images with high resolution and high efficiency. ... Graduate School of Chinese Academy of Sciences, Beijing 100 039, China.

  15. Cellular imaging electron tomography and related techniques

    CERN Document Server

    2018-01-01

    This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging).  The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation.

  16. Relative Pose Estimation and Accuracy Verification of Spherical Panoramic Image

    Directory of Open Access Journals (Sweden)

    XIE Donghai

    2017-11-01

    Full Text Available This paper improves the method of the traditional 5-point relative pose estimation algorithm, and proposes a relative pose estimation algorithm which is suitable for spherical panoramic images. The algorithm firstly computes the essential matrix, then decomposes the essential matrix to obtain the rotation matrix and the translation vector using SVD, and finally the reconstructed three-dimensional points are used to eliminate the error solution. The innovation of the algorithm lies the derivation of panorama epipolar formula and the use of the spherical distance from the point to the epipolar plane as the error term for the spherical panorama co-planarity function. The simulation experiment shows that when the random noise of the image feature points is within the range of pixel, the error of the three Euler angles is about 0.1°, and the error between the relative translational displacement and the simulated value is about 1.5°. The result of the experiment using the data obtained by the vehicle panorama camera and the POS shows that:the error of the roll angle and pitch angle can be within 0.2°, the error of the heading angle can be within 0.4°, and the error between the relative translational displacement and the POS can be within 2°. The result of our relative pose estimation algorithm is used to generate the spherical panoramic epipolar images, then we extract the key points between the spherical panoramic images and calculate the errors in the column direction. The result shows that the errors is less than 1 pixel.

  17. A picture tells a thousand words: A content analysis of concussion-related images online.

    Science.gov (United States)

    Ahmed, Osman H; Lee, Hopin; Struik, Laura L

    2016-09-01

    Recently image-sharing social media platforms have become a popular medium for sharing health-related images and associated information. However within the field of sports medicine, and more specifically sports related concussion, the content of images and meta-data shared through these popular platforms have not been investigated. The aim of this study was to analyse the content of concussion-related images and its accompanying meta-data on image-sharing social media platforms. We retrieved 300 images from Pinterest, Instagram and Flickr by using a standardised search strategy. All images were screened and duplicate images were removed. We excluded images if they were: non-static images; illustrations; animations; or screenshots. The content and characteristics of each image was evaluated using a customised coding scheme to determine major content themes, and images were referenced to the current international concussion management guidelines. From 300 potentially relevant images, 176 images were included for analysis; 70 from Pinterest, 63 from Flickr, and 43 from Instagram. Most images were of another person or a scene (64%), with the primary content depicting injured individuals (39%). The primary purposes of the images were to share a concussion-related incident (33%) and to dispense education (19%). For those images where it could be evaluated, the majority (91%) were found to reflect the Sports Concussion Assessment Tool 3 (SCAT3) guidelines. The ability to rapidly disseminate rich information though photos, images, and infographics to a wide-reaching audience suggests that image-sharing social media platforms could be used as an effective communication tool for sports concussion. Public health strategies could direct educative content to targeted populations via the use of image-sharing platforms. Further research is required to understand how image-sharing platforms can be used to effectively relay evidence-based information to patients and sports medicine

  18. NASA Science Engagement Through "Sky Art"

    Science.gov (United States)

    Bethea, K. L.; Damadeo, K.

    2013-12-01

    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  19. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  20. Science identity possibilities: a look into Blackness, masculinities, and economic power relations

    Science.gov (United States)

    Rosa, Katemari

    2018-02-01

    This forum paper dialogues with Sheron Mark's A bit of both science and economics: a non-traditional STEM identity narrative. In her paper, she discusses the development of a Science, Technology, Engineering, and Mathematics (STEM) identity by a young African American male during an informal STEM for Social Justice Program. Here, the discussion focuses on Black masculinities, identity formation, and the role of science educators in making STEM fields a welcoming place for young Black men. Drawing from Mark's data and discussion, this paper is a dialogue between science identity possibilities in the United States and in Brazil when we look at the intersections of race, gender, and socioeconomic status. Using the shared colonial past of both countries a connection is established to address race relations within science education. The main argument in this paper is that racism can no longer be denied and dismissed by the science education community worldwide and that intersectional approaches are needed to face this issue.

  1. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  2. Content Based Image Matching for Planetary Science

    Science.gov (United States)

    Deans, M. C.; Meyer, C.

    2006-12-01

    Planetary missions generate large volumes of data. With the MER rovers still functioning on Mars, PDS contains over 7200 released images from the Microscopic Imagers alone. These data products are only searchable by keys such as the Sol, spacecraft clock, or rover motion counter index, with little connection to the semantic content of the images. We have developed a method for matching images based on the visual textures in images. For every image in a database, a series of filters compute the image response to localized frequencies and orientations. Filter responses are turned into a low dimensional descriptor vector, generating a 37 dimensional fingerprint. For images such as the MER MI, this represents a compression ratio of 99.9965% (the fingerprint is approximately 0.0035% the size of the original image). At query time, fingerprints are quickly matched to find images with similar appearance. Image databases containing several thousand images are preprocessed offline in a matter of hours. Image matches from the database are found in a matter of seconds. We have demonstrated this image matching technique using three sources of data. The first database consists of 7200 images from the MER Microscopic Imager. The second database consists of 3500 images from the Narrow Angle Mars Orbital Camera (MOC-NA), which were cropped into 1024×1024 sub-images for consistency. The third database consists of 7500 scanned archival photos from the Apollo Metric Camera. Example query results from all three data sources are shown. We have also carried out user tests to evaluate matching performance by hand labeling results. User tests verify approximately 20% false positive rate for the top 14 results for MOC NA and MER MI data. This means typically 10 to 12 results out of 14 match the query image sufficiently. This represents a powerful search tool for databases of thousands of images where the a priori match probability for an image might be less than 1%. Qualitatively, correct

  3. The Advanced Rapid Imaging and Analysis (ARIA) Project: Providing Standard and On-Demand SAR products for Hazard Science and Hazard Response

    Science.gov (United States)

    Owen, S. E.; Hua, H.; Rosen, P. A.; Agram, P. S.; Webb, F.; Simons, M.; Yun, S. H.; Sacco, G. F.; Liu, Z.; Fielding, E. J.; Lundgren, P.; Moore, A. W.

    2017-12-01

    A new era of geodetic imaging arrived with the launch of the ESA Sentinel-1A/B satellites in 2014 and 2016, and with the 2016 confirmation of the NISAR mission, planned for launch in 2021. These missions assure high quality, freely and openly distributed regularly sampled SAR data into the indefinite future. These unprecedented data sets are a watershed for solid earth sciences as we progress towards the goal of ubiquitous InSAR measurements. We now face the challenge of how to best address the massive volumes of data and intensive processing requirements. Should scientists individually process the same data independently themselves? Should a centralized service provider create standard products that all can use? Are there other approaches to accelerate science that are cost effective and efficient? The Advanced Rapid Imaging and Analysis (ARIA) project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. However, there are challenges in defining the optimal InSAR data products for the solid earth science community. In this presentation, we will present our experience with InSAR users, our lessons learned the advantages of on demand and standard products, and our proposal for the most effective path forward.

  4. Science of imaging

    CERN Document Server

    Saxby, Graham

    2010-01-01

    In summary, the book has many useful formulas for a variety of designs. It is well organized, so users can easily find the section relevant to their needs. And the plethora of worked examples is very helpful. … I see it as a useful introduction to the clinical researcher and as a reference for the statistician interested in sample size formulae for specific designs.-The International Biometric Society, 2012Graham Saxby proves to us in his brilliantly written and well-structured book that many essential topics of such a broad and comprehensive field can be squeezed into 352 pages. In my opinion, anyone having an interest on current imaging technologies should read it to extend their knowledge or to develop a broad vision on the field. … it is definitely suitable as a complementary textbook for undergraduate courses on imaging and optical technologies. It can as well be used as a reference book for any interested reader to learn the specific terminology in the field. … The explanations are extremely infor...

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Vijayamohanan K Pillai. Articles written in Journal of Chemical Sciences. Volume 121 Issue 5 September 2009 pp 719-725. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical ...

  6. White Racism/Black Signs: Censorship and Images of Race Relations.

    Science.gov (United States)

    Patton, Cindy

    1995-01-01

    Discusses the simultaneous establishment of legal rights to censor film and proscriptions on particular racial representations. Describes several changes in the Hays Code that demonstrate a change in the censor's theory of the image. Suggests that these changes substituted the censorship of race-related images with a new prohibition on racial…

  7. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Directory of Open Access Journals (Sweden)

    Ludo Waltman

    Full Text Available We investigate the extent to which advances in the health and life sciences (HLS are dependent on research in the engineering and physical sciences (EPS, particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  8. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    Science.gov (United States)

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  9. The image of the universe as a cultural choice between science and theology. Probabilism and Realism from the Middle Ages to Modernity

    Directory of Open Access Journals (Sweden)

    Francesco Fiorentino

    2014-11-01

    Full Text Available The famous Galilean question was to become the paradigm of the conflict between Nature and Scripture, science and faith, free research of natural reason and authority of the ecclesiastical institution, obscurantism of the medieval period and scientific progress which would illuminate the modern age. It is well known that the stereotype of the pure conflict between scientific thought and religious dogma for long dominated the interpretation of the most profound essence of the Middle Ages, as an obscurantist age in the grip of the universalist political and religious authorities. This image of the Middle Ages was greatly corroborated by the Humanist writers of the Renaissance and enlightenment historiography. This contribution purports to analyse late–medieval science from an olistic methodology based on history of science and philosophy of science, to obtain a big picture in front to Scientific Revolution and to show the cultural roots of the different images of the universe.

  10. Exploring Human Cognition Using Large Image Databases.

    Science.gov (United States)

    Griffiths, Thomas L; Abbott, Joshua T; Hsu, Anne S

    2016-07-01

    Most cognitive psychology experiments evaluate models of human cognition using a relatively small, well-controlled set of stimuli. This approach stands in contrast to current work in neuroscience, perception, and computer vision, which have begun to focus on using large databases of natural images. We argue that natural images provide a powerful tool for characterizing the statistical environment in which people operate, for better evaluating psychological theories, and for bringing the insights of cognitive science closer to real applications. We discuss how some of the challenges of using natural images as stimuli in experiments can be addressed through increased sample sizes, using representations from computer vision, and developing new experimental methods. Finally, we illustrate these points by summarizing recent work using large image databases to explore questions about human cognition in four different domains: modeling subjective randomness, defining a quantitative measure of representativeness, identifying prior knowledge used in word learning, and determining the structure of natural categories. Copyright © 2016 Cognitive Science Society, Inc.

  11. Second harmonic generation imaging

    CERN Document Server

    2013-01-01

    Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...

  12. Design-related bias in estimates of accuracy when comparing imaging tests: examples from breast imaging research

    International Nuclear Information System (INIS)

    Houssami, Nehmat; Ciatto, Stefano

    2010-01-01

    This work highlights concepts on the potential for design-related factors to bias estimates of test accuracy in comparative imaging research. We chose two design factors, selection of eligible subjects and the reference standard, to examine the effect of design limitations on estimates of accuracy. Estimates of sensitivity in a study of the comparative accuracy of mammography and ultrasound differed according to how subjects were selected. Comparison of a new imaging test with an existing test should distinguish whether the new test is to be used as a replacement for, or as an adjunct to, the conventional test, to guide the method for subject selection. Quality of the reference standard, examined in a meta-analysis of preoperative breast MRI, varied across studies and was associated with estimates of incremental accuracy. Potential solutions to deal with the reference standard are outlined where an ideal reference standard may not be available in all subjects. These examples of breast imaging research demonstrate that design-related bias, when comparing a new imaging test with a conventional imaging test, may bias accuracy in a direction that favours the new test by overestimating the accuracy of the new test or by underestimating that of the conventional test. (orig.)

  13. [Constructing images and territories: thinking on the visuality and materiality of remote sensing].

    Science.gov (United States)

    Monteiro, Marko

    2015-01-01

    This article offers a reflection on the question of the image in science, thinking about how visual practices contribute towards the construction of knowledge and territories. The growing centrality of the visual in current scientific practices shows the need for reflection that goes beyond the image. The object of discussion will be the scientific images used in the monitoring and visualization of territory. The article looks into the relations between visuality and a number of other factors: the researchers that construct it; the infrastructure involved in the construction; and the institutions and policies that monitor the territory. It is argued that such image-relations do not just visualize but help to construct the territory based on specific forms. Exploring this process makes it possible to develop a more complex understanding of the forms through which sciences and technology help to construct realities.

  14. Selected topics in image science

    International Nuclear Information System (INIS)

    Nalcioglu, O.; Cho, Z.H.

    1984-01-01

    A review of the state of the art in diagnostic imaging via computers. Applications covered include emission tomography, digital radiography, and ultrasound and nuclear magnetic resonance imaging. Contents, abridged: Direct Fourier reconstruction techniques. Radiation detectors for CT instrumentation. Single photon emission computed tomography: potentials and limitations. Matched filtering for digital subtraction angiography

  15. Encyclopedia of color science and technology

    CERN Document Server

    2016-01-01

    The Encyclopedia of Color Science and Technology provides an authoritative single source for understanding and applying the concepts of color to all fields of science and technology, including artistic and historical aspects of color. Many topics are discussed in this timely reference, including an introduction to the science of color, and entries on the physics, chemistry and perception of color. Color is described as it relates to optical phenomena of color and continues on through colorants and materials used to modulate color and also to human vision of color. The measurement of color is provided as is colorimetry, color spaces, color difference metrics, color appearance models, color order systems and cognitive color. Other topics discussed include industrial color, color imaging, capturing color, displaying color and printing color. Descriptions of color encodings, color management, processing color and applications relating to color synthesis for computer graphics are included in this work. The Encyclo...

  16. 21st Century Science as a Relational Process: From Eureka! to Team Science and a Place for Community Psychology

    Science.gov (United States)

    Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.

    2014-01-01

    In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718

  17. What types of astronomy images are most popular?

    Science.gov (United States)

    Allen, Alice; Bonnell, Jerry T.; Connelly, Paul; Haring, Ralf; Lowe, Stuart R.; Nemiroff, Robert J.

    2015-01-01

    Stunning imagery helps make astronomy one of the most popular sciences -- but what types of astronomy images are most popular? To help answer this question, public response to images posted to various public venues of the Astronomy Picture of the Day (APOD) are investigated. APOD portals queried included the main NASA website and the social media mirrors on Facebook, Google Plus, and Twitter. Popularity measures include polls, downloads, page views, likes, shares, and retweets; these measures are used to assess how image popularity varies in relation to various image attributes including topic and topicality.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one ... can obtain more accurate seismic images of subsurface structures in anisotropic media. ... Journal of Earth System Science | News.

  19. RELATIVE ORIENTATION AND MODIFIED PIECEWISE EPIPOLAR RESAMPLING FOR HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    K. Gong

    2017-05-01

    Full Text Available High resolution, optical satellite sensors are boosted to a new era in the last few years, because satellite stereo images at half meter or even 30cm resolution are available. Nowadays, high resolution satellite image data have been commonly used for Digital Surface Model (DSM generation and 3D reconstruction. It is common that the Rational Polynomial Coefficients (RPCs provided by the vendors have rough precision and there is no ground control information available to refine the RPCs. Therefore, we present two relative orientation methods by using corresponding image points only: the first method will use quasi ground control information, which is generated from the corresponding points and rough RPCs, for the bias-compensation model; the second method will estimate the relative pointing errors on the matching image and remove this error by an affine model. Both methods do not need ground control information and are applied for the entire image. To get very dense point clouds, the Semi-Global Matching (SGM method is an efficient tool. However, before accomplishing the matching process the epipolar constraints are required. In most conditions, satellite images have very large dimensions, contrary to the epipolar geometry generation and image resampling, which is usually carried out in small tiles. This paper also presents a modified piecewise epipolar resampling method for the entire image without tiling. The quality of the proposed relative orientation and epipolar resampling method are evaluated, and finally sub-pixel accuracy has been achieved in our work.

  20. A 4DCT imaging-based breathing lung model with relative hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shinjiro; Choi, Sanghun [IIHR – Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A. [Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [IIHR – Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Mechanical and Industrial Engineering, The University of Iowa, 3131 Seamans Center, Iowa City, IA 52242 (United States)

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.

  1. Rethinking image indexing?

    DEFF Research Database (Denmark)

    Christensen, Hans Dam

    2017-01-01

    Hans Dam Christensen, ”Rethinking image indexing?”, in: Journal of the Association for Information Science and Technology, vol. 68, no. 7, 2017, 1782-1785......Hans Dam Christensen, ”Rethinking image indexing?”, in: Journal of the Association for Information Science and Technology, vol. 68, no. 7, 2017, 1782-1785...

  2. Roles of body image-related experiential avoidance and uncommitted living in the link between body image and women's quality of life.

    Science.gov (United States)

    Trindade, Inês A; Ferreira, Cláudia; Pinto-Gouveia, José

    2018-01-01

    The current study aimed to test whether the associations of body mass index, body image discrepancy, and social comparison based on physical appearance with women's psychological quality of life (QoL) would be explained by the mechanisms of body image-related experiential avoidance and patterns of uncommitted living. The sample was collected from October 2014 to March 2015 and included 737 female college students (aged between 18 and 25 years) who completed validated self-report measures. Results demonstrated that the final path model explained 43% of psychological QoL and revealed an excellent fit. Body image-related experiential avoidance had a meditational role in the association between body image discrepancy and psychological QoL. Further, the link between social comparison based on physical appearance and psychological QoL was partially mediated by body image-related experiential avoidance and uncommitted living. These findings indicate that the key mechanisms of the relationship between body image and young women's QoL were those related to maladaptive emotion regulation. It thus seems that interventions aiming to promote mental health in this population should promote acceptance of internal experiences related to physical appearance (e.g., sensations, thoughts, or emotions) and the engagement in behaviors committed to life values.

  3. Neutron imaging for inertial confinement fusion and molecular optic imaging

    International Nuclear Information System (INIS)

    Delage, O.

    2010-01-01

    Scientific domains that require imaging of micrometric/nano-metric objects are dramatically increasing (Plasma Physics, Astrophysics, Biotechnology, Earth Sciences...). Difficulties encountered in imaging smaller and smaller objects make this research area more and more challenging and in constant evolution. The two scientific domains, through which this study has been led, are the neutron imaging in the context of the inertial confinement fusion and the fluorescence molecular imaging. Work presented in this thesis has two main objectives. The first one is to describe the instrumentation characteristics that require such imagery and, relatively to the scientific domains considered, identify parameters likely to optimize the imaging system accuracy. The second one is to present the developed data analysis and reconstruction methods able to provide spatial resolution adapted to the size of the observed object. Similarities of numerical algorithms used in these two scientific domains, which goals are quiet different, show how micrometric/nano-metric object imaging is a research area at the border of a large number of scientific disciplines. (author)

  4. Effective and responsible teaching of climate change in Earth Science-related disciplines

    Science.gov (United States)

    Robinson, Z. P.; Greenhough, B. J.

    2009-04-01

    Climate change is a core topic within Earth Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The Earth Science disciplines play a crucial role in our understanding of past, present and future climate change and the Earth system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and responsibility amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of responsibility towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of Earth Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging

  5. The uses of radiotracers in the life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Thomas J [TRIUMF, Vancouver (Canada)

    2009-01-15

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  6. The uses of radiotracers in the life sciences

    Science.gov (United States)

    Ruth, Thomas J.

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination.

  7. The uses of radiotracers in the life sciences

    International Nuclear Information System (INIS)

    Ruth, Thomas J

    2009-01-01

    Radionuclides have been used to follow physical, chemical and biological processes almost from the time of their discovery. Probably the application with the biggest impact has been in the medical field where radionuclides have been incorporated into biologically active molecules and used to diagnose a wide variety of diseases and to treat many disorders. Other uses in the life sciences, in general, are related to using a radioactive isotope as marker for an existing species such as nitrogen-13 in plant studies or copper-67 to track copper catalysts in phytoplankton. This review describes in general terms these uses as well as providing the reader with the background related to the physical properties of radioactive decay, the concepts associated with the production of radionuclides using reactors or accelerators and the fundamentals of imaging radioactivity. The advances in imaging technology in recent years has had a profound impact on the use of radionuclides in positron emission tomography and the coupling of other imaging modalities to provide very precise insights into human disease. The variety of uses for radiotracers in science is almost boundless dependent only upon ones imagination

  8. Mechanics of bioinspired imaging systems

    Directory of Open Access Journals (Sweden)

    Zhengwei Li

    2016-01-01

    Full Text Available Imaging systems in nature have attracted a lot of research interest due to their superior optical and imaging characteristics. Recent advancements in materials science, mechanics, and stretchable electronics have led to successful development of bioinspired cameras that resemble the structures and functions of biological light-sensing organs. In this review, we discuss some recent progresses in mechanics of bioinspired imaging systems, including tunable hemispherical eyeball camera and artificial compound eye camera. The mechanics models and results reviewed in this article can provide efficient tools for design and optimization of such systems, as well as other related optoelectronic systems that combine rigid elements with soft substrates.

  9. Digital Materials Related to Food Science and Cooking Methods for Preparing Eggs

    OpenAIRE

    沼田, 貴美子; 渡邉, 美奈; ヌマタ, キミコ; ワタナベ, ミナ; Numata, Kimiko; Watanabe, Mina

    2009-01-01

    We studied methods that were effective for teaching cooking to elementary school pupils using home economics materials. The subject was "Iritamago (scrambled eggs)". We researched the relationship between cookery science and experimental methods of making Iritamago. The various differences in condition and texture of Iritamago were compared among the different cooking utensils, conditions, and preparations of eggs. We created digital materials related to cookery science and the cooking method...

  10. Geo-registration of Unprofessional and Weakly-related Image and Precision Evaluation

    Directory of Open Access Journals (Sweden)

    LIU Yingzhen

    2015-09-01

    Full Text Available The 3D geo-spatial model built by unprofessional and weakly-related image is a significant source of geo-spatial information. The unprofessional and weakly-related image cannot be useful geo-spatial information until be geo-registered with accurate geo-spatial orientation and location. In this paper, we present an automatic geo-registration using the coordination acquired by real-time GPS module. We calculate 2D and 3D spatial transformation parameters based on the spatial similarity between the image location in the geo-spatial coordination system and in the 3D reconstruction coordination system. Because of the poor precision of GPS information and especially the unstability of elevation measurement, we use RANSAC algorithm to get rid of outliers. In the experiment, we compare the geo-registered image positions to their differential GPS coordinates. The errors of translation, rotation and scaling are evaluated quantitively and the causes of bad result are analyzed. The experiment demonstrates that this geo-registration method can get a precise result with enough images.

  11. International Conference on Data Science & Social Research

    CERN Document Server

    Amaturo, Enrica; Grassia, Maria; Aragona, Biagio; Marino, Marina

    2017-01-01

    This edited volume lays the groundwork for Social Data Science, addressing epistemological issues, methods, technologies, software and applications of data science in the social sciences. It presents data science techniques for the collection, analysis and use of both online and offline new (big) data in social research and related applications. Among others, the individual contributions cover topics like social media, learning analytics, clustering, statistical literacy, recurrence analysis and network analysis. Data science is a multidisciplinary approach based mainly on the methods of statistics and computer science, and its aim is to develop appropriate methodologies for forecasting and decision-making in response to an increasingly complex reality often characterized by large amounts of data (big data) of various types (numeric, ordinal and nominal variables, symbolic data, texts, images, data streams, multi-way data, social networks etc.) and from diverse sources. This book presents selected papers from...

  12. Imaging and translational research: neuro degenerative diseases

    International Nuclear Information System (INIS)

    Hantraye, P.

    2009-01-01

    Advances in neuroimaging of neuro-degenerative diseases over the past two decades are the product of breakthroughs in imaging technology, more powerful computers, image-processing software, and expanding knowledge in basic and clinical neuro-science. In addition to the insights into normal brain structure and function that such methods provide, and the information that can be gained from disease-related changes in structure and function, functional imaging offers the promise of monitoring brain lesions and quantifying the therapeutic efficacy of innovative treatments for these largely incurable disorders. (author)

  13. Robust and Accurate Image-Based Georeferencing Exploiting Relative Orientation Constraints

    Science.gov (United States)

    Cavegn, S.; Blaser, S.; Nebiker, S.; Haala, N.

    2018-05-01

    Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2-3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  14. ROBUST AND ACCURATE IMAGE-BASED GEOREFERENCING EXPLOITING RELATIVE ORIENTATION CONSTRAINTS

    Directory of Open Access Journals (Sweden)

    S. Cavegn

    2018-05-01

    Full Text Available Urban environments with extended areas of poor GNSS coverage as well as indoor spaces that often rely on real-time SLAM algorithms for camera pose estimation require sophisticated georeferencing in order to fulfill our high requirements of a few centimeters for absolute 3D point measurement accuracies. Since we focus on image-based mobile mapping, we extended the structure-from-motion pipeline COLMAP with georeferencing capabilities by integrating exterior orientation parameters from direct sensor orientation or SLAM as well as ground control points into bundle adjustment. Furthermore, we exploit constraints for relative orientation parameters among all cameras in bundle adjustment, which leads to a significant robustness and accuracy increase especially by incorporating highly redundant multi-view image sequences. We evaluated our integrated georeferencing approach on two data sets, one captured outdoors by a vehicle-based multi-stereo mobile mapping system and the other captured indoors by a portable panoramic mobile mapping system. We obtained mean RMSE values for check point residuals between image-based georeferencing and tachymetry of 2 cm in an indoor area, and 3 cm in an urban environment where the measurement distances are a multiple compared to indoors. Moreover, in comparison to a solely image-based procedure, our integrated georeferencing approach showed a consistent accuracy increase by a factor of 2–3 at our outdoor test site. Due to pre-calibrated relative orientation parameters, images of all camera heads were oriented correctly in our challenging indoor environment. By performing self-calibration of relative orientation parameters among respective cameras of our vehicle-based mobile mapping system, remaining inaccuracies from suboptimal test field calibration were successfully compensated.

  15. IMAGE DESCRIPTIONS FOR SKETCH BASED IMAGE RETRIEVAL

    OpenAIRE

    SAAVEDRA RONDO, JOSE MANUEL; SAAVEDRA RONDO, JOSE MANUEL

    2008-01-01

    Due to the massive use of Internet together with the proliferation of media devices, content based image retrieval has become an active discipline in computer science. A common content based image retrieval approach requires that the user gives a regular image (e.g, a photo) as a query. However, having a regular image as query may be a serious problem. Indeed, people commonly use an image retrieval system because they do not count on the desired image. An easy alternative way t...

  16. Caring Science or Science of Caring.

    Science.gov (United States)

    Turkel, Marian C; Watson, Jean; Giovannoni, Joseph

    2018-01-01

    The concepts caring science and science of caring have different meanings; however, they are often used interchangeably. The purpose of this paper is to present an overview of the synthesis of the scholarly literature on the definitions of the science of caring and caring science and to affirm the authors' perspective relating to the language of caring science. Caring science advances the epistemology and ontology of caring. Ideas related to caring science inquiry are presented, and the authors acknowledge the future of caring science as unitary caring science.

