WorldWideScience

Sample records for science program project

  1. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  2. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  3. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  4. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    Energy Technology Data Exchange (ETDEWEB)

    Dowling, Timothy Edward [University of Louisville

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  5. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects.

    Science.gov (United States)

    Kasperowski, Dick; Hillman, Thomas

    2018-05-01

    In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.

  6. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  7. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  8. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  9. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  10. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  11. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  12. Introduction to the Gas Hydrate Master Project of Energy National Science and Technology Program of Taiwan

    Science.gov (United States)

    Yang, T. F.; Research Team of Gas Hydrate Project of CGS of Taiwan

    2011-12-01

    Bottom Simulating Reflectors (BSRs), which have been considered as one of major indicators of the gas hydrate in sub-seafloor, have been detected and widely distributed in offshore SW Taiwan. The Central Geological Survey of Taiwan launched a 4-year multidisciplinary gas hydrate investigation program in 2004 to explore the potential of gas hydrate resources in the area. The results indicate that enormous amounts of gas hydrate should occur beneath the seafloor, although none of solid gas hydrate samples have been found. Therefore, a second stage of another 4-year program started in 2008 to extend the studies/investigation. In the ongoing projects, some specific areas will be studied in detail to assess the components of gas hydrate petroleum system and provide a better assessment of the energy resource potential of gas hydrate in the target area. In addition to the field investigations, phase equilibrium of gas hydrate via experiment, theoretical modeling, and molecular simulations has also been studied. The results can provide insights into gas hydrate production technology. Considering the high potential energy resources, the committee of the energy national science and technology program suggests initiating a master project to plan the strategy and timeline for the gas hydrate exploration, exploitation and production in Taiwan. The plan will be introduced in this presentation.

  13. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  14. Cooperative Research Projects in the Microgravity Combustion Science Programs Sponsored by NASA and NEDO

    Science.gov (United States)

    Ross, Howard (Compiler)

    2000-01-01

    This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.

  15. Mini Project Programming Exams

    DEFF Research Database (Denmark)

    Nørmark, Kurt; Thomsen, Lone Leth; Torp, Kristian

    2008-01-01

    A number of different types of final programming exams used or considered at the Department of Computer Science, Aalborg University, are identified and analyzed. Based on this analysis, a new type of programming exam is introduced called a Mini Project Programming (MIP) exam. MIP is a group...... years. The MIP exam is a compromise between (1) a long problem-based project exam and (2) a short oral or written programming exam. It is concluded that the strengths of MIP are the high degree of realism in the exam assignment and comprehensiveness relative to the course syllabus. The main challenge...

  16. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  17. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  18. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  19. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  20. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  1. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    International Nuclear Information System (INIS)

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  2. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  3. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  4. Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Science.gov (United States)

    Murphy, R. E.; Deering, D. W.

    1984-01-01

    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.

  5. Animal Science Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  6. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  7. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  8. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  9. NASA Life Sciences Program

    Science.gov (United States)

    1995-01-01

    This Life Science Program video examines the variety of projects that study both the physiological and psychological impacts on astronauts due to extended space missions. The hazards of space radiation and microgravity effects on the human body are described, along with these effects on plant growth, and the performance of medical procedures in space. One research technique, which is hoped to provide help for future space travel, is the study of aquanauts and their life habits underwater.

  10. Environmental Management Science Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

  11. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  12. The impact of a Latino outreach project on science museums: A program evaluation focused on institutional change

    Science.gov (United States)

    Castaneda, Mario E.

    The purpose of this program evaluation was to determine the impact of the Community Science Festivals Project on the science museums that participated. This project, also known as Celebra la Ciencia (CLC), was a federally funded effort to engage the Latino communities throughout the United States in activities promoting appreciation of the importance of science education. The festivals brought together various educational, community, and scientific organizations that collaborated in producing community-hosted interactive educational events to which students and their families were invited. The evaluation takes the form of a qualitative study based on interviews of key individuals at 1 museum in each of the 5 festival cities. The evaluation focuses on the museums' changes in: (a) their view of their roles as involving the Latino population in their service area, (b) publicity efforts aimed at the Latino population, (c) outreach toward the Latino population, and (d) accommodation of Latinos within the museums. The results for each site are listed separately then are discussed jointly. Implications for practice include the following: (a) intensive and long-term programming, as opposed to one-time events, are likely more effective for creating direct impact on student achievement, although the festivals had many positive effects; (b) funding for smaller organizations (or individual departments within larger organization) seemed to have a more observable impact, enabling them to create Latino-oriented advertising, outreach, and accommodations that would not have been possible otherwise; and (c) Spanish-language media was an effective advertising tool, especially radio, but use of public service announcements should be monitored to ensure that they are aired at times that are effective for reaching the target audience. Recommendations for future studies are made.

  13. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  14. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  15. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  16. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  17. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  18. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  19. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  20. A Case Study of Framing and Project Design Impacts on Participant Identity, Views, and Trust of Science in a Phenology Public Participatory Program

    Science.gov (United States)

    Sorensen, A. E.; Jordan, R.

    2016-12-01

    Recent literature has suggested public participatory research models (e.g., citizen science and similar) as a key opportunity for scientists to meaningfully engage and communicate with the public to increase support for science and encourage pro-science behavior. In this, there has been an inherent assumption that all models of engagement yield similar participant results with few examples of assessment of these programs. While many of these programs do share superficial similarities in their modes of participant engagement and participant motivation, there is a large disparity in participant engagement between them. This disparity suggests that framing of these projects (e.g., citizen science versus crowd sourcing) also plays an important role in decisions about participation. Additionally, participant outcomes, in terms of beliefs about scientific practices and scientific trust, between these two project types has not yet been investigated. To investigate the impact of framing, participants were recruited to a web-based tree phenology public participatory research program where half the participants were engaged in a citizen science framed program and the other were engaged in a crowdsourced framed project. The participants in each frame were engaged in the same task (reporting leaf budding/leaf drop), but the way the projects were framed differed. Post-participation we see that there are indeed statistically significant differences in participant outcomes between individuals who participated as a citizen scientist versus as a crowdsourcer. Particularly we see differences in terms of their views of science, identity, and trust of science. This work is the first to the authors' knowledge that aims to evaluate if projects can be treated synonymously when discussing potential for public engagement and broader trust and literacy outcomes.

  1. The Pennsylvania Academy for the Profession of Teaching; Rural Fellowship Program: A Science Curriculum Development Partnership. Project "Prepare Them for the Future."

    Science.gov (United States)

    Beisel, Raymond W.

    This report describes development of the "Prepare Them for the Future" project, a K-3 activity-oriented science curriculum. The program, funded through two grants, was driven by the need to boost the distressed labor-based economy in rural western Pennsylvania. Data showed a drop of 1,100 coal-mining jobs between 1980 and 1986 in Indiana…

  2. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  3. Science programs in Kansas

    Science.gov (United States)

    Kramer, Ariele R.; Kelly, Brian P.

    2017-05-08

    The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 23 locations; streamflow monitoring at more than 218 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

  4. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  5. On A Project Work for International Students Paired with Japanese Partners in a Summer Intensive Japanese Program for Science and Technology

    Science.gov (United States)

    Fudano, Hiroko

    A project work in which learners of a foreign language engage in a task with the native speakers is one of the effective ways to bring in ample real communication opportunities to a classroom. This scheme also gives both parties meaningful experiences for intercultural understanding. This paper reports a “Pythagoras” machine production project in which international students were paired up with Japanese students as a part of a Japanese for science and technology course in a summer intensive program. Based on the participants‧ course evaluation data, the paper also discusses the effectiveness of the project for Japanese language learning and for promoting intercultural understanding.

  6. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  7. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  8. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  9. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    Science.gov (United States)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  10. Monitoring Completed Navigation Projects Program

    National Research Council Canada - National Science Library

    Bottin, Jr., Robert R

    2001-01-01

    ... (MCNP) Program. The program was formerly known as the Monitoring Completed Coastal Projects Program, but was modified in the late 1990s to include all navigation projects, inland as well as coastal...

  11. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  12. Youth Education - Programs / Projects

    OpenAIRE

    2004-01-01

    Christine Bozak: 4-H Steers that Work. Rebecca Brooks: Relationship Skills Education. Travis Burke: Defining Competency in the 4-H Professional’s Job. Holly L. Hays Butler: 4-H at the Indiana School for the Deaf . Kevin D. Chilek: Quality Assurance Program for Youth Livestock Exhibitors. Graham Cochran: Lessons from an Innovative Urban Youth Education Center. Steve Cramer: Use Activities Fun and Humor to Teach Character Education. Annette Devitt: Life on the Farm Project. Janet Edwards: Emot...

  13. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  14. Acid Rain: Science Projects.

    Science.gov (United States)

    Stubbs, Harriett S.

    1989-01-01

    Presented is a science activity designed to help students monitor the pH of rainfall. Materials, procedures and follow-up activities are listed. A list of domestic and foreign sources of information is provided. Topics which relate to acid precipitation are outlined. (CW)

  15. Materials Sciences programs, fiscal year 1986

    International Nuclear Information System (INIS)

    1986-09-01

    Purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  16. Materials Sciences programs, Fiscal Year 1984

    International Nuclear Information System (INIS)

    1984-09-01

    This report provides a convenient compilation and index of the DOE Materials Sciences Division programs. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research program, Section D has information on DOE collaborative research centers, Section E gives distributions of funding, and Section F has various indexes

  17. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  18. Tohoku Women's Hurdling Project: Science Angels (abstract)

    Science.gov (United States)

    Mizuki, Kotoe; Watanabe, Mayuko

    2009-04-01

    Tohoku University was the first National University to admit three women students in Japan in 1913. To support the university's traditional ``open-door'' policy, various projects have been promoted throughout the university since its foundation. A government plan, the Third-Stage Basic Plan for Science and Technology, aims to increase the women scientist ratio up to 25% nationwide. In order to achieve this goal, the Tohoku Women's Hurdling Project, funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), was adopted in 2006. This project is threefold: support for child/family, improvement of facilities, and support for the next generation, which includes our Science Angels program. ``Science Angels'' are women PhD students appointed by the university president, with the mission to form a strong support system among each other and to become role-models to inspire younger students who want to become researchers. Currently, 50 women graduate students of the natural sciences are Science Angels and are encouraged to design and deliver lectures in their areas of specialty at their alma maters. Up to now, 12 lectures have been delivered and science events for children in our community have been held-all with great success.

  19. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  20. Setting up crowd science projects

    NARCIS (Netherlands)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-01-01

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or

  1. The ASI science program

    Science.gov (United States)

    Musso, Carlo

    2002-03-01

    Italy came in the space business in 1963, being the third nation in the world, after the Soviet Union and the United States, to put an artificial satellite into orbit. In 1988 the Italian Space Agency (ASI) was constituted, with the mandate of planning, coordinating and executing civil space activities in Italy. The core of national space activities is science, for which Italy spends about 25% of the ASI budget, both in national and international programs. The community served by the scientific directorate of ASI is a very wide one, ranging from the science of the Universe and the exploration of the Solar System to life sciences, from Earth observation to the development of new technologies. The success of Italian space research appears under many different points of view. The national satellite BeppoSAX, named after Giuseppe Beppo Occhialini, widely contributed to solve the γ-ray burst puzzle, obtaining the relevant acknowledgment of the ``Bruno Rossi Prize''. Italian researchers kept the PI-ship of various payloads on board ESA missions, such as Epic for XMM-Newton, Ibis for Integral, Virtis and Giada for Rosetta, PFS and Marsis for Mars Express. Also in the field of the cosmic microwave background (CMB) two important experiments are foreseen in the next future, with Italian PIs: SPOrt on board the International Space Station, dedicated to the polarization of CMB, and LFI (Low Frequency Instrument) on board the ESA Planck satellite, to study CMB anisotropy. Meanwhile, a great success has been obtained with the balloon experiment Boomerang. Moreover, ASI started a national scientific and technological small mission program. The first three missions are on their way: Agile (a γ-ray observatory), David (an experiment to test very high frequency data transmission), and a third one, devoted to Earth science. .

  2. Materials Sciences programs, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  3. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  4. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  5. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  6. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  7. Life Sciences Program Tasks and Bibliography

    Science.gov (United States)

    1996-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1995. Additionally, this inaugural edition of the Task Book includes information for FY 1994 programs. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page

  8. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  9. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  10. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  11. Materials sciences programs: Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  12. Materials sciences programs fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  13. An Examination of Teacher Understanding of Project Based Science as a Result of Participating in an Extended Professional Development Program: Implications for Implementation

    Science.gov (United States)

    Mentzer, Gale A.; Czerniak, Charlene M.; Brooks, Lisa

    2017-01-01

    Project-based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to…

  14. Making the Invisible Visible: The Oklahoma Science Project.

    Science.gov (United States)

    McCarty, Robbie; Pedersen, Jon E.

    2002-01-01

    Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…

  15. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  16. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  17. Project management of life-science research projects: project characteristics, challenges and training needs.

    Science.gov (United States)

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  19. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  20. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  1. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  2. Materials Sciences Programs. Fiscal Year 1985

    International Nuclear Information System (INIS)

    1985-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into six sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Sections D and E have information on DOE collaborative research centers, Section F gives distribution of funding, and Section G has various indexes

  3. Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) Beyond the PhD Professional Development Program: A Pilot Project

    Science.gov (United States)

    Johnson, A.; Jearld, A.; Williamson Whitney, V.; Huggans, M.; Ricciardi, L.; Thomas, S. H.; Jansma, P. E.

    2012-12-01

    In 2011 the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S)® initiative launched its newest activity entitled the MS PHD'S "Beyond the PhD (B-PhD) Professional Development Program." This exciting new program was designed to facilitate the development of a new community of underrepresented minority (URM) doctoral candidates and recent doctorate degree recipients in Earth system science (ESS)-related fields. The MS PHD'S B-PhD provides customized support and advocacy for MS PHD'S B-PhD participants in order to facilitate smoother and informed transitions from graduate school, to postdoctoral and tenure-track positions, as well as other "first" jobs in government, industry, and non-profit organizations. In November 2011 the first cohort of MS PHD'S B-PhD participants engaged in intensive sessions on the following topics: "Toolkits for Success for Academia, Business/Industry, Federal Government and Non-Profits", "Defining Short, Mid and Long Term Career Goals", "Accessing and Refining Skill Sets and Other Door Openers", "International Preparation and Opportunities", "Paying it Forward/Lifting as You Climb", and "Customized Strategies for Next Steps". This pilot event, which was hosted by the University of Texas at Arlington's (UTA) College of Science, also provided opportunities for participants to serve as guest lecturers in the UTA's Colleges of Science and Engineering and included one-on-one discussions with MS PHD'S B-PhD mentors and guest speakers who are well established within their individual ESS fields. Insights regarding opportunities, challenges and obstacles commonly faced by URMs within the ESS fields, as well as strategies for success were shared by MS PHD'S B-PhD mentors and guest speakers. Survey results indicate that MS PHD'S B-PhD participants appreciated not only the material covered during this pilot activity, but also appreciated the opportunity to become part of a community of young URM ESS

  4. Reflexivity in performative science shop projects

    OpenAIRE

    Beunen, R.; Duineveld, M.; During, R.; Straver, G.H.M.B.; Aalvanger, A.

    2012-01-01

    Science shop research projects offer possibilities for universities to engage with communities. Many science shop projects directly or indirectly intend to empower certain marginalised groups or interests within a decision-making process. In this article we argue that it is important to reflect on the role and position the researchers have in these projects. We present three science shop projects to illustrate some of the dilemmas that may arise in relation to citizen empowerment, democracy, ...

  5. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    Science.gov (United States)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  6. Developing statistical wildlife habitat relationships for assessing cumulative effects of fuels treatments: Final Report for Joint Fire Science Program Project

    Science.gov (United States)

    Samuel A. Cushman; Kevin S. McKelvey

    2006-01-01

    The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...

  7. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  8. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  9. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  10. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  11. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  12. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  13. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research community...

  14. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  15. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  16. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  17. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This project is part of the Academy initiative to enhance the quality of science education. It is pursued in ... database through a website. Project Lifescape has also initiated work using some Indian languages. ... and Outreach. Math and Finance ...

  18. Implementing an Applied Science Program

    Science.gov (United States)

    Rickman, Doug; Presson, Joan

    2007-01-01

    The work implied in the NASA Applied Science Program requires a delicate balancing act for the those doing it. At the implementation level there are multiple tensions intrinsic to the program. For example each application of an existing product to a decision support process requires deep knowledge about the data and deep knowledge about the decision making process. It is highly probable no one person has this range of knowledge. Otherwise the decision making process would already be using the data. Therefore, a team is required. But building a team usually requires time, especially across agencies. Yet the program mandates efforts of relatively short duration. Further, those who know the data are scientists, which makes them essential to the program. But scientists are evaluated on their publication record. Anything which diverts a scientist from the research for his next publication is an anathema to him and potential death to their career. Trying to get another agency to use NASA data does not strike most scientists as material inherently suitable for publication. Also, NASA wishes to rapidly implement often substantial changes to another agency's process. For many reasons, such as budget and program constraints, speed is important. But the owner of a decision making process is tightly constrained, usually by law, regulation, organization and custom. Changes when made are slow, cautious, even hesitant, and always done according a process specific to the situation. To manage this work MSFC must balance these and other tensions. Some things we have relatively little control over, such as budget. These we try to handle by structural techniques. For example by insisting all of our people work on multiple projects simultaneously we inherently have diversification of funding for all of our people. In many cases we explicitly use some elements of tension to be productive. For example the need for the scientists to constantly publish is motivation to keep tasks short and

  19. Materials Sciences programs. Fiscal year 1982

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into five sections. Section A contains all laboratory projects, Section B has all contract research projects, Section C has information on DOE collaborative research centers, Section D shows distribution of funding, and Section E has various indices

  20. Social Science Methods Used in the RESTORE Project

    Science.gov (United States)

    Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira. Zellner

    2014-01-01

    The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...

  1. Natural Programming: Project Overview and Proposal

    National Research Council Canada - National Science Library

    Myers, Brad

    1998-01-01

    .... The Natural Programming Project is developing general principles, methods, and programming language designs that will significantly reduce the amount of learning and effort needed to write programs...

  2. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  3. Mexico's Program for Science and Technology, 1978 to 1982.

    Science.gov (United States)

    Flores, Edmundo

    1979-01-01

    Describes briefly the National Council for Science and Technology (CONACYT) of Mexico, and outlines Mexico's Program for Science and Technology which includes 2,489 projects in basic and applied sciences at a cost of $260 million from 1978 to 1982. (HM)

  4. 4-H Textile Science Beginner Projects.

