WorldWideScience

Sample records for science major freshman

  1. Male Saudi Arabian freshman science majors at Jazan University: Their perceptions of parental educational practices on their science achievements

    Science.gov (United States)

    Alrehaly, Essa D.

    Examination of Saudi Arabian educational practices is scarce, but increasingly important, especially in light of the country's pace in worldwide mathematics and science rankings. The purpose of the study is to understand and evaluate parental influence on male children's science education achievements in Saudi Arabia. Parental level of education and participant's choice of science major were used to identify groups for the purpose of data analysis. Data were gathered using five independent variables concerning parental educational practices (attitude, involvement, autonomy support, structure and control) and the dependent variable of science scores in high school. The sample consisted of 338 participants and was arbitrarily drawn from the science-based colleges (medical, engineering, and natural science) at Jazan University in Saudi Arabia. The data were tested using Pearson's analysis, backward multiple regression, one way ANOVA and independent t-test. The findings of the study reveal significant correlations for all five of the variables. Multiple regressions revealed that all five of the parents' educational practices indicators combined together could explain 19% of the variance in science scores and parental attitude toward science and educational involvement combined accounted for more than 18% of the variance. Analysis indicates that no significant difference is attributable to parental involvement and educational level. This finding is important because it indicates that, in Saudi Arabia, results are not consistent with research in Western or other Asian contexts.

  2. Science and Cooking: Motivating the Study of Freshman Physics

    Science.gov (United States)

    Weitz, David

    2011-03-01

    This talk will describe a course offered to Harvard undergraduates as a general education science course, meant to intrduce freshman-level science for non-science majors. The course was a collaboration between world-class chefs and science professors. The chefs introduced concepts of cooking and the professors used these to motivate scientific concepts. The lectures were designed to provide a coherent introduction to freshman physics, primarily through soft matter science. The lectures were supplemented by a lab experiments, designed by a team of very talented graduate students and post docs, that supplemented the science taught in lecture. The course was very successful in motivating non-science students to learn, and even enjoy, basic science concepts. This course depended on contributions from Michael Brenner, Otger Campas, Amy Rowat and a team of talented graduate student teaching fellows.

  3. Incoming Freshman | College of Engineering & Applied Science

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  4. Science self-efficacy of African Americans enrolled in freshman level physical science courses in two historically black institutions

    Science.gov (United States)

    Prihoda, Belinda Ann

    2011-12-01

    Science education must be a priority for citizens to function and be productive in a global, technological society. African Americans receive fewer science degrees in proportion to the Caucasian population. The primary purposes of this study were to determine the difference between the pretest and posttest science self-efficacy scores of African-American nonscience majors, the difference between the pretest and posttest science self-efficacy scores of African-American science majors, the relationship between science self-efficacy and course grade, the relationship between gender and science self-efficacy score, and the relationship between science self-efficacy score and course withdrawal. This study utilized a Likert survey instrument. All participants were enrolled in freshman level courses in the physical sciences at a historically black institution: a college or university. Participants completed the pretest survey within two weeks after the 12th class day of the semester. Initially, 458 participants completed the pretest survey. The posttest was administered within two weeks before the final exam. Only 245 participants completed the posttest survey. Results indicate that there is a difference in science self-efficacy of science majors and nonscience majors. There was no significant difference between the pretest and posttest science self-efficacy scores of African-American science majors and nonscience majors. There was no significant relationship between science self-efficacy and course grade, gender and science self-efficacy score, and course withdrawal and science self-efficacy score.

  5. Assessing Major Adjustment Problems of Freshman Students in ...

    African Journals Online (AJOL)

    Ethiopian Journal of Education and Sciences ... The data was analyzed by using both descriptive and inferential statistical methods. ... in Jimma University experience social adjustment problems than educational and personalpsychological, ...

  6. Freshman Biology Majors' Misconceptions about Diffusion and Osmosis.

    Science.gov (United States)

    Odom, A. Louis; Barrow, Lloyd H.

    The data for this study were obtained from a sample of 117 biology majors enrolled in an introductory biology course. The Diffusion and Osmosis Diagnostic Test, composed of 12 two-tier items, was administered to the students. Among the major findings are: (1) there was no significant difference in scores of male and female students; (2) math…

  7. original article assessing major adjustment problems of freshman

    African Journals Online (AJOL)

    reinforce similar studies and intervention mechanisms are suggested. * Department of Psychology, College of Social Sciences and Law Jimma University. E-mail: jibril.jemal@ju.edu.et or ... per cent in recent years. It is often associated with ...

  8. Raising the Bar in Freshman Science Education: Student Lectures, Scientific Papers, and Independent Experiments

    Science.gov (United States)

    Collins, Eva-Maria S.; Calhoun, Tessa R.

    2014-01-01

    This article presents the combination of three enhanced educational approaches for training future scientists. These methods incorporate skills generally not introduced in the freshman year: student-led blackboard introductions; the writing of scientific papers; and the design, execution, and presentation of an independent lab module. We tested…

  9. Teaching Science in Engineering Freshman Class in Private University in Jordan

    Science.gov (United States)

    Hawarey, M. M.; Malkawi, M. I.

    2012-04-01

    A United Nations initiative for the Arab region that established and calculated National Intellectual Capital Index has shown that Jordan is the wealthiest Arab country in its National Human Capital Index (i.e. metrics: literacy rate, number of tertiary schools per capita, percentage of primary teachers with required qualifications, number of tertiary students per capita, cumulative tertiary graduates per capita, percentage of male grade 1 net intake, percentage of female grade 1 net intake) and National Market Capital Index (i.e. metrics: high-technology exports as a percentage of GDP, number of patents granted by USPTO per capita, number of meetings hosted per capita) despite its low ranking when it comes to National Financial Capital (i.e. metric: GDP per capita). The societal fabric in Jordan fully justifies this: the attention paid to education is extreme and sometimes is considered fanatic (e.g. marriage of a lot of couples needs to wait until both graduate from the university). Also, the low financial capital has forced a lot of people to become resourceful in order to provide decent living standard to their beloved ones. This reality is partially manifested in the sharp increase in the number of universities (i.e. 10 public and 20 private ones) relative to a population of around 6.5 million. Once in an engineering freshman classroom, it is totally up to the lecturers teaching science in private Jordanian universities to excel in their performance and find a way to inject the needed scientific concepts into the students' brains. For that, clips from movies that are relevant to the topics and truthful in their scientific essence have been tested (e.g. to explain the pressure on humans due to rapidly increasing "g" force, a clip from the movie "Armageddon" proved very helpful to Physics 101 students, and entertaining at the same time), plastic toys have also been tested to illustrate simple physical concepts to the same students (e.g. a set called The Junior

  10. What do seniors remember from freshman physics?

    Directory of Open Access Journals (Sweden)

    Andrew Pawl

    2012-12-01

    Full Text Available We have given a group of 56 Massachusetts Institute of Technology (MIT seniors who took mechanics as freshmen a written test similar to the final exam they took in their freshman course as well as the Mechanics Baseline Test (MBT and the Colorado Learning Attitudes about Science Survey (CLASS. Students in majors unrelated to physics scored 60% lower on the written analytic part of the final than they would have as freshmen. The mean score of all participants on the MBT was insignificantly changed from their average on the posttest they took as freshmen. However, the students’ performance on 9 of the 26 MBT items (with 6 of the 9 involving graphical kinematics represents a gain over their freshman posttest score (a normalized gain of about 70%, while their performance on the remaining 17 questions is best characterized as a loss of approximately 50% of the material learned in the freshman course. On multiple-choice questions covering advanced physics concepts, the mean score of the participants was about 50% lower than the average performance of freshmen. Although attitudinal survey results indicate that almost half the seniors feel the specific mechanics course content is unlikely to be useful to them, a significant majority (75%–85% feel that physics does teach valuable problem solving skills, and an overwhelming majority believe that mechanics should remain a required course at MIT.

  11. Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background

    Science.gov (United States)

    Kautz, Karlheinz; Kofoed, Uffe

    2004-01-01

    Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…

  12. Bridging the Gap: A Research-Based Approach for Teaching Interdisciplinary Science to Undergraduate Freshman Students

    Science.gov (United States)

    Sales, Jessica; Comeau, Dawn; Liddle, Kathleen; Khanna, Nikki; Perrone, Lisa; Palmer, Katrina; Lynn, David

    2006-01-01

    A new program, On Recent Discoveries by Emory Researchers (ORDER), has been developed as a bridge across the ever-widening gap between graduate and undergraduate education in the sciences. This bridge is created by merging the needs of graduate/postdoctoral students to educate more interdisciplinary scholars about their research discoveries with…

  13. The impact of a freshman academy on science performance of first-time ninth-grade students at one Georgia high school

    Science.gov (United States)

    Daniel, Vivian Summerour

    The purpose of this within-group experimental study was to find out to what extent ninth-grade students improved their science performance beyond their middle school science performance at one Georgia high school utilizing a freshman academy model. Freshman academies have been recognized as a useful tool for increasing academic performance among ninth-grade students because they address a range of academic support initiatives tailored to improve academic performance among ninth-grade students. The talent development model developed by Legters, Balfanz, Jordan, and McPartland (2002) has served as a foundational standard for many ninth grade academy programs. A cornerstone feature of this model is the creation of small learning communities used to increase ninth-grade student performance. Another recommendation was to offer credit recovery opportunities for ninth graders along with creating parent and community involvement activities to increase academic success among ninth-grade students. While the site's program included some of the initiatives outlined by the talent development model, it did not utilize all of them. The study concluded that the academy did not show a definitive increase in academic performance among ninth-grade students since most students stayed within their original performance category.

  14. The relationship of parental influence on student career choice of biology and non-biology majors enrolled in a freshman biology course

    Science.gov (United States)

    Sowell, Mitzie Leigh

    Recent declines in science literacy and inadequate numbers of individuals entering science careers has heightened the importance of determining why students major in science or do not major in science and then choose a science-related career. Therefore, the purpose of this study was to examine the relationship between parental influences and student career choices of both males and females majoring and not majoring in science. This study specifically examined the constructs of parental occupation, parental involvement, and parental education levels. Aspects indicated by the participants as being influencers were also examined. In addition, differences between males and females were examined. A total of 282 students participated in the study; 122 were science majors and 160 were non-science majors. The data was collected through the use of a student information survey and the Modified Fennema-Sherman Attitude Scale. The findings suggest that students indicated the desire to help others, peers, salary, and skills as influencing their career choice. In regard to the various parental influences, mother's occupation was the only construct found as a statistically significant influencer on a student's decision to major in science. The results of this study can help educators, administrators, and policy makers understand what influences students to pursue science-related careers and possibly increase the number of students entering science-related careers. The results of the study specifically provide information that may prove useful to administrators and educators in the health science fields, particularly nursing fields. The findings provide insight into why students may choose to become nurses.

  15. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  16. Citizen Science- Lessons learned from non-science majors involved in Globe at Night and the Great Worldwide Star Count

    Science.gov (United States)

    Browning, S.

    2011-12-01

    Non-science majors often misunderstand the process of science, potentially leading to a fear or mistrust of scientific inquiry and current scientific theory. Citizen science projects are a critical means of reaching this audience, as many will only take a limited number of science courses during their undergraduate careers. For the past three years, our freshman Earth Science students have participated in both Globe at Night and the Great Worldwide Star Count, citizen science programs that encourage simple astronomical observations which can be compiled globally to investigate a number of issues. Our focus has been introducing students to the effect of light pollution on observational astronomy in an effort to highlight the effect of increasing urbanization in the U.S. on amateur astronomy. These programs, although focused on astronomy, often awaken natural curiosity about the Earth and man's effect on the natural world, a concept that can easily be translated to other areas of Earth science. Challenges encountered include content specific issues, such as misinterpreting the location or magnitude of the constellation being observed, as well as student disinterest or apathy if the project is not seen as being vital to their performance in the course. This presentation reports on lessons learned in the past three years, and offers suggestions for engaging these students more fully in future projects.

  17. Undergraduate and Teaching Assistants' Perceptions of Classroom Community in Freshman Biological Sciences Laboratories and Implications for Persistence and Professional Development

    Science.gov (United States)

    Kardohely, Andrew

    The American economy hinges on the health and production of science, technology engineering and mathematics workforce (STEM). Although this sector of the American workforce represents a substantially fewer jobs the STEM workforce fuels job growth and sustainability in the other sectors of the American workforce. Unfortunately, over the next decade the U.S. will face an additional deficit of over a million STEM professionals, thus the need is here now to fill this deficit. STEM education should, therefore, dedicated to producing graduates. One strategy to produce more STEM graduates is through retention of student in STEM majors. Retention or persistence is highly related to student sense of belonging in academic environments. This study investigates graduate teaching assistants (GTAs) perceptions of their classrooms and the implications of those perceptions on professional development. Furthermore, correlations between classroom community and student desire to persist, as measured by Rovai's Classroom Community Index (CCI) were established (P=0.0311). The interactions are described and results are discussed. Using a framework of teaching for community, and a qualitative analytic case study with memo writing about codes and themes methodology supported several themes including passion to teach and dedication to student learning, innovation in teaching practices based on evidence, an intrinsic desire to seek a diverse set of feedback, and instructors can foster community in the classroom. Using the same methodology one emergent theme, a tacit rather than explicit understanding of reading the classroom, was also present in the current study. Based on the results and using a lens for professional development, strategies and suggestions are made regarding strategies to enhance instructors' use of feedback and professional development.