  17. A Science for Citizenship Model: Assessing the Effects of Benefits, Risks, and Trust for Predicting Students' Interest in and Understanding of Science-Related Content

    Science.gov (United States)

    Jack, Brady Michael; Lee, Ling; Yang, Kuay-Keng; Lin, Huann-shyang

    2017-10-01

    This study showcases the Science for Citizenship Model (SCM) as a new instructional methodology for presenting, to secondary students, science-related technology content related to the use of science in society not taught in the science curriculum, and a new approach for assessing the intercorrelations among three independent variables (benefits, risks, and trust) to predict the dependent variable of triggered interest in learning science. Utilizing a 50-minute instructional presentation on nanotechnology for citizenship, data were collected from 301 Taiwanese high school students. Structural equation modeling (SEM) and paired-samples t-tests were used to analyze the fitness of data to SCM and the extent to which a 50-minute class presentation of nanotechnology for citizenship affected students' awareness of benefits, risks, trust, and triggered interest in learning science. Results of SCM on pre-tests and post-tests revealed acceptable model fit to data and demonstrated that the strongest predictor of students' triggered interest in nanotechnology was their trust in science. Paired-samples t-test results on students' understanding of nanotechnology and their self-evaluated awareness of the benefits and risks of nanotechology, trust in scientists, and interest in learning science revealed low significant differences between pre-test and post-test. These results provide evidence that a short 50-minute presentation on an emerging science not normally addressed within traditional science curriculum had a significant yet limited impact on students' learning of nanotechnology in the classroom. Finally, we suggest why the results of this study may be important to science education instruction and research for understanding how the integration into classroom science education of short presentations of cutting-edge science and emerging technologies in support of the science for citizenship enterprise might be accomplished through future investigations.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rani Joseph. Articles written in Bulletin of Materials Science. Volume 26 Issue 3 April 2003 pp 343-348 Thin Films. Optimization of pH and direct imaging conditions of complexed methylene blue sensitized poly(vinyl chloride) films · M Ushamani N G Leenadeenja K Sreekumar ...

  19. Image and surgery-related costs comparing cone beam CT and panoramic imaging before removal of impacted mandibular third molars

    DEFF Research Database (Denmark)

    Petersen, Lars Bo; Olsen, Kim Rose; Christensen, Jennifer Heather

    2014-01-01

    resource utilization. Differences in resources used for surgical and post-surgical management were calculated for each patient. Results: Converted to monetary units, the total costs for panoramic imaging equalized (sic)49.29 and for CBCT examination (sic)184.44. Modifying effects on this outcome......Objectives: The aim of this prospective clinical study was to derive the absolute and relative costs of cone beam CT (CBCT) and panoramic imaging before removal of an impacted mandibular third molar. Furthermore, the study aimed to analyse the influence of different cost-setting scenarios...... on the outcome of the absolute and relative costs and the incremental costs related to surgery. Methods: A randomized clinical trial compared complications following surgical removal of a mandibular third molar, where the pre-operative diagnostic method had been panoramic imaging or CBCT. The resources implied...

  20. Attitudes toward science: measurement and psychometric properties of the Test of Science-Related Attitudes for its use in Spanish-speaking classrooms

    Science.gov (United States)

    Navarro, Marianela; Förster, Carla; González, Caterina; González-Pose, Paulina

    2016-06-01

    Understanding attitudes toward science and measuring them remain two major challenges for science teaching. This article reviews the concept of attitudes toward science and their measurement. It subsequently analyzes the psychometric properties of the Test of Science-Related Attitudes (TOSRA), such as its construct validity, its discriminant and concurrent validity, and its reliability. The evidence presented suggests that TOSRA, in its Spanish-adapted version, has adequate construct validity regarding its theoretical referents, as well as good indexes of reliability. In addition, it determines the attitudes toward science of secondary school students in Santiago de Chile (n = 664) and analyzes the sex variable as a differentiating factor in such attitudes. The analysis by sex revealed low-relevance gender difference. The results are contrasted with those obtained in English-speaking countries. This TOSRA sample showed good psychometric parameters for measuring and evaluating attitudes toward science, which can be used in classrooms of Spanish-speaking countries or with immigrant populations with limited English proficiency.

  1. Teórie vrodenosti a ich vzťah k vede (Innateness Theories and their Relation to Science

    Directory of Open Access Journals (Sweden)

    Katarína Hrnčiarová

    2013-03-01

    Full Text Available The aim of my contribution will be to describe how the contemporary philosophy of mind and philosophy of language are connected with the knowledge of modern science while meeting the problem of innateness. However strong their relation is, we can still call these approaches philosophical, not scientific in essence. The relation between philosophy and science of those problems is not only the issue of contemporary philosophy, but it has been developing since Modern times when the innateness theories were connected to the contemporary physics and optics. Nowadays, this relation is transferred to relation with other sciences, such as neurobiology. The contemporary philosophy is inconceivable without the cooperation with science regarding the problem of innateness.

  2. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    Haas, Andrew; The ATLAS collaboration

    2016-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the surprising results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices.

  3. Imaging Polarimetry in Age-Related Macular Degeneration

    Science.gov (United States)

    Miura, Masahiro; Yamanari, Masahiro; Iwasaki, Takuya; Elsner, Ann E.; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2010-01-01

    PURPOSE To evaluate the birefringence properties of eyes with age-related macular degeneration (AMD). To compare the information from two techniques—scanning laser polarimetry (GDx) and polarization-sensitive spectral-domain optical coherence tomography (OCT)—and investigate how they complement each other. METHODS The authors prospectively examined the eyes of two healthy subjects and 13 patients with exudative AMD. Using scanning laser polarimetry, they computed phase-retardation maps, average reflectance images, and depolarized light images. To obtain polarimetry information with improved axial resolution, they developed a fiber-based, polarization-sensitive, spectral-domain OCT system and measured the phase retardation associated with birefringence in the same eyes. RESULTS Both GDx and polarization-sensitive spectral-domain optical coherence tomography detected abnormal birefringence at the locus of exudative lesions. Polarization-sensitive, spectral-domain OCT showed that in the old lesions with fibrosis, phase-retardation values were significantly larger than in the new lesions (P = 0.020). Increased scattered light and altered polarization scramble were associated with portions of the lesions. CONCLUSIONS GDx and polarization-sensitive spectral-domain OCT are complementary in probing birefringence properties in exudative AMD. Polarimetry findings in exudative AMD emphasized different features and were related to the progression of the disease, potentially providing a noninvasive tool for microstructure in exudative AMD. PMID:18515594

  4. Home and Motivational Factors Related to Science-Career Pursuit: Gender Differences and Gender Similarities

    Science.gov (United States)

    Shin, Jongho; Lee, Hyunjoo; McCarthy-Donovan, Alexander; Hwang, Hyeyoung; Yim, Sonyoung; Seo, EunJin

    2015-01-01

    The purpose of the study was to examine whether gender differences exist in the mean levels of and relations between adolescents' home environments (parents' view of science, socio-economic status (SES)), motivations (intrinsic and instrumental motivations, self-beliefs), and pursuit of science careers. For the purpose, the Programmed for…

  5. Taking the lead from our colleagues in medical education: the use of images of the in-vivo setting in teaching concepts of pharmaceutical science.

    Science.gov (United States)

    Curley, Louise E; Kennedy, Julia; Hinton, Jordan; Mirjalili, Ali; Svirskis, Darren

    2017-01-01

    Despite pharmaceutical sciences being a core component of pharmacy curricula, few published studies have focussed on innovative methodologies to teach the content. This commentary identifies imaging techniques which can visualise oral dosage forms in-vivo and observe formulation disintegration in order to achieve a better understanding of in-vivo performance. Images formed through these techniques can provide students with a deeper appreciation of the fate of oral formulations in the body compared to standard disintegration and dissolution testing, which is conducted in-vitro. Such images which represent the in-vivo setting can be used in teaching to give context to both theory and experimental work, thereby increasing student understanding and enabling teaching of pharmaceutical sciences supporting students to correlate in-vitro and in-vivo processes.

  6. Capturing and displaying microscopic images used in medical diagnostics and forensic science using 4K video resolution – an application in higher education

    NARCIS (Netherlands)

    Jan Kuijten; Ajda Ortac; Hans Maier; Gert de Heer

    2015-01-01

    To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels).

  7. Just truth? Carefully applying history, philosophy and sociology of science to the forensic use of CCTV images.

    Science.gov (United States)

    Edmond, Gary

    2013-03-01

    Using as a case study the forensic comparison of images for purposes of identification, this essay considers how the history, philosophy and sociology of science might help courts to improve their responses to scientific and technical forms of expert opinion evidence in ways that are more consistent with legal system goals and values. It places an emphasis on the need for more sophisticated models of science and expertise that are capable of helping judges to identify sufficiently reliable types of expert evidence and to reflexively incorporate the weakness of trial safeguards and personnel into their admissibility decision making. Copyright © 2013. Published by Elsevier Ltd.

  8. Relation of Astronomy to other Sciences, Culture and Society

    Science.gov (United States)

    Harutyunian, H. A.; Mickaelian, A. M.; Farmanyan, S. V.

    2015-07-01

    The book contains the Proceedings of XIII Annual Meeting of the Armenian Astronomical Society "Relation of Astronomy to other Sciences, Culture and Society". It consists of 9 main sections: "Introductory", "Astronomy and Philosophy", "Astrobiology", "Space-Earth Connections", "Astrostatistics and Astroinformatics", "Astronomy and Culture, Astrolinguistics", "Archaeoastronomy", "Scientific Tourism and Scientific Journalism", and "Armenian Astronomy". The book may be interesting to astronomers, philosophers, biologists, culturologists, linguists, historians, archaeologists and to other specialists, as well as to students.

  9. Alcohol Preferences and Event-Related Potentials to Alcohol Images in College Students.

    Science.gov (United States)

    Thurin, Kyle; Ceballos, Natalie A; Graham, Reiko

    2017-11-01

    Research on attentional biases to alcohol images has used heterogeneous sets of stimuli (e.g., an isolated beer can or a group of people drinking). However, alcoholic beverage preferences play an important part in determining an individual's alcohol use pattern and may influence attentional biases, especially for inexperienced drinkers. The current study examined whether alcoholic beverage preferences affect event-related potential (ERP) indices of cue reactivity to different types of alcohol images (e.g., beer, wine, and distilled spirits) in heavy episodic drinkers. ERPs were recorded in 14 heavy episodic drinkers (7 male) who completed a Go/No-Go task using preferred and nonpreferred alcohol images with nonalcoholic beverage images as controls. Larger N2 amplitudes for preferred alcohol images were observed relative to control images and to nonpreferred alcohol images, indicating increased attentional capture by preferred beverages. P3 amplitudes and latencies were not sensitive to preferences, but latencies were delayed and amplitudes were enhanced on No-Go trials (i.e., trials requiring response inhibition). These results suggest that alcoholic beverage preference is a factor influencing alcohol cue reactivity in heavy-episodic-drinking college students. This information has methodological significance and may also be applied to improve treatment and prevention programs that focus on attentional bias modification and inhibitory control training.

  10. Home and Motivational Factors Related to Science-Career Pursuit: Gender differences and gender similarities

    Science.gov (United States)

    Shin, Jongho; Lee, Hyunjoo; McCarthy-Donovan, Alexander; Hwang, Hyeyoung; Yim, Sonyoung; Seo, EunJin

    2015-06-01

    The purpose of the study was to examine whether gender differences exist in the mean levels of and relations between adolescents' home environments (parents' view of science, socio-economic status (SES)), motivations (intrinsic and instrumental motivations, self-beliefs), and pursuit of science careers. For the purpose, the Programmed for International Student Assessment 2006 data of Korean 15-year-old students were analysed. The results of the study showed that girls had lower levels of science intrinsic and instrumental motivations, self-beliefs, and science-career pursuit (SCP) as well as their parents' values in science less than boys. Gender similarities, rather than gender differences, existed in patterns of causal relationship among home environments, motivations, and SCP. The results showed positive effects for parents' higher value in science and SES on motivations, SCP, and for intrinsic and instrumental motivations on SCP for girls and boys. These results provide implications for educational interventions to decrease gender differences in science motivations and SCP, and to decrease adolescents' gender stereotypes.

  11. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  12. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  13. Cerebral amyloid angiopathy-related inflammation: imaging findings and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Matia [Vall d' Hebron University Hospital, Neuroradiology Unit, Radiology Department (IDI), Barcelona (Spain); Catholic University of Sacred Heart, ' ' A. Gemelli' ' University Hospital, Department of Radiological Sciences, Rome (Italy); Sarria, Silvana; Coscojuela, Pilar; Vert, Carla; Siurana, Sahyly; Auger, Cristina; Rovira, Alex [Vall d' Hebron University Hospital, Neuroradiology Unit, Radiology Department (IDI), Barcelona (Spain); Toledo, Manuel [Vall d' Hebron University Hospital, Epilepsy Unit, Neurology Department, Barcelona (Spain)

    2014-04-15

    We aim to investigate the clinical onset, computed tomography (CT) and magnetic resonance (MR) imaging findings, and follow-up of patients with cerebral amyloid angiopathy (CAA)-related inflammation, an uncommon but clinically striking presentation of CAA. We retrospectively reviewed the clinical manifestations, CT/MR imaging findings, and outcome of ten consecutive patients with CAA-related inflammation. In each patient, a brain CT study was performed at hospital admission, and brain MR imaging was carried out 2 to 4 days later. Clinical and radiologic follow-up findings were evaluated in all patients. The most common clinical onset was rapidly progressive cognitive decline, followed by focal neurological signs. Brain CT/MR showed unenhanced expansive subcortical lesions, corresponding to areas of vasogenic edema, associated with chronic lobar, cortical, or cortical-subcortical micro/macrohemorrhages. Clinical symptoms recovered in a few weeks under treatment in eight patients and spontaneously in the remaining two. MRI follow-up at 2 to 12 months after treatment showed resolution of the lesions. Three patients experienced symptomatic disease recurrence, with new lesions on CT/MR. In the absence of histological data, early recognition of the clinical symptoms and typical radiologic features of CAA-related inflammation is essential to enable timely establishment of proper treatment. (orig.)

  14. Cerebral amyloid angiopathy-related inflammation: imaging findings and clinical outcome

    International Nuclear Information System (INIS)

    Martucci, Matia; Sarria, Silvana; Coscojuela, Pilar; Vert, Carla; Siurana, Sahyly; Auger, Cristina; Rovira, Alex; Toledo, Manuel

    2014-01-01

    We aim to investigate the clinical onset, computed tomography (CT) and magnetic resonance (MR) imaging findings, and follow-up of patients with cerebral amyloid angiopathy (CAA)-related inflammation, an uncommon but clinically striking presentation of CAA. We retrospectively reviewed the clinical manifestations, CT/MR imaging findings, and outcome of ten consecutive patients with CAA-related inflammation. In each patient, a brain CT study was performed at hospital admission, and brain MR imaging was carried out 2 to 4 days later. Clinical and radiologic follow-up findings were evaluated in all patients. The most common clinical onset was rapidly progressive cognitive decline, followed by focal neurological signs. Brain CT/MR showed unenhanced expansive subcortical lesions, corresponding to areas of vasogenic edema, associated with chronic lobar, cortical, or cortical-subcortical micro/macrohemorrhages. Clinical symptoms recovered in a few weeks under treatment in eight patients and spontaneously in the remaining two. MRI follow-up at 2 to 12 months after treatment showed resolution of the lesions. Three patients experienced symptomatic disease recurrence, with new lesions on CT/MR. In the absence of histological data, early recognition of the clinical symptoms and typical radiologic features of CAA-related inflammation is essential to enable timely establishment of proper treatment. (orig.)

  15. Investigating the relation between women's body image and unconsummated marriage

    Directory of Open Access Journals (Sweden)

    Sara Hosseini

    2017-01-01

    Full Text Available Background: Unconsummated marriage is considered to be one of the complicated sexual issues that lead to multiple complications and problems for couples as well as the society. It is thought that this disorder is more common in traditional cultures and some religions such as Islam, Hinduism, and Judaism. The aim of this study was to determine the relation between women's body image and unconsummated marriage. Materials and Methods: This was a case-control study which was conducted among 50 women who had an unconsummated marriage (case group and 100 women who had a consummated marriage (control group in Isfahan, Iran during 2015–2016. Data were collected using the Multidimensional Body-Self Relations Questionnaire (MBSRQ. The data were analyzed using descriptive and inferential statistical tests. Results: The total score of body image and all its components had no significant difference between both the groups of the case and the control (P > 0.05. Conclusions: Considering that no relation was found between body image and unconsummated marriage and the religious culture of the Iranian society with conservative sexual norms, investigating unconsummated marriage with emphasis on cultural factors is recommended. Hence, such sexual disorders would be avoided and the number of affected people and challenges can be decreased.

  16. Mathematics and computer science in medical imaging

    International Nuclear Information System (INIS)

    Viergever, M.A.; Todd-Pokroper, A.E.

    1987-01-01

    The book is divided into two parts. Part 1 gives an introduction to and an overview of the field in ten tutorial chapters. Part 2 contains a selection of invited and proffered papers reporting on current research. Subjects covered in depth are: analytical image reconstruction, regularization, iterative methods, image structure, 3-D display, compression, architectures for image processing, statistical pattern recognition, and expert systems in medical imaging

  17. EXPERIMENTAL STUDY OF FORMING A PROFESSIONAL IMAGE OF THE FUTURE PUBLIC RELATIONS SPECIALIST

    Directory of Open Access Journals (Sweden)

    Lydia Mikhailovna Semenova

    2013-11-01

    Full Text Available The article is devoted to the organization of research work on forming professional image of the future public relations specialist. The purposes of the work were to study components of students’ image, to test the concept of a professional image of the specialist, and also to process and evaluate the results. The author has presented three phases of experimental research: statement, formative and evaluative. As a result, a positive trend of forming a professional image was found. The conceptual model of forming a professional image of the future experts tested in the course of experiment has shown to be highly effective, while new methods of training (training, workshops, panel discussions, action games, etc. have substantially improved the level of development of a professional image. The results can be used in the training and retraining of specialists of higher education and people whose profession related to communications.DOI: http://dx.doi.org/10.12731/2218-7405-2013-7-48

  18. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. M Israil. Articles written in Journal of Earth System Science. Volume 117 Issue 3 June 2008 pp 189-200. Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India · M Israil D K Tyagi P K Gupta Sri Niwas · More Details ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Panigrahy. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya ...

  1. The Description of Problems Relating to Analogies Used in Science and Technology Textbooks

    Directory of Open Access Journals (Sweden)

    Rahmi YAĞBASAN

    2008-01-01

    Full Text Available The aim of this study was to determine the problems concerning the use of analogies ingeneral and analogies used in primary school science and technology lessons inparticular. In this study, descriptive method was used. 4th, 5th, and 8th classes Scienceand Technology course books; 7 th, 8 th classes Science Books were used as a source.Analogies in the course books were classified according to the literature and theproblems found related to the analogies are pointed out in the study. In this study itwas seen that eighty-nine analogies were used in Science and Technology and inScience course books. These analogies were used in descending order as 8, 4, 6, 7, 5class groups. Also it was seen that these analogies were generally at simple andpictorial analogies.

  2. Coproductive capacities: rethinking science-governance relations in a diverse world

    Directory of Open Access Journals (Sweden)

    Lorrae E. van Kerkhoff

    2015-03-01

    Full Text Available Tackling major environmental change issues requires effective partnerships between science and governance, but relatively little work in this area has examined the diversity of settings from which such partnerships may, or may not, emerge. In this special feature we draw on experiences from around the world to demonstrate and investigate the consequences of diverse capacities and capabilities in bringing science and governance together. We propose the concept of coproductive capacities as a useful new lens through which to examine these relations. Coproductive capacity is "the combination of scientific resources and governance capability that shapes the extent to which a society, at various levels, can operationalize relationships between scientific and public, private, and civil society institutions and actors to effect scientifically-informed social change." This recasts the relationships between science and society from notions of "gaps" to notions of interconnectedness and interplay (coproduction; alongside the societal foundations that shape what is or is not possible in that dynamic connection (capacities. The articles in this special feature apply this concept to reveal social, political, and institutional conditions that both support and inhibit high-quality environmental governance as global issues are tackled in particular places. Across these articles we suggest that five themes emerge as important to understanding coproductive capacity: history, experience, and perceptions; quality of relationships (especially in suboptimal settings; disjunct across scales; power, interests, and legitimacy; and alternative pathways for environmental governance. Taking a coproductive capacities perspective can help us identify which interventions may best enable scientifically informed, but locally sensitive approaches to environmental governance.

  3. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  4. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  5. Common injuries related to weightlifting: MR imaging perspective.

    Science.gov (United States)

    Yu, Joseph S; Habib, Paula A

    2005-12-01

    Weightlifting has evolved to become a ubiquitous form of exercise. Resistance training has been shown to have beneficial effects on both muscle and osseous maintenance and development. Competitive weightlifting sports continue to enjoy tremendous popularity, with participants striving to establish new standards in performance and more demanding personal goals. Thus, it is not surprising that we have also seen an increase in injuries related to weightlifting. Many of these injuries are radiographically occult and are best suited for evaluation by magnetic resonance (MR) imaging because many involve the soft tissues. In this article, we discuss some of the factors that contribute to these injuries and address the mechanisms of injury and the MR imaging manifestations of the more common injuries.

  6. Ocean images in music compositions and folksongs

    Science.gov (United States)

    Liu, C. M.

    2017-12-01

    In general, ocean study usually ranges from physical oceanography, chemical oceanography, marine biology, marine geology, and other related fields. In addition to pure scientific fields, ocean phenomenon influence not only human mood but also the shaping of local cultures. In this paper, we present some ocean images and concepts appeared in music compositions and folksongs to show the mixing, influence and interaction between them. This may give a novel way not for science teachers but also music teachers to deliver the knowledge of ocean science in classes.

  7. Body Image in Younger Breast Cancer Survivors: A Systematic Review

    Science.gov (United States)

    Paterson, Carly; Lengacher, Cecile A.; Donovan, Kristine A.; Kip, Kevin E.; Tofthagen, Cindy S.

    2015-01-01

    Background Body image is a complex issue with the potential to impact many aspects of cancer survivorship, particularly for the younger breast cancer survivor. Objective The purpose of this review is to synthesize the current state of the science for body image in younger women with breast cancer. Intervention/Methods Combinations of the terms “body image,” “sexuality intervention,” “women,” “younger women,” and “breast cancer” were searched in the PubMed, PsycInfo, CINAHL, Web of Knowledge and Science Direct databases through January 2014. Inclusion criteria for this review were: 1) original research; 2) published in English from the year 2000 forward; 3) measuring body image as an outcome variable; and 4) results included reporting of age-related outcomes. Results Thirty-six articles met the inclusion criteria. The majority of studies were cross-sectional, with extensive variation in body image assessment tools. Age and treatment type had a significant impact on body image, and poorer body image was related to physical and psychological distress, sex and intimacy, and the partnered relationship among younger women. Only one intervention study found a significant improvement in body image post-intervention. Conclusions Findings suggest body image is a complex post-treatment concern for breast cancer survivors, particularly younger women. The findings of this review are limited by the high level of variation in the methods for assessing body image. Implications for Practice Further research of interventions to address body image concerns following treatment for breast cancer is warranted. Improvement of body image may improve the quality of life of younger breast cancer survivors. PMID:25881807

  8. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mavrogeni, Sophie, E-mail: soma13@otenet.gr; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-15

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  9. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging

    International Nuclear Information System (INIS)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Highlights: • Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis of IgG4-related disease. • CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. • Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques. • CT can assess periarteritis and coronary artery aneurysms, while 18FDG-PET shows FDG uptake at the area of the lesion. • CMR offers an integrated imaging of CV system, including assessment of disease acuity, extent of fibrosis and can guide further treatment. - Abstract: Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18

  10. La méthodologie de l’image peut-elle être utile à la recherche en sciences sociales?

    OpenAIRE

    Haicault, Monique

    2011-01-01

    Si l'image n'a pas encore toute la place qui devrait lui revenir dans le champ des méthodologies en Sciences Sociales, c'est d'abord parce que son langage utilise un système de signes qui lui est spécifique, distinct de l'oral et de l'écrit. La méthodologie de l'image doit forger ses propres règles de collecte de données audiovisuelles, ses codes d'analyse et d'interprétation, afin de donner un sens sociologique à la " banalité " de ce qui est observé et enregistré. Elle doit aussi se plier a...

  11. Single-Trial Event-Related Potential Based Rapid Image Triage System

    Directory of Open Access Journals (Sweden)

    Ke Yu

    2011-06-01

    Full Text Available Searching for points of interest (POI in large-volume imagery is a challenging problem with few good solutions. In this work, a neural engineering approach called rapid image triage (RIT which could offer about a ten-fold speed up in POI searching is developed. It is essentially a cortically-coupled computer vision technique, whereby the user is presented bursts of images at a speed of 6–15 images per second and then neural signals called event-related potential (ERP is used as the ‘cue’ for user seeing images of high relevance likelihood. Compared to past efforts, the implemented system has several unique features: (1 it applies overlapping frames in image chip preparation, to ensure rapid image triage performance; (2 a novel common spatial-temporal pattern (CSTP algorithm that makes use of both spatial and temporal patterns of ERP topography is proposed for high-accuracy single-trial ERP detection; (3 a weighted version of probabilistic support-vector-machine (SVM is used to address the inherent unbalanced nature of single-trial ERP detection for RIT. High accuracy, fast learning, and real-time capability of the developed system shown on 20 subjects demonstrate the feasibility of a brainmachine integrated rapid image triage system for fast detection of POI from large-volume imagery.

  12. Web-Based Software Integration For Dissemination Of Archival Images: The Frontiers Of Science Website

    Directory of Open Access Journals (Sweden)

    Gary Browne

    2011-07-01

    Full Text Available The Frontiers of Science illustrated comic strip of 'science fact' ran from 1961 to 1982, syndicated worldwide through over 600 newspapers. The Rare Books and Special Collections Library at the University of Sydney, in association with Sydney eScholarship, digitized all 939 strips. We aimed to create a website that could disseminate these comic strips to scholars, enthusiasts and the general public. We wanted to enable users to search and browse through the images simply and effectively, with an intuitive and novel viewing platform. Time and resource constraints dictated the use of (mostly open source code modules wherever possible and the integration and customisation of a range of web-based applications, code snippets and technologies (DSpace, eXtensible Text Framework (XTF, OmniFormat, JQuery Tools, Thickbox and Zoomify, stylistically pulled together using CSS. This approach allowed for a rapid development cycle (6 weeks to deliver the site on time as well as provide us with a framework for similar projects.

  13. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung.

    Science.gov (United States)

    Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar

    2016-04-01

    Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D B Shah. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya D B ...