    Science.gov (United States)

    Scholl, Jan

    This packet contains three 4-H projects for students beginning the sewing sequence of the textile sciences area. The projects cover basics of sewing using sewing machines, more difficult sewing machine techniques, and hand sewing. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects…

  5. Pu-238 Supply Program Project Execution Plan

    International Nuclear Information System (INIS)

    Wham, Robert M.; Martin, Sherman

    2012-01-01

    This Pu-238 Supply Program Project Execution Plan (PEP) summarizes critical information and processes necessary to manage the program. The PEP is the primary agreement regarding planning and objectives between The Department of Energy Office of Nuclear Energy (DOE NE-75), Oak Ridge National Laboratory Site Office (OSO) and the Oak Ridge National Laboratory (ORNL). The acquisition executive (AE) will approve the PEP. The PEP is a living document that will be reviewed and revised periodically until the project is complete. The purpose of the project is to reestablish the capability to produce plutonium-238 (Pu-238) domestically. This capability consists primarily of procedures, processes, and design information, not capital assets. As such, the project is not subject to the requirements of DOE O 413.3B, but it will be managed using the project management principles and best practices defined there. It is likely that some capital asset will need to be acquired to complete tasks within the project. As these are identified, project controls and related processes will be updated as necessary. Because the project at its initiation was envisioned to require significant capital assets, Critical Decision 0 (CD-0) was conducted in accordance with DOE O 413.3B, and the mission need was approved on December 9, 2003, by William Magwood IV, director of the Office of Nuclear Energy (NE), Science and Technology, DOE. No date was provided for project start-up at that time. This PEP is consistent with the strategy described in the June 2010 report to Congress, Start-up Plan for Plutonium-238 Production for Radioisotope Power Systems.

  6. [Statistics and analysis on acupuncture and moxibustion projects of the National Natural Science Foundation of China of traditional Chinese medicine universities and colleges in recent 10 years: taking the General Program and National Science Fund for Young Scholars as examples].

    Science.gov (United States)

    Li, Qingling; Ma, Qiang; Li, Dan; Liu, Nana; Yang, Jiahui; Sun, Chun; Cheng, Cheng; Jia, Xuezhao; Wang, Jing; Zeng, Yonglei

    2018-03-12

    To analyze statistically the situation of the National Natural Science Foundation of China (NSFC) from 2007 to 2016 in the field of acupuncture and moxibustion for supporting the national Universities colleges of traditional Chinese medicine on the General Program (GP) and the National Science Fund for Young Scholars (NSFYS). In view of five aspects, named fund, supporting units, key words, method, disorder and signal path, the differences were compared between GP and NSFYS, the following characteristics were summarized. ① The fund aid was increased from 2007 through 2013 and down-regulated from 2013 through 2016. In recent ten years, the funding condition was fluctuated, but increasing in tendency generally. ② The relevant projects of the same research direction had been approved continuously for over 3 years in a part of TCM universities, in which, the research continuity was the hot topic. ③ Regarding the therapeutic methods, acupuncture was the chief therapy; electroacupuncture, moxibustion and acupoints were involved as well. ④ The disorders involved in the research were cerebral ischemia, myocardial ischemia and reperfusion injury. It is suggested that the ischemic disorder is predominated in the research. ⑤ The signal path occupied the main research index system, including cell proliferation, metabolism, immune, apoptosis and autophagy. The researches on the other aspects were less.

  7. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  8. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  9. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  10. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  11. The LOFAR Magnetism Key Science Project

    NARCIS (Netherlands)

    Anderson, James; Beck, Rainer; Bell, Michael; de Bruyn, Ger; Chyzy, Krzysztof; Eislöffel, Jochen; Enßlin, Torsten; Fletcher, Andrew; Haverkorn, Marijke; Heald, George; Horneffer, Andreas; Noutsos, Aris; Reich, Wolfgang; Scaife, Anna; the LOFAR collaboration, [No Value

    2012-01-01

    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to

  12. Progress of JAERI neutron science project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  13. Microgravity science and applications projects and payloads

    Science.gov (United States)

    Crouch, R. K.

    1987-01-01

    An overview of work conducted by the Microgravity Science and Applications Division of NASA is presented. The goals of the program are the development and implementation of a reduced-gravity research, science and applications program, exploitation of space for human benefits, and the application of reduced gravity research for the development of advanced technologies. Space research of fluid dynamics and mass transport phenomena is discussed and the facilities available for reduced gravity experiments are presented. A program for improving communication with the science and applications communities and the potential use of the Space Station for microgravity research are also examined.

  14. Teaching programming and modelling skills to first-year earth & environmental science undergraduates: outcomes and lessons learned from a pilot project

    Science.gov (United States)

    Fisher, J. A.; Brewer, C.; O'Brien, G.

    2017-12-01

    Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings

  15. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  16. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  17. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    Science.gov (United States)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  18. The Aeolus project: Science outreach through art.

    Science.gov (United States)

    Drumm, Ian A; Belantara, Amanda; Dorney, Steve; Waters, Timothy P; Peris, Eulalia

    2015-04-01

    With a general decline in people's choosing to pursue science and engineering degrees there has never been a greater need to raise the awareness of lesser known fields such as acoustics. Given this context, a large-scale public engagement project, the 'Aeolus project', was created to raise awareness of acoustics science through a major collaboration between an acclaimed artist and acoustics researchers. It centred on touring the large singing sculpture Aeolus during 2011/12, though the project also included an extensive outreach programme of talks, exhibitions, community workshops and resources for schools. Described here are the motivations behind the project and the artwork itself, the ways in which scientists and an artist collaborated, and the public engagement activities designed as part of the project. Evaluation results suggest that the project achieved its goal of inspiring interest in the discipline of acoustics through the exploration of an other-worldly work of art. © The Author(s) 2013.

  19. Citizens Science for Sustainability (SuScit) Project Briefing

    DEFF Research Database (Denmark)

    Eames, Malcolm; Mortensen, Jonas Egmose; Adebowale, Maria

    This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project.......This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project....

  20. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  1. Dissemination and Exploitation: Project Goals beyond Science

    Science.gov (United States)

    Hamann, Kristin; Reitz, Anja

    2017-04-01

    Dissemination and Exploitation are essential parts of public funded projects. In Horizon 2020 a plan for the exploitation and dissemination of results (PEDR) is a requirement. The plan should contain a clear vision on the objectives of the project in relation to actions for dissemination and potential exploitation of the project results. The actions follow the basic idea to spread the knowledge and results gathered within the project and face the challenge of how to bring the results into potentially relevant policy circle and how they impact the market. The plan follows the purpose to assess the impact of the project and to address various target groups who are interested in the project results. Simply put, dissemination concentrates on the transfer of knowledge and exploitation on the commercialization of the project. Beyond the question of the measurability of project`s impact, strategies within science marketing can serve purposes beyond internal and external communication. Accordingly, project managers are facing the challenge to implement a dissemination and exploitation strategy that ideally supports the identification of all partners with the project and matches the current discourse of the project`s content within the society, politics and economy. A consolidated plan might unite all projects partners under a central idea and supports the identification with the project beyond the individual research questions. Which applications, strategies and methods can be used to bring forward a PEDR that accompanies a project successfully and allows a comprehensive assessment of the project afterwards? Which hurdles might project managers experience in the dissemination process and which tasks should be fulfilled by the project manager?

  2. Public participation in UMTRA Project program management

    International Nuclear Information System (INIS)

    Majors, M.J.; Ulland, L.M.

    1993-01-01

    Innovative techniques for overcoming barriers to public participation on the US Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project have led to improved communications with stakeholders at project sites and improved communications within the project. On the UMTRA Project, it's been shown that an effective public participation program is an essential element to successful project implementation

  3. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  4. The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes

    Science.gov (United States)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2016-12-01

    NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.

  5. 7 CFR 1210.311 - Programs and projects.

    Science.gov (United States)

    2010-01-01

    ... PROMOTION PLAN Watermelon Research and Promotion Plan Definitions § 1210.311 Programs and projects. Programs and projects mean those research, development, advertising, or promotion programs or projects...

  6. THEMES, DREAMS AND REAUTY: THE SCIENCE PROJECT ...

    African Journals Online (AJOL)

    Science Education Project (SEP) is a non-profit making educational trust ... us that many of them fail to survive the rigours of the school and ... environment) emphasis will be placed on in-service training and ... The 'status quo' is safe, everyone.

  7. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  8. A Chronosequence Feasibility Assessment of Emergency Fire Rehabilitation Records within the Intermountain Western United States - Final Report to the Joint Fire Science Program - Project 08-S-08

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.

    2009-01-01

    Department of the Interior (DOI) bureaus have invested heavily (for example, the U.S. Bureau of Land Management (BLM) spent more than $60 million in fiscal year 2007) in seeding vegetation for emergency stabilization and burned area rehabilitation of non-forested arid lands over the past 10 years. The primary objectives of these seedings commonly are to (1) reduce the post-fire dominance of non-native annual grasses, such as cheatgrass (Bromus tectorum) and red brome (Bromus rubens); (2) minimize the probability of recurrent fire; and (3) ultimately produce desirable vegetation characteristics (for example, ability to recover following disturbance [resilience], resistance to invasive species, and a capacity to support a diverse flora and fauna). Although these projects historically have been monitored to varying extents, land managers currently lack scientific evidence to verify whether seeding arid and semiarid lands achieves desired objectives. Given the amount of resources dedicated to post-fire seeding projects, a synthesis of information determining the factors that result in successful treatments is critically needed. Although results of recently established experiments and monitoring projects eventually will provide useful insights for the future direction of emergency stabilization and burned area rehabilitation programs, a chronosequence approach evaluating emergency stabilization and burned area rehabilitation treatments (both referenced hereafter as ESR treatments) over the past 30 years could provide a comprehensive assessment of treatment success across a range of regional environmental gradients. By randomly selecting a statistically robust sample from the population of historic ESR treatments in the Intermountain West, this chronosequence approach would have inference for most ecological sites in this region. The goal of this feasibility study was to compile and examine historic ESR records from BLM field offices across the Intermountain West to

  9. Project LASER: Learning about science, engineering, and research

    Science.gov (United States)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  10. Report to Congress on the U.S. Department of Energy's Environmental Management Science Program. Research funded and its linkages to environmental cleanup problems. High out-year cost environmental management project descriptions. Volume 3 of 3 - Appendix C

    International Nuclear Information System (INIS)

    1998-04-01

    The Department of Energy's Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation's nuclear complex. Appendix C provides details about each of the Department's 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research

  11. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  12. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  13. Materials Sciences Programs. Fiscal Year 1980, Office of Basic Energy Sciences

    International Nuclear Information System (INIS)

    1980-09-01

    This report provides a convenient compilation index of the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs and is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  14. The Manhattan Project: Science in the Second World War

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F.G.

    1990-08-01

    The Manhattan Project: Science in the Second World War'' is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details of the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  15. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  16. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  17. Atmospheric Sciences Program summaries of research in FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  18. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  19. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  20. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    "From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations comprehensively explores the depiction of a curved world on a flat surface...

  1. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  2. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  3. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  4. Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana

    Science.gov (United States)

    Akinyemi, Felicia O.

    2018-05-01

    Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.

  5. NPOESS Preparatory Project (NPP) Science Overview

    Science.gov (United States)

    Butler, James J.

    2011-01-01

    NPP Instruments are: (1) well understood thanks to instrument comprehensive test, characterization and calibration programs. (2) Government team ready for October 25 launch followed by instrument activation and Intensive Calibration/Validation (ICV). NPP Data Products preliminary work includes: (1) JPSS Center for Satellite Applications and Research (STAR) team ready to support NPP ICV and operational data products. (2) NASA NPP science team ready to support NPP ICV and EOS data continuity.

  6. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  7. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  8. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  9. The International Science and Technology Center: Scope of activities and scientific projects in the field of nuclear data

    International Nuclear Information System (INIS)

    Klepatsky, Alexander B.

    2002-01-01

    The review of the ISTC (The International Science and Technology Center) Programs and activities including Science Project Program, Partner Program, Seminar Program and others is presented. Project funding by technology area, by funding Parties, by CIS (Commonwealth of Independent States) States etc. is demonstrated with emphasis on projects in the field of nuclear data. The ISTC opportunities for international cooperation in the fields of nuclear data measurements, calculation, evaluation and dissemination are discussed. (author)

  10. A proposal of neutron science research program

    International Nuclear Information System (INIS)

    Suzuki, Y.; Yasuda, H.; Tone, T.; Mizumoto, M.

    1996-01-01

    A conception of Neutron Science Research Program (NSRP) has been proposed in Japan Atomic Energy Research Institute (JAERI) since 1994 as a future big project. The NSRP aims at exploring new basic science and nuclear energy science by a high-intensity proton accelerator. It is a complex composed of a proton linac and seven research facilities with each different target system. The proton linac is required to supply the high-intensity proton beam with energy up to 1.5 GeV and current 10 mA on average. The scientific research facilities proposed, are as follows: Thermal/Cold Neutron Facility for the neutron scattering experiments, Neutron Irradiation Facility for materials science, Neutron Physics Facility for nuclear data measurement, OMEGA/Nuclear Energy Facility for nuclear waste transmutation and fuel breeding, Spallation RI Beam Facility for nuclear physics, Meson/Muon Facility for meson and muon physics and their applications and Medium Energy Beam Facility for accelerator technology development, medical use, etc. Research and development have been carried out for the components of the injector system of the proton linac; an ion source, an RFQ linac and a part of DTL linac. The conceptual design work and research and development activities for NSRP have been started in the fiscal year, 1996. Construction term will be divided into two phases; the completion of the first phase is expected in 2003, when the proton linac will produce 1.5 GeV, 1 mA beam by reflecting the successful technology developments. (author)

  11. Leadership Development Program Final Project

    Science.gov (United States)

    Parrish, Teresa C.

    2016-01-01

    TOSC is NASA's prime contractor tasked to successfully assemble, test, and launch the EM1 spacecraft. TOSC success is highly dependent on design products from the other NASA Programs manufacturing and delivering the flight hardware; Space Launch System(SLS) and Multi-Purpose Crew Vehicle(MPCV). Design products directly feed into TOSC's: Procedures, Personnel training, Hardware assembly, Software development, Integrated vehicle test and checkout, Launch. TOSC senior management recognized a significant schedule risk as these products are still being developed by the other two (2) programs; SVE and ACE positions were created.

  12. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    Science.gov (United States)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  13. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  14. 34 CFR 637.11 - What kinds of projects are supported by this program?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What kinds of projects are supported by this program...) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of Projects Does the Secretary Assist Under This Program? § 637.11 What kinds of...

  15. Public Library YA Program Roundup: Murder, We Wrote...and Played [and] Asleep in the Library: Girl Scouts Earn "From Dreams to Reality" Patch [and] Sign Language Funshop [and] Science Fair Help Day [and] A Skyomish Fairy Tale [and] The POW! Project: Picturing Our World! Teens Create Art and Self-Esteem at the Boston Public Library.

    Science.gov (United States)

    Goldsmith, Francisca; Seblonka, Cathy Sullivan; Wagner, Joyce; Smith, Tammy; Sipos, Caryn; Bodart, Joni Richards

    1998-01-01

    Includes six articles that describe public library programs for teens. Highlights include interactive murder mysteries; a girl scout sleepover program on career awareness; sign language workshop; a Science Fair help day that included guest speakers; a unit on fairy tales and legends; and a project to enhance creativity and self-esteem. (LRW)

  16. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    Science.gov (United States)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  17. National Ignition Facility Project Site Safety Program

    International Nuclear Information System (INIS)

    Dun, C

    2003-01-01

    This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES and H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES and H requirements are consistent with the ''LLNL ES and H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B

  18. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  19. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  20. Corrective action program reengineering project

    International Nuclear Information System (INIS)

    Vernick, H.R.

    1996-01-01

    A series of similar refueling floor events that occurred during the early 1990s prompted Susquehanna steam electric station (SSES) management to launch a broad-based review of how the Nuclear Department conducts business. This was accomplished through the formation of several improvement initiative teams. Clearly, one of the key areas that benefited from this management initiative was the corrective action program. The corrective action improvement team was charged with taking a comprehensive look at how the Nuclear Department identified and resolved problems. The 10-member team included management and bargaining unit personnel as well as an external management consultant. This paper provides a summary of this self-assessment initiative, including a discussion of the issues identified, opportunities for improvement, and subsequent completed or planned actions

  1. Student science enrichment training program: Progress report, June 1, 1988--May 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1989-04-21

    This is a status report on a Student Science Enrichment Training Program held at the campus of Claflin College, Orangeburg, SC. The topics of the report include the objectives of the project, participation experienced, financial incentives and support for the program, curriculum description, and estimated success of the program in stimulating an occupational interest in science and research fields by the students.

  2. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  3. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  4. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  5. Materials Sciences programs, Fiscal Year 1983

    International Nuclear Information System (INIS)

    1983-09-01

    The Materials Sciences Division constitutes one portion of a wide range of research supported by the DOE Office of Basic Energy Sciences. This report contains a listing of research underway in FY 1983 together with a convenient index to the program

  6. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  7. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  8. Quality Assurance Project Plan for Citizen Science Projects

    Science.gov (United States)

    The Quality Assurance Project Plan is necessary for every project that collects or uses environmental data. It documents the project planning process and serves as a blueprint for how your project will run.

  9. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  10. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  11. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  12. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  13. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  14. AFOSR International Science Program Office

    Science.gov (United States)

    2013-03-04

    S&T community. What: Biotechnology I f ti S i 7 Power & Energy *Limited direct engagement China n orma on c ences Physical Sciences Singapore...desert, geothermal activity, and Antarctica) provide unique variety for bio studies. Abundant mineral resources. Why: 8th Largest GPD and growing

  15. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  16. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  17. Laser Science and Technology Program Update 2002

    International Nuclear Information System (INIS)

    Hackel, L A; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LSandT activities during 2002 focused on seven major areas: (1) NIF Project--LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3ω optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  18. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  19. Water Resources Research Grant Program project descriptions, fiscal year 1987

    Science.gov (United States)

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  20. The Harvard Project Physics Film Program

    Science.gov (United States)

    Bork, Alfred M.

    1970-01-01

    States the philosophy behind the Harvard Project Physics (HPP) film program. Describes the three long HPP films. Lists the 48 color film loops covering six broad topics, primarily motion and energy. The 8-mm silent loops are synchronized with the text materials. Explains some of the pedagogical possibilities of these film loops. (RR)

  1. Project Physics Programmed Instruction, Waves 2.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This is the second of two programmed instruction booklets on the topic of waves, developed by Harvard Project Physics. It covers the relationships among the frequency, period, wavelength, and speed of a periodic wave. For the first booklet in this series, see SE 015 552. (DT)

  2. Environmental qualification program for Wolsong project

    International Nuclear Information System (INIS)

    Duggal, A.; Johal, H.; Yee, F.; Suh, S.K.