  18. Darwin, dogs and DNA: Freshman writing about biology

    Science.gov (United States)

    Grant, Michael C.; Piirto, John

    1994-12-01

    We describe a successful interdepartmental program at a major research-oriented university that melds freshman writing with freshman biology to the significant benefit of both disciplines. Extensive, repeated feedback on individual student writing projects from two instructors, one a humanities professor, one a biology professor, appears to work synergistically so that learning by the students is significantly enhanced. Particulars derived from five years of experience with intensive, student-centered strategy are included.

  19. Freshman Sexual Attitudes and Behavior.

    Science.gov (United States)

    Nutt, Roberta L.; Sedlacek, William E.

    At the University of Maryland, 758 randomly selected incoming freshman students were administered an anonymous poll regarding their sexual attitudes and behavior. Results showed that the Maryland freshman generally resembled other U.S. college students in their sexual experience. Approximately half (52% of males, 46% of females) reported that they…

  20. Business Writing in Freshman English.

    Science.gov (United States)

    Larmouth, Donald W.

    1980-01-01

    Suggests incorporating business writing into a freshman English course. Outlines three writing and research assignments: a financial status memorandum, a management analysis report, and an evaluation of applicants for a position at a university. (TJ)

  1. An Investigation of the Relationship between Language Learning Strategies and Learning Styles in Turkish Freshman Students

    Science.gov (United States)

    Balci, Özgül

    2017-01-01

    The purpose of this study is to determine the relationship between the language learning strategies of freshman students and their learning styles. This study is a descriptive research and employs a relational screening model. Participants of the study were 328 freshman students majoring in different fields at Necmettin Erbakan University Ahmet…

  2. Environmental Nanoscience: Turning Outreach Activities into a College Freshman Seminar

    Science.gov (United States)

    Nguyen, M. L.; Lau, B.

    2017-12-01

    Teaching nano concepts can be a daunting task due to the varying science backgrounds of the audience. Nonetheless, nanoscience education is important as nanotechnology expands. Our perspective is that nano education must be available at earlier stages than what is currently available. Through outreach activities, we examined how high school students and STEM middle/high school teachers approached answering questions about nanomaterials and the environment to design an effective freshman-level college seminar with achievable course goals. Specifically, participants were asked: 1) what color would you expect gold nanoparticles to be; 2) what are ways we can remove nanomaterials from the environment; and 3) what do you expect will happen to nanomaterials when salt is introduced into the system? Initial analysis showed STEM middle and high school teachers and high school students responded similarly. In response to question 1, the majority of the responses suggested color was a function of size. For question 2, both groups suggested the use of filters, magnets or a chemical reaction to remove the nanomaterials. For question 3, both groups expected a chemical reaction to occur. Understanding how foundational high school STEM concepts influenced responses could assist in the curriculum development for an introductory undergraduate nanoscience course. For example, familiar principles of physics and chemistry appeared to direct student responses. From these results, we developed three course goals to test in our college freshman seminar: 1) differentiate between properties of nanomaterials and conventional materials; 2) describe the role of nanomaterials in household items; and 3) form an opinion on the potential impacts of nanoscience and technology on the human health and the environment. Surveys from our first semester showed that the seminar was effective in achieving all course goals for the majority of students.

  3. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  4. Leadership in Freshman Physics

    Science.gov (United States)

    Rebello, Carina M.; Hanuscin, Deborah; Sinha, Somnath

    2011-01-01

    Physics First--a movement to invert the traditional science course sequence to teach physics at the ninth-grade level--is gaining interest. However, there is limited literature exploring how to support teachers in successfully implementing Physics First. To address this, a professional development (PD) program supporting a cadre of teacher-leaders…

  5. A Model for Freshman Engineering Retention

    Science.gov (United States)

    Veenstra, Cindy P.; Dey, Eric L.; Herrin, Gary D.

    2009-01-01

    With the current concern over the growing need for more engineers, there is an immediate need to improve freshman engineering retention. A working model for freshman engineering retention is needed. This paper proposes such a model based on Tinto's Interactionalist Theory. Emphasis in this model is placed on pre-college characteristics as…

  6. Starting an Actuarial Science Major at a Liberal Arts College

    Science.gov (United States)

    Mills, Mark A.

    2014-01-01

    The article provides details of the process of starting an actuarial science major at a small, liberal arts college. Some critique of the major is included, as well as some challenges that may be faced by others wanting to start such a major at their institution.

  7. Strategic Curricular Decisions in Butler University's Actuarial Science Major

    Science.gov (United States)

    Wilson, Christopher James

    2014-01-01

    We describe specific curricular decisions employed at Butler University that have resulted in student achievement in the actuarial science major. The paper includes a discussion of how these decisions might be applied in the context of a new actuarial program.

  8. STEPS at CSUN: Increasing Retention of Engineering and Physical Science Majors

    Science.gov (United States)

    Pedone, V. A.; Cadavid, A. C.; Horn, W.

    2012-12-01

    STEPS at CSUN seeks to increase the retention rate of first-time freshman in engineering, math, and physical science (STEM) majors from ~55% to 65%. About 40% of STEM first-time freshmen start in College Algebra because they do not take or do not pass the Mathematics Placement Test (MPT). This lengthens time to graduation, which contributes to dissatisfaction with major. STEPS at CSUN has made substantial changes to the administration of the MPT. Initial data show increases in the number of students who take the test and who place out of College Algebra, as well as increases in overall scores. STEPS at CSUN also funded the development of supplemental labs for Trigonometry and Calculus I and II, in partnership with similar labs created by the Math Department for College Algebra and Precalculus. These labs are open to all students, but are mandatory for at-risk students who have low scores on the MPT, low grades in the prerequisite course, or who failed the class the first time. Initial results are promising. Comparison of the grades of 46 Fall 2010 "at-risk" students without lab to those of 36 Fall 2011 students who enrolled in the supplementary lab show D-F grades decreased by 10% and A-B grades increased by 27%. A final retention strategy is aimed at students in the early stages of their majors. At CSUN the greatest loss of STEM majors occurs between sophomore-level and junior-level coursework because course difficulty increases and aspirations to potential careers weaken. The Summer Interdisciplinary Team Experience (SITE) is an intensive 3-week-long summer program that engages small teams of students from diverse STEM majors in faculty-mentored, team-based problem solving. This experience simulates professional work and creates strong bonds between students and between students and faculty mentors. The first two cohorts of students who have participated in SITE indicate that this experience has positively impacted their motivation to complete their STEM degree.

  9. The Effects of Majoring in Political Science on Political Efficacy

    Science.gov (United States)

    Dominguez, Casey B. K.; Smith, Keith W.; Williams, J. Michael

    2017-01-01

    This study tests, and finds support, for the hypotheses that a student who majors in political science will have stronger feelings of political competence and will be more willing to engage in hypothetical political actions than two peer groups: (a) those who major in other fields and (b) those who show an interest in politics but have not studied…

  10. Strategies for Evaluating a Freshman Studies Program.

    Science.gov (United States)

    Ketkar, Kusum; Bennett, Shelby D.

    1989-01-01

    The study developed an economic model for the evaluation of Seaton Hall University's freshman studies program. Two techniques used to evaluate the economic success of the program are break-even analysis and elasticity coefficient. (Author/MLW)

  11. Life Science Literacy of an Undergraduate Population

    Science.gov (United States)

    Medina, Stephanie R.; Ortlieb, Evan; Metoyer, Sandra

    2014-01-01

    Science content knowledge is a concern for educators in the United States because performance has stagnated for the past decade. Investigators designed this study to determine the current levels of scientific literacy among undergraduate students in a freshman-level biology course (a core requirement for majors and nonmajors), identify factors…

  12. Freshman Seminars: Interdisciplinary Engagements in Astronomy

    Science.gov (United States)

    Hemenway, M. K.

    2006-08-01

    The Freshman Seminar program at the University of Texas is designed to allow groups of fifteen students an engaging introduction to the University. The seminars introduce students to the resources of the university and allow them to identify interesting subjects for further research or future careers. An emphasis on oral and written communication by the students provides these first-year students a transition to college-level writing and thinking. Seminar activities include field trips to an art museum, a research library, and the Humanities Research Center rare book collection. This paper will report on two seminars, each fifteen weeks in length. In "The Galileo Scandal" students examine Galileo's struggle with the church (including a mock trial). They perform activities that connect his use of the telescope and observations to astronomical concepts. In "Astronomy and the Humanities" students analyze various forms of human expression that have astronomical connections (art, drama, literature, music, poetry, and science fiction); they perform hands-on activities to reinforce the related astronomy concepts. Evaluation of the seminars indicates student engagement and improvement in communication skills. Many of the activities could be used independently to engage students enrolled in standard introductory astronomy classes.

  13. Reforming an Undergraduate Environmental Science Course for Nonscience Majors

    Science.gov (United States)

    Kazempour, Mahsa; Amirshokoohi, Aidin

    2013-01-01

    This article discusses the key components of a reform-based introductory undergraduate environmental science course for nonscience majors and elementary teacher candidates as well as the impact of such components on the participants. The main goals for the course were to actively engage the students in their learning and, in doing so, to enhance…

  14. Motivating Non-Science Majors: The Technology of Electromagnetic Waves

    Science.gov (United States)

    Henrich, Victor E.

    2018-01-01

    To address the need for physics courses that stimulate non- STEM majors' interest in, and appreciation of, science, the Department of Applied Physics has developed a popular course for Yale College undergraduates, The Technological World, that explains the physics behind technologies that students use every day. The course provides an in-depth…

  15. CDM: Teaching Discrete Mathematics to Computer Science Majors

    Science.gov (United States)

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  16. Science of Food and Cooking: A Non-Science Majors Course

    Science.gov (United States)

    Miles, Deon T.; Bachman, Jennifer K.

    2009-01-01

    Recent emphasis on the science of food and cooking has been observed in our popular literature and media. As a result of this, a new non-science majors course, The Science of Food and Cooking, is being taught at our institution. We cover basic scientific concepts, which would normally be discussed in a typical introductory chemistry course, in the…

  17. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  18. A Non-science Major Undergraduate Seminar on the NASA Earth Observing System (EOS): A Student Perspective

    Science.gov (United States)

    Weatherford, V. L.; Redemann, J.

    2003-12-01

    Titled "Observing Climate Change From Space-what tools do we have?", this non-science major freshman seminar at UCLA is the culmination of a year-long interdisciplinary program sponsored by the Institute of the Environment and the College Honors programs at the University. Focusing on the anthropogenic and natural causes of climate change, students study climate forcings and learn about satellite and other technological means of monitoring climate and weather. NASA's Terra satellite is highlighted as one of the most recent and comprehensive monitoring systems put into space and the role of future NASA platforms in the "A-train"-constellation of satellites is discussed. Course material is typically presented in a Power-Point presentation by the instructor, with assigned supplementary reading to stimulate class discussion. In addition to preparing lectures for class presentation, students work on a final term paper and oral presentation which constitutes the majority of their grade. Field trips to the San Gabriel mountains to take atmospheric measurements with handheld sunphotometers and to JPL, Pasadena (CA) to listen to a NASA scientist discuss the MISR instrument aboard the Terra satellite help bring a real-world perspective to the science learned in the classroom. In this paper, we will describe the objectives and structure of this class and present measurement results taken during the field trip to the San Gabriel Mountains. In this context we will discuss the potential relevance of hands-on experience to meeting class objectives and give a student perspective of the overall class experience.

  19. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns.

    Science.gov (United States)

    Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M

    2015-12-01

    Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.

  20. Study of causal relationships among indicators of academic performance in the freshman year of Computer Science by using modal implicative analysis

    Directory of Open Access Journals (Sweden)

    Larisa Zamora-Matamoros

    2018-03-01

    Full Text Available The Statistical Implicative Analysis (SIA is a method of non-symmetrical analysis of data whose main objective is the structuring of data, interrelating individuals and variables, the extraction of inductive rules among the variables and from their contingency, the explanation and in consequence a certain prediction in different knowledge branches. The SIA holds two techniques of analysis of data, the cohesive analysis and the implicative analysis, along with the classificatory or similarity analysis. The objective of the present research is to reveal possible similarity, propensity and cohesion relationships among the academic results of students coming from high schools that enter to Computer Science career and the results that they show in undergraduate courses related to Mathematics and Programming, which they receive in the first year of the mentioned career. The gathered data were processed using the software SIASI for modal data.