  15. Images of god in relation to coping strategies of palliative cancer patients.

    Science.gov (United States)

    van Laarhoven, Hanneke W M; Schilderman, Johannes; Vissers, Kris C; Verhagen, Constans A H H V M; Prins, Judith

    2010-10-01

    Religious coping is important for end-of-life treatment preferences, advance care planning, adjustment to stress, and quality of life. The currently available religious coping instruments draw on a religious and spiritual background that presupposes a very specific image of God, namely God as someone who personally interacts with people. However, according to empirical research, people may have various images of God that may or may not exist simultaneously. It is unknown whether one's belief in a specific image of God is related to the way one copes with a life-threatening disease. To examine the relation between adherence to a personal, a nonpersonal, and/or an unknowable image of God and coping strategies in a group of Dutch palliative cancer patients who were no longer receiving antitumor treatments. In total, 68 palliative care patients completed and returned the questionnaires on Images of God and the COPE-Easy. In the regression analysis, a nonpersonal image of God was a significant positive predictor for the coping strategies seeking advice and information (β=0.339, PGod was a significant positive predictor for the coping strategy turning to religion (β=0.608, PGod is a more relevant predictor for different coping strategies in Dutch palliative cancer patients than a personal or an unknowable image of God. Copyright © 2010 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  16. Planning JWST NIRSpec MSA spectroscopy using NIRCam pre-images

    Science.gov (United States)

    Beck, Tracy L.; Ubeda, Leonardo; Kassin, Susan A.; Gilbert, Karoline; Karakla, Diane M.; Reid, I. N.; Blair, William P.; Keyes, Charles D.; Soderblom, D. R.; Peña-Guerrero, Maria A.

    2016-07-01

    The Near-Infrared Spectrograph (NIRSpec) is the work-horse spectrograph at 1-5microns for the James Webb Space Telescope (JWST). A showcase observing mode of NIRSpec is the multi-object spectroscopy with the Micro-Shutter Arrays (MSAs), which consist of a quarter million tiny configurable shutters that are 0. ''20×0. ''46 in size. The NIRSpec MSA shutters can be opened in adjacent rows to create flexible and positionable spectroscopy slits on prime science targets of interest. Because of the very small shutter width, the NIRSpec MSA spectral data quality will benefit significantly from accurate astrometric knowledge of the positions of planned science sources. Images acquired with the Hubble Space Telescope (HST) have the optimal relative astrometric accuracy for planning NIRSpec observations of 5-10 milli-arcseconds (mas). However, some science fields of interest might have no HST images, galactic fields can have moderate proper motions at the 5mas level or greater, and extragalactic images with HST may have inadequate source information at NIRSpec wavelengths beyond 2 microns. Thus, optimal NIRSpec spectroscopy planning may require pre-imaging observations with the Near-Infrared Camera (NIRCam) on JWST to accurately establish source positions for alignment with the NIRSpec MSAs. We describe operational philosophies and programmatic considerations for acquiring JWST NIRCam pre-image observations for NIRSpec MSA spectroscopic planning within the same JWST observing Cycle.

  17. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    Science.gov (United States)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  18. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences.

    Science.gov (United States)

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2017-08-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for quality assurance, such as laboratory supervisors, we propose a basic classification of image manipulation. Based on this classification, we developed and explored some simple algorithms to detect copied areas in images. Using an artificial image and two examples of previously published modified images, we apply quantitative methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm to detect copied-and-pasted areas or duplicated images. We show that our algorithms are able to detect some simple types of image alteration, such as copying and pasting background areas. The variance algorithm detects not only identical, but also very similar areas that differ only by brightness. Further types could, in principle, be implemented in a standardized scanning routine. We detected the copied areas in a proven case of image manipulation in Germany and showed the similarity of two images in a retracted paper from the Kato labs, which has been widely discussed on sites such as pubpeer and retraction watch.

  19. Task-based measures of image quality and their relation to radiation dose and patient risk

    International Nuclear Information System (INIS)

    Barrett, Harrison H; Kupinski, Matthew A; Myers, Kyle J; Hoeschen, Christoph; Little, Mark P

    2015-01-01

    The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. (topical review)

  20. Representations of Science and Technology in Cordel Literature

    Directory of Open Access Journals (Sweden)

    Carla Almeida

    2016-09-01

    Full Text Available In Brazilian cultural manifestations, science is not usually pictured prominently. Still, one can find references to it in some of the most popular forms of communication. Cordel literature is one of them. In this article, we try to understand how the scientific world is inserted and represented in this literary genre. We did a discourse analysis based on a corpus of 50 Cordel booklets on topics related to science. We note that the booklets present, as a whole, an ambivalent image of science, extolling the scientific achievements and their authors in some cases, whereas, in others, showing a critical view of technological development. Our study suggests that the mixing of science and Cordel literature has the potential to bring together scientific and popular cultures. This could also promote a critical thinking in the public about the relationship between science and society. Therefore, Cordel literature may be an interesting tool for education and popularization of science.

  1. Applying ethical and legal principles to new technology: the University of Auckland Faculty of Medical and Health Sciences' policy 'Taking and Sharing Images of Patients.'

    Science.gov (United States)

    Jonas, Monique; Malpas, Phillipa; Kersey, Kate; Merry, Alan; Bagg, Warwick

    2017-01-27

    To develop a policy governing the taking and sharing of photographic and radiological images by medical students. The Rules of the Health Information Privacy Code 1994 and the Code of Health and Disability Services Consumers' Rights were applied to the taking, storing and sharing of photographic and radiological images by medical students. Stakeholders, including clinicians, medical students, lawyers at district health boards in the Auckland region, the Office of the Privacy Commissioner and the Health and Disability Commissioner were consulted and their recommendations incorporated. The policy 'Taking and Sharing Images of Patients' sets expectations of students in relation to: photographs taken for the purpose of providing care; photographs taken for educational or professional practice purposes and photographic or radiological images used for educational or professional practice purposes. In addition, it prohibits students from uploading images of patients onto image-sharing apps such as Figure 1. The policy has since been extended to apply to all students at the Faculty of Medical and Health Sciences at the University of Auckland. Technology-driven evolutions in practice necessitate regular review to ensure compliance with existing legal regulations and ethical frameworks. This policy offers a starting point for healthcare providers to review their own policies and practice, with a view to ensuring that patients' trust in the treatment that their health information receives is upheld.

  2. Relative location prediction in CT scan images using convolutional neural networks.

    Science.gov (United States)

    Guo, Jiajia; Du, Hongwei; Zhu, Jianyue; Yan, Ting; Qiu, Bensheng

    2018-07-01

    Relative location prediction in computed tomography (CT) scan images is a challenging problem. Many traditional machine learning methods have been applied in attempts to alleviate this problem. However, the accuracy and speed of these methods cannot meet the requirement of medical scenario. In this paper, we propose a regression model based on one-dimensional convolutional neural networks (CNN) to determine the relative location of a CT scan image both quickly and precisely. In contrast to other common CNN models that use a two-dimensional image as an input, the input of this CNN model is a feature vector extracted by a shape context algorithm with spatial correlation. Normalization via z-score is first applied as a pre-processing step. Then, in order to prevent overfitting and improve model's performance, 20% of the elements of the feature vectors are randomly set to zero. This CNN model consists primarily of three one-dimensional convolutional layers, three dropout layers and two fully-connected layers with appropriate loss functions. A public dataset is employed to validate the performance of the proposed model using a 5-fold cross validation. Experimental results demonstrate an excellent performance of the proposed model when compared with contemporary techniques, achieving a median absolute error of 1.04 cm and mean absolute error of 1.69 cm. The time taken for each relative location prediction is approximately 2 ms. Results indicate that the proposed CNN method can contribute to a quick and accurate relative location prediction in CT scan images, which can improve efficiency of the medical picture archiving and communication system in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neutron imaging and applications a reference for the imaging community

    CERN Document Server

    McGreevy, Robert L; Bilheux, Hassina Z

    2009-01-01

    Offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. This title features a section that describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas.

  4. Frequency of referral of patients with safety-related contraindications to magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Departments of Radiology, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: marc.dewey@charite.de; Schink, Tania [Medical Biometry, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: tania.schink@charite.de; Dewey, Charles F. [Radiology, Outpatient Centre Loebau, Poststr. 20, 02738 Loebau (Germany)]. E-mail: dewey@t-online.de

    2007-07-15

    Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians.

  5. Frequency of referral of patients with safety-related contraindications to magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dewey, Marc; Schink, Tania; Dewey, Charles F.

    2007-01-01

    Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians

  6. Collective symbolic coping with new technology: Knowledge, images and public discourse.

    Science.gov (United States)

    Wagner, Wolfgang; Kronberger, Nicole; Seifert, Franz

    2002-09-01

    Using data from policy analyses, media analyses and a European-wide survey about public perceptions of biotechnology conducted in 1996 and again in 1999, it is shown how a country's public develops an everyday understanding of a new technology (genetic modification) construed as potentially harmful by the media. To understand the reliance on images and related beliefs, we propose a theory of collective symbolic coping. It identifies four steps: first, the creation of awareness; second, production of divergent images; third, convergence upon a couple of dominant images in the public sphere; fourth, normalization. It is suggested that symbolic coping occurs in countries where a recent increase in policy activity and of media reporting has alerted the public; that this public show a high proportion of beliefs in menacing images; that these beliefs are relatively independent of pre-existing popular science knowledge; and that they are functionally equivalent to scientific knowledge in providing judgmental confidence and reducing self-ascribed ignorance. These propositions are shown to be true in Austria and Greece. Several implications of the theory are discussed, including social representation theory and public understanding of science.

  7. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Second External Review Draft, Sep 2011)

    Science.gov (United States)

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Clementine spacecraft orbited the Moon and acquired science data for 10 weeks in the Spring of 1994. During this time it collected global 11-band multispectral images and near global altimetry. Select areas of the Moon were imaged at 25 m/pixel in visible light and 60 m/pixel in thermal wavelengths. From these ...

  9. Nuclear medicine imaging instrumentations for molecular imaging

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Song, Tae Yong; Choi, Yong

    2004-01-01

    Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging

  10. Senator Fred Harris's National Social Science Foundation proposal: Reconsidering federal science policy, natural science-social science relations, and American liberalism during the 1960s.

    Science.gov (United States)

    Solovey, Mark

    2012-03-01

    During the 1960s, a growing contingent of left-leaning voices claimed that the social sciences suffered mistreatment and undue constraints within the natural science-dominated federal science establishment. According to these critics, the entrenched scientific pecking order in Washington had an unreasonable commitment to the unity of the sciences, which reinforced unacceptable inequalities between the social and the natural sciences. The most important political figure who advanced this critique, together with a substantial legislative proposal for reform, was the Oklahoma Democratic Senator Fred Harris. Yet histories of science and social science have told us surprisingly little about Harris. Moreover, existing accounts of his effort to create a National Social Science Foundation have misunderstood crucial features of this story. This essay argues that Harris's NSSF proposal developed into a robust, historically unique, and increasingly critical liberal challenge to the post-World War II federal science establishment's treatment of the social sciences as "second-class citizens."

  11. OLIVER: an online library of images for veterinary education and research.

    Science.gov (United States)

    McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick

    2007-01-01

    As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.

  12. Determining storage related egg quality changes via digital image ...

    African Journals Online (AJOL)

    Area and length measurements related to exterior and interior egg quality were determined by digital image analysis. In general, excluding the outer thin albumen area, all of the area measurements such as total egg content area and inner thick albumen area were larger in stored eggs than in fresh eggs (52.28 vs.

  13. An investigation of Saudi Arabian MR radiographers' knowledge and confidence in relation to MR image-quality-related errors

    International Nuclear Information System (INIS)

    Alsharif, W.; Davis, M.; McGee, A.; Rainford, L.

    2017-01-01

    Objective: To investigate MR radiographers' current knowledge base and confidence level in relation to quality-related errors within MR images. Method: Thirty-five MR radiographers within 16 MRI departments in the Kingdom of Saudi Arabia (KSA) independently reviewed a prepared set of 25 MR images, naming the error, specifying the error-correction strategy, scoring how confident they were in recognising this error and suggesting a correction strategy by using a scale of 1–100. The datasets were obtained from MRI departments in the KSA to represent the range of images which depicted excellent, acceptable and poor image quality. Results: The findings demonstrated a low level of radiographer knowledge in identifying the type of quality errors and when suggesting an appropriate strategy to rectify those errors. The findings show that only (n = 7) 20% of the radiographers could correctly name what the quality errors were in 70% of the dataset, and none of the radiographers correctly specified the error-correction strategy in more than 68% of the MR datasets. The confidence level of radiography participants in their ability to state the type of image quality errors was significantly different (p < 0.001) for who work in different hospital types. Conclusion: The findings of this study suggest there is a need to establish a national association for MR radiographers to monitor training and the development of postgraduate MRI education in Saudi Arabia to improve the current status of the MR radiographers' knowledge and direct high quality service delivery. - Highlights: • MR radiographers recognised the existence of the image quality related errors. • A few MR radiographers were able to correctly identify which image quality errors were being shown. • None of MR radiographers were able to correctly specify error-correction strategy of the image quality errors. • A low level of knowledge was demonstrated in identifying and rectify image quality errors.

  14. 2008 Public Relations and Image Making for Libraries and the ...

    African Journals Online (AJOL)

    Gbaje E.S

    Samaru Journal of Information Studies Vol.8 (1)2008. 17. Public Relations and Image Making for Libraries and the Profession in Nigeria. By .... An investigation carried out by Morrisey and Case .... can sponsor bills aimed at developing library.

  15. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging.

    Science.gov (United States)

    Mavrogeni, Sophie; Markousis-Mavrogenis, George; Kolovou, Genovefa

    2017-01-01

    Immunoglobulin 4-related disease (IgG4-related disease) is a systemic inflammatory disease that presents with increases of serum IgG4. It may affect various systems, including the cardiovascular (CV) system. Assessment of serum IgG4 levels and involved organ biopsy are necessary for diagnosis. IgG4-related disease is characterized by fibrosclerosis, lymphocytic infiltration and presence of IgG4-positive plasma cells. The disease usually responds to treatment with corticosteroids and/or immunosuppressive medication. CV involvement may manifest as cardiac pseudotumors, inflammatory periaortitis, coronary arteritis and/or pericarditis. IgG4-related cardiovascular disorders can severely affect patient prognosis. Various imaging techniques, including echocardiography, Computed Tomography (CT), 18FDG-PET, Cardiovascular Magnetic Resonance (CMR) and cardiac catheterisation, have been successfully used for early disease detection and follow-up. Echocardiography and vascular ultrasound are the most commonly used non-invasive, non-radiating imaging techniques for the evaluation of IgG4-related CV disease. Periaortitis/periarteritis can be also assessed by CT, showing a soft tissue thickening around arteries. Coronary artery aneurysms can be easily diagnosed by coronary CT. In case of active periarterial or coronary artery inflammation, 18FDG-PET will show FDG uptake at the area of the lesion. CMR, due to its capability to perform function and tissue characterisation, can offer an integrated imaging of aorta, coronary arteries and the heart, assessment of disease acuity, extent of fibrosis and guide further treatment. However, multimodality imaging may be necessary for assessment of disease activity and fibrosis extent in those cases with multifocal CV involvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  17. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  18. Fascinating! Popular Science Communication and Literary Science Fiction

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2017-01-01

    Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines, ......, popular science communication with science fiction features might be expected to serve a similar purpose. Only, it is far from obvious that it actually works that way.......Some see literary Science Fiction as a possible vehicle for critical discussions about the future development and the ethical implications of science-based technologies. According to that understanding, literary Science Fiction constitutes a variety of science communication. Along related lines...

  19. The relation between cognitive and metacognitive strategic processing during a science simulation.

    Science.gov (United States)

    Dinsmore, Daniel L; Zoellner, Brian P

    2018-03-01

    This investigation was designed to uncover the relations between students' cognitive and metacognitive strategies used during a complex climate simulation. While cognitive strategy use during science inquiry has been studied, the factors related to this strategy use, such as concurrent metacognition, prior knowledge, and prior interest, have not been investigated in a multidimensional fashion. This study addressed current issues in strategy research by examining not only how metacognitive, surface-level, and deep-level strategies influence performance, but also how these strategies related to each other during a contextually relevant science simulation. The sample for this study consisted of 70 undergraduates from a mid-sized Southeastern university in the United States. These participants were recruited from both physical and life science (e.g., biology) and education majors to obtain a sample with variance in terms of their prior knowledge, interest, and strategy use. Participants completed measures of prior knowledge and interest about global climate change. Then, they were asked to engage in an online climate simulator for up to 30 min while thinking aloud. Finally, participants were asked to answer three outcome questions about global climate change. Results indicated a poor fit for the statistical model of the frequency and level of processing predicting performance. However, a statistical model that independently examined the influence of metacognitive monitoring and control of cognitive strategies showed a very strong relation between the metacognitive and cognitive strategies. Finally, smallest space analysis results provided evidence that strategy use may be better captured in a multidimensional fashion, particularly with attention paid towards the combination of strategies employed. Conclusions drawn from the evidence point to the need for more dynamic, multidimensional models of strategic processing that account for the patterns of optimal and non

  20. How choosing science depends on students' individual fit to 'science culture'

    NARCIS (Netherlands)

    Taconis, R.; Kessels, U.

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the

  1. Test Every Senior Project: Evidence of Cognitive Processes Related to Science.

    Science.gov (United States)

    Nardine, Frank E.

    Reported is a study designed to evaluate differences in cognitive processes related to science among (1) college bound high school students who had studied both physics and chemistry, (2) college bound students who had not studied either subject, and (3) non-college bound students who had not studied either subject. The test used to assess the…

  2. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  3. Filmic Representations of Science. César Milstein and Un fueguito

    Directory of Open Access Journals (Sweden)

    Zulema Marzorati

    2016-06-01

    Full Text Available Science is one of the nodal forces behind the advancement and growth of a country. Given its importance, the aim of this study is to investigate the relationship between the socio-political context and the development of scientific activity through the images of Un fueguito. The story of César Milstein (Argentina, 2009 directed by Ana Fraile. The film constructs the image of a scientist who worked in state institutions, without relating to private laboratories and who always supported the universal appropriation of knowledge remaining within the Mertonian ethos. When considering what Milstein meant as a loss for the country in the past, the film participates indirectly in the discourse of Cristina Kirchner´s government policy that has encouraged the return of scientists and supported continuity in science and research.

  4. Ciência e arte: relações improváveis? Science and art: unlikely relations?

    Directory of Open Access Journals (Sweden)

    José Claudio Reis

    2006-10-01

    Full Text Available Este artigo discute as relações entre ciência e arte, principalmente entre física e pintura, com o objetivo de apresentar uma abordagem cultural para a ciência. Dessa forma, entendemos que a compreensão dos conteúdos da ciência torna-se mais significativa. Abordamos diferentes momentos da história desde a revolução científica até o século XX. As relações aqui salientadas não buscam uma relação causal entre ciência e arte, mas sim uma visão mais significativa do que é o processo de construção do conhecimento. Assim, a ciência se desnuda para nós como parte da cultura e pode nos ajudar a compreender melhor o processo histórico que nos trouxe até aqui.With the goal of presenting a cultural approach to science, the article discusses relations between science and art, especially between physics and painting. From this standpoint, we can see how understanding the substance of science becomes more important. Different moments in history are examined, from the scientific revolution down through the twentieth century. The relations highlighted herein are not chosen in an effort to undercover a causal relation between science and art but to arrive at a more meaningful understanding of how knowledge is constructed. Science is thus revealed to be part of culture, which can help us better understand the historical process through which we have come to this point.

  5. Hollywood Science: Good for Hollywood, Bad for Science?

    Science.gov (United States)

    Perkowitz, Sidney

    2009-03-01

    Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809

  6. A imagem da ciência: folheando um livro didático The image of science: leafing through a textbook

    Directory of Open Access Journals (Sweden)

    Elizabeth Macedo

    2004-04-01

    Full Text Available O texto analisa livros didáticos de ciências, centrando-se nas imagens apresentadas nesses dispositivos escolares. Num primeiro momento, apresenta indícios que permitem fazer uma leitura das tradições hegemônicas nos currículos, tendo como contraponto outros sistemas referenciais. Com base em teóricos pós-coloniais, procura mostrar como as imagens corporificam estratégias de omissão e marginalização culturais. Num segundo momento, analisa os modos de endereçamento presentes nos livros: os modelos de ciência e de prática pedagógica apresentados.This text analyzes Science textbooks focusing on the images they present. Using other systems of interpretation as a counterpoint, it begins by stressing the evidence of the hegemonic traditions in school curricula they contain. Based on post-colonial authors, it tries to show how these images embody strategies of cultural omission and marginalization. Finally, it explores the modes of addressing inscribed in such books and the models of Science and pedagogical practice they convey.

  7. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Tominaga Shoji

    2008-01-01

    Full Text Available Abstract The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  8. Color in Image and Video Processing: Most Recent Trends and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Konstantinos N. Plataniotis

    2008-05-01

    Full Text Available The motivation of this paper is to provide an overview of the most recent trends and of the future research directions in color image and video processing. Rather than covering all aspects of the domain this survey covers issues related to the most active research areas in the last two years. It presents the most recent trends as well as the state-of-the-art, with a broad survey of the relevant literature, in the main active research areas in color imaging. It also focuses on the most promising research areas in color imaging science. This survey gives an overview about the issues, controversies, and problems of color image science. It focuses on human color vision, perception, and interpretation. It focuses also on acquisition systems, consumer imaging applications, and medical imaging applications. Next it gives a brief overview about the solutions, recommendations, most recent trends, and future trends of color image science. It focuses on color space, appearance models, color difference metrics, and color saliency. It focuses also on color features, color-based object tracking, scene illuminant estimation and color constancy, quality assessment and fidelity assessment, color characterization and calibration of a display device. It focuses on quantization, filtering and enhancement, segmentation, coding and compression, watermarking, and lastly on multispectral color image processing. Lastly, it addresses the research areas which still need addressing and which are the next and future perspectives of color in image and video processing.

  9. Two-year study relating adolescents' self-concept and gender role perceptions to achievement and attitudes toward science

    Science.gov (United States)

    Handley, Herbert M.; Morse, Linda W.

    To assess the developmental relationship of perceptions of self-concept and gender role identification with adolescents' attitudes and achievement in science, a two-year longitudinal study was conducted. A battery of instruments assessing 16 dimensions of self-concept/gender role identifications was employed to predict students' achievement and attitudes toward science. Specific behaviors studied included self-concept in school and science and mathematics, attitudes toward appropriate gender roles in science activities and careers, and self-perceptions of masculine and feminine traits. One hundred and fifty-five adolescents, enrolled, respectively, in the seventh and eighth grades, participated in the study. Through Fisher z transformations of correlation coefficients, differences in relationships between these two sets of variables were studied for males and females during the two years. Results indicated that students' self-concepts/gender role perceptions were related to both achievement and attitudes toward science, but more related to attitudes than achievement. These relationships became more pronounced for students as they matured from seventh to eighth graders.

  10. Lumbar spinal imaging in radicular pain and related conditions. Understanding diagnostic images in a clinical context

    International Nuclear Information System (INIS)

    Wilmink, Jan T.

    2010-01-01

    There is general agreement that lumbosacral nerve root compression is a prime factor in the pathogenesis of sciatica and neurogenic claudication, although humoral and vascular factors certainly play a role as well. This book focuses on imaging of the various ways in which nerve root compression can come about, and assessing which anatomic features are reliably associated with the occurrence of radicular pain, as opposed to morphologic findings which are probably coincidental. After a discussion of the nature of radicular pain and related symptoms, spinal imaging techniques and options are reviewed, with emphasis on the role of MR myelography in assessing the condition of the intradural nerve roots. A chapter on normal topographic, sectional, and functional (dynamic) radiologic anatomy is followed by a presentation on pathologic anatomy, addressing the various mechanisms of nerve root compression. In the chapter on pre- and postoperative imaging, features which may help to predict the evolution of the symptoms are discussed, with an eye to selecting candidates for surgical treatment. This is followed by a discussion of the role and limitations of imaging studies in various adverse postoperative conditions. In illustrations involving patient studies, imaging features are linked where possible to the clinical symptoms and history of the individuals involved. (orig.)

  11. Lumbar spinal imaging in radicular pain and related conditions. Understanding diagnostic images in a clinical context

    Energy Technology Data Exchange (ETDEWEB)

    Wilmink, Jan T. [University Hospital Maastricht (Netherlands). Dept. Radiology

    2010-07-01

    There is general agreement that lumbosacral nerve root compression is a prime factor in the pathogenesis of sciatica and neurogenic claudication, although humoral and vascular factors certainly play a role as well. This book focuses on imaging of the various ways in which nerve root compression can come about, and assessing which anatomic features are reliably associated with the occurrence of radicular pain, as opposed to morphologic findings which are probably coincidental. After a discussion of the nature of radicular pain and related symptoms, spinal imaging techniques and options are reviewed, with emphasis on the role of MR myelography in assessing the condition of the intradural nerve roots. A chapter on normal topographic, sectional, and functional (dynamic) radiologic anatomy is followed by a presentation on pathologic anatomy, addressing the various mechanisms of nerve root compression. In the chapter on pre- and postoperative imaging, features which may help to predict the evolution of the symptoms are discussed, with an eye to selecting candidates for surgical treatment. This is followed by a discussion of the role and limitations of imaging studies in various adverse postoperative conditions. In illustrations involving patient studies, imaging features are linked where possible to the clinical symptoms and history of the individuals involved. (orig.)

  12. EDITORIAL: Molecular Imaging Technology

    Science.gov (United States)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  13. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay).

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P

    2017-06-01

    A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

  14. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  15. Benefits from an exchange of knowledge in the treaty-related science and technologies: A personal perspective

    International Nuclear Information System (INIS)

    Marshall, P.D.

    1999-01-01

    This paper describes benefits from an exchange of knowledge in the non-proliferation treaty related science and technologies concerning science and technology development. Benefits to State Parties are concerned with non-treaty uses of seismic, hydro acoustic, infrasound and radionuclides data, their evaluation and measuring techniques

  16. Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Menk, Ralf Hendrik

    2008-01-01

    All standard (medical) x-ray imaging technologies, rely primarily on the amplitude properties of the incident radiation, and do not depend on its phase. This is unchanged since the discovery by Roentgen that the intensity of an x-ray beam, as measured by the exposure on a film, was related to the relative transmission properties of an object. However, recently various imaging techniques have emerged which depend on the phase of the x-rays as well as the amplitude. Phase becomes important when the beam is coherent and the imaging system is sensitive to interference phenomena. Significant new advances have been made in coherent optic theory and techniques, which now promise phase information in medical imaging. The development of perfect crystal optics and the increasing availability of synchrotron radiation facilities have contributed to a significant increase in the application of phase based imaging in materials and life sciences. Unique source characteristics such as high intensity, monochromaticity, coherence and high collimating provide an ideal source for advanced imaging. Phase contrast imaging has been applied in both projection and computed tomography modes, and recent applications have been made in the field of medical imaging. Due to the underlying principle of X-ray detection conventional image receptors register only intensities of wave fields and not their phases. During the last decade basically five different methods were developed that translate the phase information into intensity variations. These methods are based on measuring the phase shift φ directly (using interference phenomena), the gradient ∇ φ , or the Laplacian ∇ 2 φ. All three methods can be applied to polychromatic X-ray sources keeping in mind that the native source is synchrotron radiation, featuring monochromatic and reasonable coherent X-ray beams. Due to the vast difference in the coefficients that are driven absorption and phase effects (factor 1,000-10,000 in the energy

  17. Task value profiles across subjects and aspirations to physical and IT-related sciences in the United States and Finland.