    1995-01-01

    The Wolsong EQ Program is a process that begins at the design concept stage and continues throughout the operating life of the station. As all components may not have a 30 year service life without periodic maintenance, the EQ Program becomes an important management tool for the owner of the plant. First, the environmental conditions are predicted for the postulated events. Next, suitably qualified equipment is specified and procured. Then the equipment is installed according to specific instructions. Finally, by means of ongoing maintenance and replacement of parts, the qualification of the equipment is maintained during the operating life of the plant. Proper documentation and traceability is required at all stages of the program. As defined in the Wolsong Project Environmental Qualification Design Guide a comprehensive Environmental Qualification (EQ) Program ensures that safety related equipment located in an area in which a harsh environment could occur, can function when required for the life of the station . This program was implemented at the beginning of the Wolsong project. Using this program, components/equipment are qualified prior to installation and a maintenance program is established to keep equipment 'qualified' throughout the station life

  3. Pile Structure Program, Projected Start Date : January 1, 2010 (Implementation).

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Chris; Corbett, Catherine [Lower Columbia River Estuary Partnership; Ebberts, Blaine [U.S. Army Corps of Engineers

    2009-07-27

    The 2008 Federal Columbia River Power System Biological Opinion includes Reasonable and Prudent Alternative 38-Piling and Piling Dike Removal Program. This RPA directs the Action Agencies to work with the Estuary Partnership to develop and implement a piling and pile dike removal program. The program has since evolved to include modifying pile structures to enhance their habitat value and complexity by adding large woody debris. The geographic extent of the Pile Structure Program (PSP) includes all tidally-influenced portions of the lower Columbia River below Bonneville Dam; however, it will focus on the mainstem. The overarching goal of the PSP is to enhance and restore ecosystem structure and function for the recovery of federally listed salmonids through the active management of pile structures. To attain this goal, the program team developed the following objectives: (1) Develop a plan to remove or modify pile structures that have lower value to navigation channel maintenance, and in which removal or modification will present low-risk to adjacent land use, is cost-effective, and would result in increased ecosystem function. (2) Determine program benefits for juvenile salmonids and the ecosystem through a series of intensively monitored pilot projects. (3) Incorporate best available science and pilot project results into an adaptive management framework that will guide future management by prioritizing projects with the highest benefits. The PSP's hypotheses, which form the basis of the pilot project experiments, are organized into five categories: Sediment and Habitat-forming Processes, Habitat Conditions and Food Web, Piscivorous Fish, Piscivorous Birds, and Toxic Contaminant Reduction. These hypotheses are based on the effects listed in the Estuary Module (NOAA Fisheries in press) and others that emerged during literature reviews, discussions with scientists, and field visits. Using pilot project findings, future implementation will be adaptively managed

  4. The Caltech Concurrent Computation Program - Project description

    Science.gov (United States)

    Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.

    1985-01-01

    The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.

  5. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  6. Double Star project - master science operations plan

    Science.gov (United States)

    Shen, C.; Liu, Z.

    2005-11-01

    For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  7. Double Star project - master science operations plan

    Directory of Open Access Journals (Sweden)

    C. Shen

    2005-11-01

    Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  8. The Backyard Worlds: Planet 9 Citizen Science Project

    Science.gov (United States)

    Faherty, Jacqueline K.; Kuchner, Marc; Schneider, Adam; Meisner, Aaron; Gagné, Jonathan; Filippazzo, Joeseph; Trouille, Laura; Backyard Worlds: Planet 9 Collaboration; Jacqueline Faherty

    2018-01-01

    In February of 2017 our team launched a new citizen science project entitled Backyard Worlds: Planet 9 to scan the cosmos for fast moving stars, brown dwarfs, and even planets. This Zooniverse website, BackyardWorlds.org, invites anyone with a computer or smartphone to flip through WISE images taken over a several year baseline and mark any point source that appears to move. This “blinking technique” is the same that Clyde Tombaugh discovered Pluto with over 80 years ago. In the first few days of our program we recruited over 30,000 volunteers. After 3/4 of a year with the program we have completed 30% of the sky and our participants have identified several hundred candidate movers. These include (1) over 20 candidate Y-type brown dwarfs, (2) a handful of new co-moving systems containing a previously unidentified low mass object and a known nearby star, (3) over 100 previously missed M dwarfs, (4) and more than 200 candidate L and T brown dwarfs, many of which occupy outlier positions on reduced proper motion diagrams. Our first publication credited four citizen scientists as co-authors. The Backyard Worlds: Planet 9 project is both scientifically fruitful and empowering for any mind across the globe that has ever wanted to participate in a discovery-driven astronomy research project.

  9. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  10. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  11. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  12. Programs of the Office of the Science Advisor (OSA)

    Science.gov (United States)

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  13. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  14. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    Science.gov (United States)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; hide

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  15. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  16. Public participation in UMTRA Project Program Management

    International Nuclear Information System (INIS)

    Majors, M.J.; Ulland, L.M.

    1993-01-01

    The U.S. Department of Energy (DOE) is cleaning up radioactive soil and ore residue from 24 inactive uranium processing sites under the Uranium Mill Tailings Remedial Action (UMTRA) Project. In early 1993, the DOE adopted new guidelines strongly encouraging public participation. This guidance commits to providing the public with opportunities to participate in the decision-making process for program planning, design, and implementation. Rooted in the conviction that an effective public participation program will enable citizens to take part in policy decisions, the full adoption of the guidance by the UMTRA project can also help DOE make better decisions, provide a means to build consensus, and assist in building credibility. This transition to open communication parallels the climate of corporate America in which increases in productivity are often the result of workers and management teaming together to solve problems. While these guidelines have been embraced by public affairs staff from headquarters to the field offices, barriers still exist that inhibit substantive public involvement. The challenge for the UMTRA project is to overcome these barriers to ensure that public participation is an integral part of the way business is conducted. This paper discusses lessons learned by the UMTRA project in its efforts to address barriers to public participation and the project's plans for full compliance with the DOE guidelines

  17. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  18. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  19. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  20. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    Pasquini, L.A.

    1986-01-01

    The purpose of the Shippingport Station Decommissioning Project (SSDP) is to place the Shippingport Atomic Power Station in a long-term radiologically safe condition following defueling of the reactor, to perform decommissioning in such a manner as to demonstrate to the nuclear industry the application of decommissioning procedures to a large scale nuclear power plant, and to provide useful planning data for future decommissioning projects. This paper describes the Technology Transfer Program for collecting and archiving the decommissioning data base and its availability to the nuclear industry

  1. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  2. Science 101: What Constitutes a Good Science Project

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Having written columns dealing with science fairs before, Bill Robertson notes that it's been a long time since he has tackled the subject of what passes for a "science fair" in schools these days. Because science fairs have changed over the years, Robertson revisits the topic and explains the scientific method. The main focus of the…

  3. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  4. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    Science.gov (United States)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  5. The Environmental Science and Health Effects Program

    International Nuclear Information System (INIS)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-01-01

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources

  6. The Environmental Science and Health Effects Program

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gurevich; Doug Lawson; Joe Mauderly

    2000-04-10

    The goal of the Environmental Science and Health Effect Program is to conduct policy-relevant research that will help us understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources.

  7. The Yucca Mountain Project Prototype Testing Program

    International Nuclear Information System (INIS)

    1989-10-01

    The Yucca Mountain Project is conducting a Prototype Testing Program to ensure that the Exploratory Shaft Facility (ESF) tests can be completed in the time available and to develop instruments, equipment, and procedures so the ESF tests can collect reliable and representative site characterization data. This report summarizes the prototype tests and their status and location and emphasizes prototype ESF and surface tests, which are required in the early stages of the ESF site characterization tests. 14 figs

  8. TMI-2 Vessel Investigation Project Metallurgical Program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1990-01-01

    The TMI-2 [Three Mile Island unit 2] Vessel Investigation Project Metallurgical Program at Argonne National Laboratory is a part of the international TMI-2 Vessel Investigation Project being conducted jointly by the U.S. Nuclear Regulatory Commission and the Organization for Economic Co-operation and Development (OECD). The overall project consists of three phases, namely (1) recovery of material samples from the lower head of the TMI-2 reactor, (2) examination and analysis of the lower head samples and the preparation and testing of archive material subjected to a similar thermal history, and (3) procurement, examination, and analysis of companion core material located adjacent to or near the lower head material. The specific objectives of the ANL Metallurgical Program, which accounts for a major portion of Phase 2, are to prepare metallographic and mechanical test specimen blanks from the TMI-2 lower head material, prepare similar test specimen blanks from suitable archive material subjected to the appropriate thermal processing, determine the mechanical properties of the lower vessel head and archive materials under the conditions of the core-melt accident, and assess the lower head integrity and margin-to-failure during the accident. The ANL work consists of three tasks: (1) archive materials program, (2) fabrication of metallurgical and mechanical test specimens from the TMI-2 pressure vessel samples, and (3) mechanical property characterization of TMI-2 lower pressure vessel head and archive material

  9. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  10. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  11. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  12. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  13. Evaluating RITES, a Statewide Math and Science Partnership Program

    Science.gov (United States)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  14. Stripa Project - Summary of defined programs

    International Nuclear Information System (INIS)

    Carlsson, L.; Olsson, T.; Pusch, R.

    1980-11-01

    An international cooperation project, the Stripa Project, in the field of nuclear waste management has been established as an autonomous OECH/NEA project. The management of the project has been entrusted to the Divsion Nuclear Fuel Safety (KBS) of the Swedish Nuclear Fuel Supply Company (SKBF). Technical input and contribution of funds are given by the following countries: Canada, Finland, Japan, Sweden, Switzerland and the United States. The report summarizes the programs for investigations funded at this stage. A number of investigations of a geophysical, geochemical and hydraulic nature will be carried out in the boreholes and the drill cores will be mapped and analysed. Another experiment is with various tracers which represent all important types of radionuclides and will be introduced in the naturally flowing water in a single fissure in granite. The experiment will show how well sorption data from the laboratory can be used to predict radionuclide migration in the field with real surfaces and waters. The third project aims at the verification of the suitability of the buffer materials at real conditions on site. Highly compacted bentonite and mixtures of bentonite and quartz sand are proposed as buffer materials in final repositories for high-level radioactive wastes. (GB)

  15. Innovative Project Activities in Science [From the NSTA Study of Innovative Project Activities

    Science.gov (United States)

    Science Teacher, 1975

    1975-01-01

    Describes four projects chosen as innovative project activities in science which exhibited identification of unique or novel problems and creative approaches to their solutions. Projects included a study of fish in Lake Erie, a goat raising project, an analysis of terrestrial plant ecology and soil composition, and a study of marine and wetlands…

  16. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    Science.gov (United States)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  17. 1998 Environmental Management Science Program Annual Report

    International Nuclear Information System (INIS)

    1999-01-01

    The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders

  18. The LSSTC Data Science Fellowship Program

    Science.gov (United States)

    Miller, Adam; Walkowicz, Lucianne; LSSTC DSFP Leadership Council

    2017-01-01

    The Large Synoptic Survey Telescope Corporation (LSSTC) Data Science Fellowship Program (DSFP) is a unique professional development program for astronomy graduate students. DSFP students complete a series of six, one-week long training sessions over the course of two years. The sessions are cumulative, each building on the last, to allow an in-depth exploration of the topics covered: data science basics, statistics, image processing, machine learning, scalable software, data visualization, time-series analysis, and science communication. The first session was held in Aug 2016 at Northwestern University, with all materials and lectures publicly available via github and YouTube. Each session focuses on a series of technical problems which are written in iPython notebooks. The initial class of fellows includes 16 students selected from across the globe, while an additional 14 fellows will be added to the program in year 2. Future sessions of the DSFP will be hosted by a rotating cast of LSSTC member institutions. The DSFP is designed to supplement graduate education in astronomy by teaching the essential skills necessary for dealing with big data, serving as a resource for all in the LSST era. The LSSTC DSFP is made possible by the generous support of the LSST Corporation, the Data Science Initiative (DSI) at Northwestern, and CIERA.

  19. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  20. Research Based Science Education: An Exemplary Program for Broader Impacts

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2016-12-01

    Broader impacts are most effective when standing on the shoulders of successful programs. The Research Based Science Education (RBSE) program was such a successful program and played a major role in activating effective opportunities beyond the scope of its program. NSF funded the National Optical Astronomy Observatory (NOAO) to oversee the project from 1996-2008. RBSE provided primarily high school teachers with on-site astronomy research experiences and their students with astronomy research projects that their teachers could explain with confidence. The goal of most student research projects is to inspire and motivate students to go into STEM fields. The authors of the original NSF proposal felt that for students to do research in the classroom, a foundational research experience for teachers must first be provided. The key components of the program consisted of 16 teachers/year on average; a 15-week distance learning course covering astronomy content, research, mentoring and leadership skills; a subsequent 10-day summer workshop with half the time on Kitt Peak on research-class telescopes; results presented on the 9th day; research brought back to the classroom; more on-site observing opportunities for students and teachers; data placed on-line to reach a wider audience; opportunities to submit research articles to the project's refereed journal; and travel for teachers (and the 3 teachers they each mentored) to a professional meeting. In 2004, leveraging on the well-established RBSE program, the NOAO/NASA Spitzer Space Telescope Research began. Between 2005 and 2008, metrics included 32 teachers (mostly from RBSE), 10 scientists, 15 Spitzer Director Discretionary proposals, 31 AAS presentations and many Intel ISEF winners. Under new funding in 2009, the NASA/IPAC Teacher Archive Research Program was born with similar goals and thankfully still runs today. Broader impacts, lessons learned and ideas for future projects will be discussed in this presentation.

  1. Connecting Mathematics in Primary Science Inquiry Projects

    Science.gov (United States)

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  2. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  3. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  4. Overview of NASA's Microgravity Materials Science Program

    Science.gov (United States)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  5. Shippingport station decommissioning project ALARA Program

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F.P. [Lockheed Environmental Systems and Technology Co., Houston, TX (United States)

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality in December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.

  6. Tailoring science education graduate programs to the needs of science educators in low-income countries

    Science.gov (United States)

    Lunetta, Vincent N.; van den Berg, Euwe

    Science education graduate programs in high-income countries frequently enroll students from low-income countries. Upon admission these students have profiles of knowledge, skills, and experiences which can be quite different from those of students from the host high-income countries. Upon graduation, they will normally return to work in education systems with conditions which differ greatly from those in high-income countries. This article attempts to clarify some of the differences and similarities between such students. It offers suggestions for making graduate programs more responsive to the special needs of students from low-income countries and to the opportunities they offer for enhancing cross-cultural sensitivity. Many of the suggestions can be incorporated within existing programs through choices of elective courses and topics for papers, projects, and research. Many references are provided to relevant literature on cultural issues and on science education in low-income countries.

  7. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  8. 2015 Stewardship Science Academic Programs Annual

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Terri [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States); Mischo, Millicent [NNSA Office of Research, Development, Test, and Evaluation, Washington, DC (United States)

    2015-02-01

    The Stockpile Stewardship Academic Programs (SSAP) are essential to maintaining a pipeline of professionals to support the technical capabilities that reside at the National Nuclear Security Administration (NNSA) national laboratories, sites, and plants. Since 1992, the United States has observed the moratorium on nuclear testing while significantly decreasing the nuclear arsenal. To accomplish this without nuclear testing, NNSA and its laboratories developed a science-based Stockpile Stewardship Program to maintain and enhance the experimental and computational tools required to ensure the continued safety, security, and reliability of the stockpile. NNSA launched its academic program portfolio more than a decade ago to engage students skilled in specific technical areas of relevance to stockpile stewardship. The success of this program is reflected by the large number of SSAP students choosing to begin their careers at NNSA national laboratories.

  9. Data Science Methodology for Cybersecurity Projects

    OpenAIRE

    Foroughi, Farhad; Luksch, Peter

    2018-01-01

    Cyber-security solutions are traditionally static and signature-based. The traditional solutions along with the use of analytic models, machine learning and big data could be improved by automatically trigger mitigation or provide relevant awareness to control or limit consequences of threats. This kind of intelligent solutions is covered in the context of Data Science for Cyber-security. Data Science provides a significant role in cyber-security by utilising the power of data (and big data),...

  10. [Applications and spproved projects of general program, young scientist fund and fund for less developed region of national natural science funds in discipline of Chinese materia medica, NSFC in 2011].

    Science.gov (United States)

    Han, Liwei; Wang, Yueyun; He, Wenbin; Zhang, Junjie; Bi, Minggang; Shang, Hongcai; Shang, Deyang; Wang, Chang'en

    2012-03-01

    The applications accepted and approved by general program, young scientist fund and fund for less developed region of national natural science funds in the discipline of Chinese materia medica, NSFC in 2011 have been introduced. The character and problems in these applications have been analyzed to give a reference to the scientists in the field of Chinese material medica.

  11. 7 CFR 1219.50 - Budgets, programs, plans, and projects.

    Science.gov (United States)

    2010-01-01

    ... of appropriate programs, plans, or projects for advertising, sales promotion, other promotion, and... HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information... promotion, industry information, consumer information, and related research programs, plans, and projects...

  12. AAAS Communicating Science Program: Reflections on Evaluation

    Science.gov (United States)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  13. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  14. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  15. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  16. FAIR - Facility, Research Program and Status of the Project

    International Nuclear Information System (INIS)

    Majka, Z.

    2011-01-01

    The international Facility for Antiproton and Ion Research (FAIR) in Europe will provide a worldwide science community with a unique and technically innovative accelerator system to perform forefront research in the sciences concerned with the basic structure of matter, and in intersections with other fields. The facility will deliver an extensive range of primary and secondary particle beams from protons and their antimatter partners, antiprotons, to ion beams of all chemical elements up to the heaviest, uranium, with in many respects unique properties and intensities. The paper will include overview of the new facility design and research programs to be carried out there. The current status of the FAIR project will be also presented. (author)

  17. Materials Sciences programs, Fiscal Year 1992

    International Nuclear Information System (INIS)

    1993-02-01

    The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. This report contains a listing of research underway in FY 1992 together with an index to the Division's programs. Recent publications from Division-sponsored panel meetings and workshops are listed. The body of the report is arranged under the following section headings: laboratories, grant and contract research, small business innovation research, major user facilities, other user facilities, funding levels, and index

  18. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  19. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  20. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  1. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  2. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    Science.gov (United States)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should

  3. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  4. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  5. Clean Coal Technology Programs: Completed Projects (Volume 2)

    Energy Technology Data Exchange (ETDEWEB)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  6. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  7. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  8. Duplex Design Project: Science Pilot Test.