  1. Deciding on Science: An Analysis of Higher Education Science Student Major Choice Criteria

    Science.gov (United States)

    White, Stephen Wilson

    The number of college students choosing to major in science, technology, engineering, and math (STEM) in the United States affects the size and quality of the American workforce (Winters, 2009). The number of graduates in these academic fields has been on the decline in the United States since the 1960s, which, according to Lips and McNeil (2009), has resulted in a diminished ability of the United States to compete in science and engineering on the world stage. The purpose of this research was to learn why students chose a STEM major and determine what decision criteria influenced this decision. According to Ajzen's (1991) theory of planned behavior (TPB), the key components of decision-making can be quantified and used as predictors of behavior. In this study the STEM majors' decision criteria were compared between different institution types (two-year, public four-year, and private four-year), and between demographic groups (age and sex). Career, grade, intrinsic, self-efficacy, and self-determination were reported as motivational factors by a majority of science majors participating in this study. Few students reported being influenced by friends and family when deciding to major in science. Science students overwhelmingly attributed the desire to solve meaningful problems as central to their decision to major in science. A majority of students surveyed credited a teacher for influencing their desire to pursue science as a college major. This new information about the motivational construct of the studied group of science majors can be applied to the previously stated problem of not enough STEM majors in the American higher education system to provide workers required to fill the demand of a globally STEM-competitive United States (National Academy of Sciences, National Academy of Engineering, & Institute of Medicine, 2010).

  2. China's rise as a major contributor to science and technology.

    Science.gov (United States)

    Xie, Yu; Zhang, Chunni; Lai, Qing

    2014-07-01

    In the past three decades, China has become a major contributor to science and technology. China now employs an increasingly large labor force of scientists and engineers at relatively high earnings and produces more science and engineering degrees than the United States at all levels, particularly bachelor's. China's research and development expenditure has been rising. Research output in China has been sharply increasing since 2002, making China the second largest producer of scientific papers after the United States. The quality of research by Chinese scientists has also been improving steadily. However, China's rise in science also faces serious difficulties, partly attributable to its rigid, top-down administrative system, with allegations of scientific misconduct trending upward.

  3. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  4. Science during crisis: the application of social science during major environmental crises

    Science.gov (United States)

    Machlis, Gary; Ludwig, Kris; Manfredo, Michael J.; Vaske, Jerry J.; Rechkemmer, Andreas; Duke, Esther

    2014-01-01

    Historical and contemporary experience suggests that science plays an increasingly critical role in governmental and institutional responses to major environmental crises. Recent examples include major western wildfires (2009), the Deepwater Horizon oil spill (2010), the Fukushima nuclear accident (2011), and Hurricane Sandy (2012). The application of science during such crises has several distinctive characteristics, as well as essential requirements if it is to be useful to decision makers. these include scope conditions that include coupled natural/human systems, clear statement of uncertainties and limitations, description of cascading consequences, accurate sense of place, estimates of magnitude of impacts, identification of beneficiaries and those adversely affected, clarity and conciseness, compelling visualization and presentation, capacity to speak "truth to power", and direct access to decision makers. In this chapter, we explore the role and significance of science – including all relevant disciplines and focusing attention on the social sciences – in responding to major environmental crises. We explore several important questions: How is science during crisis distinctive? What social science is most useful during crises? What distinctive characteristics are necessary for social science to make meaningful contributions to emergency response and recovery? How might the social sciences be integrated into the strategic science needed to respond to future crises? The authors, both members of the Department of the Interior's innovative Strategic Sciences Group, describe broad principles of engagement as well as specific examples drawn from history, contemporary efforts (such as during the Deepwater Horizon oil spill), and predictions of environmental crises still to be confronted.

  5. Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein, North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).

  6. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    Science.gov (United States)

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  7. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    Science.gov (United States)

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  8. Freshman Ethics Course Influences Students' Basic Beliefs.

    Science.gov (United States)

    Appleton, James R.; Wong, Frank T.

    1989-01-01

    A freshman class called "Educational Odysseys" that bound together four themes and the concern for ethical living is described. The four themes included: the problem of identity; responses to good and evil; the search for success and surviving failure; and cultural diversity and a liberal education. (MLW)

  9. Comparison of views of the nature of science between natural science and nonscience majors.

    Science.gov (United States)

    Miller, Marie C Desaulniers; Montplaisir, Lisa M; Offerdahl, Erika G; Cheng, Fu-Chih; Ketterling, Gerald L

    2010-01-01

    Science educators have the common goal of helping students develop scientific literacy, including understanding of the nature of science (NOS). University faculties are challenged with the need to develop informed NOS views in several major student subpopulations, including science majors and nonscience majors. Research into NOS views of undergraduates, particularly science majors, has been limited. In this study, NOS views of undergraduates in introductory environmental science and upper-level animal behavior courses were measured using Likert items and open-ended prompts. Analysis revealed similarities in students' views between the two courses; both populations held a mix of naïve, transitional, and moderately informed views. Comparison of pre- and postcourse mean scores revealed significant changes in NOS views only in select aspects of NOS. Student scores on sections addressing six aspects of NOS were significantly different in most cases, showing notably uninformed views of the distinctions between scientific theories and laws. Evidence-based insight into student NOS views can aid in reforming undergraduate science courses and will add to faculty and researcher understanding of the impressions of science held by undergraduates, helping educators improve scientific literacy in future scientists and diverse college graduates.

  10. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns

    Directory of Open Access Journals (Sweden)

    Jasmine Ramirez

    2015-08-01

    Full Text Available Today’s science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors’ and majors’ answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory

  11. Gender Attributions of Science and Academic Attributes: AN Examination of Undergraduate Science, Mathematics, and Technology Majors

    Science.gov (United States)

    Hughes, W. Jay

    Questionnaire data (n = 297) examined the relationship between gender attributions of science and academic attributes for undergraduate science, mathematics, and technology majors from the perspective of gender schema theory. Female and male respondents perceived that (a) the role of scientist was sex typed as masculine, (b) their majors were more valuable for members of their gender than for those of the opposite gender, (c) their majors were more valuable for themselves than for members of their gender in general. Androgynous attributions of scientists and the value of one's major for women predicted value for oneself, major confidence, and career confidence, and masculine attributions of scientists predicted class participation for female respondents. Feminine attributions of scientists predicted graduate school intent; value for women predicted major confidence and subjective achievement, and value for men predicted value for oneself, course confidence, and career confidence for male respondents.

  12. Science and the major racket sports: a review.

    Science.gov (United States)

    Lees, Adrian

    2003-09-01

    The major racket sports include badminton, squash, table tennis and tennis. The growth of sports science and the commercialization of racket sports in recent years have focused attention on improved performance and this has led to a more detailed study and understanding of all aspects of racket sports. The aim here, therefore, is to review recent developments of the application of science to racket sports. The scientific disciplines of sports physiology and nutrition, notational analysis, sports biomechanics, sports medicine, sports engineering, sports psychology and motor skills are briefly considered in turn. It is evident from these reviews that a great deal of scientific endeavour has been applied to racket sports, but this is variable across both the racket sports and the scientific disciplines. A scientific approach has helped to: implement training programmes to improve players' fitness; guide players in nutritional and psychological preparation for play; inform players of the strategy and tactics used by themselves and their opponents; provide insight into the technical performance of skills; understand the effect of equipment on play; and accelerate the recovery from racket-arm injuries. Racket sports have also posed a unique challenge to scientists and have provided vehicles for developing scientific methodology. Racket sports provide a good model for investigating the interplay between aerobic and anaerobic metabolism and the effect of nutrition, heat and fatigue on performance. They have driven the development of mathematical solutions for multi-segment interactions within the racket arm during the performance of shots, which have contributed to our understanding of the mechanisms of both performance and injury. They have provided a unique challenge to sports engineers in relation to equipment performance and interaction with the player. Racket sports have encouraged developments in notational analysis both in terms of analytical procedures and the

  13. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  14. Effect of Personal Response Systems on Student Perception and Academic Performance in Courses in a Health Sciences Curriculum

    Science.gov (United States)

    FitzPatrick, Kathleen A.; Finn, Kevin E.; Campisi, Jay

    2011-01-01

    To increase student engagement, active participation, and performance, personal response systems (clickers) were incorporated into six lecture-based sections of four required courses within the Health Sciences Department major curriculum: freshman-level Anatomy and Physiology I and II, junior-level Exercise Physiology, and senior-level Human…

  15. Understandings of Nature of Science and Multiple Perspective Evaluation of Science News by Non-science Majors

    Science.gov (United States)

    Leung, Jessica Shuk Ching; Wong, Alice Siu Ling; Yung, Benny Hin Wai

    2015-10-01

    Understandings of nature of science (NOS) are a core component of scientific literacy, and a scientifically literate populace is expected to be able to critically evaluate science in the media. While evidence has remained inconclusive on whether better NOS understandings will lead to critical evaluation of science in the media, this study aimed at examining the correlation therein. Thirty-eight non-science majors, enrolled in a science course for non-specialists held in a local community college, evaluated three health news articles by rating the extent to which they agreed with the reported claims and providing as many justifications as possible. The majority of the participants were able to evaluate and justify their viewpoint from multiple perspectives. Students' evaluation was compared with their NOS conceptions, including the social and cultural embedded NOS, the tentative NOS, the peer review process and the community of practice. Results indicated that participants' understanding of the tentative NOS was significantly correlated with multiple perspective evaluation of science news reports of socioscientific nature (r = 0.434, p media of socioscientific nature. However, the null result for other target NOS aspects in this study suggested a lack of evidence to assume that understanding the social dimensions of science would have significant influence on the evaluation of science in the media. Future research on identifying the reasons for why and why not NOS understandings are applied in the evaluation will move this field forward.

  16. The Employment Outlook for Social Science Majors in the South.

    Science.gov (United States)

    Galambos, Eva C.

    This assessment of the future job market for social science graduates is made both generically and separately for certain disciplines. The definition of the social sciences follows the USOE definition and includes: anthropology, archeology, economics, history, geography, political science, sociology, criminology, international relations, urban…

  17. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    Science.gov (United States)

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  18. The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools

    Science.gov (United States)

    Anaam, Mahyoub Ali

    The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they

  19. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  20. College Retention Initiatives Meeting the Needs of Millennial Freshman Students

    Science.gov (United States)

    Turner, Patrick; Thompson, Elizabeth

    2014-01-01

    The qualitative study explored the opinions and perceptions of freshman, sophomores, and freshman students that dropped out of the university to understand the obstacles and enablers that millennial freshmen faced transitioning into a college environment. To understand these factors the study posed the question, how do the participants (i.e.,…

  1. As práticas educativas e seus personagens na visão de estudantes recém-ingressados nos cursos de Química e Biologia Educational practices and their characters in freshman Chemistry and Biology major' students view

    Directory of Open Access Journals (Sweden)

    Ana Luiza de Quadros

    2010-01-01

    Full Text Available Desenvolvemos o presente trabalho com o objetivo de identificar concepções sobre as relações em sala de aula apresentadas por alunos recém-ingressados nos cursos de Química e Biologia. Baseados em Bruner, usamos a narrativa como instrumento investigativo dessas concepções, solicitando aos alunos que se imaginassem professores e relatassem como seria um dia de suas vidas. Pela análise dos relatos, percebemos que o professor é aquele que estuda e se prepara para as aulas, transmite conhecimentos, motiva, contextualiza, tem uma boa relação com os alunos e é admirado por eles. Além disso, esse professor é considerado um profissional em tempo integral, trabalhando, sobretudo, no Ensino Médio, com alunos interessados e atenciosos. Entender como essas concepções se formaram e problematizá-las na formação inicial é importante.We developed the present work aiming to identify conceptions about the relationships in classroom presented by freshman Chemistry and Biology major' students. Based on Bruner, we have used narrative as investigative instrument of these conceptions, requesting the students to imagine themselves as teachers and to report how it would be one day of their lives. By the analysis of the stories we have perceived that the teacher is the one who studies and prepares the classes, transmits knowledge, motivates, contextualizes, has a good relationship with students and is admired by them. Moreover, this teacher is a full time professional, working mainly at High School with interested and considerate students. The understanding of how these conceptions were formed and discussing them among pre-service teachers is important.