    Science.gov (United States)

    Chow, Angela; Eccles, Jacquelynne S; Salmela-Aro, Katariina

    2012-11-01

    Two independent studies were conducted to extend previous research by examining the associations between task value priority patterns across school subjects and aspirations toward the physical and information technology- (IT-) related sciences. Study 1 measured task values of a sample of 10th graders in the United States (N = 249) across (a) physics and chemistry, (b) math, and (c) English. Study 2 measured task values of a sample of students in the second year of high school in Finland (N = 351) across (a) math and science, (b) Finnish, and (c) the arts and physical education. In both studies, students were classified into groups according to how they ranked math and science in relation to the other subjects. Regression analyses indicated that task value group membership significantly predicted subsequent aspirations toward physical and IT-related sciences measured 1-2 years later. The task value groups who placed the highest priority on math and science were significantly more likely to aspire to physical and IT-related sciences than were the other groups. These findings provide support for the theoretical assumption regarding the predictive role of intraindividual hierarchical patterns of task values for subsequent preferences and choices suggested by the Eccles [Parsons] (1983) expectancy-value model.

  18. Ideal gender identity related to parent images and locus of control: Jungian and social learning perspectives.

    Science.gov (United States)

    Shimoda, Hiroko; Keskinen, Soili

    2004-06-01

    In this research, we wanted to clarify how gender images are different or invariant and related to parents, attributes, and the attitude of controlling life (locus of control) in two cultural contexts, Japan and Finland. For this purpose, students' ideal gender images, consisting of ideal mother, female, father and male images, and parents' similarity to the four ideal gender images were studied in 135 Japanese and 119 Finnish university students. Major findings were (a) Japanese students' ideal gender images were more stereotypic than those of Finnish students; (b) students' ideal mother image and parents' similarity to the ideal mother image were related only to their sex, which supports Jung's theory; (c) students socially learned other ideal gender images, but these did not fit with expectation from social learning theory; (d) Japanese students' mothers are models or examples of gender images, but Finnish male students did not seem to base their ideal gender images on their parents. Implication of measures was discussed.

  19. Boys and girls "doing science" and "doing gender"

    Science.gov (United States)

    Cervoni, Cleti

    The gender gap in achievement in science continues to plague science educators (AAAS, 2001). Strategies to close this gap have defined the problem in terms of girls' lack of interest or their inability to survive in science classrooms. Recent feminist scholarship has re-centered this problem of gender inequity not on girls, but on the nature of science and how it is taught in schools (Birke, 1986; Parker, 1997). Lesley Parker (1997) argues that it is schools that need to change and recommends a gender-inclusive science curriculum for schools. My dissertation argues for a new framework and research agenda for understanding the relationship between gender and science in schools. My study examines the gender dynamics of how unequal gender relations are negotiated, resisted and sustained in the context of a second grade science classroom. In examining the gender dynamics between the boys and the girls in a science classroom, I found that the boys positioned the girls as their assistants, as incompetent in science, as weak in contrast to the boys, and in need of the boys' help and protection. These discourses functioned to create and sustain unequal gender relations in the classroom. The girls responded in paradoxical ways to the boys' positioning of them. They resisted the boys by: (a) ignoring them; (b) using a domestic discourse to negotiate/gain more power; (c) appropriating teacher authority; or (d) using sexuality to embarrass and silence the boys. The girls also deferred to the boys as experts in science. In these ways, the girls themselves contributed to maintaining unequal gender relations in the classroom. I found that the classroom context is a site of struggle for both boys and girls as they seek to secure a place in the social hierarchy of the classroom. For the boys, masculinity is strong and powerful yet fragile and vulnerable. The girls struggle in holding multiple images of femininity. Examining gender dynamics through positioning and negotiation for

  20. The Effect of Ethnocentrism and Image of Asian Industrialised Countries on Perceived Relative Quality

    Directory of Open Access Journals (Sweden)

    Sulhaini

    2014-12-01

    Full Text Available The study examined the effects of consumer ethnocentrism and country image on perceived relative quality. The respondents of the study were consumers at a shopping mall in Mataram, Indonesia. They compared the quality of televisions from three industrialised Asian countries, i.e. Japan, South Korea and China, to those from Indonesia. The result of the study was that image of those countries has a significant effect on perceived relative quality. Indonesian consumers perceived televisions from those countries to be more favourable in terms of quality compared to Indonesian televisions. Indonesian consumers have a similar perception on the quality of televisions made in those main Asian countries relative to those of Indonesia. The image of those countries is favourable leading to a better perception on quality of televisions made in the countries relative to domestically made. Domestic consumers view that those countries have better capabilities in producing higher quality televisions. However, consumer ethnocentrism do not lead them to negatively perceive the quality of imported televisions. Indeed, the image of those countries has a greater role in Indonesian consumers’ quality evaluation. The result calls for a substantial improvement in quality of domestically made televisions.

  1. THE USE OF PUBLIC RELATIONS IN PROJECTING AN ORGANIZATION'S POSITIVE IMAGE

    Directory of Open Access Journals (Sweden)

    Ioana Olariu

    2017-07-01

    Full Text Available This article is a theoretical approach on the importance of using public relations in helping an organization to project a positive image. The study of the impact information has on the image of organisations seems to be an interesting research topic. Practice has proved that the image of institutions has a patrimonial value and it is sometimes essential in raising their credibility. It can be said that an image is defined as the representation of certain attitudes, opinions or prejudices concerning a person, a group of persons or the public opinion concerning an institution. In other words, an image is the opinion of a person, of a group of persons or of the public opinion regarding that institution. All specialists agree that a negative image affects, sometimes to an incredible extent, the success of an institution. In the contemporary age, we cannot speak about public opinion without taking into consideration the mass media as a main agent in transmitting the information to the public, with unlimited possibilities of influencing or forming it. The plan for the PR department starts with its own declaration of principles, which describes its roles and contribution to the organisation.

  2. Relational benefits and quality of relation – towards understanding of the ties between science and business

    Directory of Open Access Journals (Sweden)

    Małgorzata Grzegorczyk

    2016-06-01

    Full Text Available The goal of this article is to answer the question in what way relational marketing and in particular, the concept of relational benefits, as well as quality of relation may influence the transfer of knowledge and technologies from universities to business. Another goal is to highlight significant, future directions of research in this area. Integration of the theory of relational marketing and technology transfer may create a new framework for fuller understanding of the ties between science and business. Research in this area may contribute to the expansion and development of the theory of relational marketing, which until now was limited to the analysis of relations within a single sector. The results of conducted research show that ties characterized by high relational engagement are common, recognized by both academic and business environment as precious and play an important role in stimulating innovations. The quality of relations and relational benefits may play an important role in building long-term ties between universities and the industry. Integration of behavioural theories with the theory of technology transfer may contribute to a better understanding of the behaviour of particular participants of the transfer on the individual level.

  3. Body image attitude among Chinese college students.

    Science.gov (United States)

    Wang, Kui; Liang, Rui; Ma, Zhen-Ling; Chen, Jue; Cheung, Eric F C; Roalf, David R; Gur, Ruben C; Chan, Raymond C K

    2018-03-01

    The present study aimed to examine body image attitude in Chinese college students and related psychological consequences. A silhouette-matching test was administered to 425 college students in mainland China. Self-esteem, negative emotions, subjective well-being, and eating-disorder-related weight-controlling behaviors were also measured. Only 12.9% of the participants were satisfied with their figure and the extent of body image dissatisfaction was comparable for both sexes. The majority of the female participants indicated a preference to be more slender. Their ideal figure was underweight and was far smaller than the most attractive female figure chosen by male participants. For male participants, the proportion wanting a fuller figure was comparable to that wanting a slimmer figure. Among female participants, body image dissatisfaction negatively correlated with self-esteem and subjective well-being, and positively correlated with negative emotions. Drive for thinness correlated with eating-disorder-related weight-controlling behaviors not only for females, but also for males. Body image dissatisfaction, as a diagnostic feature for major subtypes of eating disorders, may signal serious concern among Chinese college students. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  4. The Contribution of Equitation Science to Minimising Horse-Related Risks to Humans

    Directory of Open Access Journals (Sweden)

    Melissa Starling

    2016-02-01

    Full Text Available Equitation science is an evidence-based approach to horse training and riding that focuses on a thorough understanding of both equine ethology and learning theory. This combination leads to more effective horse training, but also plays a role in keeping horse riders and trainers safe around horses. Equitation science underpins ethical equitation, and recognises the limits of the horse’s cognitive and physical abilities. Equitation is an ancient practice that has benefited from a rich tradition that sees it flourishing in contemporary sporting pursuits. Despite its history, horse-riding is an activity for which neither horses nor humans evolved, and it brings with it significant risks to the safety of both species. This review outlines the reasons horses may behave in ways that endanger humans and how training choices can exacerbate this. It then discusses the recently introduced 10 Principles of Equitation Science and explains how following these principles can minimise horse-related risk to humans and enhance horse welfare.

  5. Magnetic Resonance Imaging in Myocardial Fibrosis Related to Ischemic Events

    Directory of Open Access Journals (Sweden)

    Himcinschi Elisabeta

    2017-09-01

    Full Text Available Given the higher amount of detail it offers, the use of magnetic resonance (MR in the field of cardiology has increased, thus leading to a decrease in the use of invasive and irradiating methods for diagnosing various cardiovascular disorders. The only precautions for MR imaging are metallic implants and advanced-stage chronic kidney disease. For the acquisition of clear and dynamic myocardial images, methods such as spin echo imaging for anatomical description, steady-state free precession imaging for the assessment of ventricular cavity size and function, flow velocity encoding for blood flow measurements, radiofrequency tagging for dynamics, and even spectroscopy for metabolism evaluation are used. Cardiac magnetic resonance (CMR is considered the gold standard imaging method for the anatomical characterization of the heart and obtaining information related to myocardial dynamics. In case of ischemic events, CMR is used for a detailed description of the necrotic area and the complications, and for tracking the ventricular remodeling. By administrating a contrast agent (gadolinium, the difference between sub-endothelial and transmural infarctions can be distinguished, highlighting even microvascular lesions responsible for the extension of the necrosis. The assessment of the dynamics of ventricular remodeling and viability through late gadolinium enhancement (LGE technology highlights the area of fibrosis and the occurrence of late complications.

  6. Civil liability related to imaging exams in Brazil

    OpenAIRE

    Fontana, Mathias Pante; Liedke, Gabriela Salatino; Fontoura, Helena da Silveira; Silveira, Heraldo Luis Dias da; Silveira, Heloísa Emilia Dias da

    2015-01-01

    Aim: To analyze all court lawsuits in Brazil in relation to civil liability involving radiographic and tomographic images up to February 2014. Methods: All Brazilian courts were surveyed for “civil liability,” “error,” “radiology,” “radiography,” and “tomography,” returning 3923 second-instance lawsuits. Out of them were excluded labor legislation, health insurance coverage of radiological examinations, and criminal liability cases and 359 were selected. Compliance with expert reports, involv...

  7. Image Post-Processing and Analysis. Chapter 17

    Energy Technology Data Exchange (ETDEWEB)

    Yushkevich, P. A. [University of Pennsylvania, Philadelphia (United States)

    2014-09-15

    For decades, scientists have used computers to enhance and analyse medical images. At first, they developed simple computer algorithms to enhance the appearance of interesting features in images, helping humans read and interpret them better. Later, they created more advanced algorithms, where the computer would not only enhance images but also participate in facilitating understanding of their content. Segmentation algorithms were developed to detect and extract specific anatomical objects in images, such as malignant lesions in mammograms. Registration algorithms were developed to align images of different modalities and to find corresponding anatomical locations in images from different subjects. These algorithms have made computer aided detection and diagnosis, computer guided surgery and other highly complex medical technologies possible. Nowadays, the field of image processing and analysis is a complex branch of science that lies at the intersection of applied mathematics, computer science, physics, statistics and biomedical sciences. This chapter will give a general overview of the most common problems in this field and the algorithms that address them.

  8. The Pan-STARRS Data Processing and Science Analysis Software Systems

    International Nuclear Information System (INIS)

    Heasley, J. N.

    2008-01-01

    The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) will use gigapixel CCD cameras on multiaperture telescopes to survey the sky in the visible and infrared bands. A single telescope system (PS1) has been deployed on Maui, and a four-telescope system (PS4) will be sited on Mauna Kea on the Big Island of Hawaii. These systems will survey the sky repeatedly and will generate petabytes of image data and catalogs of billions of stars and galaxies. Each set of images will be combined to create a very sensitive multicolor image of the sky, and differences between images will provide for a massive database of 'time domain astronomy' including the study of moving objects and transient or variable objects. All data from PS1 will be put into the public domain following its 3.5 year survey. The project faces formidable challenges in processing the image data in near real time and making the catalog data accessible via relational databases. In this talk, I describe the software systems developed by the Pan-STARRS project and how these core systems will be augmented by an assortment of science 'servers' being developed by astronomers in the PS1 Science Consortium.

  9. Science and Different Images of the World

    Directory of Open Access Journals (Sweden)

    Michele Marsonet

    2016-07-01

    They are both intersubjective and non arbitrary. What are, however, these two images, and are they really alternative? Let us note, from the onset, that the two images we just mentioned are both idealizations in the same sense of Max Weber’s “ideal types”. This means that, in order to discover their actual presence, we need having recourse to a good deal of philosophical abstraction. In other words, they are not disclosed by mere empirical recognition. For instance, we live in the commonsense view of the world, and only a complex process of reflection makes us understand that we, as human beings, share a common view of the world, which is in turn determined by the fact that our physical structure bounds us to conceive of reality in a certain way rather than in another. Think about the importance that light, for example, has not only in daily life, but even in our philosophical conceptualization of the world. The story is complicated by the fact that each image has a history, and while the manifest image dates back to pre-history, the scientific image is constantly changing shape.

  10. Images in Social Media

    DEFF Research Database (Denmark)

    Ørnager, Susanne; Lund, Haakon

    This book focuses on methodologies, organization and communication of digital image collection research that utilize social media content. (“Image” is here understood as cultural, conventional and commercial - stock photos - representations.) The lecture offer expert views that provide different...... fake news, image manipulation, mobile photos etc. these issues are very complex and need a publication of their own. This book should primarily be useful for students in library and information science, psychology, and computer science....

  11. How Choosing Science Depends on Students' Individual Fit to "Science Culture"

    Science.gov (United States)

    Taconis, Ruurd; Kessels, Ursula

    2009-01-01

    In this paper we propose that the unpopularity of science in many industrialised countries is largely due to the gap between the subculture of science, on the one hand, and students' self-image, on the other. We conducted a study based on the self-to-prototype matching theory, testing whether the perceived mismatch between the typical…

  12. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  13. Fundamental Data Standards for Science Data System Interoperability and Data Correlation

    Science.gov (United States)

    Hughes, J. Steven; Gopala Krishna, Barla; Rye, Elizabeth; Crichton, Daniel

    The advent of the Web and languages such as XML have brought an explosion of online science data repositories and the promises of correlated data and interoperable systems. However there have been relatively few successes in meeting the expectations of science users in the internet age. For example a Google-like search for images of Mars will return many highly-derived and appropriately tagged images but largely ignore the majority of images in most online image repositories. Once retrieved, users are further frustrated by poor data descriptions, arcane formats, and badly organized ancillary information. A wealth of research indicates that shared information models are needed to enable system interoperability and data correlation. However, at a more fundamental level, data correlation and system interoperability are dependant on a relatively few shared data standards. A com-mon data dictionary standard, for example, allows the controlled vocabulary used in a science repository to be shared with potential collaborators. Common data registry and product iden-tification standards enable systems to efficiently find, locate, and retrieve data products and their metadata from remote repositories. Information content standards define categories of descriptive data that help make the data products scientifically useful to users who were not part of the original team that produced the data. The Planetary Data System (PDS) has a plan to move the PDS to a fully online, federated system. This plan addresses new demands on the system including increasing data volume, numbers of missions, and complexity of missions. A key component of this plan is the upgrade of the PDS Data Standards. The adoption of the core PDS data standards by the International Planetary Data Alliance (IPDA) adds the element of international cooperation to the plan. This presentation will provide an overview of the fundamental data standards being adopted by the PDS that transcend science domains and that

  14. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    Science.gov (United States)

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  15. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    Science.gov (United States)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  16. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    parental activities, and (c) the teachers rated student's interest in the science OST programs as high. Student comments on the survey and the qualitative analysis by trained coders revealed that success of the program was related to the collaborative and hands-on activities/projects of their OST program. In addition, students felt more involved in projects during after-school and weekend activities than in OST lunch break programs.

  17. The Mona Lisa of modern science.

    Science.gov (United States)

    Kemp, Martin

    2003-01-23

    No molecule in the history of science has reached the iconic status of the double helix of DNA. Its image has been imprinted on all aspects of society, from science, art, music, cinema, architecture and advertising. This review of the Mona Lisa of science examines the evolution of its form at the hands of both science and art.

  18. Female science teacher beliefs and attitudes: implications in relation to gender and pedagogical practice

    Science.gov (United States)

    Zapata, Mara; Gallard, Alejandro J.

    2007-10-01

    Beliefs and attitudes resulting from the unique life experiences of teachers frame interactions with learners promoting gender equity or inequity and the reproduction of social views about knowledge and power as related to gender. This study examines the enactment of a female science teacher's pedagogy (Laura), seeking to understand the implications of her beliefs and attitudes, as framed by her interpretations and daily manifestations, as she interacts with students. Distinct influences inform the conceptual framework of this study: (a) the social organization of society at large, governed by understood and unspoken patriarchy, present both academically and socially; (b) the devaluing of women as "knowers" of scientific knowledge as defined by a western and male view of science; (c) the marginalization or "feminization" of education and pedagogical knowledge. The findings reflect tensions between attitudes and beliefs and actual teacher practice suggesting the need for awareness within existing or new teachers about their positions as social agents and the sociological implications related to issues of gender within which we live and work, inclusive of science teaching and learning.

  19. Pengaruh Marketing Public Relations Terhadap Brand Image Dan Loyalitas Pelanggan (Survei Pada Wisatawan Taman Rekreasi Selecta, Batu)

    OpenAIRE

    Sitepu, Rehulina Desviora

    2015-01-01

    This research aims to: investigate the influence of Marketing Public Relations on Brand Image, investigate the influence of Brand Image on Customer Loyalty and investigate the influence of Marketing Public Relations on Customer Loyalty. The research method that used is explanatory research with quantitative approach. Variables that used in this research are Marketing Public Relations, Brand Image, and Customer Loyalty. The respondents of this research are the visitors of Selecta Recreational ...

  20. Body image mediates the effect of cancer-related stigmatization on depression

    DEFF Research Database (Denmark)

    Esser, Peter; Mehnert, Anja; Johansen, Christoffer

    2018-01-01

    OBJECTIVE: Because cancer-related stigmatization is prevalent but difficult to change, research on its impact on psychological burden and respective intervening variables is needed. Therefore, we investigated the effect of stigmatization on depressive symptomatology and whether body image mediates...... this relationship. METHODS: This bicentric study assessed patients of 4 major tumor entities. We measured stigmatization (SIS-D), depressive symptomatology (PHQ-9), and body image (FKB-20). Applying multiple mediator analyses, we calculated the total effect of stigmatization on depressive symptomatology...

  1. Thoracic spine disc-related abnormalities: longitudinal MR imaging assessment

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Charles J.; Schweitzer, Mark E.; Morrison, William B.; Parellada, Joan A. [TJUH Radiology, Philadelphia, Pennsylvania (United States); Carrino, J.A. [Department of Radiology ASB-1, Harvard Medical School, Brigham and Women' s Hospital, L1, Room 002B, 75 Francis Street, MA 02115, Boston (United States)

    2004-04-01

    To describe and characterize the temporal changes in disc-related disorders of the thoracic spine using MR imaging. A retrospective longitudinal cohort study was carried out of 40 patients with two sequential thoracic spine MR images at variable intervals. The images were assessed for baseline presence of, new incidence of and changes in disc herniation, degenerative disc disease, endplate marrow signal alteration and Schmorl nodes. The range of follow-up was 4-149 weeks. Baseline presence was: disc herniation, 10% (49/480); degenerative disc disease, 14% (66/480); endplate marrow signal alteration, 2.3% (11/480); Schmorl nodes 9.6% (46/480). Most pre-existing lesions tended to remain unchanged. Herniations showed the most change, tending to improve in 27%. New incidence was: disc herniation, 1.5% (7/480), degenerative disc disease, 2% (10/480); endplate marrow signal alteration, 1.6% (8/480); Schmorl nodes, 2.1% (10/480). Disc degeneration was first visible at an 11-week interval and once established almost never changed over many weeks to months. Endplate signal alterations (Modic changes) were uncommon. Schmorl nodes show no change from baseline for up to 2 1/2 years. All findings predominated in the lower intervertebral levels from T6 to T10. The most prevalent thoracic spine disc-related findings are degeneration and herniation. Disc herniations predominate in the lower segments and are a dynamic phenomenon. Disc degeneration can be rapidly evolving but tends to remain unchanged after occurrence. Endplate marrow signal changes were an uncommon manifestation of thoracic disc disease. Schmorl nodes showed the least change over time. (orig.)

  2. The Relation between Science Student Teachers' Approaches to Studying and Their Attitude to Reflective Practice

    Science.gov (United States)

    Efe, Rifat

    2018-01-01

    In this study, the relation between science student teachers' approaches to studying and their attitude to reflective practice were investigated. The participants were 345 science student teachers on teacher education course during 2015-2016 academic year. The data was collected through Approaches and Study Skills Inventory for Students (ASSIST)…

  3. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, W., E-mail: ludwig@esrf.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); King, A. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Reischig, P. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Herbig, M. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Lauridsen, E.M.; Schmidt, S. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark); Proudhon, H.; Forest, S. [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Cloetens, P.; Roscoat, S. Rolland du [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Buffiere, J.Y. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Marrow, T.J. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Poulsen, H.F. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2009-10-25

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  4. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    International Nuclear Information System (INIS)

    Ludwig, W.; King, A.; Reischig, P.; Herbig, M.; Lauridsen, E.M.; Schmidt, S.; Proudhon, H.; Forest, S.; Cloetens, P.; Roscoat, S. Rolland du; Buffiere, J.Y.; Marrow, T.J.; Poulsen, H.F.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  5. Les Relations Publiques et l’Image de l’Entreprise Reflexions Theoriques et Methodologiques

    Directory of Open Access Journals (Sweden)

    Noreddine Hamici

    2014-06-01

    Full Text Available This article aims to shed light on the nature of the various challenges faced by the company, whatever form it takes, in the field of communication and public relations relying on a very successful concept, i.e. "the corporate image", an oft-used concept and yet still ambiguous. The ultimate objective of the present article is to provide some theoretical reflections on the different definitions of mental image in the first instance, and subsequently the corporate image, its types, and its components before demonstrating in the final instance the methods and techniques used to measure this image.

  6. Imaging of the ventriculoperitoneal shunt-related complications in infants and children with hydrocephalus

    International Nuclear Information System (INIS)

    Jeon, Se Ok; Kim, Ji Hye; Oh, Eun Young; Hwang, Hee Young; Lee, Seon Kyu; Lee, Eun Joo; Kwak, Min Sook; Kim, Hyung Sik

    1999-01-01

    To evaluate the frequency and imaging findings of various ventriculo-peritoneal shunt-related complications in pediatric patients with hydrocephalus. We retrospectively reviewed 246 plain radiographs, three shuntograms, 53 ultrasounds, 133 CT scans, and 24 MR images obtained before and after the ventriculo-peritoneal shunt procedure in 33 pediatric patients with hydrocephalus. Using preoperative images, the etiology of the hydrocephalus was assessed. Changes in the size and shape of the ventricles, the location and continuity of shunt apparatus, and the presence of any abnormal enhancement, hemorrhage, edema or tissue loss, or other findings of complications, were analyzed on postoperative images ; the frequency and imaging findings of shunt-related complications such as shunt malfunction, infection, homorrhage or isolated ventricle, and complications caused by overdrainage, were thus evaluated. The frequency of such complications was analyzed according to the etiology of the hydrocephalus, and in addition, medical records were reviewed and correlated with imaging findings. In 18 of the 33 patients(54%), a total of 31 complications was detected. These were present in four of five cases (80%) of hydrocephalus caused by meningitis and ventriculitis, seven of twelve (58%) intraventricular hemorrhage, two of four (50%) unknown cases, three of nine (33%) congenital malformations, one of two (50%) tumors, and one (100%) congenital infection. Shunt malfunction was most common (n=15), and was accompanied by findings of enlarged ventricles, periventricular and peritubal edema, and abnormal location of the shunt tube. Symptoms and signs of increased intracranial pressure were also noted. Subdural hemorrhage and infection were present in four cases each ; findings of infection were enhancement of the ventricular wall, meninges, and parenchyma, as well as sonographically noted intraventricular septation and increased ventricular wall echo. Isolated lateral ventricle (n=4) or 4

  7. Parent-Child Relations and Adolescent Self-Image Following Divorce: A 10-Year Study.

    Science.gov (United States)

    Dunlop, Rosemary; Burns, Ailsa; Bermingham, Suzanne

    2001-01-01

    Explored links between self-image, family structure (divorced or intact), parent-child relations, and gender at 3 intervals over 10 years during adolescence to early adulthood. Results suggest a consistent relationship between high parental care, low overprotective control, and better self-image scores with a stronger effect among subjects from…

  8. The Related Science of Cosmetology.

    Science.gov (United States)

    Wasserman, Edward

    Intended as an instructional guide for the use of a science teacher or beauty culture shop teacher in teaching the scientific aspects in a 1-year prevocational cosmetology program at area vocational high schools, this state curriculum guide was developed by a committee of vocational instructors and field tested in three vocational schools. An…

  9. RELATIONSHIP COMMITMENT, RELATIONAL EQUITY AND COMPANY IMAGE IN CUSTOMER LOYALTY DEVELOPMENT

    OpenAIRE

    DLAČIĆ, JASMINA; ŽABKAR, VESNA

    2012-01-01

    This paper explores the relationship between customer loyalty and its seldom researched antecedents: relationship commitment, relational equity and company image. The proposed conceptual model is tested with data gained from customers of mobile telephone operators. The results show that relationship commitment and relational equity have a statistically significant positive influence on customer loyalty. In addition, the results of hierarchical multiple regr...

  10. Public Relations Efforts for the Third World: Images in the News.

    Science.gov (United States)

    Albritton, Robert B.; Manheim, Jarol B.

    1985-01-01

    Found that, after Argentina, Indonesia, Korea, the Philippines, and Turkey hired U. S. public relations consultants, their news image in the "New York Times" improved in positive coverage and portrayal as more cooperative nations. (PD)

  11. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    Science.gov (United States)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be

  12. Japan's patent issues relating to life science therapeutic inventions.

    Science.gov (United States)

    Tessensohn, John A

    2014-09-01

    Japan has made 'innovation in science and technology' as one of its central pillars to ensure high growth in its next stage of economic development and its life sciences market which hosts regenerative medicine was proclaimed to be 'the best market in the world right now.' Although life science therapeutic inventions are patentable subject matter under Japanese patent law, there are nuanced obviousness and enablement challenges under Japanese patent law that can be surmounted in view of some encouraging Japanese court developments in fostering a pro-patent applicant environment in the life sciences therapeutic patent field. Nevertheless, great care must be taken when drafting and prosecuting such patent applications in the world's second most important life sciences therapeutic market.

  13. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  14. New MR imaging observation in HIV-related cognitive impairment (AIDS dementia complex)

    International Nuclear Information System (INIS)

    Ketonen, L.; Kieburtz, K.D.; Zetteimaier, A.; Simon, J.H.; Kido, D.K.