    Science.gov (United States)

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  9. Physical Science-Supplement: Project Oriented.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: No mention; appears to be for secondary grades. SUBJECT MATTER: Physical sciences for slow learners. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 11 units, each of which is further subdivided into several chapters. Each chapter is laid out in three columns; column headings are concepts, content, and activities.…

  10. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  11. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  12. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  13. Ukrainian Program for Material Science in Microgravity

    Science.gov (United States)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  14. Hands-On Educational Programs and Projects at SICSA

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve the design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Some of these projects are supported by corporate sponsors, such as a space tourism research, planning and design study conducted for the owner of national U.S. hotel chain. Some have been undertaken in support of programs sponsored by the State Government of Texas, including current commercial spaceport development planning for the Texas Aerospace Commission and three counties that represent candidate spaceport sites. Other projects have been supported by NASA and the Texas Aerospace Consortium, including the design and development of SICSA's "Space Habitation Laboratory", a space station module sized environmental simulator facility which has been featured in the "NASA Select" television broadcast series. This presentation will highlight representative projects. SICSA is internationally recognized for its leadership in the field of space architecture. Many program graduates have embarked upon productive and rewarding careers with aerospace organizations throughout the world. NASA has awarded certificates of appreciation to SICSA for significant achievements contributing to its advanced design initiatives. SICSA and its work have been featured in numerous popular magazines, professional publications, and public media broadcasts in many countries. SICSA applies a very comprehensive scope of activities to the practice of space architecture. Important roles include mission planning conceptualization of orbital and planetary structures and assembly processes, and design of habitats to optimize human safety, adaptation and productivity. SICSA sponsors educational programs for upper division undergraduate students and graduate students with interests in space and experimental architecture. Many fourth year participants continue in the SICSA program throughout

  15. Ecological projects of Semipalatinsk region rehabilitation program

    International Nuclear Information System (INIS)

    Musataev, M.Kh.

    2000-01-01

    Number of radioecological investigations of Semipalatinsk region evident, that radiatively dangerous levels of contaminations remains only on test settlements of site, on traces of explosion dose-forming clouds, and on some sections where experiments with radioactive substances were carried out. Radiological problem includes necessity of clarification of boundaries between dirty and clean lands; study of plutonium contamination hazard and radionuclides migration with underground and surface waters; conducting of monitoring of both the water quality and the agricultural foodstuff. Today in the region the problem of psychological stress of population remains. The problem is arisen because of late consequences of nuclear tests and other factors related with insufficient well-informing of population and mistrust of population to official radiation assessments in the region. To this problem is devoted six ecological projects of Semipalatinsk site rehabilitation program proposed by 53 session of United Nation Assembly for financing by international financing organizations and by countries-donors

  16. NASA Game Changing Development Program Manufacturing Innovation Project

    Science.gov (United States)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  17. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  18. Disaster Relief and Emergency Medical Services Project (DREAMS TM): Clinical and Basic Science Projects

    National Research Council Canada - National Science Library

    Casscells, Ward

    1999-01-01

    DREAMS clinical and basic science projects complement the digital EMS effort by investigating the mechanisms of tissue injury in order to minimize the mortality and mortality of trauma and "natural...

  19. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  20. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  1. Advertising Citizen Science: A Trailer for the Citizen Sky Project

    Science.gov (United States)

    Wyatt, Ryan; Price, A.

    2012-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.

  2. Project SAIL: A Summer Program Brings History Alive for Students.

    Science.gov (United States)

    Hollingsworth, Patricia

    2001-01-01

    This project describes Project SAIL (Schools for Active Interdisciplinary Learning), a federally funded project providing in-depth staff development during a 3-week summer program for teachers, parents, and their gifted/talented economically disadvantaged students. The program theme, "Searching for Patterns in History," has been used with students…

  3. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  4. Why every national deep-geological-isolation program needs a long-term science & technology component

    International Nuclear Information System (INIS)

    Budnitz, R J

    2006-01-01

    The objective of this paper is to set down the rationale for a separate Science & Technology (S&T) Program within every national deep-geological-isolation program. The fundamental rationale for such a Program is to provide a dedicated focus for longer-term science and technology activities that ultimately will benefit the whole repository mission. Such a Program, separately funded and with a dedicated staff (separate from the ''mainline'' activities to develop the repository, the surface facilities, and the transportation system), can devote itself exclusively to the development and management of a long-term science and technology program. Broad experience in governments worldwide has demonstrated that line offices are unlikely to be able to develop and sustain both the appropriate longer-term philosophy and the specialized skills associated with managing longer-term science and technology projects. Accomplishing both of these requires a separate dedicated program office with its own staff

  5. Materials Sciences programs, fiscal year 1978: Office of Basic Energy Services

    International Nuclear Information System (INIS)

    1978-09-01

    A compilation and index are provided of the the DOE Materials Sciences Division programs. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs. The report is divided into Sections A and B, listing all the projects, Section C, a summary of funding levels, and Section D, an index

  6. Human Research Program Science Management: Overview of Research and Development Activities

    Science.gov (United States)

    Charles, John B.

    2007-01-01

    An overview of research and development activities of NASA's Human Research Science Management Program is presented. The topics include: 1) Human Research Program Goals; 2) Elements and Projects within HRP; 3) Development and Maintenance of Priorities; 4) Acquisition and Evaluation of Research and Technology Proposals; and 5) Annual Reviews

  7. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  8. 75 FR 22576 - Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2010-04-29

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.120A] Minority Science and Engineering Improvement Program... the fiscal year (FY) 2009 grant slate for the Minority Science and Engineering Improvement Program. SUMMARY: The Secretary intends to use the grant slate developed in FY 2009 for the Minority Science and...

  9. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  10. Comb-e-Chem: an e-science research project

    OpenAIRE

    Frey, Jeremy G.

    2003-01-01

    The background to the Comb-e-Chem e-Science pilot project funded under the UK -Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are disucssed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed.

  11. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  12. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  13. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  14. Training Teens to Teach Agricultural Biotechnology: A National 4-H Science Demonstration Project

    Directory of Open Access Journals (Sweden)

    Chad Ripberger

    2013-12-01

    Full Text Available This article discusses a National 4-H Science agricultural biotechnology demonstration project and the impact of the pilot programs on the teenage leaders and teachers. A total of 82 teenagers were extensively trained, who in turn, engaged 620 youth participants with agricultural biotechnology education in afterschool and summer programs in five states. This article details the national and state level trainings for these teen teachers as well as the content rich partners from agribusinesses, agricultural commodity groups, and universities who supported their involvement. The impact on the content knowledge, science process and life skills, and program development and implementation skills of the teen leaders and teachers was evaluated using multiple instruments over multiple administrations (pre-training, post-training, and post-teaching. Results indicate significant gains in most areas assessed. Project recommendations and future plans are also discussed.

  15. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  16. Salt Repository Project transportation program plan

    International Nuclear Information System (INIS)

    Fisher, R.L.; Greenberg, A.H.; Anderson, T.L.; Yates, K.R.

    1987-01-01

    The Salt Repository Project (SRP) has the responsibility to develop a comprehensive transportation program plan (TrPP) that treats the transportation of workers, supplies, and high-level radioactive waste to the site and the transportation of salt, low-level, and transuranic wastes from the site. The TrPP has developed a systematic approach to transportation which is directed towards satisfying statutes, regulations, and directives and is guided by a hierarchy of specific functional requirements, strategies, plans, and reports. The TrPP identifies and develops the planning process for transportation-related studies and provides guidance to staff in performing and documenting these activities. The TrPP also includes an explanation of the responsibilities of the organizational elements involved in these transportation studies. Several of the report chapters relate to identifying routes for transporting nuclear waste to the site. These include a chapter on identifying an access corridor for a new rail route leading to the site, identifying and evaluating emergency-response preparedness capabilities along candidate routes in the state, and identifying alternative routes from the state border, ports, or in-state reactors to the site. The TrPP also includes plans for identifying salt disposal routes and a discussion of repository/transportation interface requirements. 89 refs., 6 figs

  17. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  18. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  19. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  20. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    Science.gov (United States)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-01-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old…

  1. The Effect of Project-Based History and Nature of Science Practices on the Change of Nature of Scientific Knowledge

    Science.gov (United States)

    Çibik, Ayse Sert

    2016-01-01

    The aim of this study is to compare the change of pre-service science teachers' views about the nature of scientific knowledge through Project-Based History and Nature of Science training and Conventional Method. The sample of the study consists of two groups of 3rd grade undergraduate students attending teacher preparation program of science…

  2. A Mathematical Sciences Program at an Upper-Division Campus.

    Science.gov (United States)

    Swetz, Frank J.

    1978-01-01

    The conception, objectives, contents, and limitations of a degree program in the mathematical sciences at Pennsylvania State University, Capitol Campus, are discussed. Career goals that may be pursued include: managerial, science, education, actuarial, and computer. (MP)

  3. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  4. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  5. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    Science.gov (United States)

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  6. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  7. Teachers' voices: A comparison of two secondary science teacher preparation programs

    Science.gov (United States)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M

  8. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  9. Chemical Database Projects Delivered by RSC eScience

    OpenAIRE

    Williams, Antony

    2013-01-01

    This presentation is an overview of some of the projects we are involved with at RSC eScience. The presentation was given at the FDA Meeting regarding the “Development of a Freely Distributable Data System for the Registration of Substances"  

  10. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  11. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  12. STEM Projects: Should We Add the "TEM" to Science?

    Science.gov (United States)

    Hall, Angela

    2012-01-01

    A recent curriculum development from the Nuffield Foundation rose to the challenge of producing a set of resources to establish STEM (Science, Technology, Engineering and Mathematics) as a curriculum focus. The result is two STEM cross-curricular projects: "Games," inspired by the London Olympics, and "Futures," a novel…

  13. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  14. Children and their 4-H animal projects: How children use science in agricultural activity

    Science.gov (United States)

    Emo, Kenneth Roy

    Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.

  15. Testing the robustness of Citizen Science projects: Evaluating the results of pilot project COMBER.

    Science.gov (United States)

    Chatzigeorgiou, Giorgos; Faulwetter, Sarah; Dailianis, Thanos; Smith, Vincent Stuart; Koulouri, Panagiota; Dounas, Costas; Arvanitidis, Christos

    2016-01-01

    Citizen Science (CS) as a term implies a great deal of approaches and scopes involving many different fields of science. The number of the relevant projects globally has been increased significantly in the recent years. Large scale ecological questions can be answered only through extended observation networks and CS projects can support this effort. Although the need of such projects is apparent, an important part of scientific community cast doubt on the reliability of CS data sets. The pilot CS project COMBER has been created in order to provide evidence to answer the aforementioned question in the coastal marine biodiversity monitoring. The results of the current analysis show that a carefully designed CS project with clear hypotheses, wide participation and data sets validation, can be a valuable tool for the large scale and long term changes in marine biodiversity pattern change and therefore for relevant management and conservation issues.

  16. ISTC: experimental and technology programs toward novel reactor concepts (review of the ISTC projects and programs)

    Energy Technology Data Exchange (ETDEWEB)

    Tocheny, L.V. [ISTC - International Science and Technology Center, Moscow, Russia, Moscow (Russian Federation)

    2007-07-01

    The ISTC (International Science and Technology Center) is a unique international organization created in Moscow more than twelve years ago by Russia, Usa, E.U. and Japan. Later Korea and Canada, and several CIS countries as well acceded to ISTC. The basic idea behind establishing the ISTC was to support non-proliferation of the mass destruction weapons technologies by re-directing former Soviet weapons scientists to peaceful research thus preventing the drain of dangerous knowledge and expertise from Russia and other CIS countries. Numerous science and technology projects were realized with the ISTC support in different areas, from bio-technologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. Goals of this presentation are to introduce some of the ISTC programs to international nuclear community to give examples of international cooperation, created in the frames of ISTC, to illustrate the statement of importance of international nuclear experiment as a tool for evidence of new nuclear concepts acceptance, and to make a call for further joint collaboration. (author)

  17. ISTC: experimental and technology programs toward novel reactor concepts (review of the ISTC projects and programs)

    International Nuclear Information System (INIS)

    Tocheny, L.V.

    2007-01-01

    The ISTC (International Science and Technology Center) is a unique international organization created in Moscow more than twelve years ago by Russia, Usa, E.U. and Japan. Later Korea and Canada, and several CIS countries as well acceded to ISTC. The basic idea behind establishing the ISTC was to support non-proliferation of the mass destruction weapons technologies by re-directing former Soviet weapons scientists to peaceful research thus preventing the drain of dangerous knowledge and expertise from Russia and other CIS countries. Numerous science and technology projects were realized with the ISTC support in different areas, from bio-technologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. The presentation addresses some technical results of the ISTC projects as well as methods and approaches employed by the ISTC to foster close international collaboration and manage projects towards fruitful results. Goals of this presentation are to introduce some of the ISTC programs to international nuclear community to give examples of international cooperation, created in the frames of ISTC, to illustrate the statement of importance of international nuclear experiment as a tool for evidence of new nuclear concepts acceptance, and to make a call for further joint collaboration. (author)

  18. Laser Science and Technology Program Update 2001

    International Nuclear Information System (INIS)

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LSandT provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LSandT activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers

  19. The Polaris Project: Undergraduate Research Catalyzing Advances in Arctic Science

    Science.gov (United States)

    Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Bunn, A. G.; Frey, K. E.

    2017-12-01

    With guidance and sufficient resources, undergraduates can drive the exploration of new research directions, lead high impact scientific products, and effectively communicate the value of science to the public. As mentors, we must recognize the strong contribution undergraduates make to the advancement of scientific understanding and their unique ability and desire to be transdisciplinary and to translate ideas into action. Our job is to be sure students have the resources and tools to successfully explore questions that they care about, not to provide or lead them towards answers we already have. The central goal of the Polaris Project is to advance understanding of climate change in the Arctic through an integrated research, training, and outreach program that has at its heart a research expedition for undergraduates to a remote field station in the Arctic. Our integrative approach to training provides undergraduates with strong intellectual development and they bring fresh perspectives, creativity, and a unique willingness to take risks on new ideas that have an energizing effect on research and outreach. Since the projects inception in summer 2008, we have had >90 undergraduates participate in high-impact field expeditions and outreach activities. Over the years, we have also been fortunate enough to attract an ethnically, racially, and culturally diverse group of students, including students from Puerto Rico, Hispanic-, African- and Native-Americans, members of the LGBT community, and first-generation college students. Most of these students have since pursued graduate degrees in ecology, and many have received NSF fellowships and Fulbright scholarships. One of our major goals is to increase the diversity of the scientific community, and we have been successful in our short-term goal of recruiting and retaining a diverse group of students. The goal of this presentation is to provide a description of the mentoring model at the heart of the Polaris Project

  20. An analysis of program planning in schools with emerging excellence in science instructional design

    Science.gov (United States)

    Carroll, Karen Marie

    Science educators agree on many of the program elements that characterize exemplary science instructional programs, but it has not been clear how the processes of planning and implementation lead to excellence in program design. This study focuses on two K--12 school clusters located in unified school districts and one K--12 school cluster spanning two non-unified districts that are in the midst of building new science programs. The clusters were selected for support by an organization of educators, scientists, and businesspersons because they were recognized as likely to produce good programs. The investigation centers on three research questions: (1) To what extent have schools engaged in science education reform achieved excellence? (2) How did schools engaged in science program improvement go about achieving their goals, and (3) What contextual factors are most closely related to the realization of quality program elements? The degree to which each program studied met indicators of quality suggested by the National Science Education Standards (NSES) are described according to an Innovation Configuration (IC) Chart. Using a Stream Diagnostic method of analysis, levels of practice were associated with contextual factors categorized as Social, Organizing, and Resource. Findings reveal the importance of a balanced and synchronized function of all components, including administrative commitment, teacher participation, and favorable logistical aspects. Individual reform projects were more likely to be successful if they included exemplary program elements and mechanisms for program managers to access district personnel and procedures needed to implement programs. A review of the cluster case histories also revealed the positive impact of cooperation between the funding organization and the project, the degree to which professional development is directly related to the new program, and the availability of resources and support for each exemplary program element.

  1. Life Sciences Program Tasks and Bibliography for FY 1997

    Science.gov (United States)

    Nelson, John C. (Editor)

    1998-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1997. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive internet web page.

  2. Life Sciences Program Tasks and Bibliography for FY 1996

    Science.gov (United States)

    Nelson, John C. (Editor)

    1997-01-01

    This document includes information on all peer reviewed projects funded by the Office of Life and Microgravity Sciences and Applications, Life Sciences Division during fiscal year 1996. This document will be published annually and made available to scientists in the space life sciences field both as a hard copy and as an interactive Internet web page.

  3. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    Science.gov (United States)

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  4. Academy of Program/Project & Engineering Leadership: NASA's Path to Project Management Excellence

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Path to Project Management Excellence eBook. Leadership plays a critical role in the success of today’s programs and projects. In an increasingly global and...

  5. Natural Programming: Project Overview and Proposal

    National Research Council Canada - National Science Library

    Myers, Brad

    1998-01-01

    End-users must write programs to control many different kinds of applications. Examples include multimedia authoring, controlling robots, defining manufacturing processes, setting up simulations, programming agents, scripting, etc...

  6. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  7. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  8. Quality assurance program plan fuel supply shutdown project

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1998-01-01

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP

  9. The South Carolina Amazing Coast Program: Using Ocean Sciences to Address Next Generation Science Standards in Grades 3-5

    Science.gov (United States)

    Bell, E. V.; Thomas, C.; Weiss, B.; Bliss, A.; Spence, L.

    2013-12-01

    The Next Generation Science Standards (NGSS) are more inclusive of ocean sciences than the National Science Standards and respective state science standards. In response, the Center for Ocean Sciences Education Excellence-SouthEast (COSEE SE) is piloting the South Carolina's Amazing Coast (SCAC) program: a three-year initiative that incorporates ocean science concepts in grades 3-5 with the goals of addressing NGSS, STEM (science-technology-engineering-math) disciplines, and inquiry skills. The SCAC program targeted two Charleston County, South Carolina elementary schools that were demographically similar: Title 1 status (75% free or reduced lunch), > 90% African American student population, grade level size inquiry skills. Specifically, third grade students learn about coastal habitats, animal and plant adaptations, and human impacts to the environment, and engage in a salt marsh restoration capstone project. This part of the curriculum aligns with the NGSS Core Ideas 3-LS1, 3-LS3, 3-LS4, 3-ESS3. The fourth grade students learn about weather, organism responses to the environment, and engage in a weather buoy construction capstone project. This part of the curriculum aligns with the NGSSS Core Ideas 4-LS1, 4-ESS2, 4-ESS3, 3-5-ETS1. In 5th grade, students focus specifically on the ocean ecosystem, human impacts on the environment and engage in a capstone project of designing and constructing remotely operated vehicles. This part of the curriculum aligns with NGSS Core Ideas 5-PS2, 5-LS1, 5-LS2, 5-ESS2, 3-5-ETS1. Initial evaluation results indicate that the SCAC teachers value the coach mentor approach for teacher professional development as well as the impact of field based experiences, place-based learning, and a culminating capstone project on student learning. Teacher feedback also indicates elements of sustainability that extend beyond the scope of the pilot project.These initial evaluation results poise the SCAC curriculum to be replicated in other

  10. Science Roles and Interactions in Adaptive Management of Large River Restoration Projects, Midwest United States

    Science.gov (United States)

    Jacobson, R. B.; Galat, D. L.; Smith, C. B.