  2. ESA is now a major player in global space science

    Science.gov (United States)

    1997-07-01

    cosmos after its February 1997 refurbishment. Europe's astronomers make outstanding use of their right to make observations with Hubble, guaranteed by ESA's participation. ESA's table d'h^te for space scientists To provide world-class opportunities in space for Europe's scientific community is one of ESA's primary duties. The successes summarized here are not a matter of luck, but of decades of sustained planning and effort. Although ESA's science budget is small as compared with NASA=s equivalent programme, and is even being squeezed, yet every one of ESA's missions is first in its class. * 3- The scientists of ESA's member states draw up the table d'h^te, with a balanced menu of research opportunities in Solar System exploration and in astronomy. ESA coordinates the technological and scientific efforts across Europe needed to accomplish the missions, after many years of preparation and sometimes adversity. One of ESA's strengths is that it sticks to its promises, and maintains a balance with several small missions, remaining alert to new tasks for short-term projects. Besides the spacecraft mentioned earlier, ESA is actively working on: * Rosetta. As the successor to the very successful comet mission Giotto, which intercepted Halley's Comet in 1986 and Comet Grigg-Skjellerup in 1992, Rosetta will confirm ESA's role as the world leader in comet science. To be launched in 2003, Rosetta will rendezvous with Comet Wirtanen, and fly in close orbit around it as it makes its closest approach to the Sun ten years later. * Integral. Adapted from the XMM spacecraft to save money, Integral will go into orbit in 2001 and renew ESA's role in gamma-ray astronomy, pioneered in its COS-B mission some twenty years ago. Gamma-rays reveal the most violent events in the Universe, including the gamma-ray bursts that are exciting astronomers greatly at present. * FIRST and Planck Surveyor. FIRST is a long-standing major project to extend the scope of infrared space astronomy to wavelengths

  3. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  4. A Grounded Theory Investigation Into Sophomore Students' Recall of Depression During Their Freshman Year in College: A Pilot Study.

    Science.gov (United States)

    Brandy, Julie M; Kessler, Theresa A; Grabarek, Christina H

    2018-04-17

    Using a grounded theory approach, the current descriptive qualitative design was conducted with sophomore students to understand the meaning participants gave their freshman experiences with depression. Twelve participants were recruited using scripted class announcements across campus. After informed consent, interviews began with the question: What was the experience of your freshman year in college? All interviews were completed with the primary investigator and transcribed verbatim. Interviews were analyzed using constant comparative methodology. Data collection continued until saturation was achieved. Four major categories emerged, including the category of symptoms and emotions. This category included the subcategories expressions of stress, changes in eating habits, sleep issues, and procrastination. Descriptive examples of each were found throughout the interview data. With greater understanding of living with depression as a college freshman, health care and college student affairs professionals will have additional evidence to guide their practices. [Journal of Psychosocial Nursing and Mental Health Services, xx(x),xx-xx.]. Copyright 2018, SLACK Incorporated.

  5. Developing "Green" Business Plans: Using Entrepreneurship to Teach Science to Business Administration Majors and Business to Biology Majors

    Science.gov (United States)

    Letovsky, Robert; Banschbach, Valerie S.

    2011-01-01

    Biology majors team with business administration majors to develop proposals for "green" enterprise for a business plan competition. The course begins with a series of student presentations so that science students learn about the fundamentals of business, and business students learn about environmental biology. Then mixed biology-business student…

  6. A Major in Science? Initial Beliefs and Final Outcomes for College Major and Dropout

    OpenAIRE

    Ralph Stinebrickner; Todd R. Stinebrickner

    2014-01-01

    Taking advantage of unique longitudinal data, we provide the first characterization of what college students believe at the time of entrance about their final major, relate these beliefs to actual major outcomes, and provide an understanding of why students hold the initial beliefs about majors that they do. The data collection and analysis are based directly on a conceptual model in which a student's final major is best viewed as the end result of a learning process. We find that students en...

  7. Science and technology planning in LDCs: major policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Wionczek, M S

    1979-05-01

    Science in the less-developed countries (LDCs) should be underplanned rather than overplanned. Furthermore, the planning should be directed to the outer fringes of the scientific endeavor and to its infrastructure and not to the substance of scientific research itself. Planning of applied research and technological development in the LDC is another story. It cannot be done without entering into the substantive problems of applied research and technological development. Attempts to set the broad overall national targets for science and technology (S and T) expenditures -in terms of the proportion of the (GNP) or the per capita income- which do not consider the science and technology system's financial and human resources absorption capacity, are useless. 8 references.

  8. Career Preparation and the Political Science Major: Evidence from Departments

    Science.gov (United States)

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  9. At the Crossroads of Art and Science: A New Course for University Non-Science Majors

    Science.gov (United States)

    Blatt, S. Leslie

    2004-03-01

    How much did Seurat know about the physics, physiology, and perceptual science of color mixing when he began his experiments in pointillism? Did Vermeer have a camera obscura built into his studio to create the perfect perspective and luminous effects of his canvases? Early in the 20th century, consequences of the idea that "no single reference point is to be preferred above any other" were worked out in physics by Einstein (special and general relativity), in art by Picasso (early cubism), and in music by Schoenberg (12-tone compositions); did this same paradigm-shifting concept arise, in three disparate fields, merely by coincidence? We are developing a new course, aimed primarily at non-science majors, that addresses questions like these through a combination of hands-on experiments on the physics of light, investigations in visual perception, empirical tests of various drawing and painting techniques, and field trips to nearby museums. We will show a few examples of the kinds of art/science intersections our students will be exploring, and present a working outline for the course.

  10. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    Science.gov (United States)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  11. Cybernetics and Rhetoric: Freshman English in an Overdetermined World

    Science.gov (United States)

    Comprone, Joseph

    1975-01-01

    Argues that freshman composition courses should incorporate the study of communications systems (Cybernetics) and the idea that a situation or subject cannot be explained by a single series of logical steps (Overdetermination) as part of their rationale. (RB)

  12. How to Make Financial Aid "Freshman-Friendly"

    Science.gov (United States)

    Pugh, Susan L.; Johnson, David B.

    2011-01-01

    Ultimately, making financial aid "freshman friendly" also makes financial aid "sophomore friendly," "junior friendly," and "senior friendly." Indiana University has in place an Office of Enrollment Management (OEM) model that includes focused financial aid packaging strategies complemented by unique contact…

  13. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  14. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  15. A Module-Based Environmental Science Course for Teaching Ecology to Non-Majors

    Science.gov (United States)

    Smith, Geoffrey R.

    2010-01-01

    Using module-based courses has been suggested to improve undergraduate science courses. A course based around a series of modules focused on major environmental issues might be an effective way to teach non-science majors about ecology and ecology's role in helping to solve environmental problems. I have used such a module-based environmental…

  16. QUALITATIVE INDICATORS OF EFFICIENCY OF TECHNOLOGIES DEVELOPING ESP COMPETENCE IN STUDENTS MAJORING IN SCIENCES

    Directory of Open Access Journals (Sweden)

    Наталія Микитинко

    2015-05-01

    Full Text Available The article is dedicated to identifying and diagnosing qualitative indicators of efficiency of technologies developing ESP competence in students majoring in Sciences, namely: indicators of objective and subjective assessment  of students’ ESP competence, students’ motivation regarding professional choice, organizational features of professional training, its contents, the most popular learning activities, use of active methods of study in educational process. The paradigm of experimental research of efficiency of technologies developing ESP competence in students majoring in Sciences has been defined. Based on the interpretation of the qualitative indicators the hypothesis of efficiency of technologies developing ESP competence in students majoring in Sciences has been proven.

  17. Uncovering the lived experiences of junior and senior undergraduate female science majors

    Science.gov (United States)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  18. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ~5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and…

  19. A New Approach to Teaching Science to Elementary Education Majors in Response to the NGSS

    Science.gov (United States)

    Brevik, C.; Daniels, L.; McCoy, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) place an equal emphasis on science process skills and science content. The goal is to have K-12 students "doing" science, not just "learning about" science. However, most traditional college science classes for elementary education majors place a much stronger emphasis on science content knowledge with the hands-on portion limited to a once-a-week lab. The two models of instruction are not aligned. The result is that many elementary school teachers are unprepared to offer interactive science with their students. Without additional coaching, many teachers fall back on the format they learned in college - lecture, handouts, homework. If we want teachers to use more hands-on methods in the classroom, these techniques should be taught to elementary education majors when they are in college. Dickinson State University has begun a collaboration between the Teacher Education Department and the Department of Natural Sciences. The physical science course for elementary education majors has been completely redesigned to focus equally on the needed science content and the science process skills emphasized by the NGSS. The format of the course has been adjusted to more closely mirror a traditional K-5 classroom; the course meets for 50 minutes five days a week. A flipped-classroom model has been adopted to ensure no content is lost, and hands-on activities are done almost every day as new concepts are discussed. In order to judge the effectiveness of these changes, a survey tool was administered to determine if there was a shift in the students' perception of science as an active instead of a passive field of study. The survey also measured the students' comfort-level in offering a hands-on learning environment in their future classrooms and their confidence in their ability to effectively teach science concepts to elementary students. Results from the first year of the study will be presented.

  20. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  1. Are We Teaching Them Anything?: A Model for Measuring Methodology Skills in the Political Science Major

    Science.gov (United States)

    Siver, Christi; Greenfest, Seth W.; Haeg, G. Claire

    2016-01-01

    While the literature emphasizes the importance of teaching political science students methods skills, there currently exists little guidance for how to assess student learning over the course of their time in the major. To address this gap, we develop a model set of assessment tools that may be adopted and adapted by political science departments…

  2. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    Science.gov (United States)

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  3. When Are Students Ready for Research Methods? A Curriculum Mapping Argument for the Political Science Major

    Science.gov (United States)

    Bergbower, Matthew L.

    2017-01-01

    For many political science programs, research methods courses are a fundamental component of the recommended undergraduate curriculum. However, instructors and students often see these courses as the most challenging. This study explores when it is most appropriate for political science majors to enroll and pass a research methods course. The…

  4. Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.

    Science.gov (United States)

    Aide, Michael; Terry, Danny

    1996-01-01

    Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…

  5. From Retention to Satisfaction: New Outcomes for Assessing the Freshman Experience. AIR 1994 Annual Forum Paper.

    Science.gov (United States)

    Sanders, Liz; And Others

    To meet accountability challenges from a customer-satisfaction perspective, an urban institution of higher education has developed an integrated approach to studying the freshman year experience in order to develop comprehensive outcomes measures for assessing freshman success. Multiple sources of data (freshman satisfaction survey data,…

  6. The Gender Differences: Hispanic Females and Males Majoring in Science or Engineering

    Science.gov (United States)

    Brown, Susan Wightman

    Documented by national statistics, female Hispanic students are not eagerly rushing to major in science or engineering. Using Seidman's in-depth interviewing method, 22 Hispanic students, 12 female and 10 male, majoring in science or engineering were interviewed. Besides the themes that emerged with all 22 Hispanic students, there were definite differences between the female and male Hispanic students: role and ethnic identity confusion, greater college preparation, mentoring needed, and the increased participation in enriched additional education programs by the female Hispanic students. Listening to these stories from successful female Hispanic students majoring in science and engineering, educators can make changes in our school learning environments that will encourage and enable more female Hispanic students to choose science or engineering careers.

  7. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    Science.gov (United States)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  9. Recruitment of Early STEM Majors into Possible Secondary Science Teaching Careers: The Role of Science Education Summer Internships

    Science.gov (United States)

    Borgerding, Lisa A.

    2015-01-01

    A shortage of highly qualified math and science teachers pervades the U.S. public school system. Clearly, recruitment of talented STEM educators is critical. Previous literature offers many suggestions for how STEM teacher recruitment programs and participant selection should occur. This study investigates how early STEM majors who are not already…

  10. Research and Teaching: Using Twitter in a Nonscience Major Science Class Increases Journal of College Science Teaching

    Science.gov (United States)

    Halpin, Patricia A.

    2016-01-01

    Nonscience majors often rely on general internet searches to locate science information. This practice can lead to misconceptions because the returned search information can be unreliable. In this article the authors describe how they used the social media site Twitter to address this problem in a general education course, BSCI 421 Diseases of the…

  11. Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Science.gov (United States)

    Toven-Lindsey, Brit; Levis-Fitzgerald, Marc; Barber, Paul H; Hasson, Tama

    2015-01-01

    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap. © 2015 B. Toven-Lindsey et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Reorganizing Freshman Business Mathematics I: Background and Philosophy

    Science.gov (United States)

    Green, Kris; Emerson, Allen

    2008-01-01

    This article is the first of the two-part discussion of the development of a new Freshman Business Mathematics (FBM) course at our college. Part I of the article describes the background and history behind the course, and provides a theoretical framework for the design of the course. This design involves students in learning and applying…

  13. College Freshman Stress and Weight Change: Differences by Gender

    Science.gov (United States)

    Economos, Christina D.; Hildebrandt, M. Lise; Hyatt, Raymond R.

    2008-01-01

    Objectives: To examine how stress and health-related behaviors affect freshman weight change by gender. Methods: Three hundred ninety-six freshmen completed a 40-item health behavior survey and height and weight were collected at baseline and follow-up. Results: Average weight change was 5.04 lbs for males, 5.49 lbs for females. Weight gain was…

  14. Fuel Cell Car Design Project for Freshman Engineering Courses

    Science.gov (United States)

    Duke, Steve R.; Davis, Virginia A.