    1989-01-01

    MR findings have been reported on the acquired immunodeficiency syndrome (AIDS) demential complex, but the findings are late relative to clinical signs. This paper reports on a new MR finding observed in patients with human immunodeficiency virus (HIV)-related cognitive impairment studied early in the disease process. Fifty-two patients had a total of 86 MR images. Al images were obtained with a 1.5-T system (protondensity, spin-echo, TR/TE = 2,000/30 [repetition time/echo time, msec]). High-signal lesions were seen in the region of the splenium of the corpus callosum and in the crura of the fornices. The lesions demonstrated no contrast enhancement with Gd-DTPA. Pathologic examination was performed in four patients. The fornix-subcallosal abnormality may have relevance to the memory dysfunction in patients with HIV-related cognitive impairment

  15. Proceedings of the International Symposium on Medical Imaging at NIRS, 2000. A New Horizon for Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, Shuji (ed.)

    2002-06-01

    This document is the proceedings of the symposium in the title and involves those of following 5 sessions: Radiopharmaceuticals and related topics (4 presentations), Instrumentation and data processing (6), Neuroscience by PET (4), Neuroscience by NMR (4), and New cancer imaging, PET-CT (4). The first concerns quality assurance and control, production systems of PET radiopharmaceuticals, functional nuclear imaging and development of radioligands at National Institute of Radiological Sciences (NIRS); second, 3D PET imaging, methodology, next generation PET detector, high-field superconducting magnet, high resonance imaging and development of 4D CT; third, genetic and behavioral link, histamine neuron, D2 receptor in schizophrenia and PET in dementia; fourth, future research directions, metabolic response (FMRI), animal fMRI and fMRI in neuropsychiatric disorders; and fifth, requisite of PET CT in oncology, clinical PET/CT, functional anatomic mapping and Siemens new PET/CT. (N.I.)

  16. Instruments for radiation measurement in life sciences (5). ''Development of imaging technology in life science''. 9. Advantages of RI and fluorescence in imaging

    International Nuclear Information System (INIS)

    Furukawa, Takako; Jin, Zhao-Hui

    2009-01-01

    Imaging has been used as an effective research tool in many fields. In recent years, ''molecular imaging'' has come to attract a major attention as it studies molecular events in living animals and humans. Variety of modalities is used in molecular imaging, sometimes in combination, and the machines and techniques are going through rapid progress. Two of popular modalities among them are fluorescence imaging and radioisotope (RI) imaging such as positron emission tomography (PET) and single photon emission tomography (SPECT). Fluorescence imaging provides rich selection in imaging probes and the resolution can reach into sub-cellular level. RI imaging, especially PET, is superior to the others in quantitative analysis and the direct applicability to humans. In this article the two imaging modalities are overviewed comparing their characteristics. (author)

  17. An Animated Introduction to Relational Databases for Many Majors

    Science.gov (United States)

    Dietrich, Suzanne W.; Goelman, Don; Borror, Connie M.; Crook, Sharon M.

    2015-01-01

    Database technology affects many disciplines beyond computer science and business. This paper describes two animations developed with images and color that visually and dynamically introduce fundamental relational database concepts and querying to students of many majors. The goal is for educators in diverse academic disciplines to incorporate the…

  18. Exploring Sustainability Using images from Space

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks

  19. High spectral resolution image of Barnacle Bill

    Science.gov (United States)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  20. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00053405; The ATLAS collaboration

    2017-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices. People were better than existing algorithms at identifying displaced vertices for some masses and lifetimes, and showed good ability to recognize unexpected new features in the data.

  1. Putting the spark into physical science and algebra

    Science.gov (United States)

    Pill, Bruce; Dagenais, Andre

    2007-06-01

    The presenters will describe a number of laboratory activities developed in collaboration with the Department of Electrical Engineering at the University of Delaware as part of their outreach program to help make math and science more authentic on the pre-college level. Lessons relating to electrical topics are often abstract and appropriate only for advanced students in math and science. We have devised lessons that rely on simple equipment. They promote skills that are included in National and State Standards. They emphasize the connections between math and science; they are appropriate for an algebra course, a physical science course, a PhysicsFirst course or a traditional physics course. Students benefit from seeing that what they learn in math and science courses can lead to cutting-edge work in areas such as passive wave imaging, photonics, wireless communication and high performance computing. The collaboration has been meaningful because it has motivated us to tailor our lessons to reflect what is happening in the research lab of our local university. Written materials for use in teacher training workshops will also be available.

  2. Investigate the relation between the media literacy and information literacy of students of communication science and information science and knowledge

    Directory of Open Access Journals (Sweden)

    Elham Esmaeil Pounaki

    2017-03-01

    Full Text Available The new millennium is called Information Age, in which information and communication technologies have been developed. The transfer from industrial society to information society has changed the form and level of education and information from those of the past times. In the past, literacy meant the ability of reading and writing, but today the meaning of literacy has been changed through the time and such a type of literacy is not enough to meet people’s needs in the industrial society of the 21st century. Today’s life requires media and information literacy especially for the students, whose duty is to research and who have a significant role in the development of their country from any perspective. This research aims to study the relation between the media literacy and information literacy of the students of the fields of communication science and information science and knowledge. This is an applied research in terms of its objective and uses a survey-correlation method. The statistical population of this research consists of the postgraduate students studying in the fields of study of information science and knowledge and communication science at Tehran University and Allameh Tabatabai University. The data required for this research were collected by a researcher-made questionnaire. The reliability of the questionnaire has been evaluated by Cronbach’s Alpha, which was equal to 0.936. The data were analyzed using descriptive and inferential statistic methods. The results showed that the level of media literacy and information literacy of students is desirable. There is a significant relationship between the economic status of students and their media literacy. However, the social status of students was directly related to their "ability to communicate" variable of media literacy. Also the Pearson correlation test showed a significant relationship between the variables of media literacy and information literacy.

  3. BMC Ecology image competition 2014: the winning images.

    Science.gov (United States)

    Harold, Simon; Henderson, Caspar; Baguette, Michel; Bonsall, Michael B; Hughes, David; Settele, Josef

    2014-08-29

    BMC Ecology showcases the winning entries from its second Ecology Image Competition. More than 300 individual images were submitted from an international array of research scientists, depicting life on every continent on earth. The journal's Editorial Board and guest judge Caspar Henderson outline why their winning selections demonstrated high levels of technical skill and aesthetic sense in depicting the science of ecology, and we also highlight a small selection of highly commended images that we simply couldn't let you miss out on.

  4. An Automatic Multilevel Image Thresholding Using Relative Entropy and Meta-Heuristic Algorithms

    Directory of Open Access Journals (Sweden)

    Josue R. Cuevas

    2013-06-01

    Full Text Available Multilevel thresholding has been long considered as one of the most popular techniques for image segmentation. Multilevel thresholding outputs a gray scale image in which more details from the original picture can be kept, while binary thresholding can only analyze the image in two colors, usually black and white. However, two major existing problems with the multilevel thresholding technique are: it is a time consuming approach, i.e., finding appropriate threshold values could take an exceptionally long computation time; and defining a proper number of thresholds or levels that will keep most of the relevant details from the original image is a difficult task. In this study a new evaluation function based on the Kullback-Leibler information distance, also known as relative entropy, is proposed. The property of this new function can help determine the number of thresholds automatically. To offset the expensive computational effort by traditional exhaustive search methods, this study establishes a procedure that combines the relative entropy and meta-heuristics. From the experiments performed in this study, the proposed procedure not only provides good segmentation results when compared with a well known technique such as Otsu’s method, but also constitutes a very efficient approach.

  5. Physics instrumentation for medical imaging

    International Nuclear Information System (INIS)

    Townsend, D.W.

    1993-01-01

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications

  6. Physics instrumentation for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, D. W. [Geneva University Hospital, Geneva (Switzerland)

    1993-04-15

    The first Nobel Physics Prize, awarded in 1901, went to Wilhelm Röntgen for his discovery of X-rays in 1895. This, and the most recent physics Nobel, to Georges Charpak last year for his detector developments, span several generations of applied science. As well as helping to launch the science of atomic physics, Röntgen's discovery also marked the dawn of a medical science - radiography - using beams of various kinds to image what otherwise cannot be seen. Ever since, physicists and radiologists have worked hand in hand to improve imaging techniques and widen their medical applications.

  7. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    NARCIS (Netherlands)

    Ferrari, A.C.; Dekker, C.; Vandersypen, L.M.K.; Van Der Zant, H.S.J.

    2014-01-01

    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European

  8. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  9. Teachers' Mastery Goals: Using a Self-Report Survey to Study the Relations between Teaching Practices and Students' Motivation for Science Learning

    Science.gov (United States)

    Vedder-Weiss, Dana; Fortus, David

    2018-02-01

    Employing achievement goal theory (Ames Journal of Educational psychology, 84(3), 261-271, 1992), we explored science teachers' instruction and its relation to students' motivation for science learning and school culture. Based on the TARGETS framework (Patrick et al. The Elementary School Journal, 102(1), 35-58, 2001) and using data from 95 teachers, we developed a self-report survey assessing science teachers' usage of practices that emphasize mastery goals. We then used this survey and hierarchical linear modeling (HLM) analyses to study the relations between 35 science teachers' mastery goals in each of the TARGETS dimensions, the decline in their grade-level 5-8 students' ( N = 1.356) classroom and continuing motivation for science learning, and their schools' mastery goal structure. The findings suggest that adolescents' declining motivation for science learning results in part from a decreasing emphasis on mastery goals by schools and science teachers. Practices that relate to the nature of tasks and to student autonomy emerged as most strongly associated with adolescents' motivation and its decline with age.

  10. The formation of science choices in secondary school

    Science.gov (United States)

    Cleaves, Anna

    2005-04-01

    In this paper I examine the formation of post-16 choices over 3 years among higher achieving students with respect to enrolment in post-compulsory science courses. Transcripts from four interviews carried out over 3 years with 72 secondary school students were qualitatively analysed. Students were found to shape their choices for science in a variety of ways across time. The situation regarding science choices hinges on far more dynamic considerations than the stereotypical image of the potential advanced science student, committed to becoming a scientist from an early age. There is an interplay of self-perception with respect to science, occupational images of working scientists, relationship with significant adults and perceptions of school science The findings are informative for science educators and for career guidance professionals who may need to take into account the complexity of young people's choices.

  11. Sensory analysis for magnetic resonance-image analysis: Using human perception and cognition to segment and assess the interior of potatoes

    DEFF Research Database (Denmark)

    Martens, Harald; Thybo, A.K.; Andersen, H.J.

    2002-01-01

    were developed by the panel during preliminary training sessions, and consisted in definitions of various biological compartments inside the tubers. The results from the sensory and the computer-assisted image analyses of the shape and interior structure of the tubers were related to the experimental...... able to detect differences between varieties as well as storage times. The sensory image analysis gave better discrimination between varieties than the computer-assisted image analysis presently employed, and was easier to interpret. Some sensory descriptors could be predicted from the computer......-assisted image analysis. The present results offer new information about using sensory analysis of MR-images not only for food science but also for medical applications for analysing MR and X-ray images and for training of personnel, such as radiologists and radiographers. (C) 2002 Elsevier Science Ltd....

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5. Imaging hydrogen oxidation activity of catalyst-coated perfluoro sulfonic acid-polymer electrolyte membranes using Scanning Electrochemical Microscopy. Meera Parthasarathy Vijayamohanan K Pillai. Volume 121 Issue 5 September 2009 pp 719-725 ...

  13. A Diary Study of Self-Compassion, Upward Social Comparisons, and Body Image-Related Outcomes.

    Science.gov (United States)

    Thøgersen-Ntoumani, Cecilie; Dodos, Louisa; Chatzisarantis, Nikos; Ntoumanis, Nikos

    2017-07-01

    Self-compassion may protect individuals experiencing poor body image and associated maladaptive outcomes. The purpose of the study was to examine within-person associations (whilst controlling for between-person differences) between appearance-related self-compassion, appearance-related threats (operationalised as upward appearance comparisons), and body image-related variables, namely, social physique anxiety, drive for thinness, and body dissatisfaction. A diary methodology was used whereby young women (n = 126; M age = 21.26) responded to brief online surveys three times per day (11am, 3pm, and 7pm) every second day for one week (i.e. a total of 12 measurement points). Results of mixed linear modeling revealed that both state appearance-related upward comparisons and self-compassion independently predicted all three outcomes in a positive and negative fashion, respectively. No significant interaction effects between state appearance-related upward comparisons and self-compassion were found. The results suggested that appearance-based self-compassion was important, not just when there was a potential threat to body image via upward appearance comparisons. The findings highlight the importance of fostering self-compassion on a daily level. © 2017 The International Association of Applied Psychology.

  14. Parents' and children's beliefs about science and science careers

    Science.gov (United States)

    Telfer, Jo Ann

    Science has become an essential part of our cultural, social and technological lives. Around the world economic policies are giving high priority to the production of new knowledge generated by scientists. Unfortunately, gender equality in science-related careers has not been achieved. Women who possess high intellectual and personal abilities are succeeding in many occupational areas previously closed to all but the most impervious women, but females are still largely underrepresented in physical science and mathematics related careers. The purpose of the current study was to examine the reasons for this underrepresentation of women in science-related careers. Participants included a subset of mothers (n = 174), fathers (n = 132) and children (n = 186) from a larger study at the University of Calgary entitled Gender Differences in Student Participation and Achievement in the Sciences: Choice or Chance ? Telephone interview and survey questionnaire data were examined for gender and achievement level differences, focusing on high achieving girls who are most likely to succeed in science-related careers. Relationships between parents' and children's responses were also examined using the theoretical construct of Eccles' Model of Achievement Related Choices. Gathered data were studied using factor analysis, multivariate analysis of variance, analysis of variance as well as categorical analysis of qualitative results. Girls and boys achieved similar grades on all academic measures except the Alberta Science Achievement Test, where boys scored significantly higher than girls. Mothers, fathers, and children indicated positive attitudes towards science, no gender stereotyping about science and science careers, and gender neutral beliefs about science achievement. Gender differences were found in expressed possibility of future career choice. Science/Professional Careers were viewed as male occupations by mothers and children, but as gender neutral occupations by fathers

  15. Numerical Relativity as preparation for Industrial Data Science, a personal perspective

    Science.gov (United States)

    Smith, Kenneth

    2014-03-01

    Much of the conversation in commercial enterprises these days revolves around industry buzz words such as Big Data, Data Science, and being Data Driven. Beyond the hype surrounding these terms, there is a real, continuously growing movement for organizations to make better use of the data assets they have to inform decisions, strategy, and policy. This push is not unique to the commercial sector; governmental and academic organizations are also embracing such initiatives. The skills required to staff a Data Science project typically come from a number of disciplines, ranging from computer science, statistics, modeling and simulation, to information technology, but the emerging wisdom in the community is that the rigor and discipline of a scientific background often makes for the best data scientists. In this talk, I will offer a personal perspective on making the transition from a career in computational physics (specifically Numerical Relativity) to a career in industry, where I have focused on helping organizations make more informed decisions through better access and analysis of data at their disposal. I will identify the skills and training that carry over from a background in physics, discuss the gaps in that preparation, hypothesize as to where this industry is headed, and offer a frank look at a life outside of academia.

  16. NASA's Global Change Master Directory: Discover and Access Earth Science Data Sets, Related Data Services, and Climate Diagnostics

    Science.gov (United States)

    Aleman, Alicia; Olsen, Lola; Ritz, Scott; Morahan, Michael; Cepero, Laurel; Stevens, Tyler

    2011-01-01

    NASA's Global Change Master Directory provides the scientific community with the ability to discover, access, and use Earth science data, data-related services, and climate diagnostics worldwide. The GCMD offers descriptions of Earth science data sets using the Directory Interchange Format (DIF) metadata standard; Earth science related data services are described using the Service Entry Resource Format (SERF); and climate visualizations are described using the Climate Diagnostic (CD) standard. The DIF, SERF and CD standards each capture data attributes used to determine whether a data set, service, or climate visualization is relevant to a user's needs. Metadata fields include: title, summary, science keywords, service keywords, data center, data set citation, personnel, instrument, platform, quality, related URL, temporal and spatial coverage, data resolution and distribution information. In addition, nine valuable sets of controlled vocabularies have been developed to assist users in normalizing the search for data descriptions. An update to the GCMD's search functionality is planned to further capitalize on the controlled vocabularies during database queries. By implementing a dynamic keyword "tree", users will have the ability to search for data sets by combining keywords in new ways. This will allow users to conduct more relevant and efficient database searches to support the free exchange and re-use of Earth science data. http://gcmd.nasa.gov/

  17. Autonomous Science Analysis with the New Millennium Program-Autonomous Sciencecraft Experiment

    Science.gov (United States)

    Doggett, T.; Davies, A. G.; Castano, R. A.; Baker, V. R.; Dohm, J. M.; Greeley, R.; Williams, K. K.; Chien, S.; Sherwood, R.

    2002-12-01

    The NASA New Millennium Program (NMP) is a testbed for new, high-risk technologies, including new software and hardware. The Autonomous Sciencecraft Experiment (ASE) will fly on the Air Force Research Laboratory TechSat-21 mission in 2006 is such a NMP mission, and is managed by the Jet Propulsion Laboratory, California Institute of Technology. TechSat-21 consists of three satellites, each equipped with X-band Synthetic Aperture Radar (SAR) that will occupy a 13-day repeat track Earth orbit. The main science objectives of ASE are to demonstrate that process-related change detection and feature identification can be conducted autonomously during space flight, leading to autonomous onboard retargeting of the spacecraft. This mission will observe transient geological and environmental processes using SAR. Examples of geologic processes that may be observed and investigated include active volcanism, the movement of sand dunes and transient features in desert environments, water flooding, and the formation and break-up of lake ice. Science software onboard the spacecraft will allow autonomous processing and formation of SAR images and extraction of scientific information. The subsequent analyses, performed on images formed onboard from the SAR data, will include feature identification using scalable feature "templates" for each target, change detection through comparison of current and archived images, and science discovery, a search for other features of interest in each image. This approach results in obtaining the same science return for a reduced amount of resource use (such as downlink) when compared to that from a mission operating without ASE technology. Redundant data is discarded. The science-driven goals of ASE will evolve during the ASE mission through onboard replanning software that can re-task satellite operations. If necessary, as a result of a discovery made autonomously by onboard science processing, existing observation sequences will be pre-empted to

  18. A Practical Introduction to Skeletons for the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2014-08-01

    Full Text Available Before the availability of digital photography resulting from the invention of charged couple devices in 1969, the measurement of plant architecture was a manual process either on the plant itself or on traditional photographs. The introduction of cheap digital imaging devices for the consumer market enabled the wide use of digital images to capture the shape of plant networks such as roots, tree crowns, or leaf venation. Plant networks contain geometric traits that can establish links to genetic or physiological characteristics, support plant breeding efforts, drive evolutionary studies, or serve as input to plant growth simulations. Typically, traits are encoded in shape descriptors that are computed from imaging data. Skeletons are one class of shape descriptors that are used to describe the hierarchies and extent of branching and looping plant networks. While the mathematical understanding of skeletons is well developed, their application within the plant sciences remains challenging because the quality of the measurement depends partly on the interpretation of the skeleton. This article is meant to bridge the skeletonization literature in the plant sciences and related technical fields by discussing best practices for deriving diameters and approximating branching hierarchies in a plant network.

  19. Forensic psychology and correctional psychology: Distinct but related subfields of psychological science and practice.

    Science.gov (United States)

    Neal, Tess M S

    2018-02-12

    This article delineates 2 separate but related subfields of psychological science and practice applicable across all major areas of the field (e.g., clinical, counseling, developmental, social, cognitive, community). Forensic and correctional psychology are related by their historical roots, involvement in the justice system, and the shared population of people they study and serve. The practical and ethical contexts of these subfields is distinct from other areas of psychology-and from one another-with important implications for ecologically valid research and ethically sound practice. Forensic psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the law to help resolve legal, contractual, or administrative matters. Correctional psychology is a subfield of psychology in which basic and applied psychological science or scientifically oriented professional practice is applied to the justice system to inform the classification, treatment, and management of offenders to reduce risk and improve public safety. There has been and continues to be great interest in both subfields-especially the potential for forensic and correctional psychological science to help resolve practical issues and questions in legal and justice settings. This article traces the shared and separate developmental histories of these subfields, outlines their important distinctions and implications, and provides a common understanding and shared language for psychologists interested in applying their knowledge in forensic or correctional contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    DEFF Research Database (Denmark)

    Ferrari, Andrea C.; Bonaccorso, Francesco; Falko, Vladimir

    2015-01-01

    We present the science and technology roadmap (STR) for graphene, related twodimensional (2d) crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. The roadmap was developed within the framework of the Euro...

  1. Relations among media influence, body image, eating concerns, and sexual orientation in men: A preliminary investigation.

    Science.gov (United States)

    Carper, Teresa L Marino; Negy, Charles; Tantleff-Dunn, Stacey

    2010-09-01

    The current study explored the relation between sexual orientation, media persuasion, and eating and body image concerns among 78 college men (39 gay; 39 straight). Participants completed measures of sexual orientation, eating disorder symptoms, appearance-related anxiety, perceived importance of physical attractiveness, perceptions of media influence, and media exposure. Gay men scored significantly higher on drive for thinness, body dissatisfaction, and body image-related anxiety than their straight counterparts. Additionally, perceptions of media influence were higher for gay men, and significantly mediated the relation between sexual orientation and eating and body image concerns. Sexual orientation also moderated the relation between perceived media influence and beliefs regarding the importance of physical attractiveness, as this relation was significant for gay men, but not straight men. The current findings suggest that gay men's increased vulnerability to media influence partially accounts for the relatively high rate of eating pathology observed in this population. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes....... A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape...

  3. Image Analysis for X-ray Imaging of Food

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    for quality and safety evaluation of food products. In this effort the fields of statistics, image analysis and statistical learning are combined, to provide analytical tools for determining the aforementioned food traits. The work demonstrated includes a quantitative analysis of heat induced changes......X-ray imaging systems are increasingly used for quality and safety evaluation both within food science and production. They offer non-invasive and nondestructive penetration capabilities to image the inside of food. This thesis presents applications of a novel grating-based X-ray imaging technique...... and defect detection in food. Compared to the complex three dimensional analysis of microstructure, here two dimensional images are considered, making the method applicable for an industrial setting. The advantages obtained by grating-based imaging are compared to conventional X-ray imaging, for both foreign...

  4. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Quantitative phase imaging and differential interference contrast imaging for biological TEM

    International Nuclear Information System (INIS)

    Allman, B.E.; McMahon, P.J.; Barone-Nugent, E.D.; Nugent, E.D.

    2002-01-01

    Full text: Phase microscopy is a central technique in science. An experienced microscopist uses this effect to visualise (edge) structure within transparent samples by slightly defocusing the microscope. Although widespread in optical microscopy, phase contrast transmission electron microscopy (TEM) has not been widely adopted. TEM for biological specimens has largely relied on staining techniques to yield sufficient contrast. We show here a simple method for quantitative TEM phase microscopy that quantifies this phase contrast effect. Starting with conventional, digital, bright field images of the sample, our algorithm provides quantitative phase information independent of the sample's bright field intensity image. We present TEM phase images of a range of stained and unstained, biological and material science specimens. This independent phase and intensity information is then used to emulate a range of phase visualisation images familiar to optical microscopy, e.g. differential interference contrast. The phase images contain features not visible with the other imaging modalities. Further, if the TEM samples have been prepared on a microtome to a uniform thickness, the phase information can be converted into refractive index structure of the specimen. Copyright (2002) Australian Society for Electron Microscopy Inc

  6. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related

  7. Research on imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS), Academia Sinica

    Science.gov (United States)

    Tsai, Hui-Chen; Chang, Chun-Fang; Chen, Bi-Chang; Cheng, Ji-Yen; Chu, Chih-Wei; Han, Hsieh-Cheng; Hatanaka, Koji; Hsieh, Tung-Han; Lee, Chau-Hwang; Lin, Jung-Hsin; Tung, Yi-Chung; Wei, Pei-Kuen; Yang, Fu-Liang; Tsai, Din Ping

    2015-12-01

    Development of imaging, sensing, and characterization of cells at Research Center for Applied Sciences (RCAS) of Academia Sinica in Taiwan is progressing rapidly. The research on advanced lattice light sheet microscopy for temporal visualization of cells in three dimensions at sub-cellular resolution shows novel imaging results. Label-free observation on filopodial dynamics provides a convenient assay on cancer cell motility. The newly-developed software enables us to track the movement of two types of particles through different channels and reconstruct the co-localized tracks. Surface plasmon resonance (SPR) for detecting urinary microRNA for diagnosis of acute kidney injury demonstrates excellent sensitivity. A fully automated and integrated portable reader was constructed as a home-based surveillance system for post-operation hepatocellular carcinoma. New microfluidic cell culture devices for fast and accurate characterizations prove various diagnosis capabilities.

  8. Automatic multiresolution age-related macular degeneration detection from fundus images

    Science.gov (United States)

    Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.

  9. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  10. Images - RPSD | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...ta file File name: rpsd_images.zip File URL: ftp://ftp.biosciencedbc.jp/archive/rpsd/LATEST/rpsd_images.zip ... History of This Database Site Policy | Contact Us Images - RPSD | LSDB Archive ...

  11. BMC Ecology image competition 2014: the winning images

    Science.gov (United States)

    2014-01-01

    BMC Ecology showcases the winning entries from its second Ecology Image Competition. More than 300 individual images were submitted from an international array of research scientists, depicting life on every continent on earth. The journal’s Editorial Board and guest judge Caspar Henderson outline why their winning selections demonstrated high levels of technical skill and aesthetic sense in depicting the science of ecology, and we also highlight a small selection of highly commended images that we simply couldn’t let you miss out on. PMID:25178017

  12. Curriculum optimization of College of Optical Science and Engineering

    Science.gov (United States)

    Wang, Xiaoping; Zheng, Zhenrong; Wang, Kaiwei; Zheng, Xiaodong; Ye, Song; Zhu, Yuhui

    2017-08-01

    The optimized curriculum of College of Optical Science and Engineering is accomplished at Zhejiang University, based on new trends from both research and industry. The curriculum includes general courses, foundation courses such as mathematics and physics, major core courses, laboratory courses and several module courses. Module courses include optical system designing, optical telecommunication, imaging and vision, electronics and computer science, optoelectronic sensing and metrology, optical mechanics and materials, basics and extension. These curricula reflect the direction of latest researches and relates closely with optoelectronics. Therefore, students may combine flexibly compulsory courses with elective courses, and establish the personalized curriculum of "optoelectronics + X", according to their individual strengths and preferences.

  13. Media, risk and science

    CERN Document Server

    Allan, Stuart

    2002-01-01

    How is science represented by the media? Who defines what counts as a risk, threat or hazard, and why? In what ways do media images of science shape public perceptions? What can cultural and media studies tell us about current scientific controversies? "Media, Risk and Science" is an exciting exploration into an array of important issues, providing a much needed framework for understanding key debates on how the media represent science and risk. In a highly effective way, Stuart Allan weaves together insights from multiple strands of research across diverse disciplines. Among the themes he examines are: the role of science in science fiction, such as "Star Trek"; the problem of 'pseudo-science' in "The X-Files"; and how science is displayed in science museums. Science journalism receives particular attention, with the processes by which science is made 'newsworthy' unravelled for careful scrutiny. The book also includes individual chapters devoted to how the media portray environmental risks, HIV-AIDS, food s...