    2010-12-01

    inside” expert (specifically knowledgeable but may be perceived as lacking independence). Both perspectives are important and can be accommodated in larger programs. Several river restoration programs in the Midwest have evolved towards hierarchical structures with transient peer-review panels with inside and outside experts invoked at the project level, and standing science advisory committees composed of outside experts for perspective of the entire program. The standing committee may have a variety of roles including providing: a) perspective on how individual restoration contribute to holistic, system-wide restoration objectives, b) understanding of how the science portfolio could be prioritized and diversified, and c) explanation and outreach to managers, stakeholders, scientists, and the public. Investments in rigorous science and science review can be considerable, amounting to over 20 percent of total restoration costs in large restoration programs. Justification depends on whether this investment is effective in informing decision making and providing an improved scientific foundation for restoration.

  11. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  12. CDIO Projects in Civil Engineering Study Program at DTU

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Simonsen, Claus; Christensen, Jørgen Erik

    2011-01-01

    or a design build project on each of the first four semesters. In this paper the four projects in the civil engineering study program are described along with a brief description of the entire study program. The aim is to provide additional information and documentation to accompany an exposition where......In 2008 all Bachelor of engineering study programs at the Technical University of Denmark (DTU) have been adopted to the “Conceive – Design – Implement – Operate” approach. As part of the necessary changes it was decided that all seven study programs should have a cross disciplinary project...... students present their projects. Learning outcomes, training and assessment of personal, professional and social engineering skills are described from a project point of view. Progression of engineering skills is discussed from a study program perspective. The interrelation between the various elements...

  13. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    Science.gov (United States)

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  14. The NPOESS Preparatory Project Science Data Segment: Brief Overview

    Science.gov (United States)

    Schweiss, Robert J.; Ho, Evelyn; Ullman, Richard; Samadi, Shahin

    2006-01-01

    The NPOESS Preparatory Project (NPP) provides remotely-sensed land, ocean, atmospheric, ozone, and sounder data that will serve the meteorological and global climate change scientific communities while also providing risk reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), the U.S. Government s future low-Earth orbiting satellite system monitoring global weather and environmental conditions. NPOESS and NPP are a new era, not only because the sensors will provide unprecedented quality and volume of data but also because it is a joint mission of three federal agencies, NASA, NOAA, and DoD. NASA's primary science role in NPP is to independently assess the quality of the NPP science and environmental data records. Such assessment is critical for making NPOESS products the best that they can be for operational use and ultimately for climate studies. The Science Data Segment (SDS) supports science assessment by assuring the timely provision of NPP data to NASA s science teams organized by climate measurement themes. The SDS breaks down into nine major elements, an input element that receives data from the operational agencies and acts as a buffer, a calibration analysis element, five elements devoted to measurement based quality assessment, an element used to test algorithmic improvements, and an element that provides overall science direction. This paper will describe how the NPP SDS will leverage on NASA experience to provide a mission-reliable research capability for science assessment of NPP derived measurements.

  15. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  16. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    Energy Technology Data Exchange (ETDEWEB)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  17. Phased project planning and development in anticipation of operational programs

    Science.gov (United States)

    Stroud, W. G.

    1973-01-01

    The impact of future operational status on the planning and execution of the research and development activities for major space flight projects is assessed. These projects, within NASA, are part of the Applications Program involving communications and meteorology. The NASA management approach to these projects is determined by national policies governing the responsibilities and relationships among the various government agencies and private industries.

  18. Making continental-scale environmental programs relevant locally for educators with Project BudBurst

    Science.gov (United States)

    Goehring, L.; Henderson, S.; Wasser, L.; Newman, S. J.; Ward, D.

    2012-12-01

    Project BudBurst is a national citizen science initiative designed to engage non professionals in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide excellent opportunities for educators and their students to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch, this on-line program has engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent, and in contemplating the meaning of such data in their local environments. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst educational resources and share lessons learned from educators in implementing the program in formal and informal education settings. Lesson plans and tips from educators will be highlighted. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago Botanic Garden.

  19. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  20. Functional Programming in C# Classic Programming Techniques for Modern Projects

    CERN Document Server

    Sturm, Oliver

    2011-01-01

    Take advantage of the growing trend in functional programming. C# is the number-one language used by .NET developers and one of the most popular programming languages in the world. It has many built-in functional programming features, but most are complex and little understood. With the shift to functional programming increasing at a rapid pace, you need to know how to leverage your existing skills to take advantage of this trend. Functional Programming in C# leads you along a path that begins with the historic value of functional ideas. Inside, C# MVP and functional programming expert Oli

  1. Magellan Project: Evolving enhanced operations efficiency to maximize science value

    Science.gov (United States)

    Cheuvront, Allan R.; Neuman, James C.; Mckinney, J. Franklin

    1994-01-01

    Magellan has been one of NASA's most successful spacecraft, returning more science data than all planetary spacecraft combined. The Magellan Spacecraft Team (SCT) has maximized the science return with innovative operational techniques to overcome anomalies and to perform activities for which the spacecraft was not designed. Commanding the spacecraft was originally time consuming because the standard development process was envisioned as manual tasks. The Program understood that reducing mission operations costs were essential for an extended mission. Management created an environment which encouraged automation of routine tasks, allowing staff reduction while maximizing the science data returned. Data analysis and trending, command preparation, and command reviews are some of the tasks that were automated. The SCT has accommodated personnel reductions by improving operations efficiency while returning the maximum science data possible.

  2. Successful healthcare programs and projects: organization portfolio management essentials.

    Science.gov (United States)

    Pickens, Scott; Solak, Jamie

    2005-01-01

    Many healthcare organization projects take more time and resources than planned and fail to deliver desired business outcomes. Healthcare IT is a major component of many projects and often undeservedly receives the blame for failure. Poor results are often not a result of faulty healthcare IT or poor project management or poor project execution alone. Many projects fail because of poor portfolio management--poor planning and management of the portfolio of initiatives designed to meet an organization's strategic goals. Because resources are limited, portfolio management enables organizations to more strategically allocate and manage their resources so care delivery, service delivery, and initiatives that advance organizations toward their strategic goals, including healthcare IT initiatives, can be accomplished at the levels of quality and service desired by an organization. Proper portfolio management is the essential foundation for program and project success and supports overall organization success. Without portfolio management, even programs and projects that execute flawlessly may not meet desired objectives. This article discusses the essential requirements for porfolio management. These include opportunity identification, return on investment (ROI) forecast, project prioritization, capacity planning (inclusive of human, financial, capital, and facilities resources), work scheduling, program and project management and execution, and project performance and value assessment. Portfolio management is essential to successful healthcare project execution. Theories are drawn from the Organizational Project Management Maturity Model (OPM3) work of the Project Management Institute and other leading strategy, planning, and organization change management research institutes.

  3. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  4. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  5. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  6. Materials Information for Science and Technology (MIST): Project overview: Phase 1 and 2 and general considerations

    Energy Technology Data Exchange (ETDEWEB)

    Grattidge, W.; Westbrook, J.; McCarthy, J.; Northrup, C. Jr.; Rumble, J. Jr.

    1986-11-01

    The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science and Technology (MIST). This report documents the first two phases of the project. The emphasis of the first phase was on determining what information was needed and how it could impact user productivity. The second phase data from the Aerospace Metal Handbook on a set of alloys was digitized and incorporated in the system.

  7. Atmospheric Science Program. Summaries of research in FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  8. Fisheries Restoration Grant Program Projects [ds168

    Data.gov (United States)

    California Natural Resource Agency — This shapefile (FRGP_All_020209.shp) represents the locations of all ongoing and completed salmonid restoration projects in California with existing records in the...

  9. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  10. DUSEL-related Science at LBNL Program and Opportunities

    International Nuclear Information System (INIS)

    Bauer, Christian; Detweiler, Jason; Freedman, Stuart; Gilchriese, Murdock; Kadel, Richard; Koch, Volker; Kolomensky, Yury; Lesko, Kevin; von der Lippe, Henrik; Marks, Steve; Nomura, Yasunori; Plate, David; Roe, Natalie; Sichtermann, Ernst; Ligeti, Zoltan

    2009-01-01

    neutrinoless double beta decay searches. The Nuclear Physics Long Range Plan strongly endorses DUSEL and the associated nuclear physics programs. It mentions, in particular, neutrinoless double beta decay, and accelerator-based nuclear astrophysics measurements as key elements of the DUSEL nuclear physics experimental program. There are numerous fundamental scientific questions that experiments which can naturally be sited at DUSEL can address. LBNL has a long tradition and track record of successful experiments in all of these areas: neutrino physics, dark matter searches, and nuclear astrophysics. Clearly, DUSEL presents many scientific opportunities, and the committee was charged to present a roadmap for LBNL participation, the impact that LBNL is likely to have on experiments at the present level of effort, the value of additional manpower, and opportunities for synergistic Detector R and D activities. The Berkeley community is already deeply involved in a number of experiments and/or proposals, shown in Table 1, that will be relevant to science at DUSEL. The approximate time lines for all projects considered in this report are shown in Table 2. For the DUSEL-related experiments the depth at which they would be located is also shown. Section 2 of this report deals with nuclear astrophysics. Section 3 discusses neutrinoless double beta decays. Section 4 focuses on neutrino oscillations, including the search for CP violation and proton decay. Section 5 deals with dark matter searches. In each section we give a brief overview of that field, review the present Berkeley efforts, and discuss the opportunities going into the future. Section 6 contains our recommendations.

  11. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  12. 7 CFR 1210.331 - Programs and projects.

    Science.gov (United States)

    2010-01-01

    ..., effectuation and administration of appropriate programs or projects for advertising and other sales promotion...; (d) A prohibition on advertising or other promotion programs that make any reference to private brand... PROMOTION PLAN Watermelon Research and Promotion Plan Research and Promotion § 1210.331 Programs and...

  13. 23 CFR 668.215 - Programming and project procedures.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Programming and project procedures. 668.215 Section 668.215 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS EMERGENCY RELIEF PROGRAM Procedures for Federal Agencies for Federal Roads § 668.215 Programming...

  14. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  15. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and high out-year cost environmental management project descriptions. Volume 3 of 3 -- Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix C provides details about each of the Department`s 82 high cost projects and lists the EMSP research awards with potential to impact each of these projects. The high cost projects listed are those having costs greater than $50 million in constant 1998 dollars from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and having costs of quantities of material associated with an environmental management problem area. The high cost project information is grouped by operations office and organized by site and project code. Each operations office section begins with a list of research needs associated with that operations office. Potentially related research awards are listed by problem area in the Index of Research Awards by Environmental Management Problem Area, which can be found at the end of appendices B and C. For projects that address high risks to the public, workers, or the environment, refer also the Health/Ecology/Risk problem area awards. Research needs are programmatic or technical challenges that may benefit from knowledge gained through basic research.

  16. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    Science.gov (United States)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  17. Education projects: an opportunity for student fieldwork in global health academic programs.

    Science.gov (United States)

    Fyfe, Molly V

    2012-01-01

    Universities, especially in higher-income countries, increasingly offer programs in global health. These programs provide different types of fieldwork projects, at home and abroad, including: epidemiological research, community health, and clinical electives. I illustrate how and why education projects offer distinct learning opportunities for global health program fieldwork. As University of California students, we partnered in Tanzania with students from Muhimbili University of Health and Allied Science (MUHAS) to assist MUHAS faculty with a curricular project. We attended classes, clinical rounds, and community outreach sessions together, where we observed teaching, materials used, and the learning environment; and interviewed and gathered data from current students, alumni, and health professionals during a nationwide survey. We learned together about education of health professionals and health systems in our respective institutions. On the basis of this experience, I suggest some factors that contribute to the productivity of educational projects as global health fieldwork.

  18. Optical projects in the Clinic program at Harvey Mudd College

    Science.gov (United States)

    Yang, Q.

    2017-08-01

    Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.

  19. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  20. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  1. Earth Science Enterprise Scientific Data Purchase Project: Verification and Validation

    Science.gov (United States)

    Jenner, Jeff; Policelli, Fritz; Fletcher, Rosea; Holecamp, Kara; Owen, Carolyn; Nicholson, Lamar; Dartez, Deanna

    2000-01-01

    This paper presents viewgraphs on the Earth Science Enterprise Scientific Data Purchase Project's verification,and validation process. The topics include: 1) What is Verification and Validation? 2) Why Verification and Validation? 3) Background; 4) ESE Data Purchas Validation Process; 5) Data Validation System and Ingest Queue; 6) Shipment Verification; 7) Tracking and Metrics; 8) Validation of Contract Specifications; 9) Earth Watch Data Validation; 10) Validation of Vertical Accuracy; and 11) Results of Vertical Accuracy Assessment.

  2. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    Haas, Andrew; The ATLAS collaboration

    2016-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the surprising results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices.

  3. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    Science.gov (United States)

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  4. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  5. Measuring Science Inquiry Skills in Youth Development Programs: The Science Process Skills Inventory

    Directory of Open Access Journals (Sweden)

    Mary E. Arnold

    2013-03-01

    Full Text Available In recent years there has been an increased emphasis on science learning in 4-H and other youth development programs. In an effort to increase science capacity in youth, it is easy to focus only on developing the concrete skills and knowledge that a trained scientist must possess. However, when science learning is presented in a youth-development setting, the context of the program also matters. This paper reports the development and testing of the Science Process Skills Inventory (SPSI and its usefulness for measuring science inquiry skill development in youth development science programs. The results of the psychometric testing of the SPSI indicated the instrument is reliable and measures a cohesive construct called science process skills, as reflected in the 11 items that make up this group of skills. The 11 items themselves are based on the cycle of science inquiry, and represent the important steps of the complete inquiry process.

  6. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  7. Expansion program is a challenging project

    International Nuclear Information System (INIS)

    Walker, G.L.

    1992-01-01

    This paper reports that construction is set to begin on the $1.5 billion PGT-PG and E Pipeline Expansion Project. It will consist of 691 miles of 42-in pipeline and 110 miles of 36-in. pipeline, to be built over 2 years. The project, which will transport additional supplies of natural gas to US West Coast markets, has its US regulatory approval in hand. On Oct. 16, 1991, the Federal Energy Regulatory Commission authorized Pacific Gas Transmission Co. to construct its Pacific Northwest segment of the expansion. Pacific Gas and Electric Co. received approval to build its California segment in late 1990 from the California Public Utilities Commission

  8. National Academy of Sciences Recommends Continued Support of ALMA Project

    Science.gov (United States)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes

  9. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  10. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  11. Against all odds: Tales of survival and growth of the Foundational Approaches in Science Teaching (FAST) project

    Science.gov (United States)

    Yamamoto, Karen Kina

    This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2

  12. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  13. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    Science.gov (United States)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  14. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  15. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  16. Developing Leaders: Implementation of a Peer Advising Program for a Public Health Sciences Undergraduate Program

    Directory of Open Access Journals (Sweden)

    Megan eGriffin

    2015-01-01

    Full Text Available Peer advising is an integral part of our undergraduate advising system in the Public Health Sciences major at the University of Massachusetts Amherst. The program was developed in 2009 to address the advising needs of a rapidly growing major that went from 25 to over 530 majors between 2007 and 2014. Each year, 9-12 top performing upper-level students are chosen through an intensive application process. A major goal of the program is to provide curriculum and career guidance to students in the major and empower students in their academic and professional pursuits. The year-long program involves several components, including: staffing the drop-in advising center, attending training seminars, developing and presenting workshops for students, meeting prospective students and families, evaluating ways to improve the program, and collaborating on self-directed projects. The peer advisors also provide program staff insight into the needs and perspectives of students in the major. In turn, peer advisors gain valuable leadership and communication skills, and learn strategies for improving student success. The Peer Advising Program builds community and fosters personal and professional development for the peer advisors. In this paper, we will discuss the undergraduate peer advising model, the benefits and challenges of the program, and lessons learned. Several methods were used to understand the perceived benefits and challenges of the program and experiences of students who utilized the Peer Advising Center. The data for this evaluation were drawn from three sources: 1 archival records from the Peer Advising Center; 2 feedback from peer advisors who completed the year-long internship; and 3 a survey of students who utilized the Peer Advising Center. Results of this preliminary evaluation indicate that peer advisors gain valuable skills that they can carry into their professional world. The program is also a way to engage students in building community

  17. Examining the relationship between leadership and mega science projects

    CERN Document Server

    Eggleton, David Christopher; Tang, Puay

    A development over the past 70 to 80 years within scientific research has been the need for very large pieces of apparatus to enable the exploration of new scientific topics, particularly within particle physics and space science. These ‘megascience projects’ are generally undertaken as cooperative ventures by countries seeking to pursue scientific experimental opportunities in these fields. Such projects, a subcategory of large/megaprojects that have a minimum budget of one billion US dollars, are characterised by high levels of technological uncertainty, given that their success depends on the development of new, highly-advanced technologies . However, there is a notable lack of research into the leadership of megascience projects - an important consideration when embarking on a substantial project. The leadership literature traditionally categorises leaders into five discrete leadership styles, but there is a gap when it comes to understanding the characteristics and development of leaders of megascien...

  18. [Earth and Space Sciences Project Services for NASA HPCC

    Science.gov (United States)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  19. NASA Citizen Science for Earth Systems Program: fusing public participation and remote sensing to improve our understanding of the planet

    Science.gov (United States)

    Whitehurst, A.; Murphy, K. J.

    2017-12-01

    The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.

  20. 78 FR 19468 - Applications for New Awards; Minority Science and Engineering Improvement Program

    Science.gov (United States)

    2013-04-01

    ... the introductory years of science and engineering programs. We invite applications for projects that... research courses into the introductory STEM curricula. Expand the use of scientific research and... strong statistical controls for selection bias and for discerning the influence of internal factors...

  1. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  2. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  3. Program report for FY 1980. Atmospheric and Geophysical Sciences Division of the Physics Department

    International Nuclear Information System (INIS)

    Knox, J.B.; Orphan, R.C.

    1981-02-01

    The FY 1980 research program conducted by the Atmospheric and Geophysical Sciences Division and supporting segments at Lawrence Livermore National Laboratory is reviewed briefly. The work is divided into five research themes: advanced modeling, regional modeling and assessments, CO 2 and climate research, stratospheric research, and special projects. Specific projects are described, and significant findings of the work are indicated. Unique numerical modeling capabilities in use and under development are described

  4. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    Science.gov (United States)

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  5. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  6. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  7. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  8. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  9. An economic analysis methodology for project evaluation and programming.

    Science.gov (United States)

    2013-08-01

    Economic analysis is a critical component of a comprehensive project or program evaluation methodology that considers all key : quantitative and qualitative impacts of highway investments. It allows highway agencies to identify, quantify, and value t...

  10. NHDOT : process for municipally managed state aid highway program projects

    Science.gov (United States)

    2006-05-23

    The design and construction of Municipally Managed State Aid Highway Program projects must comply with the requirements in this guideline in order to receive State Aid under the applicable provisions of RSA 235. Under this process, State Aid Construc...