    2014-01-01

    In the Samuel Ginn College of Engineering at Auburn University, we have integrated a semester long design project based on a toy fuel cell car into our freshman "Introduction to Chemical Engineering Class." The project provides the students a basic foundation in chemical reactions, energy, and dimensional analysis that facilitates…

  15. The Freshman Odyssey: Classical Metaphors for Counseling College Students.

    Science.gov (United States)

    Sandoz, Jeff

    This paper highlights the use of analogies and metaphors in counseling sessions with a focus on the college freshman experience as a living, contemporary example of how clients may experience mythic themes in their lives. Drawing from the ideas of Joseph Campbell, characters found in classical Greek mythology, as well as contemporary myths as…

  16. A Survey of Gender Biases of Freshman Students toward Engineering.

    Science.gov (United States)

    Schaer, Barbara; And Others

    1991-01-01

    A survey of 724 freshman engineering orientation students investigated the significance of 5 literature-cited barriers to women's success in engineering--sexual discrimination, financial concerns, academic comfort, career awareness, and locus of control. Significant main effects were found for gender but not ethnic group. The instrument is…

  17. Focus on Freshman: Basic Instruction Programs Enhancing Physical Activity

    Science.gov (United States)

    Curry, Jarred; Jenkins, Jayne M.; Weatherford, Jennifer

    2015-01-01

    Physical activity sharply decreases after different life stages, particularly high school graduation to beginning university education. The purpose of this study was to investigate the effect of a specifically designed university physical activity class, Exercise Planning for Freshman (EPF), on students' physical activity and group cohesion…

  18. Social and Emotional Learning in a Freshman Seminar

    Science.gov (United States)

    Wyatt, Jeannette B.; Bloemker, Geraldine A.

    2013-01-01

    First year college students are challenged both socially and academically in their transition to college life. The literature suggests that social and emotional competence skills can help with this transition. This article describes the course content for a University freshman seminar that teaches skills in social and emotional competence in order…

  19. Variations in Primary Teachers’ Responses and Development during Three Major Science In- Service Programmes

    Directory of Open Access Journals (Sweden)

    Anthony Pell

    2011-01-01

    Full Text Available This paper reports on how different types of teachers responded to in-service aimed at developing investigative-based science education (IBSE in primary schools, and the extent to which they applied their new skills in the classroom. Common items from evaluation questionnaires allowed data to be combined from three major in-service programmes. Using complete data sets from 120 teachers, cluster analysis enabled three teacher types to be identified: a small group of ‘science unsures’, with low attitude scores and little confidence, who showed no response to the innovation; ‘holistic improvers’, who showed the largest improvement in science teaching confidence; and ‘high level, positive progressives’, who were very positive to science teaching throughout and showed gains in confidence in teaching physics and chemistry, as well as in demonstrating the relevance of science to their pupils. Taking account of these teacher types alongside interviews and observations, nine developmental stages in how teachers apply their new expertise in the classroom and the whole school are suggested. Major factorsinfluencing application in the classroom are the teachers’ initial science knowledge and pedagogical expertise, and motivating feedback to teachers when pupils responded positively to the innovation. Assessing teachers’ initial level of subject knowledge and science pedagogical expertise to inform the approach and amount of in-service provision is important. Subsequent mentoring as well as support from the school principal when teachers first try IBSE with pupils promotes successful implementation in the classroom.

  20. Sociocultural Influences On Undergraduate Women's Entry into a Computer Science Major

    Science.gov (United States)

    Lyon, Louise Ann

    Computer science not only displays the pattern of underrepresentation of many other science, technology, engineering, and math (STEM) fields, but has actually experienced a decline in the number of women choosing the field over the past two decades. Broken out by gender and race, the picture becomes more nuanced, with the ratio of females to males receiving bachelor's degrees in computer science higher for non-White ethnic groups than for Whites. This dissertation explores the experiences of university women differing along the axis of race, class, and culture who are considering majoring in computer science in order to highlight how well-prepared women are persuaded that they belong (or not) in the field and how the confluence of social categories plays out in their decision. This study focuses on a university seminar entitled "Women in Computer Science and Engineering" open to women concurrently enrolled in introductory programming and uses an ethnographic approach including classroom participant observation, interviews with seminar students and instructors, observations of students in other classes, and interviews with parents of students. Three stand-alone but related articles explore various aspects of the experiences of women who participated in the study using Rom Harre's positioning theory as a theoretical framework. The first article uses data from twenty-two interviews to uncover how interactions with others and patterns in society position women in relation to a computer science major, and how these women have arrived at the point of considering the major despite messages that they do not belong. The second article more deeply explores the cases of three women who vary greatly along the axes of race, class, and culture in order to uncover pattern and interaction differences for women based on their ethnic background. The final article focuses on the attitudes and expectations of the mothers of three students of contrasting ethnicities and how reported

  1. Choices in higher education: Majoring in and changing from the sciences

    Science.gov (United States)

    Minear, Nancy Ann

    This dissertation addresses patterns of retention of undergraduate science, engineering and mathematics (SEM) students, with special attention paid to female and under represented minority students. As such, the study is focused on issues related to academic discipline and institutional retention, rather than the retention of students in the overall system of higher education. While previous retention studies have little to say about rates of retention that are specific to the sciences (or any other specific area of study) or employ models that rely on students' performance at the college level, this work address both points by identifying the post secondary academic performance characteristics of persisters and non-persisters in the sciences by gender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in sciencegender, ethnicity and matriculating major as well as identifying introductory SEM course requirements that prevent students from persisting in science majors. A secondary goal of investigating the usefulness of institutional records for retention research is addressed. Models produced for the entire population and selected subpopulations consistently classified higher-performing (both SEM and non-SEM grade point averages) students into Bachelor of Science categories using the number of Introductory Chemistry courses attempted at the university. For lower performing students, those with more introductory chemistry courses were classified as changing majors out of the sciences, and in general as completing a Bachelor of Arts degree. Performance in gatekeeper courses as a predictor of terminal academic status was limited to Introductory Physics for a small number of cases. Performance in Introductory Calculus and Introductory Chemistry were not consistently utilized as predictor variables. The models produced for various subpopulations (women, ethnic groups and matriculation

  2. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  3. Living in a material world: Development and evaluation of a new materials science course for non-science majors

    Science.gov (United States)

    Brust, Gregory John

    This study was designed to discover if there is a difference in the scientific attitudes and process skills between a group of students who were instructed with Living in a Material World and groups of students in non-science majors sections of introductory biology, chemistry, and geology courses at the University of Southern Mississippi (USM). Each of the four courses utilized different instructional techniques. Students' scientific attitudes were measured with the Scientific Attitudes Inventory (SAI II) and their knowledge of science process skills were measured with the Test of Integrated Process Skills (TIPS II). The Group Assessment of Logical Thinking (GALT) was also administered to determine if the cognitive levels of students are comparable. A series of four questionnaires called Qualitative Course Assessments (QCA) were also administered to students in the experimental course to evaluate subtle changes in their understanding of the nature and processes of science and attitudes towards science. Student responses to the QCA questionnaires were triangulated with results of the qualitative instruments, and students' work on the final project. Results of the GALT found a significant difference in the cognitive levels of students in the experimental course (PSC 190) and in one of the control group, the introductory biology (BSC 107). Results of the SAI II and the TIPS II found no significant difference between the experimental group and the control groups. Qualitative analyses of students' responses to selected questions from the TIPS II, selected items on the SAI II, QCA questionnaires, and Materials that Fly project reports demonstrate an improvement in the understanding of the nature and processes of science and a change to positive attitude toward science of students in the experimental group. Students indicated that hands-on, inquiry-based labs and performance assessment were the most effective methods for their learning. These results indicate that science

  4. The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    Science.gov (United States)

    Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan

    2013-01-01

    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…

  5. Design and Evaluation of a One-Semester General Chemistry Course for Undergraduate Life Science Majors

    Science.gov (United States)

    Schnoebelen, Carly; Towns, Marcy H.; Chmielewski, Jean; Hrycyna, Christine A.

    2018-01-01

    The chemistry curriculum for undergraduate life science majors at Purdue University has been transformed to better meet the needs of this student population and prepare them for future success. The curriculum, called the 1-2-1 curriculum, includes four consecutive and integrated semesters of instruction in general chemistry, organic chemistry, and…

  6. Advanced Placement Math and Science Courses: Influential Factors and Predictors for Success in College STEM Majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    2010-01-01

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country.…

  7. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors

    Science.gov (United States)

    Gross, Erin M.

    2013-01-01

    An undergraduate lecture course in Green Chemistry and Sustainability has been developed and taught to a "multidisciplinary" group of science and nonscience majors. The course introduced students to the topics of green chemistry and sustainability and also immersed them in usage of the scientific literature. Through literature…

  8. Emphasizing Astrobiology: Highlighting Communication in an Elective Course for Science Majors

    Science.gov (United States)

    Offerdahl, Erika G.; Prather, Edward E.; Slater, Timothy F.

    2004-01-01

    The project described here involved the design, implementation, and evaluation of an upper level, undergraduate elective course for science majors. Specific course goals were to help students gain an appreciation of the interdisciplinary nature of astrobiology, understand key ideas in astrobiology, and develop the skills necessary to communicate…

  9. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  10. Using the Theme of Mass Extinctions to Teach Science to Non-Science Major College and University Students

    Science.gov (United States)

    Boness, D. A.

    2013-12-01

    The general public is heavily exposed to "news" and commentary---and arts and entertainment---that either inadvertently misrepresents science or even acts to undermine it. Climate change denial and evolution denial is well funded and pervasive. Even university-educated people get little exposure to the aims, methods, debates, and results of scientific inquiry because unless they earn degrees in science they typically only take one or two introductory science courses at the university level. This presentation reports the development of a new, non-science major Seattle University course on mass extinctions throughout earth history. Seattle University is an urban, Jesuit Catholic university. The topic of mass extinctions was chosen for several reasons: (1) To expose the students to a part of current science that has rich historical roots yet by necessity uses methods and reasoning from geology, geophysics, oceanography, physics, chemistry, biology, and astronomy. This multidisciplinary course provides some coverage of sciences that the student would not typically ever see beyond secondary school. (2) To enable the students to learn enough to follow some of the recent and current debates within science (e.g., mass extinctions by asteroid impact versus massive volcanism, ocean anoxia, and ocean acidification), with the students reading some of the actual literature, such as articles in Science, Nature, or Nature Geoscience. (3) To emphasize the importance of "deep time" as evolutionary biological processes interact with massive environmental change over time scales from hundreds of millions of years down to the seconds and hours of an asteroid or comet strike. (4) To show the effects of climate change in the past, present, and future, due to both natural and anthropogenic causes. (5) To help the student critically evaluate the extent to which their future involves a human-caused mass extinction.

  11. Female and male Hispanic students majoring in science or engineering: Their stories describing their educational journeys

    Science.gov (United States)

    Brown, Susan Wightman

    National statistics clearly demonstrate an underrepresentation of minorities in the fields of science and engineering. Blacks, Hispanics, American Indians, and Asians do not typically choose science or engineering as their college major; therefore, there is a very small representation of these minorities in the science and engineering labor force. The decision not to major in science and engineering may begin as soon as the child can begin to recognize role models in the media. News stories, magazine articles, television programs, teachers, parents, administrators, and other agencies have painted the picture of a scientist or engineer as being dominantly a White male. Schools have continued society's portrayal by using curriculum, textbooks, role models, instructional strategies, and counseling that continues to encourage the White male to succeed in science and engineering, but discourages the minority students, male and female, from succeeding in these fields. In this qualitative study, 22 Hispanic students, 12 female and 10 male, who are majoring in science or engineering, were interviewed using Seidman's in-depth interviewing technique. These students were shadowed in their college science or engineering classes; their high school and college transcripts were analyzed; and, a focus group was brought together at the end of the interviewing process in order to allow interaction between the participants. The goal was to explore the educational journeys of the 22 Hispanic students. What made a difference in the journeys of these 22 students so that they could succeed in majors that have historically discouraged minority students? Seven themes emerged: family support, honors program, challenging and interactive curriculum, college preparation in high school courses, caring and kind teachers, small class size, and small communities. Gender comparison of the educational journeys documents these differences between the females and males: college preparation, mentoring

  12. The influences and experiences of African American undergraduate science majors at predominately White universities

    Science.gov (United States)

    Blockus, Linda Helen

    The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models

  13. China’s rise as a major contributor to science and technology

    Science.gov (United States)

    Xie, Yu; Zhang, Chunni; Lai, Qing

    2014-01-01

    In the past three decades, China has become a major contributor to science and technology. China now employs an increasingly large labor force of scientists and engineers at relatively high earnings and produces more science and engineering degrees than the United States at all levels, particularly bachelor’s. China’s research and development expenditure has been rising. Research output in China has been sharply increasing since 2002, making China the second largest producer of scientific papers after the United States. The quality of research by Chinese scientists has also been improving steadily. However, China’s rise in science also faces serious difficulties, partly attributable to its rigid, top–down administrative system, with allegations of scientific misconduct trending upward. PMID:24979796

  14. Predicting academic problems in college from freshman alcohol involvement.

    Science.gov (United States)

    Wood, P K; Sher, K J; Erickson, D J; DeBord, K A

    1997-03-01

    The present article examines the relation of problematic alcohol use to collegiate academic problems based on a systematic assessment of problematic alcohol use and college transcript data. The degree to which this prospective association can be explained by reference to third variables is also explored. These third variables include: students' high school academic achievement and aptitude, concurrent drug use, participation in deviant behaviors and students' investment or participation in the college experience. A sample of 444 (240 female) college freshman recruited for a longitudinal study of alcohol use was followed for 6 years. Alcohol and drug involvement, general deviance, academic investment, campus involvement and several background variables were assessed during the freshman year. Additional measures of high school aptitude and achievement as well as collegiate performance were calculated based on college transcript data from all institutions attended. A latent variable structural equation model revealed that problematic alcohol use during the freshman year correlated +.32 with collegiate academic problems. No evidence was found for a unique association between the two constructs when additional constructs were included in the model. Specifically, the association was substantially reduced when preexisting student differences traditionally associated with academic failure in college were taken into account. The inclusion of concurrent drug use and deviance also resulted in a significant reduction in the magnitude of the association. Although a substantial bivariate association exists between problematic alcohol use and academic problems during college, much of this association appears attributable to preexisting student differences on admission to college.