  14. STRENGTHENING COMPANY IMAGE IN SERVICE SECTOR BY IMPROVING RELATIONAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Jamila Jaganjac

    2016-11-01

    Full Text Available This paper aims to contribute to the theoretical model of managing intellectual capital with an emphasis on the relational capital. Relational capital is especially relevant in the service sector, where differentiation is mostly based on non-price competition. Development of relational capital which strengthens the image through satisfaction of internal and external users encourages innovation and allows each process to be enriched with new knowledge. To illustrate this concept, the paper presents an empirical study of the participants of international students’ conference, coming from nine faculties from Bosnia and Herzegovina, Serbia and Croatia. Paper intends to define the steps to follow in developing a model of relational capital management at universities, taking in consideration the interaction between students' needs, defined through five levels and relationships with higher education institutions. The aim of research is also to encourage innovative processes in Bosnia and Herzegovina and region, which are not always needed to be directly connected to curricular activities, but are derived from them. The results indicate the motives and motivation of both students and professors at fifth level of interaction. It also presents possible ways to expand cooperation in the fifth stage of interaction between students and higher education institutions. As the image of the company and its employees and clients is interconnected, this research points to elements that can be improved in further interaction, in order to achieve effects on each side.

  15. [What to do with brain imaging? Old and new territories of a technology].

    Science.gov (United States)

    Dupont, Jean-Claude

    2015-01-01

    During the twentieth century, brain imaging revolutionized neurological practice and research in cognitive neuroscience. More recently, its scope has moved from the former territories to the humanities. After describing this historical dynamic, some issues and controversies related to old and new uses of neuroimaging are recalled, and this new appetite for brain image is questioned. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Area detectors technology and optics-Relations to nature

    International Nuclear Information System (INIS)

    PeIka, Jerzy B.

    2005-01-01

    Relations between natural vision and the artificial 2D imaging systems are discussed. A variety of animal vision as well as its main functional parts are briefly reviewed and compared with the artificial vision equivalents. An increasing advancement observed in human constructions of imaging devices due to recent rapid progress in science and technology is shown to resemble some sophisticated natural solutions formed by evolution in biological systems. The issues of the similarities and differences between the two kinds of vision are discussed. Main focus is put on optical systems forming the image, with special examples of the imaging systems designed to work in the region of the X-ray radiation. Examples of bio-inspired technological vision devices are presented

  17. Relations of Brand Image Tocustomers Buying Decisionon Grand Inna Muara Hotel Padang

    OpenAIRE

    Zengga, Zengga; Chair, Ira Meirina; Abrian, Youmil

    2013-01-01

    This study aims to describe the relations between brand image to customers buying decision room in hotel grand inna muara padang. This study is a descriptive correlational study. The study population as many as 1694 consists of guest during stay on grand inna muara hotel padang. The descriptive analysis of the results showed that brand image categorized excellent (56%) and categorized quite good (33%). The descriptive analysis of the result results showed that customers buying decision categ...

  18. NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image

    Science.gov (United States)

    Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George

    2008-01-01

    The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.

  19. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    International Nuclear Information System (INIS)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young; Son, Gyu-Ri; Lee, Nam-Joon; Lee, Young Hen; Seo, Hyung Suk; Eun, Baik-Lin

    2014-01-01

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  20. Respiratory syncytial virus-related encephalitis: magnetic resonance imaging findings with diffusion-weighted study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Arim; Suh, Sang-il; Seol, Hae-Young [Korea University College of Medicine, Department of Radiology, Korea University Guro Hospital, Seoul (Korea, Republic of); Son, Gyu-Ri; Lee, Nam-Joon [Korea University College of Medicine, Department of Radiology, Korea University Anam Hospital, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Korea University College of Medicine, Department of Radiology, Korea University Ansan Hospital, Gyeonggi-do (Korea, Republic of); Eun, Baik-Lin [Korea University College of Medicine, Department of Pediatrics, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2014-02-15

    Respiratory syncytial virus (RSV) is a common pathogen causing acute respiratory infection in children. Herein, we describe the incidence and clinical and magnetic resonance imaging (MRI) findings of RSV-related encephalitis, a major neurological complication of RSV infection. We retrospectively reviewed the medical records and imaging findings of the patients over the past 7 years who are admitted to our medical center and are tested positive for RSV-RNA by reverse transcriptase PCR. In total, 3,856 patients were diagnosed with RSV bronchiolitis, and 28 of them underwent brain MRI for the evaluation of neurologic symptoms; 8 of these 28 patients had positive imaging findings. Five of these 8 patients were excluded because of non-RSV-related pathologies, such as subdural hemorrhage, brain volume loss due to status epilepticus, periventricular leukomalacia, preexisting ventriculomegaly, and hypoxic brain injury. The incidence of RSV-related encephalitis was as follows: 3/3,856 (0.08 %) of the patients are positive for RSV RNA, 3/28 (10.7 %) of the patient underwent brain MRI for neurological symptom, and 3/8 (37.5 %) of patients revealed abnormal MR findings. The imaging findings were suggestive of patterns of rhombenmesencephalitis, encephalitis with acute disseminated encephalomyelitis, and limbic encephalitis. They demonstrated no diffusion abnormality on diffusion-weighted image and symptom improvement on the follow-up study. Encephalitis with RSV bronchiolitis occurs rarely. However, on brain MRI performed upon suspicion of neurologic involvement, RSV encephalitis is not infrequently observed among the abnormal MR findings and may mimic other viral and limbic encephalitis. Physicians should be aware of this entity to ensure proper diagnosis and neurologic care of RSV-positive patients. (orig.)

  1. Estimation of salient regions related to chronic gastritis using gastric X-ray images.

    Science.gov (United States)

    Togo, Ren; Ishihara, Kenta; Ogawa, Takahiro; Haseyama, Miki

    2016-10-01

    Since technical knowledge and a high degree of experience are necessary for diagnosis of chronic gastritis, computer-aided diagnosis (CAD) systems that analyze gastric X-ray images are desirable in the field of medicine. Therefore, a new method that estimates salient regions related to chronic gastritis/non-gastritis for supporting diagnosis is presented in this paper. In order to estimate salient regions related to chronic gastritis/non-gastritis, the proposed method monitors the distance between a target image feature and Support Vector Machine (SVM)-based hyperplane for its classification. Furthermore, our method realizes removal of the influence of regions outside the stomach by using positional relationships between the stomach and other organs. Consequently, since the proposed method successfully estimates salient regions of gastric X-ray images for which chronic gastritis and non-gastritis are unknown, visual support for inexperienced clinicians becomes feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The image of the Nobel Prize.

    Science.gov (United States)

    Källstrand, Gustav

    2018-05-01

    This article traces the origins of the Nobel Prize as a ubiquitous symbol of excellence in science. The public image of the Nobel Prize was created and became established quickly, which can be explained by it being such a useful phenomenon for the co-production of other values and ideas such as national prestige. Through being an easily recognizable symbol for excellence, the Nobel Prize is an important factor for the public image of science. And the image of the Nobel Prize is co-produced with several other sets of values and images that range from the large and thematic to the local and specific.

  3. Imaging and the new biology: What's wrong with this picture?

    Science.gov (United States)

    Vannier, Michael W.

    2004-05-01

    The Human Genome has been defined, giving us one part of the equation that stems from the central dogma of molecular biology. Despite this awesome scientific achievement, the correspondence between genomics and imaging is weak, since we cannot predict an organism's phenotype from even perfect knowledge of its genetic complement. Biological knowledge comes in several forms, and the genome is perhaps the best known and most completely understood type. Imaging creates another form of biological information, providing the ability to study morphology, growth and development, metabolic processes, and diseases in vitro and in vivo at many levels of scale. The principal challenge in biomedical imaging for the future lies in the need to reconcile the data provided by one or multiple modalities with other forms of biological knowledge, most importantly the genome, proteome, physiome, and other "-ome's." To date, the imaging science community has not set a high priority on the unification of their results with genomics, proteomics, and physiological functions in most published work. Images are relatively isolated from other forms of biological data, impairing our ability to conceive and address many fundamental questions in research and clinical practice. This presentation will explain the challenge of biological knowledge integration in basic research and clinical applications from the standpoint of imaging and image processing. The impediments to progress, isolation of the imaging community, and mainstream of new and future biological science will be identified, so the critical and immediate need for change can be highlighted.

  4. Factors significantly related to science achievement of Malaysian middle school students: An analysis of TIMSS 1999 data

    Science.gov (United States)

    Mokshein, Siti Eshah

    The importance of science and technology in the global economy has led to growing emphasis on math and science achievement all over the world. In this study, I seek to identify variables at the student-level and school-level that account for the variation in science achievement of the eighth graders in Malaysia. Using the Third International Math and Science Study (TIMSS) 1999 for Malaysia, a series of HLM analysis was performed. Results indicate that (1) variation in overall science achievement is greater between schools than within schools; (2) both the selected student-level and school-level factors are Important in explaining the variation in the eight graders' achievement In science; (3) the selected student-level variables explain about 13% of the variation in students' achievement within schools, but as an aggregate, they account for a much larger proportion of the between-school variance; (4) the selected school-level variables account for about 55% of the variation between schools; (5) within schools, the effects of self-concept In science, awareness of the social implications of science, gender, and home educational resources are significantly related to achievement; (6) the effects of self-concept in science and awareness of social implications of science are significant even after controlling for the effects of SES; (7) between schools, the effects of the mean of home educational resources, mean of parents' education, mean of awareness of the social implications of science, and emphasis on conducting experiments are significantly related to achievement; (8) the effects of SES variables explain about 50% of the variation in the school means achievement; and (9) the effects of emphasis on conducting experiments on achievement are significant even after controlling for the effects of SES. Since it is hard to change the society, it is recommended that efforts to Improve science achievement be focused more at the school-level, concentrating on variables that

  5. A quantitative evaluation of the relative status of journal and conference publications in computer science.

    OpenAIRE

    Coyle, Lorcan; Freyne, Jill; Smyth, Barry; Cunningham, Padraig

    2010-01-01

    While it is universally held by computer scientists that conference publications have a higher status in computer science than in other disciplines there is little quantitative evidence in support of this position. The importance of journal publications in academic promotion makes this a big issue since an exclusive focus on journal papers will miss many significant papers published at conferences in computer science. In this paper we set out to quantify the relative importance of journ...

  6. PRIMARY STUDENTS' STEREOTYPIC IMAGE OF INVENTOR IN KOREA

    Directory of Open Access Journals (Sweden)

    Eunsang Lee

    2018-04-01

    Full Text Available The purpose of this research is to compare the previous stereotypes of the scientist image and the current stereotypes of the inventor image among Korean students. For this purpose, three primary schools located in the metropolitan area of Korea were selected under a convenience sampling method, with one class selected for each of the 2nd, 4th, and 6th grades of each school. The conclusions of this research are as follows. First, analyzing students' stereotypes of the inventor image showed that older students had more stereotypes about inventors than younger students did. Second, as a result of analyzing the images according to each indicator, Korean students were found to have stereotypes about the inventor. Third, the symbol of research was expressed together with one of the science-related experiment tool and the making-related experiment tool. Fourth, primary students perceived the inventor as mainly male. Male students mostly drew male inventors and female students mostly drew female inventors. Based on the conclusions obtained through this research, various educational implications to be reflected in primary technology education were suggested to escape the stereotypes of the inventor’s image.

  7. Enterovirus 71-related encephalomyelitis: usual and unusual magnetic resonance imaging findings

    International Nuclear Information System (INIS)

    Jang, Seonah; Suh, Sang-Il; Ha, Su Min; Seol, Hae-Young; Byeon, Jung Hye; Eun, Baik-Lin; Lee, Young Hen; Seo, Hyung Suk; Eun, So-Hee

    2012-01-01

    Most enterovirus (EV) 71 infections manifest as mild cases of hand-foot-mouth disease (HFMD)/herpangina with seasonal variations, having peak incidence during the summer. Meanwhile, EV 71 may involve the central nervous system (CNS), causing severe neurologic disease. In many cases, enteroviral encephalomyelitis involves the central midbrain, posterior portion of the medulla oblongata and pons, bilateral dentate nuclei of the cerebellum, and the ventral roots of the cervical spinal cord, and the lesions show hyperintensity on T2-weighted and fluid-attenuation inversion recovery (FLAIR) images. Our goal was to review usual and unusual magnetic resonance (MR) findings in CNS involvement of enteroviral infection. Among consecutive patients who had HFMD and clinically suspected encephalitis or myelitis and who underwent brain or spinal MR imaging, five patients revealed abnormal MR findings. Diffusion-weighted and conventional MR and follow-up MR images were obtained. From cerebrospinal fluid, stool, or nasopharyngeal swabs, EV 71 was confirmed in all patients. MR imaging studies of two patients showed hyperintensity in the posterior portion of the brainstem on T2-weighted and FLAIR images, which is the well-known MR finding of EV 71 encephalitis. The remaining three cases revealed unusual manifestations: leptomeningeal enhancement, abnormal enhancement along the ventral roots at the conus medullaris level without brain involvement, and hyperintensity in the left hippocampus on T2/FLAIR images. EV 71 encephalomyelitis shows relatively characteristic MR findings; therefore, imaging can be helpful in radiologic diagnosis. However, physicians should also be aware of unusual radiologic manifestations of EV 71. (orig.)

  8. Enterovirus 71-related encephalomyelitis: usual and unusual magnetic resonance imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seonah; Suh, Sang-Il; Ha, Su Min; Seol, Hae-Young [Korea University Guro Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Byeon, Jung Hye; Eun, Baik-Lin [Korea University Guro Hospital, Korea University College of Medicine, Department of Pediatrics, Seoul (Korea, Republic of); Lee, Young Hen; Seo, Hyung Suk [Korea University Ansan Hospital, Korea University College of Medicine, Department of Radiology, Ansan (Korea, Republic of); Eun, So-Hee [Korea University Ansan Hospital, Korea University College of Medicine, Department of Pediatrics, Ansan (Korea, Republic of)

    2012-03-15

    Most enterovirus (EV) 71 infections manifest as mild cases of hand-foot-mouth disease (HFMD)/herpangina with seasonal variations, having peak incidence during the summer. Meanwhile, EV 71 may involve the central nervous system (CNS), causing severe neurologic disease. In many cases, enteroviral encephalomyelitis involves the central midbrain, posterior portion of the medulla oblongata and pons, bilateral dentate nuclei of the cerebellum, and the ventral roots of the cervical spinal cord, and the lesions show hyperintensity on T2-weighted and fluid-attenuation inversion recovery (FLAIR) images. Our goal was to review usual and unusual magnetic resonance (MR) findings in CNS involvement of enteroviral infection. Among consecutive patients who had HFMD and clinically suspected encephalitis or myelitis and who underwent brain or spinal MR imaging, five patients revealed abnormal MR findings. Diffusion-weighted and conventional MR and follow-up MR images were obtained. From cerebrospinal fluid, stool, or nasopharyngeal swabs, EV 71 was confirmed in all patients. MR imaging studies of two patients showed hyperintensity in the posterior portion of the brainstem on T2-weighted and FLAIR images, which is the well-known MR finding of EV 71 encephalitis. The remaining three cases revealed unusual manifestations: leptomeningeal enhancement, abnormal enhancement along the ventral roots at the conus medullaris level without brain involvement, and hyperintensity in the left hippocampus on T2/FLAIR images. EV 71 encephalomyelitis shows relatively characteristic MR findings; therefore, imaging can be helpful in radiologic diagnosis. However, physicians should also be aware of unusual radiologic manifestations of EV 71. (orig.)

  9. Enhancing Teachers' Awareness About Relations Between Science and Religion. The Debate Between Steady State and Big Bang Theories

    Science.gov (United States)

    Bagdonas, Alexandre; Silva, Cibelle Celestino

    2015-11-01

    Educators advocate that science education can help the development of more responsible worldviews when students learn not only scientific concepts, but also about science, or "nature of science". Cosmology can help the formation of worldviews because this topic is embedded in socio-cultural and religious issues. Indeed, during the Cold War period, the cosmological controversy between Big Bang and Steady State theory was tied up with political and religious arguments. The present paper discusses a didactic sequence developed for and applied in a pre-service science teacher-training course on history of science. After studying the historical case, pre-service science teachers discussed how to deal with possible conflicts between scientific views and students' personal worldviews related to religion. The course focused on the study of primary and secondary sources about cosmology and religion written by cosmologists such as Georges Lemaître, Fred Hoyle and the Pope Pius XII. We used didactic strategies such as short seminars given by groups of pre-service teachers, videos, computer simulations, role-play, debates and preparation of written essays. Along the course, most pre-service teachers emphasized differences between science and religion and pointed out that they do not feel prepared to conduct classroom discussions about this topic. Discussing the relations between science and religion using the history of cosmology turned into an effective way to teach not only science concepts but also to stimulate reflections about nature of science. This topic may contribute to increasing students' critical stance on controversial issues, without the need to explicitly defend certain positions, or disapprove students' cultural traditions. Moreover, pre-service teachers practiced didactic strategies to deal with this kind of unusual content.

  10. Intermediate Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data

    Science.gov (United States)

    Dimitrov, Dimiter M.

    2009-01-01

    This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across three years (2003/04, 2004/05, and 2005/06) and relationships with MSP-related variables using Management Information System data with the…

  11. Your brain on drugs: imaging of drug-related changes in the central nervous system.

    Science.gov (United States)

    Tamrazi, Benita; Almast, Jeevak

    2012-01-01

    Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.

  12. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  13. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    Science.gov (United States)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass-filter No Filter, 750 nm (1) AR coating (3) Bandpass-filter 915 nm (2) Longpass-filter 960 nm (4) Band- Band- Figure 4: Basalt and Olivine sample ­ entire image (left) and passfilter passfilter 915 nm 750 nm visible part () (6) (7) Bandpass- More than 150 images were acquired during this validation filter 847

  14. Reviews Book: The Age of Wonder Equipment: Portoscope DVD: Around the World in 80 Images Book: Four Laws that Drive the Universe Book: Antimatter Equipment: Coffee Saver Starter Set Equipment: Graphite Levitation Kit Book: Critical Reading Video: Science Fiction-Science Fact Web Watch

    Science.gov (United States)

    2009-03-01

    WE RECOMMEND The Age of Wonder This book tells the stories of inspiring 19th-century scientists Antimatter A fast read that gives an intriguing tour of the antimatter world Science Fiction-Science Fact A video from a set of resources about the facts in science fiction WORTH A LOOK Portoscope Lightweight ×30 microscope that is easy on the purse Four Laws that Drive the Universe In just 124 pages Peter Atkins explains thermodynamics Coffee Saver Starter Kit A tool that can demonstrate the effect of reduced air pressure Graphite Levitation Kit Compact set that demonstrates diamagnetic behaviour Critical Reading A study guide on how to read scientific papers HANDLE WITH CARE Around the World in 80 Images Navigate through images from Envistat, country by country WEB WATCH This month's issue features real-time simulation program Krucible 2.0, which enables learners to run virtual experiments

  15. Multimodal fluorescence imaging spectroscopy

    NARCIS (Netherlands)

    Stopel, Martijn H W; Blum, Christian; Subramaniam, Vinod; Engelborghs, Yves; Visser, Anthonie J.W.G.

    2014-01-01

    Multimodal fluorescence imaging is a versatile method that has a wide application range from biological studies to materials science. Typical observables in multimodal fluorescence imaging are intensity, lifetime, excitation, and emission spectra which are recorded at chosen locations at the sample.

  16. Chaotic Image Encryption Based on Running-Key Related to Plaintext

    Directory of Open Access Journals (Sweden)

    Cao Guanghui

    2014-01-01

    Full Text Available In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.

  17. Chaotic image encryption based on running-key related to plaintext.

    Science.gov (United States)

    Guanghui, Cao; Kai, Hu; Yizhi, Zhang; Jun, Zhou; Xing, Zhang

    2014-01-01

    In the field of chaotic image encryption, the algorithm based on correlating key with plaintext has become a new developing direction. However, for this kind of algorithm, some shortcomings in resistance to reconstruction attack, efficient utilization of chaotic resource, and reducing dynamical degradation of digital chaos are found. In order to solve these problems and further enhance the security of encryption algorithm, based on disturbance and feedback mechanism, we present a new image encryption scheme. In the running-key generation stage, by successively disturbing chaotic stream with cipher-text, the relation of running-key to plaintext is established, reconstruction attack is avoided, effective use of chaotic resource is guaranteed, and dynamical degradation of digital chaos is minimized. In the image encryption stage, by introducing random-feedback mechanism, the difficulty of breaking this scheme is increased. Comparing with the-state-of-the-art algorithms, our scheme exhibits good properties such as large key space, long key period, and extreme sensitivity to the initial key and plaintext. Therefore, it can resist brute-force, reconstruction attack, and differential attack.

  18. How can ethics relate to science? The case of stem cell research.

    Science.gov (United States)

    Carvalho, Ana Sofia; Ramalho-Santos, João

    2013-06-01

    We live in an era of an important turning point in the relationship between ethics (or, more accurately, bioethics) and science, notably due to both public interest and the gradual tightening of the gap in time between scientific discoveries and ethical reflection. The current bioethics debates of emerging situations (pluripotent stem cells, gene therapy, nanotechnology) have undoubtedly contributed to this change. Today, science happens and bioethics reflects on the possibilities, considers the risks, and advances proposals, which, without being scientific, can also imprint a mark on the path of scientific development. In this article, through the narrative of stem cell research, we will try to illustrate how bringing a bioethical viewpoint to the scientific debate can become a healthy exercise in both ethics and science, especially as narratives shift, as was the case in this field due to the introduction of induced pluripotent stem cells, the advent of which is not easily dissociated from the controversies related to embryo research. We should perhaps welcome this trend as promising for the future relationship between ethics and scientific research, providing a stimulus (and not a block) to the ever-evolving scientific discourse.

  19. [Perspectives on body: embodiment and body image].

    Science.gov (United States)

    Chang, Shiow-Ru; Chao, Yu-Mei Yu

    2007-06-01

    "Body" is a basic concept of both the natural and human sciences. This extensive review of the literature explores the various philosophical approaches to the body, including empiricism, idealism, existentialism and phenomenology, as well as the relationship between body and mind. Embodiment and body image are the two main concepts of body addressed in this article. Merleau-Ponty's perspective on embodiment, an important new area of theory development, emphasizes that embodiment research must focus on life experiences, such as the study of body image. Using Schilder's framework of psychosocialology, this article provides a comprehensive understanding of the concept of body image and women's perspectives on the "body" in both Western culture and Eastern cultures. Body size and shape significantly influence the self-image of women. Body image is something that develops and changes throughout one's life span and is continually being constructed, destructed, and reconstructed. Personal body image has important psychological effects on the individual, especially women. This integrative review can make a significant contribution to knowledge in this area and, consequently, to related practice and research.

  20. Examination of Science and Technology Teachers’ Attitude and Opinions Related Giftedness and Gifted Education in Turkey

    Directory of Open Access Journals (Sweden)

    Kürşat KUNT

    2017-03-01

    Full Text Available In this study, it is aimed to examine the Science and Technology teachers’ attitude and views related giftedness and gifted education. This research used both qualitative and quantitative research designs, is a mixed pattern research. The study group of the research consists of 111 Science and Technology teachers in the academic year 2011- 2012 in the province of A. These participants were applied Teacher Attitude Scale towards Gifted Education (TASGE as collection of quantitative data. For obtaining qualitative data, semi-structured interview was used with four science and technology teachers. For the analysis of quantitative data, percentage, frequency, t-test and analysis of variance were used. The data obtained from the interview were subjected to content analysis. As a result, science and technology teachers' attitudes towards gifted education were found to be slightly above the undecided attitude. In addition, science and technology teachers stated that supportive education for gifted children in Science and Art Centers (SACs was insufficient and they adequately could not cooperated with this institution.

  1. Combining voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes.

    Science.gov (United States)

    Lehmbeck, Jan T; Brassen, Stefanie; Weber-Fahr, Wolfgang; Braus, Dieter F

    2006-04-03

    The present study combined optimized voxel-based morphometry and diffusion tensor imaging to detect age-related brain changes. We compared grey matter density maps (grey matter voxel-based morphometry) and white matter fractional anisotropy maps (diffusion tensor imaging-voxel-based morphometry) between two groups of 17 younger and 17 older women. Older women exhibited reduced white matter fractional anisotropy as well as decreased grey matter density most prominently in the frontal, limbic, parietal and temporal lobes. A discriminant analysis identified four frontal and limbic grey and white matter areas that separated the two groups most effectively. We conclude that grey matter voxel-based morphometry and diffusion tensor imaging voxel-based morphometry are well suited for the detection of age-related changes and their combination provides high accuracy when detecting the neural correlates of aging.

  2. Career-Related Instruction Promoting Students' Career Awareness and Interest towards Science Learning

    Science.gov (United States)

    Salonen, Anssi; Kärkkäinen, Sirpa; Keinonen, Tuula

    2018-01-01

    The aim of this study was to investigate how career-related instruction implemented in secondary school chemistry education concerning water issues influences students' career awareness and their interest towards science learning. This case study is part of a larger design-based research study for the EU-MultiCO project, which focuses on promoting…

  3. Modern optical science

    International Nuclear Information System (INIS)

    2001-05-01

    This book deals with modern optical science, which gives description of properties of light and transmission, ray tracing like Gaussian image, ray tracing and optical system, properties about light wave, a vector properties of light, interference and an interferometer, transform and application of interferometer, diffraction, application on diffraction, solid optical science, measurement of light and laser such as basic principle of laser, kinds of laser, pulse laser, resonator and single mode and multimode.

  4. Consumption of Image-Related Luxury Products: An Exploratory Study of Chinese Students in the UK

    OpenAIRE

    Liang, Jiajia

    2013-01-01

    Abstract The aim of this research is to explore UK’s Chinese students’ perceptions of luxury products, and their motivations of purchasing image-related luxury goods. Literature consists of five parts namely: the research context of Chinese students in the UK, the various definitions of “luxury” from different academics, the effect of gender on luxury consumption categories, consumer motivations of purchasing image-related luxury products, and culture value influence. A framework of luxur...

  5. Science Policies as principal-agent games; Institutionalization and path dependency in the relation between government and science

    NARCIS (Netherlands)

    van der Meulen, Barend

    1998-01-01

    National science policies seem to converge in policing the double-edged problem of how to get policy and industry interested in the conduct of science and how to get science interested in the problems of policy and industry. However, similarity in the labels of institutes and instruments for science

  6. The Effect of Ethnocentrism and Image of Asian Industrialised Countries on Perceived Relative Quality (P.165-177

    Directory of Open Access Journals (Sweden)

    Sulhaini Sulhaini

    2016-03-01

    Full Text Available The study examined the effects of consumer ethnocentrism and country image on perceived relative quality. The respondents of the study were consumers at a shopping mall in Mataram, Indonesia.  They compared the quality of televisions from three industrialised Asian countries, i.e. Japan, South Korea and China, to those from Indonesia. The result of the study was that image of those countries has a significant effect on perceived relative quality. Indonesian consumers perceived televisions from those countries to be more favourable in terms of quality compared to Indonesian televisions. Indonesian consumers have a similar perception on the quality of televisions made in those main Asian countries relative to those of Indonesia. The image of those countries is favourable leading to a better perception on quality of televisions made in the countries relative to domestically made. Domestic consumers view that those countries have better capabilities in producing higher quality televisions. However, consumer ethnocentrism do not lead them to negatively perceive the quality of imported televisions. Indeed, the image of those countries has a greater role in Indonesian consumers’ quality evaluation. The result calls for a substantial improvement in quality of domestically made televisions.Keywords: country image, consumer ethnocentrism, relative product quality perception 

  7. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.