  11. Academy of Program/Project & Engineering Leadership Annual Publications

    Data.gov (United States)

    National Aeronautics and Space Administration — Academy of Program/Project & Engineering Leadership's Annual Report highlights the Academy's efforts to serve the NASA workforce's needs in adapting to the...

  12. Geothermal Energy Research and Development Program; Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  13. Hybrid-Mentoring Programs for Beginning Elementary Science Teachers

    Science.gov (United States)

    Bang, EunJin

    2013-01-01

    This study examines four induction models and teacher changes in science teaching practices, as a result of several mentoring programs. It explores three different computer-mediated mentoring programs, and a traditional offline induction program--in terms of interactivity, inquiry-based teaching, and topics of knowledge. Fifteen elementary science…

  14. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  15. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  16. [Development of an advanced education program for community medicine by Nagasaki pharmacy and nursing science union consortium].

    Science.gov (United States)

    Teshima, Mugen; Nakashima, Mikiro; Hatakeyama, Susumi

    2012-01-01

    The Nagasaki University School of Pharmaceutical Sciences has conducted a project concerning "development of an advanced education program for community medicine" for its students in collaboration with the University's School of Nursing Sciences, the University of Nagasaki School of Nursing Sciences, and the Nagasaki International University School of Pharmaceutical Sciences. The project was named "formation of a strategic base for the integrated education of pharmacy and nursing science specially focused on home-healthcare and welfare", that has been adopted at "Strategic University Cooperative Support Program for Improving Graduate" by the Ministry of Education, Culture, Sports, Science and Technology, Japan from the 2009 academic year to the 2011 academic year. Our project is a novel education program about team medical care in collaboration with pharmacist and nurse. In order to perform this program smoothly, we established "Nagasaki pharmacy and nursing science union consortium (Nagasaki University, The University of Nagasaki, Nagasaki International University, Nagasaki Pharmaceutical Association, Nagasaki Society of Hospital Pharmacists, Nagasaki Nursing Association, Nagasaki Medical Association, Nagasaki Prefectural Government)". In this symposium, we introduce contents about university education program and life learning program of the project.

  17. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  18. Mathematical programming and financial objectives for scheduling projects

    CERN Document Server

    Kimms, Alf

    2001-01-01

    Mathematical Programming and Financial Objectives for Scheduling Projects focuses on decision problems where the performance is measured in terms of money. As the title suggests, special attention is paid to financial objectives and the relationship of financial objectives to project schedules and scheduling. In addition, how schedules relate to other decisions is treated in detail. The book demonstrates that scheduling must be combined with project selection and financing, and that scheduling helps to give an answer to the planning issue of the amount of resources required for a project. The author makes clear the relevance of scheduling to cutting budget costs. The book is divided into six parts. The first part gives a brief introduction to project management. Part two examines scheduling projects in order to maximize their net present value. Part three considers capital rationing. Many decisions on selecting or rejecting a project cannot be made in isolation and multiple projects must be taken fully into a...

  19. The Nordic nuclear safety program 1994-1997. Project handbook

    International Nuclear Information System (INIS)

    1997-06-01

    This is a new revision of the handbook for administrators of the Nordic reactor safety program NKS. The most important administrative functions in project management are described, which should secure a uniform management approach in all the projects. The description of the organizational scheme of the NKS and distribution of responsibilities is followed by examples of various administrative routines and document forms. In the annex the names and addresses of the staff involved in administration of the NKS program are listed. (EG)

  20. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    Science.gov (United States)

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  1. Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.

    Science.gov (United States)

    Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona

    2015-01-01

    Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of

  2. 42 CFR 50.208 - Program or project requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Program or project requirements. 50.208 Section 50.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS POLICIES OF GENERAL APPLICABILITY Sterilization of Persons in Federally Assisted Family Planning Projects § 50.208...

  3. Railway projects prioritisation for investment : application of goal programming

    OpenAIRE

    Ahern, Aoife; Anandarajah, Gabrial

    2007-01-01

    This research develops a weighted integer goal-programming model for prioritising railway projects for investment. The goal of the model is to prioritise the identified projects for investment while maximising the objectives and meeting the budget limit for capital investment. The model minimises the goal deviations of the objectives. The objectives of the model include quantitative and qualitative attributes. The model is applied to prioritise the new railway projects, which have a total cos...

  4. The history and science of the Manhatten project

    International Nuclear Information System (INIS)

    Reed, Bruce Cameron

    2014-01-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  5. The history and science of the Manhatten project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bruce Cameron [Alma College, Alma, MI (United States). Dept. of Physics

    2014-03-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  6. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  7. Visualization and characterization of users in a citizen science project

    Science.gov (United States)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  8. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  9. [Neurophenomenology: Project for a Science of Past Experiences].

    Science.gov (United States)

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  10. AECL's research and development program in environmental science and technology

    International Nuclear Information System (INIS)

    Cornett, R.J.

    1998-07-01

    AECL's radiological research and development (R and D) program encompasses work on sources of radiation exposure, radionuclide transport through the environment and potential impacts on biota and on human health. The application of the radiation protection knowledge and technology developed in this program provides cradle-to-grave management for CANDU and related nuclear technologies. This document provides an overview of the Environmental Science and Technology (ES and T) program which is one of the technical areas of R and D within the radiological R and D program. The ES and T program uses science from three main areas: radiochemistry, mathematical modelling and environmental assessment. In addition to providing an overview of the program, this summary also gives specific examples of recent technical work in each of the three areas. These technical examples illustrate the applied nature of the ES and T program and the close coupling of the program to CANDU customer requirements. (author)

  11. Bringing nursing science to the classroom: a collaborative project.

    Science.gov (United States)

    Reams, Susan; Bashford, Carol

    2009-01-01

    This project resulted as a collaborative effort on the part of a public school system and nursing faculty. The fifth grade student population utilized in this study focused on the skeletal, muscular, digestive, circulatory, respiratory, and nervous systems as part of their school system's existing science and health curriculum. The intent of the study was to evaluate the impact on student learning outcomes as a result of nursing-focused, science-based, hands-on experiential activities provided by nursing faculty in the public school setting. An assessment tool was created for pretesting and posttesting to evaluate learning outcomes resulting from the intervention. Over a two day period, six classes consisting of 25 to 30 students each were divided into three equal small groups and rotated among three interactive stations. Students explored the normal function of the digestive system, heart, lungs, and skin. Improvement in learning using the pretest and posttest assessment tools were documented.

  12. 1981 Magnetic-fusion theory program project summaries

    International Nuclear Information System (INIS)

    1982-02-01

    The theory program supports research projects at three different types of sites: DOE and other government laboratories, universities, and industrial contractors. This report is organized into three sections corresponding to the three types of sites and within each section is organized alphabetically by site name. Summaries of each program are given

  13. Project Selection for NASA's R&D Programs

    Science.gov (United States)

    Jones, Harry

    2005-01-01

    The purpose of NASA s Research and Development (R&D) programs is to provide advanced human support technologies for the Exploration Systems Mission Directorate (ESMD). The new technologies must be sufficiently attractive and proven to be selectable for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are likely options for flight. The R&D programs must select an array of technology development projects, manage them, and either terminate or continue them, so as to maximize the delivered number of potentially usable advanced human support technologies. This paper proposes an effective project selection methodology to help manage NASA R&D project portfolios.

  14. The Transiting Exoplanet Community Early Release Science Program for JWST

    Science.gov (United States)

    Berta-Thompson, Zachory K.; Batalha, Natalie M.; Stevenson, Kevin B.; Bean, Jacob; Sing, David K.; Crossfield, Ian; Knutson, Heather; Line, Michael R.; Kreidberg, Laura; Desert, Jean-Michel; Wakeford, Hannah; Crouzet, Nicolas; Moses, Julianne I.; Benneke, Björn; Kempton, Eliza; Lopez-Morales, Mercedes; Parmentier, Vivien; Gibson, Neale; Schlawin, Everett; Fraine, Jonathan; Kendrew, Sarah; Transiting Exoplanet Community ERS Team

    2018-06-01

    The James Webb Space Telescope offers astronomers the opportunity to observe the composition, structure, and dynamics of transiting exoplanet atmospheres with unprecedented detail. However, such observations require very precise time-series spectroscopic monitoring of bright stars and present unique technical challenges. The Transiting Exoplanet Community Early Release Science Program for JWST aims to help the community understand and overcome these technical challenges as early in the mission as possible, and to enable exciting scientific discoveries through the creation of public exoplanet atmosphere datasets. With observations of three hot Jupiters spanning a range of host star brightnesses, this program will exercise time-series modes with all four JWST instruments and cover a full suite of transiting planet characterization geometries (transits, eclipses, and phase curves). We designed the observational strategy through an open and transparent community effort, with contributions from an international collaboration of over 100 experts in exoplanet observations, theory, and instrumentation. Community engagement with the project will be centered around open Data Challenge activities using both simulated and real ERS data, for exoplanet scientists to cross-validate and improve their analysis tools and theoretical models. Recognizing that the scientific utility of JWST will be determined not only by its hardware and software but also by the community of people who use it, we take an intentional approach toward crafting an inclusive collaboration and encourage new participants to join our efforts.

  15. [HIV prevention program for young people--the WYSH Project as a model of "combination prevention"].

    Science.gov (United States)

    Ono-Kihara, Masako

    2010-03-01

    In face of the HIV pandemic that still grows, unsuccessful efforts of developing biomedical control measures or the failure of cognitive-behavioral approach to show sustained social level effectiveness, behavioral strategy is now expected to evolve into a structural prevention ("combination prevention") that involves multiple behavioral goals and multilevel approaches. WYSH Project is a combination prevention project for youth developed through socio-epidemiological approach that integrates epidemiology with social science such as social marketing and mixed method. WYSH Project includes mass education programs for youth in schools and programs for out-of-school youth through cyber network and peer communication. Started in 2002, it expanded nationwide with supports from related ministries and parent-teacher associations and has grown into a single largest youth prevention project in Japan.

  16. University Program Management Information System: NASA's University Program Active Projects

    Science.gov (United States)

    Gans, Gary (Technical Monitor)

    2003-01-01

    As basic policy, NASA believes that colleges and universities should be encouraged to participate in the nation's space and aeronautics program to the maximum extent practicable. Indeed, universities are considered as partners with government and industry in the nation's aerospace program. NASA's objective is to have them bring their scientific, engineering, and social research competence to bear on aerospace problems and on the broader social, economic, and international implications of NASA's technical and scientific programs. It is expected that, in so doing, universities will strengthen both their research and their educational capabilities to contribute more effectively to the national well being. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program. This report is consistent with agency accounting records, as the data is obtained from NASA's Financial and Contractual Status (FACS) System, operated by the Financial Management Division and the Procurement Office. However, in accordance with interagency agreements, the orientation differs from that required for financial or procurement purposes. Any apparent discrepancies between this report and other NASA procurement or financial reports stem from the selection criteria for the data. This report was prepared by the Office of Education/N.

  17. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  18. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  19. [Collaborative projects with academia for regulatory science studies on biomarkers].

    Science.gov (United States)

    Saito, Yoshiro; Nakamura, Ryosuke; Maekawa, Keiko

    2014-01-01

    Biomarkers are useful tools to be utilized as indicators/predictors of disease severity and drug responsiveness/safety, and thus are expected to promote efficient drug development and to accelerate proper use of approved drugs. Many academic achievements have been reported, but only a small number of biomarkers are used in clinical trials and drug treatments. Regulatory sciences on biomarkers for their secure development and proper qualification are necessary to facilitate their practical application. We started to collaborate with Tohoku University and Nagoya City University for sample quality, biomarker identification, evaluation of their usage, and making guidances. In this short review, scheme and progress of these projects are introduced.

  20. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00053405; The ATLAS collaboration

    2017-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices. People were better than existing algorithms at identifying displaced vertices for some masses and lifetimes, and showed good ability to recognize unexpected new features in the data.

  1. Assurance management program for the 30 Nova laser fusion project

    International Nuclear Information System (INIS)

    Levy, A.J.

    1983-01-01

    The Nova assurance management program was developed using the quality assurance (QA) approach first implemented at LLNL in early 1978. The LLNL QA program is described as an introduction to the Nova assurance management program. The Nova system is described pictorially through the Nova configuration, subsystems and major components, interjecting the QA techniques which are being pragmatically used to assure the successful completion of the project

  2. Using implementation science as the core of the doctor of nursing practice inquiry project.

    Science.gov (United States)

    Riner, Mary E

    2015-01-01

    New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Enhancing Literacy Practices in Science Classrooms through a Professional Development Program for Canadian Minority-Language Teachers

    Science.gov (United States)

    Rivard, Léonard P.; Gueye, Ndeye R.

    2016-01-01

    'Literacy in the Science Classroom Project" was a three-year professional development (PD) program supporting minority-language secondary teachers' use of effective language-based instructional strategies for teaching science. Our primary objective was to determine how teacher beliefs and practices changed over time and how these were enacted…

  4. Attracting young women to the physical sciences: The Newton Summer Science Academy and other extra curricular programs

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-03-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled ``Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad based interventions, we provide early experiences that we expect will prove positive to students. In particular, I will describe the Newton Summer Academy, a program for female high school students which integrates Physics, Chemistry, Math, Engineering and Economics. I will also address the successes and difficulties in starting and sustaining these programs.

  5. Pair Programming as a Modern Method of Teaching Computer Science

    OpenAIRE

    Irena Nančovska Šerbec; Branko Kaučič; Jože Rugelj

    2008-01-01

    At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM C...

  6. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  7. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  8. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  9. Improving Environmental Literacy through GO3 Citizen Science Project

    Science.gov (United States)

    Wilkening, B.

    2011-12-01

    In the Global Ozone (GO3) Project students measure ground-level ozone on a continuous basis and upload their results to a global network used by atmospheric scientists and schools. Students learn important concepts such as chemical measurement methods; instrumentation; calibration; data acquisition using computers; data quality; statistics; data analysis and graphing; posting of data to the web; the chemistry of air pollution; stratospheric ozone depletion and global climate change. Students collaborate with researchers and other students globally in the GO3 network. Wilson K-8 School is located in a suburban area in Pima County, Arizona. Throughout the year we receive high ozone alert days. Prior to joining the GO3 project, my students were unaware of air pollution alerts, risks and causes. In the past when Pima County issued alerts to the school, they were posted on signs around the school. No explanation was provided to the students and the signs were often left up for days. This discounted the potential health effects of the situation, resulting in the alerts effectively being ignored. The GO3 project is transforming both my students and our school community. Now my students are: Performing science research Utilizing technology and increasing their skills Collaborating in a responsible manner on the global GO3 social network Communicating their work to the community Issuing their own ozone alerts to their school Advocating for actions that will improve air quality My students participation in this citizen science project is creating a more cognizant and active community in regards to air pollution.

  10. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  11. Project STOP (Spectral Thermal Optimization Program)

    Science.gov (United States)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  12. User's operating procedures. Volume 2: Scout project financial analysis program

    Science.gov (United States)

    Harris, C. G.; Haris, D. K.

    1985-01-01

    A review is presented of the user's operating procedures for the Scout Project Automatic Data system, called SPADS. SPADS is the result of the past seven years of software development on a Prime mini-computer located at the Scout Project Office, NASA Langley Research Center, Hampton, Virginia. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, two (2) of three (3), provides the instructions to operate the Scout Project Financial Analysis program in data retrieval and file maintenance via the user friendly menu drivers.

  13. User's operating procedures. Volume 1: Scout project information programs

    Science.gov (United States)

    Harris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the Scout Project Automatic Data System, called SPADS is given. SPADS is the result of the past seven years of software development on a Prime minicomputer located at the Scout Project Office. SPADS was developed as a single entry, multiple cross reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. The instructions to operate the Scout Project Information programs in data retrieval and file maintenance via the user friendly menu drivers is presented.

  14. National Conversion Pilot Project Waste Management Program

    International Nuclear Information System (INIS)

    Engelmann, G.G.; Simmons, M.S.

    1995-01-01

    The U.S. Department of Energy facilities are in the process of downsizing. Most plans for downsizing focus on the decontamination and decommissioning of excess production facilities. A different approach for downsizing is taken at Rocky Flats Environmental Technology Site (RFETS), which has four production buildings. These buildings were used for the production of weapons components from uranium and beryllium and contain unique and valuable equipment, such as rolling mills, furnaces, and high-capacity presses, which could be utilized for stage-III metal recycling. The mission of this National Conversion Pilot Project (NCPP) open-quotes is to explore and demonstrate, at the Rocky Flats Environmental Technology Site (RFETS), the feasibility of economic conversion at Department of Energy facilities.close quotes The NCPP has been divided into three stages: 1. Stage I-planning and feasibility determination 2. Stage II-facility cleanup for reuse and operational assessment 3. Stage III-metals recycling. The NCPP has recently been approved to begin stage II. The objective of the NCPP stage II is to prepare the four NCPP buildings for stage III, to remove unwanted equipment, and to decontaminate buildings and essential equipment to levels consistent with those that commercial industrial operations must meet pursuant to applicable Occupational Safety and Health Administration, U.S. Environmental Protection Agency, U.S. Nuclear Regulatory Commission, and state workplace regulations

  15. Project Report: Undergraduate Student Research Program (USRP)

    Science.gov (United States)

    Gavin, Patricia

    2011-01-01

    To better understand geochemical processes occurring on Europa's seafloor, we investigated the effects of varying Fe?content in the seafloor rock and varying temperature. Iron is important in such geochemical processes as the production of methane through serpentinization (e.g. Allen and Seyfried, 2003) and can be a nutrient for microbes (Russell and Hall, 2006; Park and Kim, 2001). It can also offer clues as to the state of differentiation of Europa's core/mantle. If Europa is fully differentiated and contains an iron core, we would expect there to be little iron in the mantle and ocean floor whereas a homogeneous Europa would have iron evenly dispersed throughout the ocean floor. Furthermore, the composition of the ocean is a result of water?rock interactions at the seafloor. This project investigated the effects of temperature on geochemical processes, comparing high temperature (> 250oC) hydrothermal vents (Kelley et al., 2001) to lower temperature (20oC) cold seeps (e.g. Orphan et al., 2002).

  16. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  17. InterScience and fusion: Projects, collaborations, and spin-offs

    International Nuclear Information System (INIS)

    Castracane, J.