  15. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  16. An investigation of factors affecting elementary female student teachers' choice of science as a major at college level in Zimbabwe

    Science.gov (United States)

    Mlenga, Francis Howard

    The purpose of the study was to determine factors affecting elementary female student teachers' choice of science as a major at college level in Zimbabwe. The study was conducted at one of the Primary School Teachers' Colleges in Zimbabwe. A sample of two hundred and thirty-eight female student teachers was used in the study. Of these one hundred and forty-two were non-science majors who had been randomly selected, forty-one were science majors and forty-five were math majors. Both science and math majors were a convenient sample because the total enrollment of the two groups was small. All the subjects completed a survey questionnaire that had sixty-eight items. Ten students from the non-science majors were selected for individual interviews and the same was done for the science majors. A further eighteen were selected from the non-science majors and divided into three groups of six each for focus group interviews. The same was done for the science majors. The interviews were audio taped and transcribed. Data from the survey questionnaires were analyzed using Binary Logistic Regression which predicted factors that affected students' choice of science as a major. The transcribed interview data were analyzed used using domain, taxonomic and componential analyses. Results of the study indicated that elementary female students' choice of science as a major at college level is affected by students' attitudes toward science, teacher behavior, out-of-school experiences, role models, gender stereotyping, parental influence, peer influence, in-school experiences, and societal expectations, namely cultural and social expectations.

  17. Science or liberal arts? Cultural capital and college major choice in China.

    Science.gov (United States)

    Hu, Anning; Wu, Xiaogang

    2017-12-19

    Previous studies on major East Asian societies such as Japan and Korea generally fail to find a strong effect of cultural capital in educational inequality, partly due to the characteristic extreme focus on standardized test and curriculum. This study shifts attention to the horizontal stratification of education by investigating the association between family background, cultural capital, and college major choice in contemporary China. Based on analysis of data from the Beijing College Students Panel Survey (BCSPS), we found that, on average, cultural capital significantly mediates the relationship between family background and college major preference. Those with greater endowment of cultural capital are more likely to come from socio-economically advantaged families, and, at the same time, demonstrate a stronger propensity to major in liberal arts fields rather than science, technology, engineering and mathematics (STEM) fields. Further analyses reveal that the association between cultural capital and academic field choice comes into being by way of performance in the Chinese test in the national college entrance examination and of the non-cognitive dispositions, such as self-efficacy and self-esteem. Our findings better our understanding of formation of the horizontal stratification of higher education. © London School of Economics and Political Science 2017.

  18. The academic majors of students taking American soil science classes: 2004-2005 to 2013-2014 academic years

    Science.gov (United States)

    Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dolliver, Holly; Lindbo, David; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan

    2017-04-01

    Many papers have been written in recent years discussing the interdisciplinary and transdisciplinary aspects of soil science. Therefore, it would make sense that soil science courses would be taken by students in a wide array of academic majors. To investigate this, we collected data from eight different American universities on the declared academic majors of students enrolled in soil science courses over a 10 year time period (2004-2005 to 2013-2014 academic years). Data was collected for seven different classes taught at the undergraduate level: introduction to soil science, soil fertility, soil management, pedology, soil biology/microbiology, soil chemistry, and soil physics. Overall trends and trends for each class were evaluated. Generally, environmental science and crop science/horticulture/agronomy students were enrolled in soil science courses in the greatest numbers. Environmental science and engineering students showed rapid increases in enrollment over the 10 years of the study, while the number of crop science/ horticulture/ agronomy students declined. In the introduction to soil science classes, environmental science and crop science/ horticulture/ agronomy students were enrolled in the greatest numbers, while declared soil science majors only made up 6.6% of the average enrollment. The highest enrollments in soil fertility were crop science/ horticulture/ agronomy students and other agricultural students (all agricultural majors except crop science, horticulture, agronomy, or soil science). In both the soil management and pedology classes, environmental science and other agricultural students were the largest groups enrolled. Other agricultural students and students from other majors (all majors not otherwise expressly investigated) were the largest enrolled groups in soil biology/microbiology courses, and environmental science and soil science students were the largest enrolled groups in soil chemistry classes. Soil physics was the only class

  19. Classification of Incoming Freshman in a Public University Based on the Variables of Academic Performance, Use of Digital Technology

    Directory of Open Access Journals (Sweden)

    Javier Organista Sandoval

    2012-05-01

    Full Text Available During the first semester of 2008 a research study was conducted with incoming freshman in the School of Administrative and Social Sciences (FCAyS—acronym in Spanish of the Ensenada campus of the Universidad Autónoma de Baja California (UABC. The purpose was to characterize the new students based on academic achievement (grade point averages in high school and the first semester of college, family context (parents’ schooling and use of technology (computers and the Web. A survey of technology use developed within the framework of the research was applied to a sample of 438 students. The results show that the majority of the students are female (2 out of 3 and that 4 out of 5 have computers at home. About 80% of the students showed an intermediate level of proficiency in computer technology and the Web. Two classifying techniques were employed: CHAID and a cluster analysis to explore the development of patterns based on the above-mentioned variables. The result of the applied CHAID analysis highlights the importance of the variables of gender, parental schooling and level of immersion in the Web for the classification. The cluster analysis (k-means generated four clusters; of these, cluster 1, which had the lowest average grades and the highest levels of computer and Web immersion, is noteworthy, because it suggests a non-educational use of technological resources. In contrast, cluster 4 presented the highest grade point average in college, a moderate level of computer use and a low level of immersion in the Web. This suggests a greater commitment to academics by reduced use of the computer and the Web for recreational purposes.

  20. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  1. Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College

    Science.gov (United States)

    Mader, Catherine

    2005-04-01

    The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.

  2. Science That Matters: The Importance of a Cultural Connection in Underrepresented Students’ Science Pursuit

    Science.gov (United States)

    Jackson, Matthew C.; Galvez, Gino; Landa, Isidro; Buonora, Paul; Thoman, Dustin B.

    2016-01-01

    Recent research suggests that underrepresented minority (URM) college students, and especially first-generation URMs, may lose motivation to persist if they see science careers as unable to fulfill culturally relevant career goals. In the present study, we used a mixed-methods approach to explore patterns of motivation to pursue physical and life sciences across ethnic groups of freshman college students, as moderated by generational status. Results from a longitudinal survey (N = 249) demonstrated that freshman URM students who enter with a greater belief that science can be used to help their communities identified as scientists more strongly over time, but only among first-generation college students. Analysis of the survey data were consistent with content analysis of 11 transcripts from simultaneously conducted focus groups (N = 67); together, these studies reveal important differences in motivational characteristics both across and within ethnicity across educational generation status. First-generation URM students held the strongest prosocial values for pursuing a science major (e.g., giving back to the community). URM students broadly reported additional motivation to increase the status of their family (e.g., fulfilling aspirations for a better life). These findings demonstrate the importance of culturally connected career motives and for examining intersectional identities to understand science education choices and inform efforts to broaden participation. PMID:27543631

  3. Pre Business College Freshman Perception of Classroom Behavior: An Analysis among and between Genders

    Science.gov (United States)

    Alexander, Melody W.; Mundrake, George A.; Brown, Betty J.

    2009-01-01

    The focus of this study was 1) to identify pre business college freshman observed classroom behavior (personal, technical, and collaborative behaviors) in high school versus college, and to compare by gender (male to male; female to female), and 2) to identify pre business college freshman perceptions of classroom behavior in college, and to…

  4. An Informal Science Education Program's Impact on STEM Major and STEM Career Outcomes

    Science.gov (United States)

    Habig, Bobby; Gupta, Preeti; Levine, Brian; Adams, Jennifer

    2018-04-01

    While there is extensive evidence that STEM careers can be important pathways for augmenting social mobility and for increasing individual prestige, many youth perceive a STEM trajectory as an unattractive option. In the USA, women and members of historically marginalized racial and ethnic groups continue to be underrepresented across STEM disciplines. One vehicle for generating and sustaining interest in STEM is providing youth long-term access to informal science education (ISE) institutions. Here, we incorporate triangulation methods, collecting and synthesizing both qualitative and quantitative data, to examine how participation in a longitudinal ISE out-of-school time (OST) program facilitated by the American Museum of Natural History (AMNH) impacted the STEM trajectories of 66 alumni. Findings revealed that 83.2% of alumni engaged in a STEM major, and 63.1% in a STEM career, the majority whom were females and/or members of historically underrepresented racial and ethnic groups. Based on interviews with a purposeful sample of 21 AMNH alumni, we identified four program design principles that contributed to persistence in STEM: (1) affording multiple opportunities to become practitioners of science; (2) providing exposure to and repeated experiences with STEM professionals such as scientists, educators, and graduate students to build social networks; (3) furnishing opportunities for participants to develop shared science identities with like-minded individuals; and (4) offering exposure to and preparation for a variety of STEM majors and STEM careers so that youth can engage in discovering possible selves. These findings support our central thesis that long-term engagement in ISE OST programs fosters persistence in STEM.

  5. Gender equity in STEM: The role of dual enrollment science courses in selecting a college major

    Science.gov (United States)

    Persons, Christopher Andrew

    A disproportionately low number of women, despite rigorous high school preparation and evidenced interest in STEM through voluntary participation in additional coursework, declare a STEM-related college major. The result of this drop in participation in STEM-related college majors is a job market flooded with men and the support of an incorrect stereotype: STEM is for men. This research seeks to assess the effects, if any, that Dual Enrollment (DE) science courses have on students' self-identified intent to declare a STEM-related college major as well as the respective perceptions of both male and female students. Self-Determination Theory and Gender Equity Framework were used respectively as the theoretical frames. High school students from six schools in two district participated in an online survey and focus groups in this mixed methods study. The results of the research identified the role the DE course played in their choice of college major, possible interventions to correct the underrepresentation, and societal causes for the stereotype.

  6. Research and Teaching: Factors Related to College Students' Understanding of the Nature of Science--Comparison of Science Majors and Nonscience Majors

    Science.gov (United States)

    Partin, Matthew L.; Underwood, Eileen M.; Worch, Eric A.

    2013-01-01

    To develop a more scientifically literate society, students need to understand the nature of science, which may be affected by controversial topics such as evolution. There are conflicting views among researchers concerning the relationships between understanding evolution, acceptance of evolution, and understanding of the nature of science. Four…

  7. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    Science.gov (United States)

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  8. Family matters: Familial support and science identity formation for African American female STEM majors

    Science.gov (United States)

    Parker, Ashley Dawn

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical race feminism as the theoretical framework to answer the following questions: 1) What role does family play in the experiences of African American women undergraduate STEM majors who attended two universities in the UNC system? 2) What factors impact the formation of science identity for African American women undergraduate STEM majors who attended two universities in the UNC system? Purposive sampling was used to select the participants for this study. The researcher conducted in-depth interviews with 10 African American female undergraduate STEM major from a predominantly White and a historically Black institution with the state of North Carolina public university system. Findings suggest that African American families and science identity formation influence the STEM experiences of the African American females interviewed in this study. The following five themes emerged from the findings: (1) independence, (2) support, (3) pressure to succeed, (4) adaptations, and (5) race and gender. This study contributes to the literature on African American female students in STEM higher education. The findings of this study produced knowledge regarding policies and practices that can lead to greater academic success and persistence of African American females in higher education in general, and STEM majors in particular. Colleges and universities may benefit from the findings of this study in a way that allows them to develop and sustain programs and policies that attend to the particular concerns and needs of African American women on their campuses. Finally, this research informs both current and future African American female

  9. Trends in gender segregation in the choice of science and engineering majors.

    Science.gov (United States)

    Mann, Allison; Diprete, Thomas A

    2013-11-01

    Numerous theories have been put forward for the high and continuing levels of gender segregation in science, technology, engineering, and mathematics (STEM) fields, but research has not systematically examined the extent to which these theories for the gender gap are consistent with actual trends. Using both administrative data and four separate longitudinal studies sponsored by the U.S. Department of Education's National Center for Education Statistics (NCES), we evaluate several prominent explanations for the persisting gender gap in STEM fields related to mathematics performance and background and general life goals, and find that none of them are empirically satisfactory. Instead, we suggest that the structure of majors and their linkages to professional training and careers may combine with gender differences in educational goals to influence the persisting gender gap in STEM fields. An analysis of gendered career aspirations, course-taking patterns, and pathways to medical and law school supports this explanation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Trends in Gender Segregation in the Choice of Science and Engineering Majors*

    Science.gov (United States)

    Mann, Allison; DiPrete, Thomas A.