  8. Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)

    International Nuclear Information System (INIS)

    Cooper, M.; Beck, R.N.

    1992-06-01

    This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of [F18]fluorinated benzamides (dopamine D-2 receptor tracers), [F18]fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of [F18]-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks

  9. Determination of Pre-Service Science Teachers' Level of Awareness of Environmental Ethics in Relation to Different Variables

    Science.gov (United States)

    Keles, Özgül; Özer, Nilgün

    2016-01-01

    The purpose of the current study is to determine the pre-service science teachers' awareness levels of environmental ethics in relation to different variables. The sampling of the present study is comprised of 1,023 third and fourth year pre-service science teachers selected from 12 different universities in the spring term of 2013-2014 academic…

  10. The ImageJ ecosystem: An open platform for biomedical image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.

  11. Learned image representations for visual recognition

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development...

  12. Constructing a philosophy of science of cognitive science.

    Science.gov (United States)

    Bechtel, William

    2009-07-01

    Philosophy of science is positioned to make distinctive contributions to cognitive science by providing perspective on its conceptual foundations and by advancing normative recommendations. The philosophy of science I embrace is naturalistic in that it is grounded in the study of actual science. Focusing on explanation, I describe the recent development of a mechanistic philosophy of science from which I draw three normative consequences for cognitive science. First, insofar as cognitive mechanisms are information-processing mechanisms, cognitive science needs an account of how the representations invoked in cognitive mechanisms carry information about contents, and I suggest that control theory offers the needed perspective on the relation of representations to contents. Second, I argue that cognitive science requires, but is still in search of, a catalog of cognitive operations that researchers can draw upon in explaining cognitive mechanisms. Last, I provide a new perspective on the relation of cognitive science to brain sciences, one which embraces both reductive research on neural components that figure in cognitive mechanisms and a concern with recomposing higher-level mechanisms from their components and situating them in their environments. Copyright © 2009 Cognitive Science Society, Inc.

  13. To appreciate variation between scientists: A perspective for seeing science's vitality

    Science.gov (United States)

    Wong, E. David

    2002-05-01

    At the heart of theoretical and practical ideas about science education is an image of scientific work. This image draws attention to particular features of scientific work, which then guides scholarship and pedagogy in science education. In the field of science education, much discussion in this vein focuses on the question, What is the nature of science? Most images of science found in education, psychology, and philosophy emerge from conceptual and methodological perspectives that emphasize norms, conventions, and broad trends. Some groups are motivated to distinguish science from other activities while some groups work in the opposite direction and blur the lines between science and others ways of knowing. Underlying both perspectives is an implicit focus on general qualities common to groups or subgroups (e.g. believing that ideas are subject to change, explanations demand evidence, science is a complex social activities, etc.). I propose that the vital qualities of science are best illuminated by just the opposite process: by appreciating the uncommon, rather than common, features. By attending to individual variation, we are more likely to understand what makes science a creative, motivating, and deeply personal enterprise. In addition, appreciating these variations reveals judgment, creativity, adaptation - the hallmark of scientific work. Implications of this perspective for science education are discussed.

  14. The quantitative imaging network: the role of quantitative imaging in radiation therapy

    International Nuclear Information System (INIS)

    Tandon, Pushpa; Nordstrom, Robert J.; Clark, Laurence

    2014-01-01

    The potential value of modern medical imaging methods has created a need for mechanisms to develop, translate and disseminate emerging imaging technologies and, ideally, to quantitatively correlate those with other related laboratory methods, such as the genomics and proteomics analyses required to support clinical decisions. One strategy to meet these needs efficiently and cost effectively is to develop an international network to share and reach consensus on best practices, imaging protocols, common databases, and open science strategies, and to collaboratively seek opportunities to leverage resources wherever possible. One such network is the Quantitative Imaging Network (QIN) started by the National Cancer Institute, USA. The mission of the QIN is to improve the role of quantitative imaging for clinical decision making in oncology by the development and validation of data acquisition, analysis methods, and other quantitative imaging tools to predict or monitor the response to drug or radiation therapy. The network currently has 24 teams (two from Canada and 22 from the USA) and several associate members, including one from Tata Memorial Centre, Mumbai, India. Each QIN team collects data from ongoing clinical trials and develops software tools for quantitation and validation to create standards for imaging research, and for use in developing models for therapy response prediction and measurement and tools for clinical decision making. The members of QIN are addressing a wide variety of cancer problems (Head and Neck cancer, Prostrate, Breast, Brain, Lung, Liver, Colon) using multiple imaging modalities (PET, CT, MRI, FMISO PET, DW-MRI, PET-CT). (author)

  15. National Center for Mathematics and Science - links to related sites

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | WHAT WE DO | K-12 EDUCATION RESEARCH | PUBLICATIONS | TEACHER Modeling Middle School Mathematics National Association of Biology Teachers National Association for Mathematics National Science Teachers Assocation Show-Me Center Summit on Science TERC - Weaving Gender Equity

  16. DUSEL-related Science at LBNL Program and Opportunities

    International Nuclear Information System (INIS)

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-01-01

    neutrinoless double beta decay searches. The Nuclear Physics Long Range Plan strongly endorses DUSEL and the associated nuclear physics programs. It mentions, in particular, neutrinoless double beta decay, and accelerator-based nuclear astrophysics measurements as key elements of the DUSEL nuclear physics experimental program. There are numerous fundamental scientific questions that experiments which can naturally be sited at DUSEL can address. LBNL has a long tradition and track record of successful experiments in all of these areas: neutrino physics, dark matter searches, and nuclear astrophysics. Clearly, DUSEL presents many scientific opportunities, and the committee was charged to present a roadmap for LBNL participation, the impact that LBNL is likely to have on experiments at the present level of effort, the value of additional manpower, and opportunities for synergistic Detector R and D activities. The Berkeley community is already deeply involved in a number of experiments and/or proposals, shown in Table 1, that will be relevant to science at DUSEL. The approximate time lines for all projects considered in this report are shown in Table 2. For the DUSEL-related experiments the depth at which they would be located is also shown. Section 2 of this report deals with nuclear astrophysics. Section 3 discusses neutrinoless double beta decays. Section 4 focuses on neutrino oscillations, including the search for CP violation and proton decay. Section 5 deals with dark matter searches. In each section we give a brief overview of that field, review the present Berkeley efforts, and discuss the opportunities going into the future. Section 6 contains our recommendations.

  17. Social Relations of Science and Technology: perceptions of teachers of technical training, PARFOR course participants

    Directory of Open Access Journals (Sweden)

    Manuella Candéo

    2014-12-01

    Full Text Available We present in this paper a study on the perceptions of teachers of technical training, course participants (PARFOR National Plan for Training Teachers of Basic Education , offered by the Federal Technological University of Paraná, Campus Ponta Grossa (PG - UTFPR on the social relations of science and technology. The study conducted with 15 teachers from various disciplines. The methodological approach was quantitative research , the instrument of data collection was based questionnaire with open questions . The main results show that the vast majority of teachers had a very narrow view about science and technology , consider that the scientific and technological development always bring benefits to its own population of traditional / classic , positivist view. The need to promote reflection on social issues of science and technology in education technology in order to train professionals aware of their responsibilities as citizens in a highly technological age was observed. It is emphasized that these are recorded in the master's thesis entitled Scientific and Technological Literacy (ACT by Focus Science, Technology and Society (STS from commercial films of the University Program Graduate School of Science and Technology Tecnológica Federal do Paraná ( UTFPR Campus Ponta Grossa, Brazil.

  18. Signal and imaging sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-11-01

    Papers are presented in the areas of: Medical Technologies; Non-Destructive Evaluation; Applications of Signal/Image Processing; Laser Guide Star and Adaptive Optics; Computational Electromagnetic, Acoustics and Optics; Micro-Impulse Radar Processing; Optical Applications; TANGO Space Shuttle.

  19. Signal and imaging sciences workshop. Proceedings

    International Nuclear Information System (INIS)

    Candy, J.V.

    1997-01-01

    Papers are presented in the areas of: Medical Technologies; Non-Destructive Evaluation; Applications of Signal/Image Processing; Laser Guide Star and Adaptive Optics; Computational Electromagnetic, Acoustics and Optics; Micro-Impulse Radar Processing; Optical Applications; TANGO Space Shuttle

  20. Imaging characteristics of intraparenchymal schwannoma and the related pathology

    International Nuclear Information System (INIS)

    Liu Shuyong; Geng Daoying; He Huijin

    2007-01-01

    Objective: To Analyze the imaging characteristics of intraparenchymal schwannoma and the related pathology, in order to improve the accuracy of diagnosis and be in favor of the clinics and the prognosis. Methods: Four cases were confirmed to be intraparenchymal schwannoma by pathological and immunohistochemistry examination. One case was examined with precontrast and enhanced CT scanning, one with unenhanced MRI scanning, two with unenhanced and enhanced CT and MRI scanning. Their images were retrospectively analyzed. Results: Of the four cases, three patients were less than 30 years old, with tumors located supratentorially. Cysts were found in all cases, with nodules on the wall in 3 cases. The nodules were enhanced markedly in two cases and moderately in one case. In addition, calcification was detected in one case and prominent peritumoral edema existed in 1 case. The picture of the pathology demonstrated Antoni type A and Antoni type B. Immunostaining showed intense immunoreactivity for S-100 protein and Vim and negative immunoreactivity for GFAP and EMA. Conclusions: Intraparenchymal schwannoma mostly occurred in juvenile, which located supratentorially in most cases. The presence of a cyst and peritumoral edema together with the tumor appears to be characteristic of intraparenchymal schwannoma. Calcification or the enhanced nodule is the helpful sign for the diagnosis. Combining the imaging findings with the pathology and immunohistochemistry results can gain the accurate diagnosis. (authors)

  1. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    International Nuclear Information System (INIS)

    Ahn, Sangtae; Asma, Evren; Cheng, Lishui; Manjeshwar, Ravindra M; Ross, Steven G; Miao, Jun; Jin, Xiao; Wollenweber, Scott D

    2015-01-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs. (paper)

  2. Hawk-I - First results from science verification

    NARCIS (Netherlands)

    Kissler-Patig, M.; Larsen, S.S.|info:eu-repo/dai/nl/304833347; Wehner, E.M.|info:eu-repo/dai/nl/314114688

    2008-01-01

    The VLT wide-field near-infrared imager HAWK-I was commissioned in 2007 and Science Verification (SV) programmes were conducted in August 2007. A selection of results from among the twelve Science Verfication proposals are summarised.

  3. Communicate science: an example of food related hands-on laboratory approach

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Vallocchia, Massimiliano

    2014-05-01

    The Laboratorio Didattica e Divulgazione Scientifica of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Educational and Outreach Laboratory) organized activity with kids to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. The combination of games and learning in educational activity can be a valuable tool for study of complex phenomena. Hands-on activity may help in engage kids in a learning process through direct participation that significantly improves the learning performance of children. Making learning fun motivate audience to pay attention on and stay focused on the subject. We present the experience of the hand-on laboratory "Laboratorio goloso per bambini curiosi di scienza (a delicious hands-on laboratory for kids curious about science)", performed in Frascati during the 2013 European Researchers' Night, promoted by the European Commission, as part of the program organized by the Laboratorio Didattica e Divulgazione Scientifica in the framework of Associazione Frascati Scienza (http://www.frascatiscienza.it/). The hand-on activity were designed for primary schools to create enjoyable and unusual tools for learning Earth Science. During this activity kids are involved with something related to everyday life, such as food, through manipulation, construction and implementation of simple experiments related to Earth dynamics. Children become familiar with scientific concepts such as composition of the Earth, plates tectonic, earthquakes and seismic waves propagation and experience the effect of earthquakes on buildings, exploring their important implications for seismic hazard. During the activity, composed of several steps, participants were able to learn about Earth inner structure, fragile lithosphere, waves propagations, impact of waves on building ecc.., dealing with eggs, cookies, honey, sugar, polenta, flour, chocolate, candies, liquorice sticks, bread, pudding and sweets. The

  4. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-02-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and documents. Using an inductive analytic approach, results suggested that the teachers embraced constructivism, but classroom observations did not confirm implementation of these beliefs for three of the four teachers. The most preferred constructivist components were personal relevance and student negotiation; the most perceived component was critical voice. Shared control was the least preferred, least perceived, and least observed constructivist component. School type, grade, student behavior/ability, curriculum/standardized testing, and parental involvement may influence classroom practice.

  5. Contrast enhancement of fingerprint images using intuitionistic type II fuzzy set

    Directory of Open Access Journals (Sweden)

    Devarasan Ezhilmaran

    2015-04-01

    Full Text Available A novel contrast image enhancement of fingerprint images using intuitionistic type II fuzzy set theory is recommended in this work. The method of Hamacher T co-norm(S norm which generates a new membership function with the help of upper and lower membership function of type II fuzzy set. The finger print identification is one of the very few techniques employed in forensic science to aid criminal investigations in daily life, providing access control in financial security;-, visa related services, as well as others. Mostly fingerprint images are poorly illuminated and hardly visible, so it is necessary to enhance the input images. The enhancement is useful for authentication and matching. The fingerprint enhancement is vital for identifying and authenticating people by matching their fingerprints with the stored one in the database. The proposed enhancement of the intuitionistic type II fuzzy set theory results showed that it is more effective, especially, very useful for forensic science operations. The experimental results were compared with non-fuzzy, fuzzy, intuitionistic fuzzy and type II fuzzy methods in which the proposed method offered better results with good quality, less noise and low blur features.

  6. Earth Science and Public Health: Proceedings of the Second National Conference on USGS Health-Related Research

    Science.gov (United States)

    Buxton, Herbert T.; Griffin, Dale W.; Pierce, Brenda S.

    2007-01-01

    The mission of the U.S. Geological Survey (USGS) is to serve the Nation by providing reliable scientific information to describe and understand the earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. As the Nation?s largest water, earth, and biological science and civilian mapping agency, the USGS can play a significant role in providing scientific knowledge and information that will improve our understanding of the relations of environment and wildlife to human health and disease. USGS human health-related research is unique in the Federal government because it brings together a broad spectrum of natural science expertise and information, including extensive data collection and monitoring on varied landscapes and ecosystems across the Nation. USGS can provide a great service to the public health community by synthesizing the scientific information and knowledge on our natural and living resources that influence human health, and by bringing this science to the public health community in a manner that is most useful. Partnerships with health scientists and managers are essential to the success of these efforts. USGS scientists already are working closely with the public health community to pursue rigorous inquiries into the connections between natural science and public health. Partnering agencies include the Armed Forces Institute of Pathology, Agency for Toxic Substances Disease Registry, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, Food and Drug Administration, Mine Safety and Health Administration, National Cancer Institute, National Institute of Allergy and Infectious Disease, National Institute of Environmental Health Sciences, National Institute for Occupational Safety and Health, U.S. Public Health Service, and the U.S. Army Medical Research Institute of Infectious Diseases. Collaborations between public

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5 .... Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method ... Decision tree approach for classification of remotely sensed satellite data ... Analysis of carbon dioxide, water vapour and energy fluxes over an Indian ...

  8. Online Citizen Science with Clickworkers & MRO HiRISE E/PO

    Science.gov (United States)

    Gulick, V. C.; Deardorff, G.; Kanefsky, B.; HiRISE Science Team

    2010-12-01

    The High-Resolution Imaging Science Experiment’s E/PO has fielded several online citizen science projects. Our efforts are guided by HiRISE E/PO’s philosophy of providing innovative opportunities for students and the public to participate in the scientific discovery process. HiRISE Clickworkers, a follow-on to the original Clickworkers crater identification and size diameter marking website, provides an opportunity for the public to identify & mark over a dozen landform feature types in HiRISE images, including dunes, gullies, patterned ground, wind streaks, boulders, craters, layering, volcanoes, etc. In HiRISE Clickworkers, the contributor views several sample images showing variations of different landforms, and simply marks all the landform types they could spot while looking at a small portion of a HiRISE image. Contributors then submit their work & once validated by comparison to the output of other participants, results are then added to geologic feature databases. Scientists & others will eventually be able to query these databases for locations of particular geologic features in the HiRISE images. Participants can also mark other features that they find intriguing for the HiRISE camera to target. The original Clickworkers website pilot study ran from November 2000 until September 2001 (Kanefsky et al., 2001, LPSC XXXII). It was among the first online Citizen Science efforts for planetary science. In its pilot study, we endeavored to answer two questions: 1) Was the public willing & able to help science, & 2) Can the public produce scientifically useful results? Since its inception over 3,500,000 craters have been identified, & over 350,000 of these craters have been classified. Over 2 million of these craters were marked on Viking Orbiter image mosaics, nearly 800,000 craters were marked on Mars Orbiter Camera (MOC) images. Note that these are not counts of distinct craters. For example, each crater in the Viking orbiter images was counted by about 50

  9. How static media is understood and used by high school science teachers

    Science.gov (United States)

    Hirata, Miguel

    The purpose of the present study is to explore the role of static media in textbooks, as defined by Mayer (2001) in the form of printed images and text, and how these media are viewed and used by high school science teachers. Textbooks appeared in the United States in the late 1800s, and since then pictorial aids have been used extensively in them to support the teacher's work in the classroom (Giordano, 2003). According to Woodward, Elliott, and Nagel (1988/2013) the research on textbooks prior to the 1970s doesn't present relevant work related to the curricular role and the quality and instructional design of textbooks. Since then there has been abundant research, specially on the use of visual images in textbooks that has been approached from: (a) the text/image ratio (Evans, Watson, & Willows, 1987; Levin & Mayer, 1993; Mayer, 1993; Woodward, 1993), and (b) the instructional effectiveness of images (Woodward, 1993). The theoretical framework for this study comes from multimedia learning (Mayer, 2001), information design (Pettersson, 2002), and visual literacy (Moore & Dwyer, 1994). Data was collected through in-depth interviews of three high school science teachers and the graphic analyses of three textbooks used by the interviewed teachers. The interview data were compared through an analytic model developed from the literature, and the graphic analyses were performed using Mayer's multimedia learning principles (Mayer, 2001) and the Graphic Analysis Protocol (GAP) (Slough & McTigue, 2013). The conclusions of this study are: (1) pictures are specially useful for teaching science because science is a difficult subject to teach, (2) due this difficulty, pictures are very important to make the class dynamic and avoid students distraction, (3) static and dynamic media when used together can be more effective, (4) some specific type of graphics were found in the science textbooks used by the participants, in this case they were naturalistic drawings, stylized

  10. Incoherent imaging using dynamically scattered coherent electrons

    International Nuclear Information System (INIS)

    Nellist, P.D.; Pennycook, S.J.

    1999-01-01

    We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of the 1s states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Images in Tme

    DEFF Research Database (Denmark)

    Images in Time offers an interdisciplinary approach to the study of photography and dress and emerges in response to research undertaken under the umbrella term 'Wardrobe'. The book draws together international critical writings from scholars in anthropology, history, social sciences, the humanit......Images in Time offers an interdisciplinary approach to the study of photography and dress and emerges in response to research undertaken under the umbrella term 'Wardrobe'. The book draws together international critical writings from scholars in anthropology, history, social sciences......, the humanities and fashion studies, as well as photographic practitioners and museum curators and archivists, in an attempt to critique and valorise photography as a significant medium in the creation of wider socio-cultural discourse....

  12. The 100 most-cited articles in the imaging literature.

    Science.gov (United States)

    Brinjikji, Waleed; Klunder, Alexa; Kallmes, David F

    2013-10-01

    To characterize the 100 most-cited articles in medical imaging. The Scopus database was searched for citations to articles published in any of the 116 journals in the subject category "radiology, nuclear medicine, and medical imaging" at the Institute of Science Information Web of Science that the authors termed "imaging literature." Using the Scopus database, two authors searched electronic and print versions of these journals to determine the 100 most-cited articles. The following data were collected for each article: journal name, journal impact factor, number of authors, publication year, country in which the study was performed, department of all authors, article type, imaging modality, grant funding, and clinical subspecialty. Statistical and/or mathematic, magnetic resonance (MR) imaging technique, image processing and/or analysis and computer science, new imaging technique, and basic science articles were considered "preclinical." Using the Pearson correlation coefficient, the authors examined the relationship between journal impact factor and the number of top 100 cited articles included in the list. Most studies were classified as preclinical (n = 75). Fifty-eight of the 100 articles were neuroradiology articles. NeuroImage had the most highly cited articles (n = 22). MR imaging was the most commonly studied imaging modality (n = 69). The authors of 51 articles were from radiology departments. Most articles were published from 1990 to the present (n = 87). There was a statistically significant positive correlation between journal impact factor and the number of top 100 cited articles (r = 0.46, P < .001). Preclinical articles, primarily in the field of neurologic MR imaging, were highly represented in the top 100 cited articles in the medical imaging literature. © RSNA, 2013.

  13. Smoothing-Based Relative Navigation and Coded Aperture Imaging

    Science.gov (United States)

    Saenz-Otero, Alvar; Liebe, Carl Christian; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    This project will develop an efficient smoothing software for incremental estimation of the relative poses and velocities between multiple, small spacecraft in a formation, and a small, long range depth sensor based on coded aperture imaging that is capable of identifying other spacecraft in the formation. The smoothing algorithm will obtain the maximum a posteriori estimate of the relative poses between the spacecraft by using all available sensor information in the spacecraft formation.This algorithm will be portable between different satellite platforms that possess different sensor suites and computational capabilities, and will be adaptable in the case that one or more satellites in the formation become inoperable. It will obtain a solution that will approach an exact solution, as opposed to one with linearization approximation that is typical of filtering algorithms. Thus, the algorithms developed and demonstrated as part of this program will enhance the applicability of small spacecraft to multi-platform operations, such as precisely aligned constellations and fractionated satellite systems.

  14. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  15. Experiments related to marine environmental science using a tandem Pelletron

    International Nuclear Information System (INIS)

    Kitamura, A.; Hamamoto, S.; Ohtani, Y.; Furuyama, Y.; Taniike, A.; Kubota, N.; Yamauchi, T.; Mimura, H.

    2003-01-01

    Activities related to marine environmental science, which have been made in our laboratory using a 1.7MV Pelletron 5SDH2 accelerator, are reviewed. One is successful application of proton beams to radiation-induced graft polymerization for making amidoxime-type adsorbents that are very effective for collecting doubly charged ions of metal elements, such as uranium and vanadium, abundantly dissolved in seawater. The other is effective application of accelerator analyses to investigation of interaction of tributyltin (TBT) chloride, which had been used in self-polishing antifouling paints and are endocrine disrupter having mutagenicity, with a TBT resistant marine microorganism newly isolated from sediment of a ship's ballast water tank. (author)

  16. Ten-year analysis of hepatitis-related papers in the Middle East: a web of science-based scientometric study.

    Science.gov (United States)

    Rezaee Zavareh, Mohammad Saeid; Alavian, Seyed Moayed

    2017-01-01

    In the Middle East (ME), the proper understanding of hepatitis, especially viral hepatitis, is considered to be extremely important. However, no published paper has investigated the status of hepatitis-related research in the ME. A scientometric analysis based on the Web of Science database was conducted on hepatitis-related papers in the ME to determine the current status of research on this topic. A scientometric analysis using the Web of Science database, specifically articles from the Expanded Science Citation Index and Social Sciences Citation Index, was conducted on work published between 2005 and 2014 using the keyword "hepatitis" in conjunction with the names of countries in the ME. Of 103,096 papers that used the word "hepatitis" in their title, abstract, or keywords, only 6,540 papers (6.34%) were associated with countries in the ME. Turkey, Iran, Egypt, Israel, and Saudi Arabia were the top five countries in which hepatitis-related papers were published. Most papers on hepatitis A, B, and D and autoimmune hepatitis were published in Turkey, and most papers on hepatitis C were published in Egypt. We believe that both the quantity and the quality of hepatitis-related papers in this region should be improved. Implementing multicenter and international research projects, holding conferences and congress meetings, conducting educational workshops, and establishing high-quality medical research journals in the region will help countries in the ME address this issue effectively.

  17. Medical imaging. From nuclear medicine to neuro-sciences

    International Nuclear Information System (INIS)

    2003-03-01

    Nuclear medicine and functional imaging were born of the CEA's ambition to promote and develop nuclear applications in the fields of biology and health. Nuclear medicine is based on the use of radioactive isotopes for diagnostic and therapeutic purposes. It could never have developed so rapidly without the progress made in atomic and nuclear physics. One major breakthrough was the discovery of artificial radioelements by Irene and Frederic Joliot in 1934, when a short-lived radioactive isotope was created for the first time ever. Whether natural or synthetic, isotopes possess the same chemical properties as their non-radioactive counterparts. The only difference is that they are unstable and this instability causes disintegration, leading to radiation emission. All we need are suitable detection tools to keep track of them. 'The discovery of artificial radioelements is at the root of the most advanced medical imaging techniques'. The notion of tracer dates back to 1913. Invented by George de Hevesy, it lies at the root of nuclear medicine. By discovering how to produce radioactive isotopes, Irene and Frederic Joliot provided biology researchers with nuclear tools of unrivalled efficiency. Today, nuclear medicine and functional imaging are the only techniques capable of giving us extremely precise information about living organisms in a non-traumatic manner and without upsetting their balance. Positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) are the main imaging techniques used at the CEA in its neuro-imaging research activities. These techniques are now developing rapidly and becoming increasingly important not only in the neuroscience world, but also for innovative therapies and cancer treatment. (authors)

  18. Career-related instruction promoting students’ career awareness and interest towards science learning

    OpenAIRE

    Salonen, Anssi; Kärkkäinen, Sirpa; Keinonen, Tuula

    2018-01-01

    The aim of this study was to investigate how the career-related instruction implemented in secondary school chemistry education concerning water issues influence students’ career awareness and interest towards science learning. This case study is part of a larger design-based research of the EU-MultiCO project that focuses on promoting students’ scientific career awareness and attractiveness by introducing them career-based scenarios at the beginning of the instruction unit. The participants ...

  19. Academic procrastination and related factors in students of Guilan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    MM Chehrzad

    2017-03-01

    Full Text Available Introduction: One of the challenges that students faced during their education is academic procrastination. It means “delay in performing a task”. Since academic procrastination could effect on various aspects of students' personal and social life, by identifying related factors it may be limited. This study aimed to determined academic procrastination and related factors in Students of Guilan University of Medical Sciences in 2015. Methods:  In this cross-sectional study, 459 students of all major programs of Guilan University of Medical Sciences were selected by stratified random sampling method. Data collection scales included three parts of demographic information, academic information and Procrastination Assessment Scale for Students (PASS by Solomon and Rothblum. Data was analyzed with T- Test, ANOVA, multiple regressions by SPSS V. 20.  Result: Most of students were female (72.7%, single (86% and undergraduate (66.6%. Mean score of academic procrastination was 63.3±9.1 and most students (69.5% had moderate procrastination. Academic procrastination had significant difference with gender (p=0.002 and academic level (p=0.03. Also in multiple regression models, gender, program of study  and academic level were main predictors of procrastination.  Females, dental students and postgraduate students had higher level of academic procrastination. Conclusion: There is a moderate academic procrastination in students of Guilan University of Medical Sciences and its relationship with gender, program of study and academic level was observed.  Investigation on causes and appropriate strategies to reduce this behavior is recommended.