    1995-01-01

    InterScience, Inc. is a small, high technology research and development company which participates in the mission of the fusion energy research program in a variety of ways. The company specializes in basic physics and advanced technologies applied to research and commercial opportunities. InterScience has numerous federal and private sponsors for research and development activities in plasma physics, electro-optics, materials science, electronics, and biomedical engineering. The company currently has several direct research and development projects which involve the assembly of diagnostic hardware for installation and operation at tokamak facilities both in the U.S. and abroad. In addition, the company works in a technical support capacity for both the magnetic and inertial confinement fusion programs. Successful participation in the Small Business Innovation Research (SBIR) program has provided an avenue for the transfer of expertise from the fusion program to alternate agencies and research areas. Examples of this include fiberoptic sensors with data acquisition systems, advanced spectral imaging and image processing, fiberoptic imaging interferometry for biomedical instrumentation development and, micro-electro-mechanical systems

  18. The Electric Vehicle Project for High School Students in Nagoya City Science Museum : As the First Step of Global Engineering Education to Create Value from Knowledge

    OpenAIRE

    馬渕, 浩一; Mabuchi, Koichi

    2014-01-01

    This paper gives an account of "The Electric Vehicle Project", a science museum activity in cooperation with Nagoya Institute of Technology and major manufacturing companies. The project is intended to encourage Japanese high school students' interest in science and technology, based on Nagoya, Japan and Asia, the center of the manufacturing industries. The project contains three programs: 1) Students make practical lead acid batteries. 2) Students drive an electric vehicle of their own desig...

  19. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    Science.gov (United States)

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-05-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized problem-based learning (PBL) which was performed as an iterative process during two cycles. A total of 23 and 29 prospective teachers in each cycle performed team activities. A PBL-based ST ethics education program for the science classroom setting was effective in enhancing participants' perceptions of ethics and education in ST. These perceptions motivated prospective science teachers to develop and implement ST ethics education in their future classrooms. The change in the prospective teachers' perceptions of ethical issues and the need for ethics education was greater when the topic was controversial.

  20. Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects; TOPICAL

    International Nuclear Information System (INIS)

    Das, S

    2001-01-01

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R and D projects were chosen for this pilot evaluation: Low-Cost, Continuous Cast Aluminum Sheet; Advanced Forming Technologies for Aluminum; and Manufacturing of Composite Automotive Structures. These projects were chosen because they represent a range of benefits evaluation situations. The first project resulted in an improved process that may be commercialized. The second project is on going and has two distinct components. The third project has yielded an improved technology that has been commercialized. This completed project also benefited from numerous complementary projects

  1. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    Engineering Fair (NAISEF) and EXPO at the Albuquerque, NM Convention Center. Albuquerque is also the home of the AISES national office. The AISES staff also recruits volunteers to assist with implementation of the science and math bowl event. In 2011, there were 7 volunteers; in 2012, 15 volunteers, and in 2013, 19 volunteers. Volunteers are recruited from a variety of local sources, including Sandia Laboratories, Southwest Indian Polytechnic Institute students, Department of Defense, as well as family members of AISES staff. For AISES, the goals of the Intertribal Middle School Science and Math Bowl project are to have more Native students learn science, for them to gain confidence in competing, and to reward their effort in order to motivate them to pursue studies in the sciences and engineering. For DOE, the goals of the project are to get more Native students to compete at the National Science Bowl, held in Washington, DC.

  2. Barriers to Implementing the ACGME Outcome Project: A Systematic Review of Program Director Surveys.

    Science.gov (United States)

    Malik, Mohammad U; Diaz Voss Varela, David A; Stewart, Charles M; Laeeq, Kulsoom; Yenokyan, Gayane; Francis, Howard W; Bhatti, Nasir I

    2012-12-01

    The Accreditation Council for Graduate Medical Education (ACGME) introduced the Outcome Project in July 2001 to improve the quality of resident education through competency-based learning. The purpose of this systematic review is to determine and explore the perceptions of program directors regarding challenges to implementing the ACGME Outcome Project. We used the PubMed and Web of Science databases and bibliographies for English-language articles published between January 1, 2001, and February 17, 2012. Studies were included if they described program directors' opinions on (1) barriers encountered when attempting to implement ACGME competency-based education, and (2) assessment methods that each residency program was using to implement competency-based education. Articles meeting the inclusion criteria were screened by 2 researchers. The grading criterion was created by the authors and used to assess the quality of each study. The survey-based data reported the opinions of 1076 program directors. Barriers that were encountered include: (1) lack of time; (2) lack of faculty support; (3) resistance of residents to the Outcome Project; (4) insufficient funding; (5) perceived low priority for the Outcome Project; (6) inadequate salary incentive; and (7) inadequate knowledge of the competencies. Of the 6 competencies, those pertaining to patient care and medical knowledge received the most responses from program directors and were given highest priority. The reviewed literature revealed that time and financial constraints were the most important barriers encountered when implementing the ACGME Outcome Project.

  3. A Science Program for the Disadvantaged Child

    Science.gov (United States)

    Webster, John W.

    1970-01-01

    Suggests the need for science teachers to (1) examine their negative attitudes and prejudices concerning disadvantaged children, and (2) study the general characteristics and problems peculiar to these children. Classroom techniques that are effective in working with such children are discussed. Bibliography. (LC)

  4. AECL research programs in life sciences

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-04-01

    The present report summarizes the current research activities in life sciences in the Atomic Energy of Canada Limited-Research Company. The research is carried out at its two main research sites: the Chalk River Nuclear Laboratories and the Whiteshell Nuclear Research Establishment. The summaries cover the following areas of research: radiation biology, medical biophysics, epidemiology, environmental research and dosimetry. (author)

  5. A Software Engineering Paradigm for Quick-turnaround Earth Science Data Projects

    Science.gov (United States)

    Moore, K.

    2016-12-01

    As is generally the case with applied sciences professional and educational programs, the participants of such programs can come from a variety of technical backgrounds. In the NASA DEVELOP National Program, the participants constitute an interdisciplinary set of backgrounds, with varying levels of experience with computer programming. DEVELOP makes use of geographically explicit data sets, and it is necessary to use geographic information systems and geospatial image processing environments. As data sets cover longer time spans and include more complex sets of parameters, automation is becoming an increasingly prevalent feature. Though platforms such as ArcGIS, ERDAS Imagine, and ENVI facilitate the batch-processing of geospatial imagery, these environments are naturally constricting to the user in that they limit him or her to the tools that are available. Users must then turn to "homemade" scripting in more traditional programming languages such as Python, JavaScript, or R, to automate workflows. However, in the context of quick-turnaround projects like those in DEVELOP, the programming learning curve may be prohibitively steep. In this work, we consider how to best design a software development paradigm that addresses two major constants: an arbitrarily experienced programmer and quick-turnaround project timelines.

  6. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    Science.gov (United States)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  7. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.

  8. Building a Co-Created Citizen Science Program with Community Members Neighboring a Hazardous Waste Site

    Science.gov (United States)

    Ramirez-Andreotta, M.; Brusseau, M. L. L.; Artiola, J. F.; Maier, R. M.; Gandolfi, A. J.

    2015-12-01

    A research project that is only expert-driven may ignore the role of local knowledge in research, often gives low priority to the development of a comprehensive strategy to engage the community, and may not deliver the results of the study to the community in an effective way. To date, only a limited number of co-created citizen science projects, where community members are involved in most or all steps of the scientific process, have been initiated at contaminated sites and even less in conjunction with risk communication. Gardenroots: The Dewey-Humboldt AZ Garden Project was a place-based, co-created citizen science project where community members and researchers together: defined the question for study, developed hypotheses, collected environmental samples, disseminated results broadly, translated the results into action, and posed new research questions. This co-created environmental research project produced new data and addressed an additional exposure route (consumption of vegetables grown in soils with elevated arsenic levels) that was not being evaluated in the current site assessment. Furthermore, co-producing science led to both individual learning and social-ecological outcomes. This approach illustrates the benefits of a co-created citizen-science program in addressing the complex problems that arise in communities neighboring a hazardous waste sites. Such a project increased the community's involvement in regional environmental assessment and decision-making, which has the potential to help mitigate environmental exposures and thereby reduce associated risks.

  9. The Windows to the Universe Project: Using the Internet to Support K-12 Science Education

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.

    2003-12-01

    professional development workshops and short courses. Core funding for the project is provided from the NASA Office of Space Science Information Technology Research Program, the NASA Earth Science Enterprise Education Program, and the National Science Foundation.

  10. Digital Records Forensics: A New Science and Academic Program for Forensic Readiness

    Directory of Open Access Journals (Sweden)

    Luciana Duranti

    2010-06-01

    Full Text Available This paper introduces the Digital Records Forensics project, a research endeavour located at the University of British Columbia in Canada and aimed at the development of a new science resulting from the integration of digital forensics with diplomatics, archival science, information science and the law of evidence, and of an interdisciplinary graduate degree program, called Digital Records Forensics Studies, directed to professionals working for law enforcement agencies, legal firms, courts, and all kind of institutions and business that require their services. The program anticipates the need for organizations to become “forensically ready,” defined by John Tan as “maximizing the ability of an environment to collect credible digital evidence while minimizing the cost of an incident response (Tan, 2001.” The paper argues the need for such a program, describes its nature and content, and proposes ways of delivering it.

  11. System engineering and science projects: lessons from MeerKAT

    Science.gov (United States)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  12. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  13. Development of an Actuarial Science Program at Salisbury University

    Science.gov (United States)

    Wainwright, Barbara A.

    2014-01-01

    This paper focuses on the development of an actuarial science track for the mathematics major at Salisbury University (SU). A timeline from the initial investigation into such a program through the proposal and approval processes is shared for those who might be interested in developing a new actuarial program. It is wise to start small and take…

  14. A Graduate Academic Program in Medical Information Science.

    Science.gov (United States)

    Blois, Marsden S., Jr.; Wasserman, Anthony I.

    A graduate academic program in medical information science has been established at the University of California, San Francisco, for the education of scientists capable of performing research and development in information technology in the health care setting. This interdisciplinary program, leading to a Doctor of Philosophy degree, consists of an…

  15. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    2003-01-23

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal

  16. 100-N pilot project: Proposed consolidated groundwater monitoring program

    International Nuclear Information System (INIS)

    Borghese, J.V.; Hartman, M.J.; Lutrell, S.P.; Perkins, C.J.; Zoric, J.P.; Tindall, S.C.

    1996-11-01

    This report presents a proposed consolidated groundwater monitoring program for the 100-N Pilot Project. This program is the result of a cooperative effort between the Hanford Site contractors who monitor the groundwater beneath the 100-N Area. The consolidation of the groundwater monitoring programs is being proposed to minimize the cost, time, and effort necessary for groundwater monitoring in the 100-N Area, and to coordinate regulatory compliance activities. The integrity of the subprograms requirements remained intact during the consolidation effort. The purpose of this report is to present the proposed consolidated groundwater monitoring program and to summarize the process by which it was determined

  17. Laser Science and Technology Program Annual Report-2002 NIF Programs Directorate

    International Nuclear Information System (INIS)

    Hackel, L; Chen, H L

    2003-01-01

    The Laser Science and Technology (LSandT) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are consistent with the goals of the NIF Directorate and develop state-of-the-art capabilities. The primary objectives of LSandT activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and (d) to invent, develop, and deliver improved concepts and hardware for other government agencies and industry. LSandT activities during 2002 focused on seven major areas: (1) NIF Project-LSandT led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 30.1 optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)-LSandT personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LSandT continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy-LSandT continued development of kW- to MW-class, diode-pumped, solid-state laser (DPSSL). (4) Department of Defense (DoD)-LSandT continued development of a 100 kw-class solid-state heat-capacity laser

  18. The history and science of the Manhattan project

    CERN Document Server

    Reed, Bruce Cameron

    2014-01-01

    The development of atomic bombs under the auspices of the U. S. Army’s Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level “Modern Physics” course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the l...

  19. The practice of Spencerian science: Patrick Geddes's Biosocial Program, 1876-1889.

    Science.gov (United States)

    Renwick, Chris

    2009-03-01

    From the Victorian era to our own, critics of Herbert Spencer have portrayed his science-based philosophical system as irrelevant to the concerns of practicing scientists. Yet, as a number of scholars have recently argued, an extraordinary range of reformist and experimental projects across the human and life sciences took their bearings from Spencer's work. This essay examines Spencerian science as practiced by the biologist, sociologist, and town planner Patrick Geddes (1854-1932). Through a close examination of his experimental natural history of the late 1870s and early 1880s, his wider writings on the evolutionary process in the 1880s, and his efforts later in that decade to improve the slums of Edinburgh, this essay reveals Geddes's deep, unifying, and energizing commitment to Spencer's program. Recapturing that commitment can not only help historians rethink Spencerian science as practice but also suggest ways of overcoming the dichotomy between elite ideas and practical activity that bedevils much contemporary historiography of science.

  20. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  1. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  2. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  3. Cognitive and Neural Sciences Division 1991 Programs

    Science.gov (United States)

    1991-08-01

    interventions , for performance aiding, for certification and for performance evaluation. As the Navy modernizes those systems to take advantage of potential...2223-2237. Livingstone, M., Drislane, F. and Galaburda, A. (1991, in press) Physiological evidence for a magnocellular defect in dyslexia . Science. 201...develop training interventions to counter the effects of stress on performance. Progress: This grant is new in FY91. Outside Funding: Funds for this

  4. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  5. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  6. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    Science.gov (United States)

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  7. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  8. The Maryland nuclear science baccalaureate degree program: The university perspective

    International Nuclear Information System (INIS)

    Janke, T.A.

    1989-01-01

    Nuclear utilities' efforts in response to industry-wide pressures to provide operations staff with degree opportunities have encountered formidable barriers. This paper describes, from the university's perspective, the development and operation of the University of Maryland University College (UMUC) special baccalaureate program in nuclear science. This program has successfully overcome these problems to provide degree education on-site, on-line, and on time. Program delivery began in 1984 with one utility and a single site. It is currently delivered at eight sites under contract to six utilities with a total active student count of over 500. The first graduates are expected in 1989. The program is an accredited university program and enjoys licensure approval from the six states within which it operates. In addition to meeting US Nuclear Regulatory Commission proposed guidelines for degreed operators, the program increasingly appears as part of utility management development programs for all plant personnel and a factor in employee retention. The owner utilities, the University of Maryland, and the growing user's group are committed to the academic integrity, technical capability, and responsiveness of the program. The full support of this partnership speaks well for the long-term service of the Bachelor of Science in Nuclear Science program to the nuclear power industry

  9. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  10. Earth Science community support in the EGI-Inspire Project

    Science.gov (United States)

    Schwichtenberg, H.

    2012-04-01

    The Earth Science Grid community is following its strategy of propagating Grid technology to the ES disciplines, setting up interactive collaboration among the members of the community and stimulating the interest of stakeholders on the political level since ten years already. This strategy was described in a roadmap published in an Earth Science Informatics journal. It was applied through different European Grid projects and led to a large Grid Earth Science VRC that covers a variety of ES disciplines; in the end, all of them were facing the same kind of ICT problems. .. The penetration of Grid in the ES community is indicated by the variety of applications, the number of countries in which ES applications are ported, the number of papers in international journals and the number of related PhDs. Among the six virtual organisations belonging to ES, one, ESR, is generic. Three others -env.see-grid-sci.eu, meteo.see-grid-sci.eu and seismo.see-grid-sci.eu- are thematic and regional (South Eastern Europe) for environment, meteorology and seismology. The sixth VO, EGEODE, is for the users of the Geocluster software. There are also ES users in national VOs or VOs related to projects. The services for the ES task in EGI-Inspire concerns the data that are a key part of any ES application. The ES community requires several interfaces to access data and metadata outside of the EGI infrastructure, e.g. by using grid-enabled database interfaces. The data centres have also developed service tools for basic research activities such as searching, browsing and downloading these datasets, but these are not accessible from applications executed on the Grid. The ES task in EGI-Inspire aims to make these tools accessible from the Grid. In collaboration with GENESI-DR (Ground European Network for Earth Science Interoperations - Digital Repositories) this task is maintaining and evolving an interface in response to new requirements that will allow data in the GENESI-DR infrastructure to

  11. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  12. The Woods Hole Partnership Education Program: Increasing Diversity in the Ocean and Environmental Sciences in One Influential Science Community

    Science.gov (United States)

    Jearld, A.

    2011-12-01

    To increase diversity in one influential science community, a consortium of public and private institutions created the Woods Hole Partnership Education Program, or PEP, in 2008. Participating institutions are the Marine Biological Laboratory, Northeast Fisheries Science Center of NOAA's Fisheries Service, Sea Education Association, U.S. Geological Survey, Woods Hole Oceanographic Institution, the Woods Hole Research Center, and University of Maryland Eastern Shore. Aimed at college juniors and seniors with some course work in marine and/or environmental sciences, PEP is a four-week course and a six-to-eight-week individual research project under the guidance of a research mentor. Forty-six students have participated to date. Investigators from the science institutions serve as course faculty and research mentors. We listened to experts regarding critical mass, mentoring, adequate support, network recruitment, and then built a program based on those features. Three years in we have a program that works and that has its own model for choosing applicants and for matching with mentors. We continue fine-tuning our match process, enhancing mentoring skills, preparing our students for a variety of lab cultures, and setting expectations high while remaining supportive. Our challenges now are to keep at it, using leverage instead of capacity to make a difference. Collaboration, not competition, is key since a rising tide floats all boats.

  13. Uranium Mill Tailings Remedial Action Project Vicinity Property Program

    International Nuclear Information System (INIS)

    Little, L.E.; Potter, R.F.; Arpke, P.W.

    1988-01-01

    The Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Grand Junction Project Vicinity Property Program is a $165 million program for the removal and disposal of uranium mill tailings that were used in the construction of approximately 4,000 residences, commercial buildings, and institutional facilities in the City of Grand Junction and surrounding Mesa County, Colorado. This paper discusses the UMTRA Vicinity Property Program and the economic benefits of this program for the City of Grand Junction and Mesa County, Colorado. The Bureau of Reclamation Economic Assessment Model (BREAM) was used to estimate the increases in employment and increases in personal income in Mesa County that result from the Vicinity Property Program. The effects of program-related changes in income and taxable expenditures on local and state tax revenue are also presented

  14. ERD UMTRA Project quality assurance program plan, Revision 7

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors

  15. User's operating procedures. Volume 3: Projects directorate information programs

    Science.gov (United States)

    Haris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the scout project automatic data system, called SPADS is presented. SPADS is the results of the past seven years of software development on a prime mini-computer. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, three of three, provides the instructions to operate the projects directorate information programs in data retrieval and file maintenance via the user friendly menu drivers.

  16. Staff training program of CANDU projects in Saskatoon

    International Nuclear Information System (INIS)

    Huterer, J.

    1996-01-01

    This paper describes the training process for a nuclear project on a new site. When AECL opened a project office Saskatoon, senior management recognized the need for large scale staff training and made the necessary commitments. Two types of training programs were initiated, general and technical. The general training plan included topics related to nuclear project life cycle. Technical training was discipline and task specific. Based on the job descriptions and staff qualifications, technical training requirements were documented for the entire staff. The training strategy was developed and implemented. Detailed records were maintained to monitor the progress, draw conclusions, and plan training for future nuclear facilities. (author)

  17. Data systems and computer science programs: Overview

    Science.gov (United States)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  18. Polymer Science. Program CIP: 15.0607

    Science.gov (United States)

    Research and Curriculum Unit, 2010

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  19. Quality assurance program plan for SNF characterization support project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  20. Taking the Plunge: Next Steps in Engaged Learning: Project Kaleidoscope-Connecticut Conference of Independent Colleges Conference for Science Educators.