    2013-01-01

    Numerous theories have been put forward for the high and continuing levels of gender segregation in science, technology, engineering, and mathematics (STEM) fields, but research has not systematically examined the extent to which these theories for the gender gap are consistent with actual trends. Using both administrative data and four separate longitudinal studies sponsored by the U.S. Department of Education’s National Center for Education Statistics (NCES), we evaluate several prominent explanations for the persisting gender gap in STEM fields related to mathematics performance and background and general life goals, and find that none of them are empirically satisfactory. Instead, we suggest that the structure of majors and their linkages to professional training and careers may combine with gender differences in educational goals to influence the persisting gender gap in STEM fields. An analysis of gendered career aspirations, course-taking patterns, and pathways to medical and law school supports this explanation. PMID:24090849

  11. Women planning to major in computer science: Who are they and what makes them unique?

    Science.gov (United States)

    Lehman, Kathleen J.; Sax, Linda J.; Zimmerman, Hilary B.

    2016-12-01

    Despite the current growing popularity of the computer science (CS) major, women remain sorely underrepresented in the field, continuing to earn only 18% of bachelor's degrees. Understanding women's low rates of participation in CS is important given that the demand for individuals with CS training has grown sharply in recent years. Attracting and retaining more women to high-paying fields like CS may also help narrow the gender pay gap. Further, it is important that women participate in developing new technology so that technology advances serve the needs of both women and men. This paper explores the background characteristics, career aspirations, and self-perceptions of 1636 female first-year college students in the United States who intend to major in CS and compares them with 4402 male CS aspirants as well as with 26,642 women planning to major in other STEM sub-fields. The findings reveal a unique profile of women who pursue the CS major and notes many significant differences between men and women in CS and between women in CS and those in other STEM fields. For instance, women in CS tend to earn lower high school grades than women in other STEM fields, but earn higher SAT verbal scores. They also rate themselves higher than men in CS and women in other STEM fields on measures of their artistic ability, but rate themselves lower on other self-ratings, including academic and leadership ability. Further, women in CS are more likely to be undecided in their career plans than men in CS and women in other STEM fields. Understanding the unique characteristics of women in CS will help inform policies and recruitment programs designed to address the gender gap in computing.

  12. Finding Relevance, Competence, and Enjoyment: The Development of Domain Identification and Interest in First-Year Science Majors

    Science.gov (United States)

    Ruff, Chloe

    2016-01-01

    The purpose of this qualitative study was to examine how first-year college students perceive their development of domain identification with, and interest in, their prospective science major during their initial year of college. Four themes emerged from the coding and analysis of interviews with eight first-year science students: Self-Definition…

  13. Consideration of Learning Orientations as an Application of Achievement Goals in Evaluating Life Science Majors in Introductory Physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-01-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics…

  14. Assessment of Teaching Methods and Critical Thinking in a Course for Science Majors

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A. G.

    2014-01-01

    Ability to think critically is a key ingredient to the scientific mindset. Students who take science courses may or may not be predisposed to critical thinking - the ability to evaluate information analytically. Regardless of their initial stages, students can significantly improve their critical thinking through learning and practicing their reasoning skills, critical assessments, conducting and reflecting on observations and experiments, building their questioning and communication skills, and through the use of other techniques. While, there are several of teaching methods that may help to improve critical thinking, there are only a few assessment instruments that can help in evaluating the efficacy of these methods. Critical thinking skills and improvement in those skills are notoriously difficult to measure. Assessments that are based on multiple-choice questions demonstrate students’ final decisions but not their thinking processes. In addition, during the course of studies students may develop subject-based critical thinking while not being able to extend the skills to the general critical thinking. As such, we wanted to design and conduct a study on efficacy of several teaching methods in which we would learn how students’ improve their thinking processes within a science discipline as well as in everyday life situations. We conducted a study among 20 astronomy, physics and geology majors-- both graduate and undergraduate students-- enrolled in our Solar System Science course (mostly seniors and early graduate students) at the University of Missouri. We used the Ennis-Weir Critical Thinking Essay test to assess students’ general critical thinking and, in addition, we implemented our own subject-based critical thinking assessment. Here, we present the results of this study and share our experience on designing a subject-based critical thinking assessment instrument.

  15. Science Majors and Degrees among Asian-American Students: Influences of Race and Sex in "model Minority" Experiences

    Science.gov (United States)

    Meng, Yu; Hanson, Sandra L.

    Both race and sex continue to be factors that stratify entry into science education and occupations in the United States. Asian-Americans (men and women) have experienced considerable success in the sciences and have earned the label of "model minority." The complexities and patterns involved in this success remain elusive. We use several concepts coming out of the status attainment framework and a multicultural gender perspective to explore the way in which race and sex come together to influence choices of science major and degree. Our sample consists of Asian-American and white students in the National Educational Longitudinal Study. Findings suggest that being male and being Asian-American are both associated with higher chances of pursuing majors and degrees in science. The male advantage is greater than the Asian-American advantage. Findings also suggest that race and sex interact in the science decision. For example, race differences (with an Asian-American advantage) in choice of science major are significant for women but not men. Sex differences (with a male advantage) in choice of science major are significant in the white, but not the Asian-American sample. A different set of race and sex patterns is revealed in the science degree models. Processes associated with family socioeconomic status and student characteristics help to explain race and sex patterns. Findings suggest that when Asian-American youths have closer ties to the Asian culture, they are more likely to choose science majors and degrees. Implications for policy, practice, and research in science education are discussed.

  16. Major Links.

    Science.gov (United States)

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  17. Perceptions of psychology as a science among university students: the influence of psychology courses and major of study.

    Science.gov (United States)

    Bartels, Jared M; Hinds, Ryan M; Glass, Laura A; Ryan, Joseph J

    2009-10-01

    The goal was to examine the relationship between the number of psychology courses students have taken and their perceptions of psychology as a science. Additionally, differences in perceptions of psychology among psychology, education, and natural science majors were examined. Results indicated that students who had taken four or more psychology courses had more favorable perceptions of psychology as a science compared to those who had taken no courses or one course and those who had taken two to three courses. No significant differences in overall perceptions of psychology emerged among students in the three majors.

  18. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  19. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    Science.gov (United States)

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  20. Engaging Non-Science Majors Through Citizen Science Projects In Inquiry-Based Introductory Geoscience Laboratory Courses

    Science.gov (United States)

    Humphreys, R. R.; Hall, C.; Colgan, M. W.; Rhodes, E.

    2010-12-01

    Although inquiry-based/problem-based methods have been successfully incorporated in undergraduate lecture classes, a survey of commonly used laboratory manuals indicates that few non-major geoscience laboratory classes use these strategies. The Department of Geology and Environmental Geosciences faculty members have developed a successful introductory Environmental Geology Laboratory course for undergraduate non-majors that challenges traditional teaching methodology as illustrated in most laboratory manuals. The Environmental Geology lab activities employ active learning methods to engage and challenge students. Crucial to establishing an open learning environment is capturing the attention of non-science majors from the moment they enter the classroom. We use catastrophic ‘gloom and doom’ current events to pique the imagination with images, news stories, and videos. Once our students are hooked, we can further the learning process with use of other teaching methods: an inquiry-based approach that requires students take control of their own learning, a cooperative learning approach that requires the participation of all team members in peer learning, and a problem/case study learning approach that primarily relies on activities distilled from current events. The final outcome is focused on creating innovative methods to communicate the findings to the general public. With the general public being the audience for their communiqué, students are less intimated, more focused, and more involved in solving the problem. During lab sessions, teams of students actively engage in mastering course content and develop essential communication skills while exploring real-world scenarios. These activities allow students to use scientific reasoning and concepts to develop solutions for scenarios such as volcanic eruptions, coastal erosion/sea level rise, flooding or landslide hazards, and then creatively communicate their solutions to the public. For example, during a two

  1. Efficacy Expectations and Vocational Interests as Mediators between Sex and Choice of Math/Science College Majors: A Longitudinal Study

    Science.gov (United States)

    Lapan; Shaughnessy; Boggs

    1996-12-01

    A longitudinal study was conducted to test the mediational role of efficacy expectations in relation to sex differences in the choice of a math/science college major. Data on 101 students were gathered prior to their entering college and then again after they had declared a major 3 years later. Path analytic results support the importance of both math self-efficacy beliefs and vocational interest in mathematics in predicting entry into math/science majors and mediating sex differences in these decisions. Also, students who described themselves as more extroverted were less likely to take additional math classes in high school. Students with stronger artistic vocational interests chose majors less related to math and science. School personnel are strongly encouraged to develop programs that challenge the crystallization of efficacy beliefs and vocational interest patterns before students enter college.

  2. Using Infiniscope Exploratory Activities in an Online Astronomy Lab Course for Non-Science Majors

    Science.gov (United States)

    Knierman, Karen; Anbar, Ariel; Tamer, A. Joseph; Hunsley, Diana; Young, Patrick A.; Center for Education Through eXploration

    2018-01-01

    With the growth of online astronomy courses, it has become necessary to design different strategies for students to engage meaningfully with astronomy content. In contrast to some of the previously designed “cookbook”-style lab exercises, the strategy of these Infiniscope activities is to provide an experience where the students explore and discover the content for themselves. The Infiniscope project was created by ASU’s School of Earth and Space Exploration and NASA’s Science Mission Directorate as part of the NASA Exploration Connection project. As part of this project, online activities on topics such as asteroids and Kuiper Belt objects, eclipses, and Kepler’s Laws were designed and created for middle school (grades 6-8) and informal education settings. This poster discusses adapting these activities to the undergraduate non-science major setting. In fall 2017, the Infiniscope activities, such as Small Worlds and Kepler’s Laws, will be incorporated into an Arizona State University online astronomy course, AST 113, which is the laboratory component for the Introduction to Solar System Astronomy course sequence. This course typically enrolls about 800-900 students per semester with a combination of students who are online only as well as those who also take in person classes. In this type of class, we cannot have any in-person required sessions and all content must be delivered online asynchronously. The use of the Infiniscope exploratory exercises will provide students with the ability to use NASA data in a hands-on manner to discover the solar system for themselves.

  3. Eating disorder risk, exercise dependence, and body weight dissatisfaction among female nutrition and exercise science university majors.

    Science.gov (United States)

    Harris, Natalie; Gee, David; d'Acquisto, Debra; Ogan, Dana; Pritchett, Kelly

    2015-09-01

    Past research has examined eating disorder risk among college students majoring in Nutrition and has suggested an increased risk, while other studies contradict these results. Exercise Science majors, however, have yet to be fully examined regarding their risk for eating disorders and exercise dependence. Based on pressures to fit the image associated with careers related to these two disciplines, research is warranted to examine the potential risk for both eating disorder and exercise dependence. The purpose of this study is to compare eating disorder risk, exercise dependence, and body weight dissatisfaction (BWD) between Nutrition and Exercise Science majors, compared to students outside of these career pathways. Participants (n = 89) were divided into three groups based on major; Nutrition majors (NUTR; n = 31), Exercise Science majors (EXSC; n = 30), and other majors (CON; n = 28). Participants were given the EAT-26 questionnaire and the Exercise Dependence Scale. BWD was calculated as the discrepancy between actual BMI and ideal BMI. The majority of participants expressed a desire to weigh less (83%) and EXSC had significantly (p = .03) greater BWD than NUTR. However, there were no significant differences in eating disorder risk or exercise dependence among majors. This study suggested there was no significant difference in eating disorder risk or exercise dependence between the three groups (NUTR, EXSC, and CON).

  4. Admissions and Plebe Year Data as Indicators of Academic Success in Engineering Majors at the United States Naval Academy

    National Research Council Canada - National Science Library

    Kristof, Nicholas

    2002-01-01

    This research analyzes the relationship between academic success in high school and at the freshman collegiate level and academic performance in engineering majors at the United States Naval Academy (USNA...