  20. Justifying molecular images in cell biology textbooks: From constructions to primary data.

    Science.gov (United States)

    Serpente, Norberto

    2016-02-01

    For scientific claims to be reliable and productive they have to be justified. However, on the one hand little is known on what justification precisely means to scientists, and on the other the position held by philosophers of science on what it entails is rather limited; for justifications customarily refer to the written form (textual expressions) of scientific claims, leaving aside images, which, as many cases from the history of science show are relevant to this process. The fact that images can visually express scientific claims independently from text, plus their vast variety and origins, requires an assessment of the way they are currently justified and in turn used as sources to justify scientific claims in the case of particular scientific fields. Similarly, in view of the different nature of images, analysis is required to determine on what side of the philosophical distinction between data and phenomena these different kinds of images fall. This paper historicizes and documents a particular aspect of contemporary life sciences research: the use of the molecular image as vehicle of knowledge production in cell studies, a field that has undergone a significant shift in visual expressions from the early 1980s onwards. Focussing on textbooks as sources that have been overlooked in the historiography of contemporary biomedicine, the aim is to explore (1) whether the shift of cell studies, entailing a superseding of the optical image traditionally conceptualised as primary data, by the molecular image, corresponds with a shift of justificatory practices, and (2) to assess the role of the molecular image as primary data. This paper also explores the dual role of images as teaching resources and as resources for the construction of knowledge in cell studies especially in its relation to discovery and justification. Finally, this paper seeks to stimulate reflection on what kind of archival resources could benefit the work of present and future epistemic

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Land surface temperature (LST) is a key parameter in environment and earth science study, especially for monitoring drought. The objective of this work is a comparison of two split-window methods: Mao method and Sobrino method, for retrieving LST using MODIS (Moderate-resolution Imaging Spectroradiometer) data in ...

  2. [Molecular imaging; current status and future prospects in USA].

    Science.gov (United States)

    Kobayashi, Hisataka

    2007-02-01

    The goal of this review is to introduce the definition, current status, and future prospects of the molecular imaging, which has recently been a hot topic in medicine and the biological science in USA. In vivo imaging methods to visualize the molecular events and functions in organs or animals/humans are overviewed and discussed especially in combinations of imaging modalities (machines) and contrast agents(chemicals) used in the molecular imaging. Next, the close relationship between the molecular imaging and the nanotechnology, an important part of nanomedicine, is stressed from the aspect of united multidisciplinary sciences such as physics, chemistry, biology, and medicine.

  3. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    Science.gov (United States)

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  4. Restriction spectrum imaging of bevacizumab-related necrosis in a patient with GBM

    Directory of Open Access Journals (Sweden)

    Nikdokht eFarid

    2013-09-01

    Full Text Available Importance:With the increasing use of antiangiogenic agents in the treatment of high grade gliomas, we are becoming increasingly aware of distinctive imaging findings seen in a subset of patients treated with these agents. Of particular interest is the development of regions of marked and persistent restricted diffusion. We describe a case with histopathologic validation, confirming that this region of restricted diffusion represents necrosis and not viable tumor. Observations:We present a case report of a 52-year-old man with GBM treated with temozolomide, radiation, and concurrent bevacizumab following gross total resection. The patient underwent sequential MRI's which included restriction-spectrum imaging (RSI, an advanced diffusion-weighted imaging (DWI technique, and MR perfusion. Following surgery, the patient developed an area of restricted diffusion on RSI which became larger and more confluent over the next several months. Marked signal intensity on RSI and very low cerebral blood volume (CBV on MR perfusion led us to favor bevacizumab-related necrosis over recurrent tumor. Subsequent histopathologic evaluation confirmed coagulative necrosis.Conclusions and Relevance:Our report increases the number of pathologically-proven cases of bevacizumab-related necrosis in the literature from three to four. Furthermore, our case demonstrates this phenomenon on RSI, which has been shown to have good sensitivity to restricted diffusion.

  5. Sex Differences in Hookah-Related Images Posted on Tumblr: A Content Analysis.

    Science.gov (United States)

    Primack, Brian A; Carroll, Mary V; Shensa, Ariel; Davis, Wesley; Levine, Michele D

    2016-01-01

    Hookah tobacco smoking is prevalent, widespread, and associated with large amounts of toxicants. Hookah tobacco smoking may be viewed differently by males and females. For example, females have been drawn to types of tobacco that are flavored, milder, and marketed as more social and exotic. Individuals often use the growing segment of anonymous social networking sites, such as Tumblr, to learn about potentially dangerous or harmful behaviors. We used a systematic process involving stratification by time of day, day of week, and search term to gather a sample of 140 Tumblr posts related to hookah tobacco smoking. After a structured codebook development process, 2 coders independently assessed all posts in their entirety, and all disagreements were easily adjudicated. When data on poster sex and age were available, we found that 77% of posts were posted by females and 35% were posted by individuals younger than 18. The most prominent features displayed in all posts were references to or images of hookahs themselves, sexuality, socializing, alcohol, hookah smoke, and tricks performed with hookah smoke. Compared with females, males more frequently posted images of hookahs and alcohol-related images or references. This information may help guide future research in this area and the development of targeted interventions to curb this behavior.

  6. UV imaging in pharmaceutical analysis

    DEFF Research Database (Denmark)

    Østergaard, Jesper

    2018-01-01

    UV imaging provides spatially and temporally resolved absorbance measurements, which are highly useful in pharmaceutical analysis. Commercial UV imaging instrumentation was originally developed as a detector for separation sciences, but the main use is in the area of in vitro dissolution...

  7. Science of Sexism?

    Indian Academy of Sciences (India)

    darshanw

    2015-06-20

    Jun 20, 2015 ... tive of the attitudes many of them have faced in ... This image of women scientists at ISRO celebrating the launch of the Mars orbiter ... engineers writing on social media about ... women to Indian science) and Prof. Shobhona ...

  8. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    Science.gov (United States)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  9. Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialties within the Field

    Science.gov (United States)

    Grey, Michael L.

    2009-01-01

    This study was conducted to determine if specialty areas are emerging in the magnetic resonance imaging (MRI) profession due to advancements made in the medical sciences, imaging technology, and clinical applications used in MRI that would require new developments in education/training programs and national registry examinations. In this…

  10. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  11. Simultaneous reconstruction, segmentation, and edge enhancement of relatively piecewise continuous images with intensity-level information

    International Nuclear Information System (INIS)

    Liang, Z.; Jaszczak, R.; Coleman, R.; Johnson, V.

    1991-01-01

    A multinomial image model is proposed which uses intensity-level information for reconstruction of contiguous image regions. The intensity-level information assumes that image intensities are relatively constant within contiguous regions over the image-pixel array and that intensity levels of these regions are determined either empirically or theoretically by information criteria. These conditions may be valid, for example, for cardiac blood-pool imaging, where the intensity levels (or radionuclide activities) of myocardium, blood-pool, and background regions are distinct and the activities within each region of muscle, blood, or background are relatively uniform. To test the model, a mathematical phantom over a 64x64 array was constructed. The phantom had three contiguous regions. Each region had a different intensity level. Measurements from the phantom were simulated using an emission-tomography geometry. Fifty projections were generated over 180 degree, with 64 equally spaced parallel rays per projection. Projection data were randomized to contain Poisson noise. Image reconstructions were performed using an iterative maximum a posteriori probability procedure. The contiguous regions corresponding to the three intensity levels were automatically segmented. Simultaneously, the edges of the regions were sharpened. Noise in the reconstructed images was significantly suppressed. Convergence of the iterative procedure to the phantom was observed. Compared with maximum likelihood and filtered-backprojection approaches, the results obtained using the maximum a posteriori probability with the intensity-level information demonstrated qualitative and quantitative improvement in localizing the regions of varying intensities

  12. An ethnographic study of the construction of science on television

    Science.gov (United States)

    Dhingra, Koshi

    1999-10-01

    The medium of television is an important manifestation of popular culture. Television stories and images frequently represent the position occupied by science and scientists in society. This study focuses on three questions. First, what is the form and content of the science that is constructed on television programs in which high school students see science? Second, how do television practitioners who deal with science approach and think about their work? Third, in what ways do high school students appropriate the science in these programs? Ethnographic methods, which did not include the technique of participant observation, were used to address these questions. Two types of text provided the basis for ethnographic analysis. First, text whose production was beyond the control of the researcher was used in the form of approximately 10 hours of programming, which included both fictional and non-fictional genres. Selection was based upon the results of questionnaires, in which students were asked to list those programs in which they saw the most science together with their reasons for each choice. Second, text whose production was somewhat within my control as researcher was used in the form of transcripts of interviews with television practitioners and students. In addition, written responses to the researcher's questions and transcripts of student discussion groups are texts that fall into this second category. The findings point to the centrality of the notion of the nature of science, which is constructed by a variety of factors. These include, first, story---representing events, people and the process of science on television. Story is shaped by plot, discourse, characters and genre. Second, images work to construct a nature of science and, in turn, constitute choices made about the composition, sequence and duration of shots. Third, who the television practitioners who produce a program are in conjunction with the culture of the institution they work for

  13. Imaging carbon nanoparticles and related cytotoxicity

    International Nuclear Information System (INIS)

    Cheng, C; Porter, A E; Welland, M; Muller, K; Skepper, J N; Koziol, K; Midgley, P

    2009-01-01

    Carbon-based nanoparticles have attracted significant attention due to their unique physical, chemical, and electrical properties. Numerous studies have been published on carbon nanoparticle toxicity; however, the results remain contradictory. An ideal approach is to combine a cell viability assay with nanometer scale imaging to elucidate the detailed physiological and structural effects of cellular exposure to nanoparticles. We have developed and applied a combination of advanced microscopy techniques to image carbon nanoparticles within cells. Specifically, we have used EFTEM, HAADF-STEM, and tomography and confocal microscopy to generate 3-D images enabling determination of nanoparticle spatial distribution in a cell. With these techniques, we can differentiate between the carbon nanoparticles and the cell in both stained and unstained sections. We found carbon nanoparticles (C 60 , single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT)) within the cytoplasm, lysosomes, and nucleus of human monocyte-derived macrophage cells (HMM). C 60 aggregated along the plasma and nuclear membrane while MWNTs and SWNTs were seen penetrating the plasma and nuclear membranes. Both the Neutral Red (NR) assay and ultra-structural analysis showed an increase in cell death after exposure to MWNTs and SWNTs. SWNTs were more toxic than MWNTs. For both MWNTs and SWNTs, we correlated uptake of the nanoparticles with a significant increase in necrosis. In conclusion, high resolution imaging studies provide us with significant insight into the localised interactions between carbon nanoparticles and cells. Viability assays alone only provide a broad toxicological picture of nanoparticle effects on cells whereas the high resolution images associate the spatial distributions of the nanoparticles within the cell with increased incidence of necrosis. This combined approach will enable us to probe the mechanisms of particle uptake and subsequent chemical changes within

  14. Searching for a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    Science.gov (United States)

    Aye, Klaus-Michael; Rehnberg, Morgan; Brown, Zarah; Esposito, Larry W.

    2016-10-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the linear density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance.Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5.Search guided by predicted locations: Using the observation-fitted radial velocities from [1], we can extrapolate these to identify Saturn radii at which the traveling feature should be found at later times. Using this and new image analysis and plotting tools available in [2], we have identified a potential candidate feature in an ISS image that was taken 2.5 years after the feature causing moon swap in January 2006. We intend to expand our search by identifying candidate ISS data by a meta-database search constraining the radius at future times corresponding to the predicted future locations of the hypothesized solitary wave and present our findings at this conference.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye. (2016). pyciss: v0.5.0. Zenodo. 10.5281/zenodo.53092

  15. Confirmation of a traveling feature in Saturn's rings in Cassini Imaging Science Subsystem data

    Science.gov (United States)

    Aye, K. M.; Rehnberg, M.; Esposito, L. W.

    2017-12-01

    Introduction: Using Cassini UVIS occultation data, a traveling wave feature has been identified in the Saturn rings that is most likely caused by the radial positions swap of the moons Janus and Epimetheus [1]. The hypothesis is that non-linear interferences between the density waves when being relocated by the moon swap create a solitary wave that is traveling outward through the rings. The observations in [1] further lead to the derivation of values for the radial travel speeds of the identified traveling features, from 39.6 km/yr for the Janus 5:4 resonance up to 45.8 for the Janus 4:3 resonance. Previous confirmations in ISS data: Work in [1] also identified the feature in Cassini Imaging Science Subsystem (ISS) data that was taken around the time of the UVIS occultations where the phenomenon was first discovered, so far one ISS image for each Janus resonances 2:1, 4:3, 5:4, and 6:5. Searches performed in ISS data: Filtering all existing ISS data down to the best resolutions that include both a clearly identifiable minimum and maximum ring radius, we have visually inspected approx. 200 images, both with and without known resonances within the image, but unbeknownst to the inspector. Identification of a feature of interest happens when train waves are being interrupted by anomalies. Comparing the radial locations of identified ISS features with those in UV data of [1], we have identified several at the same radii. Considering the vast differences in radial resolution, we conclude that the traveling feature causes observable anomalies at both small scales of meters, up to large scales of hundreds of meters to kilometers.References: [1] Rehnberg, M.E., Esposito, L.W., Brown, Z.L., Albers, N., Sremčević, M., Stewart, G.R., 2016. A Traveling Feature in Saturn's Rings. Icarus, accepted in June 2016. [2] K.-Michael Aye (2016, November 11). michaelaye/pyciss: . v0.6.0 Zenodo. https://doi.org/10.5281/zenodo.596802

  16. What is an Image?

    DEFF Research Database (Denmark)

    Fausing, Bent

    Images multiply rapidly in these years as apps, tablets, social media, selfies, GPS, drones, visualizations in science, not least, medicine, etc. An image is very dynamic and very moving at this time. The conference will focus on these changes - and try to see if there is still something that can...

  17. Relations among Grade 4 Students' Perceptions of Autonomy, Engagement in Science, and Reading Motivation

    Science.gov (United States)

    Taboada Barber, Ana; Buehl, Michelle M.

    2013-01-01

    The authors extend previous work on students' perceptions of teachers' autonomy-enhancing and autonomy-suppressing behaviors in relation to students' engagement to a more situated context (i.e., two Grade 4 science instructional conditions instead of school in general) and a linguistically diverse population (i.e., Hispanic students). They also…

  18. [Mary Shelley's Frankenstein and Bram Stoker's Dracula: gender and science in literature].

    Science.gov (United States)

    de La Rocque, L

    2001-01-01

    Throughout the ages, literary works have expressed fears and expectations generated by scientific discoveries and have portrayed images and myths about science itself. Several parameters can contribute to these representations of science, including the culture and social class to which the authors of these works belong. We also cannot deny the influence of gender, as due to the fact that the male sphere of action dominates science, male or female authoring can determine a peculiar characterization of the scientific world. In the present work, through a comparative analysis of two important literary works from the 19th century, Frankenstein, by Mary Shelley, and Dracula, by Bram Stoker, the issues concerning the view of science and their relation to gender are highlighted. While Shelley, as a woman, apart from the scientific world, reveals in Frankenstein all her distrust about it, Stoker, the model of a Victorian man, expresses in Dracula his total trust in science.

  19. MR imaging of the central nervous system in diving-related decompression illness

    International Nuclear Information System (INIS)

    Reuter, M.; Hutzelmann, A.; Steffens, J.C.; Heller, M.; Fritsch, G.

    1997-01-01

    Purpose: This investigation was conducted to determine whether MR imaging showed cerebral or spinal damage in acute diving-related decompression illness, a term that includes decompressions sickness (DCS) and arterial gas embolism (AGE). Material and Methods: A total of 16 divers with dysbaric injuries were examined after the initiation of therapeutic recompression. Their injuries comprised: neurological DCS II n=8; AGE n=7; combined cerebral-AGE/spinal-DCS n=1. T1- and T2-weighted images of the brain were obtained in 2 planes. In addition, the spinal cord was imaged in 7 subjects. The imaging findings were correlated with the neurological symptoms. Results: MR images of the head showed ischemic cerebrovascular lesions in 6/8 patients with AGE but showed focal hyperintensities in only 2/8 divers with DCS. Spinal-cord involvement was detected in 1/7 examinations, which was the combined cerebral-AGE/spinal-DCS case. There was agreement between the locations of the documented lesions and the clinical manifestations. Conclusion: MR readily detects cerebral damage in AGE but yields low sensitivity in DCS. A negative MR investigation cannot rule out AGE or DCS. However, MR is useful in the examination of patients with decompression illness. (orig.)

  20. Students' Understanding of the Special Theory of Relativity and Design for a Guided Visit to a Science Museum

    Science.gov (United States)

    Guisasola, Jenaro; Solbes, Jordi; Barragues, Jose-Ignacio; Morentin, Maite; Moreno, Antonio

    2009-01-01

    The present paper describes the design of teaching materials that are used as learning tools in school visits to a science museum. An exhibition on "A century of the Special Theory of Relativity", in the Kutxaespacio Science Museum, in San Sebastian, Spain, was used to design a visit for first-year engineering students at the university…

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 6. Volume 122, Issue 6. December 2013, pages 1435-1637. pp 1435-1453. The South India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX) · S S Rai Kajaljyoti Borah Ritima Das ...

  2. Commonsense in parts : Mining part-whole relations from theweb and image tags

    NARCIS (Netherlands)

    Tandon, Niket; Hariman, Charles; Urbani, Jacopo; Rohrbach, Anna; Rohrbach, Marcus; Weikum, Gerhard

    2016-01-01

    Commonsense knowledge about part-whole relations (e.g., screen partOf notebook) is important for interpreting user input in web search and question answering, or for object detection in images. Prior work on knowledge base construction has compiled part-whole assertions, but with substantial

  3. Initiatives | Women in Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This initiative of the Women in Science (WiS) Panel relates to mentoring of young ... The Women in Science Panel (WiS) of Indian Academy of Sciences has ... age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  4. Requirements, Science, and Measurements for Landsat 10 and Beyond: Perspectives from the Landsat Science Team

    Science.gov (United States)

    Crawford, C. J.; Masek, J. G.; Roy, D. P.; Woodcock, C. E.; Wulder, M. A.

    2017-12-01

    The U.S. Geological Survey (USGS) and NASA are currently prioritizing requirements and investing in technology options for a "Landsat 10 and beyond" mission concept as part of the Sustainable Land Imaging (SLI) architecture. Following the successful February 2013 launch of the Landsat 8, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have now added over 1 million images to the USGS Landsat archive. The USGS and NASA support and co-lead a Landsat Science Team made up largely of university and government experts to offer independent insight and guidance of program activities and directions. The rapid development of Landsat 9 reflects, in part, strong input from the 2012-2017 USGS Landsat Science Team (LST). During the last two years of the LST's tenure, individual LST members and within LST team working groups have made significant contributions to Landsat 10 and beyond's science traceability and future requirements justification. Central to this input, has been an effort to identify a trade space for enhanced measurement capabilities that maintains mission continuity with eight prior multispectral instruments, and will extend the Landsat Earth observation record beyond 55+ years with an approximate launch date of 2027. The trade space is framed by four fundamental principles in remote sensing theory and practice: (1) temporal resolution, (2) spatial resolution, (3) radiometric resolution, and (4) spectral coverage and resolution. The goal of this communication is to provide a synopsis of past and present 2012-2017 LST contributions to Landsat 10 and beyond measurement science and application priorities. A particular focus will be to document the links between new science and societal benefit areas with potential technical enhancements to the Landsat mission.

  5. Role of radiotracer in animal science

    International Nuclear Information System (INIS)

    Sivaprasad, N.

    2015-01-01

    Radiotracers have been used as radiopharmaceuticals for diagnosis and treatment of animal diseases in cattle and pet animals. In fact the veterinary nuclear medicine based on radiotracer as radiopharmaceuticals is established medical technique for functional studies and imaging of vital organs such as heart, lung, brain, spleen, liver, kidney etc for diagnosis as well as treatment of diseases such as cancers in animal. Besides, radiation from radioisotopes has been in use for radiation therapy of cancers in animals. The nuclear imaging using positron emitting radiotracer is gaining importance in the evolution of drug in small animals. In this respect, small animals have also contributed significantly in the development of radiopharmaceuticals particularly for biodistribution and bioscan studies. In fact, the quality control of radiopharmaceuticals in animals to test the safety is a mandatory requirement in the production of radiopharmaceuticals. In brief the animal science has contributed in various areas and facets of radiotracer techniques and its application vice versa the radiotracer techniques have contributed towards the progress of animal science. The animal science in combination with radiotracer has also contributed to the progress of other basic and applied sciences. Thus there exists a bond between radiotracer techniques and animal science. Some aspects of mutual dependence of animal science and radiotracer are elaborated

  6. The Science of Addiction: Drugs, Brains, and Behavior

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues The Science of Addiction: Drugs, Brains, and Behavior Past Issues / ... brain structure and function. Advances in brain imaging science make it possible to see inside the brain ...

  7. Body image concern and selective attention to disgusting and non-self appearance-related stimuli.

    Science.gov (United States)

    Onden-Lim, Melissa; Wu, Ray; Grisham, Jessica R

    2012-09-01

    Although selective attention to one's own appearance has been widely documented in studies of body dysmorphic disorder (BDD), little is known about attentional bias toward non-self appearance-related stimuli in BDD. Furthermore, despite reports of heightened experience of disgust in BDD, it is unknown whether these individuals differentially attend to disgusting stimuli and whether disgust is important in processing of unattractive stimuli. We used a dot probe procedure to investigate the relationship between dysmorphic concern, a defining feature of BDD, and selective attention to faces, attractive, unattractive and disgusting images in a female heterosexual student population (N=92). At the long stimulus presentation (1000 ms), dysmorphic concern was positively associated with attention to faces in general and attractive appearance-related images. In contrast, at the short stimulus presentation (200 ms), there was a positive association between dysmorphic concern and disgusting images. Implications for theoretical models of BDD are discussed. Copyright © 2012. Published by Elsevier Ltd.

  8. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    Science.gov (United States)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  9. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Academies' Refresher Course on Paradigms and Applications of Pattern Recognition in Image Processing and Computer Vision · More Details Fulltext PDF. pp 1101-1101 Information and Announcements. Science Academies' Refresher Course on Cell and Molecular Biology Techniques · More Details Fulltext PDF.

  11. Machine Learning Approaches in Cardiovascular Imaging.

    Science.gov (United States)

    Henglin, Mir; Stein, Gillian; Hushcha, Pavel V; Snoek, Jasper; Wiltschko, Alexander B; Cheng, Susan

    2017-10-01

    Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging. © 2017 American Heart Association, Inc.

  12. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  13. Effects of South Korean High School Students' Motivation to Learn Science and Technology on Their Concern Related to Engineering

    Science.gov (United States)

    Lee, Eunsang

    2017-01-01

    This study investigated the gender difference among South Korean high school students in science learning motivation, technology learning motivation, and concern related engineering, as well as the correlation between these factors. It also verified effects of the sub-factors of science learning motivation and technology learning motivation on…

  14. Some relevant questions in science education from the perspective Science- Technology-Society

    Directory of Open Access Journals (Sweden)

    Prieto, Teresa;

    2012-01-01

    Full Text Available In this article, some of the answers given at this time to three classic questions related to science teaching: why teach science?, what kind of science to teach?, and how to teach it?, are analyzed from a Science-Technology- Society perspective (STS. It argues for the need to prepare future citizens to make responsible decisions on matters related to science and technology in the XXI century, and the convenience of using socio-scientific issues in the science classroom. Finally, the analysis is exemplified in two cases: food consumption and energy consumption.

  15. Education for hydraulics and pnuematics in Department of Computer Science, Faculty of Information Sciences, Hiroshima City University; Hiroshima shiritsudaigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M. [Hiroshima City University, Hiroshima (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Hiroshima City University. Department of Computer Science is responsible for the education, covering a wide educational range from basics of information processing methodology to application of mathematical procedures. This university provides no subject directly related to hydraulics and pneumatics, which, however, can be studied by the courses of control engineering or modern control theories. These themes are taken up for graduation theses for bachelors and masters; 2 for dynamic characteristics of pneumatic cylinders, and one for pneumatic circuit simulation. Images of the terms hydraulics and pneumatics are outdated for students of information-related departments. Hydraulics and pneumatics are being forced to rapidly change, like other branches of science, and it may be time to make a drastic change from hardware to software, because their developments have been excessively oriented to hardware. It is needless to say that they are based on hardware, but it may be worthy of drastically changing these branches of science by establishing virtual fluid power systems. It is also proposed to introduce the modern multi-media techniques into the education of hydraulics and pneumatics. (NEDO)

  16. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

    Science.gov (United States)

    Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

    2009-01-01

    A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

  17. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red-blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400-1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows that

  18. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects.

    Science.gov (United States)

    Kasperowski, Dick; Hillman, Thomas

    2018-05-01

    In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.

  19. Combining Art and Science in "Arts and Sciences" Education

    Science.gov (United States)

    Needle, Andrew; Corbo, Christopher; Wong, Denise; Greenfeder, Gary; Raths, Linda; Fulop, Zoltan

    2007-01-01

    Two of this article's authors--an art professor and a biology professor--shared a project for advanced biology, art, nursing, and computer science majors involving scientific research that used digital imaging of the brain of the zebrafish, a newly favored laboratory animal. These contemporary and innovative teaching and learning practices were a…

  20. Osteochondroma: MR imaging of tumor-related complications

    International Nuclear Information System (INIS)

    Woertler, K.; Heindel, W.; Lindner, N.; Gosheger, G.; Brinkschmidt, C.

    2000-01-01

    Osteochondromas can be complicated by mechanical irritation, compression or injury of adjacent structures, fracture, malignant transformation, and postoperative recurrence. Magnetic resonance imaging represents the most valuable imaging modality in symptomatic cases, because it can demonstrate typical features of associated soft tissue pathology, which can be differentiated from malignant transformation. Reactive bursae formation presents as an overlying fluid collection with peripheral contrast enhancement. Dislocation, deformation, and signal alterations of adjacent soft tissue structures can be observed in different impingement syndromes caused by osteochondromas. Magnetic resonance imaging provides excellent demonstration of arterial and venous compromise and represents the method of choice in cases with compression of spinal cord, nerve roots, or peripheral nerves, depicting changes in size, position, and signal intensity of the affected neural structures. Malignant transformation as the most worrisome complication occurs in approximately 1 % of solitary and 5-25 % of multiple osteochondromas. Magnetic resonance imaging is the most accurate method in measuring cartilage cap thickness, which represents an important criterion for differentiation of osteochondromas and exostotic (low-grade) chondrosarcomas. Cartilage cap thickness exceeding 2 cm in adults and 3 cm in children should raise the suspicion for malignant transformation. Finally, MR imaging can detect postoperative recurrence by depiction of a recurrent mass presenting typical morphological features of a cartilage-forming lesion. (orig.)