    Science.gov (United States)

    Frederick, Jennifer

    2010-09-01

    College and university science educators from across Connecticut gathered at Yale's West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled "Taking the Plunge: Next Steps in Engaged Learning." Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale's McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists.

  1. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  2. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  3. Climate Science Program at California State University, Northridge

    Science.gov (United States)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  4. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  5. Integrated Risk Management Within NASA Programs/Projects

    Science.gov (United States)

    Connley, Warren; Rad, Adrian; Botzum, Stephen

    2004-01-01

    As NASA Project Risk Management activities continue to evolve, the need to successfully integrate risk management processes across the life cycle, between functional disciplines, stakeholders, various management policies, and within cost, schedule and performance requirements/constraints become more evident and important. Today's programs and projects are complex undertakings that include a myriad of processes, tools, techniques, management arrangements and other variables all of which must function together in order to achieve mission success. The perception and impact of risk may vary significantly among stakeholders and may influence decisions that may have unintended consequences on the project during a future phase of the life cycle. In these cases, risks may be unintentionally and/or arbitrarily transferred to others without the benefit of a comprehensive systemic risk assessment. Integrating risk across people, processes, and project requirements/constraints serves to enhance decisions, strengthen communication pathways, and reinforce the ability of the project team to identify and manage risks across the broad spectrum of project management responsibilities. The ability to identify risks in all areas of project management increases the likelihood a project will identify significant issues before they become problems and allows projects to make effective and efficient use of shrinking resources. By getting a total team integrated risk effort, applying a disciplined and rigorous process, along with understanding project requirements/constraints provides the opportunity for more effective risk management. Applying an integrated approach to risk management makes it possible to do a better job at balancing safety, cost, schedule, operational performance and other elements of risk. This paper will examine how people, processes, and project requirements/constraints can be integrated across the project lifecycle for better risk management and ultimately improve the

  6. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  7. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  8. An Interdisciplinary Program in Materials Science at James Madison University.

    Science.gov (United States)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  9. Programming in C++ for engineering and science

    CERN Document Server

    Nyhoff, Larry

    2012-01-01

    ""The book is lavishly illustrated with examples and exercises, which would make it both an ideal course companion and a book for private study. The author's abilities to explain briefly the history of computing and to write an engaging text are to be commended. If you buy only one text on programming in C++, then this should be the one for you.""-Carl M. O'Brien, International Statistical Review (2013), 81

  10. Succesful Experience of the Project "ASTROTOP" in Israel: Space-astonomy Science education in form of independent reserch projects of pupils

    Science.gov (United States)

    Pustil'Nik, Lev

    We present more then 10 year experience of educational project in Space/Astrophysics/Environment field, realized on the base of National Science- Educational Center "Blossoms of Science" of the Jordan Valley College. Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state. This approach shift center of the weight in educational process from direct lectures, sermons, explanation from teacher to children on own attempts of children to investigate problem, what is interesting for them, by themselves (individually or in group). Our approach includes four levels of the projects: "nano-projects" for children garden and basic school (up to 10-12 years), "micro-projects" for intermediate school (12-16 years), "mini-projects" for high school (16-18 years), and "macro-projects" for the best graduates high schools and students of colleges (17-22 years). These levels and projects are interconnected one with another and sometimes participants, started on the micro-projects level in intermediate school, continue their activity up to macro-projects of the graduate's diploma level. For each level we organize courses for preparation of the teachers and instructors, interested in the using of our receipts, and published books and brochures for them. The content of our activity for different levels: a) Level of kinder gardens/basic schools- special software with interactive movie -nano-projects; b) Level of intermediate school: "Days of Science" in tens schools of Israel- first contact with astronomy; c) Summer astronomy camps (4-5 of one week camps on 200-300 pupils from all country) with introduce to astronomy and with preparation of micro-projects on themes - first successful experience of research in real science fields (hundreds projects); d) ASTROTOP - one year program of preparation of short projects, with solution on the quality level of chosen astrophysical problem - mini-projects

  11. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  12. Multidisciplinary projects at the Eindhoven/Maastricht BME program

    NARCIS (Netherlands)

    Sauren, A.A.H.J.; Lammerts, I.M.M.; Clark, J.W.

    2002-01-01

    Integration and application of technical and (bio)medical knowledge in the complex area of biomedical engineering is a matter of teamwork. In our educational BME program special attention is focussed on this issue, by means of multidisciplinary projects (MDP's) for 3rd and 4th year students. The

  13. Project Healthy Bones: An Osteoporosis Prevention Program for Older Adults.

    Science.gov (United States)

    Klotzbach-Shimomura, Kathleen

    2001-01-01

    Project Healthy Bones is a 24-week exercise and education program for older women and men at risk for or who have osteoporosis. The exercise component is designed to improve strength, balance, and flexibility. The education curriculum stresses the importance of exercise, nutrition, safety, drug therapy, and lifestyle factors. (SK)

  14. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  15. Management of a science and technology popularization project in the nuclear area

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio; Maretti Junior, Fausto

    2007-01-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  16. Management of a science and technology popularization project in the nuclear area

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington Antonio; Maretti Junior, Fausto [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: soaresw@cdtn.br; fmj@cdtn.br

    2007-07-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  17. Science To Support DOE Site Cleanup: The Pacific Northwest National Laboratory Environmental Management Science Program Awards; FINAL

    International Nuclear Information System (INIS)

    Bredt, Paul R; Brockman, Fred J; Grate, Jay W; Hess, Nancy J; Meyer, Philip D; Murray, Christopher J; Pfund, David M; Su, Yali; Thornton, Edward C; Weber, William J; Zachara, John M

    2001-01-01

    Pacific Northwest National Laboratory (PNNL) was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, nine in fiscal year 1998, seven in fiscal year 1999, and five in fiscal year 2000. All of the fiscal year 1996 award projects have published final reports. The 1997 and 1998 award projects have been completed or are nearing completion. Final reports for these awards will be published, so their annual updates will not be included in this document. This section summarizes how each of the 1999 and 2000 grants address significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. The 1999 and 2000 EMSP awards at PNNL are focused primarily in two areas: Tank Waste Remediation, and Soil and Groundwater Cleanup

  18. Overview of graduate training program of John Adams Institute for Accelerator Science

    Science.gov (United States)

    Seryi, Andrei

    The John Adams Institute for Accelerator Science is a center of excellence in the UK for advanced and novel accelerator technology, providing expertise, research, development and training in accelerator techniques, and promoting advanced accelerator applications in science and society. We work in JAI on design of novel light sources upgrades of 3-rd generation and novel FELs, on plasma acceleration and its application to industrial and medical fields, on novel energy recovery compact linacs and advanced beam diagnostics, and many other projects. The JAI is based on three universities - University of Oxford, Imperial College London and Royal Holloway University of London. Every year 6 to 10 accelerators science experts, trained via research on cutting edge projects, defend their PhD thesis in JAI partner universities. In this presentation we will overview the research and in particular the highly successful graduate training program in JAI.

  19. Shell’s use of science in de-risking projects

    CSIR Research Space (South Africa)

    Rossouw, N

    2017-10-01

    Full Text Available This presentation discusses Shell’s use of science in de-risking projects. The presentation includes examples of applying science in the De-Risking process, supporting scientific research and De-Risking the Karoo Basin....

  20. Project, building and utilization of a tomograph of micro metric resolution to application in soil science

    International Nuclear Information System (INIS)

    Macedo, Alvaro; Torre Neto, Andre; Cruvinel, Paulo Estevao; Crestana, Silvio

    1996-08-01

    This paper describes the project , building and utilization of a tomograph of micro metric resolution in soil science. It describes the problems involved in soil's science study and it describes the system and methodology

  1. Project Icarus: Stakeholder Scenarios for an Interstellar Exploration Program

    Science.gov (United States)

    Hein, A. M.; Tziolas, A. C.; Osborne, R.

    The Project Icarus Study Group's objective is to design a mainly fusion-propelled interstellar probe. The starting point are the results of the Daedalus study, which was conducted by the British Interplanetary Society during the 1970's. As the Daedalus study already indicated, interstellar probes will be the result of a large scale, decade-long development program. To sustain a program over such long periods, the commitment of key stakeholders is vital. Although previous publications identified political and societal preconditions to an interstellar exploration program, there is a lack of more specific scientific and political stakeholder scenarios. This paper develops stakeholder scenarios which allow for a more detailed sustainability assessment of future programs. For this purpose, key stakeholder groups and their needs are identified and scientific and political scenarios derived. Political scenarios are based on patterns of past space programs but unprecedented scenarios are considered as well. Although it is very difficult to sustain an interstellar exploration program, there are scenarios in which this seems to be possible, e.g. the discovery of life within the solar system and on an exoplanet, a global technology development program, and dual-use of technologies for defence and security purposes. This is a submission of the Project Icarus Study Group.

  2. The Workshop Program on Authentic Assessment for Science Teachers

    Science.gov (United States)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  3. Streaking into middle school science: The Dell Streak pilot project

    Science.gov (United States)

    Austin, Susan Eudy

    A case study is conducted implementing the Dell Streak seven-inch android device into eighth grade science classes of one teacher in a rural middle school in the Piedmont region of North Carolina. The purpose of the study is to determine if the use of the Dell Streaks would increase student achievement on standardized subject testing, if the Streak could be used as an effective instructional tool, and if it could be considered an effective instructional resource for reviewing and preparing for the science assessments. A mixed method research design was used for the study to analyze both quantitative and qualitative results to determine if the Dell Streaks' utilization could achieve the following: 1. instructional strategies would change, 2. it would be an effective instructional tool, and 3. a comparison of the students' test scores and benchmark assessments' scores would provide statistically significant difference. Through the use of an ANOVA it was determined a statistically significant difference had occurred. A Post Hoc analysis was conducted to identify where the difference occurred. Finally a T-test determined was there was no statistically significance difference between the mean End-of-Grade tests and four quarterly benchmark scores of the control and the experimental groups. Qualitative research methods were used to gather results to determine if the Streaks were an effective instructional tool. Classroom observations identified that the teacher's teaching styles and new instructional strategies were implemented throughout the pilot project. Students had an opportunity to complete a questionnaire three times during the pilot project. Results revealed what the students liked about using the devices and the challenges they were facing. The teacher completed a reflective questionnaire throughout the pilot project and offered valuable reflections about the use of the devices in an educational setting. The reflection data supporting the case study was drawn

  4. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level

  5. A concept for performance management for Federal science programs

    Science.gov (United States)

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  6. Sciences literacy on nutrition program for improving public wellness

    Science.gov (United States)

    Rochman, C.; Nasrudin, D.; Helsy, I.; Rokayah; Kusbudiah, Y.

    2018-05-01

    Increased wellness for a person becomes a necessity now and for the future. Various ways people do to get fit include following and understanding nutrition. This review will inventory the concepts of science involved to understand the nutritional program and its impact on fitness levels. The method used is a quantitative and qualitative descriptive mixed method based on treatment to a number of nutrition group participants in a nutrition group in Bandung. The concepts of science that are the subject of study are the concepts of physics, chemistry, and biology. The results showed that the ability of science literacy and respondent's wellness level varies and there is a relationship between science literacy with one's wellness level. The implications of this research are the need for science literacy and wellness studies for community based on educational level and more specific scientific concepts.

  7. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  8. 3rd year final contractor report for: U.S. Department of Energy Stewardship Science Academic Alliances Program Project Title: Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers

    International Nuclear Information System (INIS)

    Malcolm J. Andrews

    2006-01-01

    This project had two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. This report describes work done in the last twelve (12) months of the project, and also contains a summary of the complete work done over the three (3) life of the project. As of April 1, 2006, the air/helium facility (Task 1) is now complete and extensive testing and validation of diagnostics has been performed. Initial condition studies (Task 2) is also complete. Detailed experiments with air/helium with Atwood numbers up to 0.1 have been completed, and Atwood numbers of 0.25. Within the last three (3) months we have been able to successfully run the facility at Atwood numbers of 0.5. The progress matches the project plan, as does the budget. We have finished the initial condition studies using the water channel, and this work has been accepted for publication on the Journal of Fluid Mechanics (the top fluid mechanics journal). Mr. Nick Mueschke and Mr. Wayne Kraft are continuing with their studies to obtain PhDs in the same field, and will also continue their collaboration visits to LANL and LLNL. Over its three (3) year life the project has supported two(2) Ph.D.'s and three (3) MS's, and produced nine (9) international journal publications, twenty four (24) conference publications, and numerous other reports. The highlight of the project has been our close collaboration with LLNL (Dr. Oleg Schilling) and LANL (Drs. Dimonte, Ristorcelli, Gore, and Harlow)

  9. Radiochemistry course in the undergraduate nuclear science program at Universiti Kebangsaan Malaysia

    International Nuclear Information System (INIS)

    Sarmani, S.B.; Yahaya, R.B.; Yasir, M.S.; Majid, A.Ab.; Khoo, K.S.; Rahman, I.A.; Mohamed, F.

    2015-01-01

    Universiti Kebangsaan Malaysia offered an undergraduate degree program in Nuclear Science since 1980 and the programme has undergone several modifications due to changes in national policy and priority. The programme covers nuclear sub-disciplines such as nuclear physics, radiobiology, radiochemistry, radiation chemistry and radiation safety. The radiochemistry component consists of radiochemistry, chemistry in nuclear industry, radiochemical analysis laboratory, radiopharmaceutical chemistry subjects and mini research project in radiochemistry. (author)

  10. AFOSR (Air Force Office of Scientific Research) Chemical & Atmospheric Sciences Program Review (27th).

    Science.gov (United States)

    1983-06-01

    2BT UK 19 -P Studies of Extratropical Cyclonic Peter V. Hobbs Storms ; The CYCLES Project Department of Atmospheric AFOSR-ISSA-83-00018 Sciences...and has been a key focus area for several years. With the planning for, and advent of, the National " STORM " Program (outlined recently by a UCAR...United States, Europe and Japan has established that direct fluorination is the most generally applicable technique for the synthesis of novel fluorine

  11. The Impact of the SESAME Project on Science and Society in the Middle East

    Science.gov (United States)

    Winick, Herman

    2008-04-01

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) is a UNESCO-sponsored project that is constructing an international research laboratory, closely modeled on CERN, in Jordan (www.sesame.org.jo). Ten Members of the governing Council (Bahrain, Cyprus, Egypt, Iran, Iraq, Israel, Jordan, Pakistan, Palestinian Authority, and Turkey) have responsibility for the project, led by Herwig Schopper, Council President since 1999. In late 2008 Chris Llewellyn-Smith will become Council President. SESAME was initiated by a gift from Germany of the decommissioned BESSY I facility. The BESSY I 0.8 GeV injector is now being installed in the recently completed building, funded by Jordan, as components are procured for a new 133 m circumference, 2.5 GeV third-generation storage ring with 12 locations for insertion devices. Beam line equipment has been provided by laboratories in France, UK, and US. Support also comes from EU, IAEA, ICTP, Japan Society for the Promotion of Science, the US Department of Energy and State Department, and laboratories around the world. The broad scientific program includes biomedical, environmental, and archaeological programs particularly relevant to the Middle East. Five scientific workshops and six annual Users' meetings have brought together several hundred scientists from the region, along with researchers from around the world. Training programs have enabled about 100 scientists from the region to work at synchrotron radiation laboratories. These activities have already had significant impact on science and society in the Middle East, for example leading to collaborations between scientists from countries that are not particularly friendly with each other, and to national planning emphasizing synchrotron radiation research. When research starts in 2011 this impact will grow as graduate students are trained in the region in many scientific disciplines, and scientists working abroad are attracted to return.

  12. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  13. NASA's Applied Sciences: Natural Disasters Program

    Science.gov (United States)

    Kessler, Jason L.

    2010-01-01

    Fully utilize current and near-term airborne and spaceborne assets and capabilities. NASA spaceborne instruments are for research but can be applied to natural disaster response as appropriate. NASA airborne instruments can be targeted specifically for disaster response. Could impact research programs. Better flow of information improves disaster response. Catalog capability, product, applicable disaster, points of contact. Ownership needs to come from the highest level of NASA - unpredictable and irregular nature of disasters requires contingency funding for disaster response. Build-in transfer of applicable natural disaster research capabilities to operational functionality at other agencies (e.g., USFS, NOAA, FEMA...) at the outset, whenever possible. For the Decadal Survey Missions, opportunities exist to identify needs and requirements early in the mission design process. Need to understand additional needs and commitments for meeting the needs of the disaster community. Opportunity to maximize disaster response and mitigation from the Decadal Survey Missions. Additional needs or capabilities may require agency contributions.

  14. Taking Back the Future with an Innovative Program for Training Science Teachers

    Science.gov (United States)

    Hooper, E. J.; Dickinson, G.; Walker, M. H.; Marder, M. P.; Kumar, P.

    2003-12-01

    Research findings for students in Texas and Alabama indicate that teachers' expertise accounted for about 40% of the variance in mathematics and reading achievement. Given that about one third of high school mathematics and science teachers lack either a major or certification in their field, the impact of underqualified teachers can have far reaching impacts. In 1997, the colleges of Natural Science and Education at the University of Texas, in concert with the local school district and experienced teachers, developed a new joint secondary school science teacher preparation program called UTeach. This program provides early and frequent field experience, instruction from master teachers and university scientists, the development of a teaching portfolio, plus a peer and support network which extends beyond graduation. The innovative and streamlined courses focus on the particulars of secondary science education, project and inquiry teaching methodologies, and lab experiences more true to what actually happens in research. After starting with only 28, UTeach now has approximately 400 students enrolled, and graduates have started fanning out across the country. Two research astronomers (EH & PK) recently joined the program and now work alongside physicists, biologists, and chemists teaching courses or parts of them. In addition to helping some of the students with physics and astronomy projects, the astronomers provide guidance on experiment design and execution principles, statistics, and scientific writing to students working in all fields.

  15. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  16. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  17. A Comparison of Creativity in Project Groups in Science and Engineering Education in Denmark and China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Valero, Paola

    2015-01-01

    Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China.......Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China....

  18. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    Science.gov (United States)

    Ferreira, Jose Leonardo

    2016-07-01

    UnB and of the Museum of Science and Technology of Brasilia destinate to converge public communication of science. In their facilities will be possible to conceive, plan, develop, encourage and support scientific activities (playful and interactive) in schools and communities in the Federal District and surrounding areas of Brasilia, focusing on different aspects of science and technology and their relationship with society through investigative practices involving, particularly students and teachers of basic education and the community in General. The project will act even in the promotion of events, courses, workshops and scientific-cultural experiences, production of radio and TV programs aimed at promoting initiation into Science and environmental awareness on basic education.

  19. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  20. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.