  5. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    International Nuclear Information System (INIS)

    1996-01-01

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in vii DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  6. STEM for Non-STEM Majors: Enhancing Science Literacy in Large Classes

    Science.gov (United States)

    Jin, Guang; Bierma, Tom

    2013-01-01

    This study evaluated a strategy using "clickers," POGIL (process oriented guided inquiry learning), and a focused science literacy orientation in an applied science course for non-STEM undergraduates taught in large classes. The effectiveness of these interventions in improving the science literacy of students was evaluated using a…

  7. Benefit-Cost Analysis of Undergraduate Education Programs: An Example Analysis of the Freshman Research Initiative.

    Science.gov (United States)

    Walcott, Rebecca L; Corso, Phaedra S; Rodenbusch, Stacia E; Dolan, Erin L

    2018-01-01

    Institutions and administrators regularly have to make difficult choices about how best to invest resources to serve students. Yet economic evaluation, or the systematic analysis of the relationship between costs and outcomes of a program or policy, is relatively uncommon in higher education. This type of evaluation can be an important tool for decision makers considering questions of resource allocation. Our purpose with this essay is to describe methods for conducting one type of economic evaluation, a benefit-cost analysis (BCA), using an example of an existing undergraduate education program, the Freshman Research Initiative (FRI) at the University of Texas Austin. Our aim is twofold: to demonstrate how to apply BCA methodologies to evaluate an education program and to conduct an economic evaluation of FRI in particular. We explain the steps of BCA, including assessment of costs and benefits, estimation of the benefit-cost ratio, and analysis of uncertainty. We conclude that the university's investment in FRI generates a positive return for students in the form of increased future earning potential. © 2018 R. L. Walcott et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Teaching Physics to Environmental Science Majors Using a Flipped Course Approach

    Science.gov (United States)

    Hill, N. B.; Riha, S. J.; Wysocki, M. W.

    2014-12-01

    Coursework in physics provides a framework for quantitative reasoning and problem solving skill development in budding geoscientists. To make physical concepts more accessible and relevant to students majoring in environmental science, an environmental physics course was developed at Cornell University and offered for the first time during spring 2014. Principles of radiation, thermodynamics, and mechanics were introduced and applied to the atmosphere, hydrosphere, and lithosphere to describe energy and mass transfers in natural and built environments. Environmental physics was designed as a flipped course where students viewed online material outside of class and worked in groups in class to solve sustainability problems. Experiential learning, just-in-time teaching, and peer collaboration strategies were also utilized. In-class problems were drawn from both local and global environmental sustainability concerns. Problems included an investigation of Cornell's lake source cooling system, calculations on the energy consumed in irrigation with groundwater in the southwestern United States, and power generated by wind turbines at various locations around the world. Class attendance was high, with at least 84% of students present at each meeting. Survey results suggest that students enjoyed working in groups and found the in-class problems helpful for assimilating the assigned material. However, some students reported that the workload was too heavy and they preferred traditional lectures to the flipped classroom. The instructors were able to actively engage with students and quickly identify knowledge and skill gaps that needed to be addressed. Overall, the integration of current environmental problems and group work into an introductory physics course could help to inspire and motivate students as they advance their ability to analyze problems quantitatively.

  9. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  10. The Undergraduate Statistics Major--A Prelude to Actuarial Science Training.

    Science.gov (United States)

    Ratliff, Michael I.; Williams, Raymond E.

    Recently there has been increased interest related to the Actuarial Science field. An actuary is a business professional who uses mathematical skills to define, analyze, and solve financial and social problems. This paper examines: (1) the interface between Statistical and Actuarial Science training; (2) statistical courses corresponding to…

  11. A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences

    Science.gov (United States)

    Eisen, Arri; Eaton, Douglas C.

    2017-01-01

    How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and representative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the…

  12. Major Practicum as a Learning Site for Exercise Science Professionals: A Pilot Study

    Science.gov (United States)

    Tinning, Richard; Jenkins, David; Collins, Jessie; Rossi, Tony; Brancato, Tania

    2012-01-01

    Exercise science is now an integral part of the allied health framework in Australia and graduates from accredited programmes are equipped with skills recognised as being important in the prevention and management of lifestyle-related diseases. This pilot study sought to determine the experiences of 11 final-year exercise science students in their…

  13. Does Personality Matter? Applying Holland's Typology to Analyze Students' Self-Selection into Science, Technology, Engineering, and Mathematics Majors

    Science.gov (United States)

    Chen, P. Daniel; Simpson, Patricia A.

    2015-01-01

    This study utilized John Holland's personality typology and the Social Cognitive Career Theory (SCCT) to examine the factors that may affect students' self-selection into science, technology, engineering, and mathematics (STEM) majors. Results indicated that gender, race/ethnicity, high school achievement, and personality type were statistically…

  14. Intending to Stay: Images of Scientists, Attitudes Toward Women, and Gender as Influences on Persistence among Science and Engineering Majors

    Science.gov (United States)

    Wyer, Mary

    Contemporary research on gender and persistence in undergraduate education in science and engineering has routinely focused on why students leave their majors rather than asking why students stay. This study compared three common ways of measuring persistence-commitment to major, degree aspirations, and commitment to a science or engineering career-and emphasized factors that would encourage students to persist, including positive images of scientists and engineers, positive attitudes toward gender equity in science and engineering, and positive classroom experiences. A survey was administered in classrooms to a total of 285 female and male students enrolled in two required courses for majors. The results indicate that the different measures of persistence were sensitive to different influences but that students' gender did not interact with their images, attitudes, and experiences in predicted ways. The study concludes that an individual student's gender may be a more important factor in explaining why some female students leave their science and engineering majors than in explaining why others stay.

  15. An Investigation of Task and Ego Oriented Goals of the Students Majoring at the Faculty of Sport Sciences

    Science.gov (United States)

    Belli, Emre

    2015-01-01

    The aim of this study is to explore the task and ego oriented goals of the students majoring at the Faculty of Sports Sciences at Ataturk University. For data collection, "The Task and Ego Orientation in Sport Questionnaire", which was developed by Duda (1) and adapted into Turkish by Toros and Yetim (2), was used in the current study to…

  16. AWARENESS, KNOWLEDGE, AND BEHAVIOR REGARDING HIV/AIDS AMONG FRESHMAN STUDENTS AT OAKLAND UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Sean Mackman

    2017-05-01

    Full Text Available Human immunodeficiency virus (HIV causes a sexually transmitted disease (STD affecting the human immune system. It is mainly transmitted through sexual intercourse, blood transfusions, hypodermic needles, and parenterally. Multiple actions can be taken to prevent the spread of HIV/AIDS, such as condom and sterile needle use and HIV testing for pregnant women. This study aims to assess freshmen students’ awareness, knowledge, attitudes, and behavioral perceptions regarding HIV/AIDS at Oakland University (OU in Michigan. This study is a cross-sectional survey targeting freshman students at OU. The questionnaire is comprised of seven sections including demographics, risk perception, protection measures, alcohol tendencies, health-seeking behaviors, culturally sensitive issues, and methods of dissemination of information. The mean age of respondents was 20. The majority of respondents knew that HIV is transmitted sexually (98% and by sharing needles (98%. Many misconceptions about transmission of HIV were expressed by 53%. Data showed that while there was good knowledge regarding HIV transmission and prevention, some misconceptions still prevailed. Our results indicate the need to develop educational programs with specific interventions to raise awareness about preventive measures, clear misconceptions, and promote healthy lifestyle in order to prevent new HIV infections among young college students.

  17. Analytical Study of Self-Motivations among a Southwest Public University Nonpolitical Science Major Students in Required Political Science Courses

    Science.gov (United States)

    Gasim, Gamal; Stevens, Tara; Zebidi, Amira

    2012-01-01

    All undergraduate students are required by state law to take six credited hours in political science. This study will help us identify if differences exist in self-determination among students enrolled in American Public Policy and American Government at a large, Southwestern public university. Because some types of motivation are associated with…

  18. Development and Implementation of an Integrated Science Course for Elementary Eduation Majors

    Science.gov (United States)

    Gunter, Mickey E.; Gammon, Steven D.; Kearney, Robert J.; Waller, Brenda E.; Oliver, David J.

    1997-02-01

    Currently the scientific community is trying to increase the general populationapos;s knowledge of science. These efforts stem from the fact that the citizenry needs a better understanding of scientific knowledge to make informed decisions on many issues of current concern. The problem of scientific illiteracy begins in grade school and can be traced to inadequate exposure to science and scientific thinking during the preparation of K - 8 teachers. Typically preservice elementary teachers are required to take only one or two disconnected science courses to obtain their teaching certificates. Also, introductory science courses are often large and impersonal, with the result that while students pass the courses, they may learn very little and retain even less.

  19. Chemical Analysis of Soils: An Environmental Chemistry Laboratory for Undergraduate Science Majors.

    Science.gov (United States)

    Willey, Joan D.; Avery, G. Brooks, Jr.; Manock, John J.; Skrabal, Stephen A.; Stehman, Charles F.

    1999-01-01

    Describes a laboratory exercise for undergraduate science students in which they evaluate soil samples for various parameters related to suitability for crop production and capability for retention of contaminants. (Contains 18 references.) (WRM)

  20. Major Challenges for the Modern Chemistry in Particular and Science in General.

    Science.gov (United States)

    Uskokovíc, Vuk

    2010-11-01

    In the past few hundred years, science has exerted an enormous influence on the way the world appears to human observers. Despite phenomenal accomplishments of science, science nowadays faces numerous challenges that threaten its continued success. As scientific inventions become embedded within human societies, the challenges are further multiplied. In this critical review, some of the critical challenges for the field of modern chemistry are discussed, including: (a) interlinking theoretical knowledge and experimental approaches; (b) implementing the principles of sustainability at the roots of the chemical design; (c) defining science from a philosophical perspective that acknowledges both pragmatic and realistic aspects thereof; (d) instigating interdisciplinary research; (e) learning to recognize and appreciate the aesthetic aspects of scientific knowledge and methodology, and promote truly inspiring education in chemistry. In the conclusion, I recapitulate that the evolution of human knowledge inherently depends upon our ability to adopt creative problem-solving attitudes, and that challenges will always be present within the scope of scientific interests.

  1. The teacher's role in college level classes for non-science majors: A constructivist approach for teaching prospective science teachers

    Science.gov (United States)

    Abbas, Abdullah Othman

    1997-12-01

    This interpretive research set out to investigate the characteristics of an exemplary college science instructor who endeavors to improve teaching and learning in a physical science course for prospective teachers. The course was innovative in the sense that it was designed to meet the specific needs of prospective elementary teachers who needed to have models of how to teach science in a way that employed materials and small group activities. The central purpose for this study is to understand the metaphors that Mark (a pseudonym), the chemistry instructor in the course, used as referents to conceptualize his roles and frame actions and interactions in the classroom. Within the theoretical frame of constructivism, human cognitive interests, and co-participation theories, an ethnographic research design, described by Erickson (1986), Guba and Lincoln (1989), and Gallagher (1991), was employed in the study. The main sources of data for this study were field notes, transcript analysis of interviews with the instructor and students, and analyses of videotaped excerpts. Additional data sources, such as student journals and the results of students' responses to the University/Community College Student Questionnaire which was developed by a group science education researchers at Florida State University, were employed to maximize that the assertions I constructed were consistent with the variety of data. Data analyses and interpretation in the study focused on identifying the aspects which the instructor and the researcher might find useful in reflecting to understand what was happening and why that was happening in the classroom. The analysis reveals how the instructor used constructivism as a referent for his teaching and the learning of his students. To be consistent with his beliefs and goals that prospective teachers should enjoy their journey of learning chemistry, Mark, the driver in the journey, used the roles of controller, facilitator, learner, and entertainer

  2. Promoting skill building and confidence in freshman nursing students with a "Skills-a-Thon".

    Science.gov (United States)

    Roberts, Susan T; Vignato, Julie A; Moore, Joan L; Madden, Carol A

    2009-08-01

    Freshman nursing students returning for their second semester after summer break benefited by reviewing previously learned clinical skills presented in a Skills-a-Thon. Skills stations were established and facilitated by faculty and senior students. Senior students were first trained in mentoring and specific steps in skills competencies. Freshman students demonstrated skills in various mock clinical situations including catheter insertion, sterile dressings, medications, and physical assessment. The strategy reinforced learning and provided an opportunity for students to experience risk-free skills performance among peers. Freshman students gained proficiency and appreciated guidance by senior students without the pressures of testing. Seniors benefited from a condensed version of the program to review their own skills prior to the event. Responses were positive, with students reporting improved performance and confidence with hands-on application in a non-threatening environment. Nursing faculty observed improvement in skill performance and competence, and plan to offer future events. Copyright 2009, SLACK Incorporated.

  3. Identifying the Learning Styles and Instructional Tool Preferences of Beginning Food Science and Human Nutrition Majors

    Science.gov (United States)

    Bohn, D. M.; Rasmussen, C. N.; Schmidt, S. J.

    2004-01-01

    Learning styles vary among individuals, and understanding which instructional tools certain learning styles prefer can be utilized to enhance student learning. Students in the introductory Food Science and Human Nutrition course (FSHN 101), taught at the Univ. of Illinois at Urbana-Champaign, were asked to complete Gregorc's Learning Style…

  4. The "Curriculum for Excellence": A Major Change for Scottish Science Education

    Science.gov (United States)

    Brown, Sally

    2014-01-01

    The Curriculum for Excellence and new National Qualifications offer innovative reform, based on widely supported ideas and aims, for Scottish preschool, primary and secondary education levels. "Objectives and syllabuses" for science are replaced by "experiences and outcomes". Most strikingly, central prescription makes way for…

  5. Family Matters: Familial Support and Science Identity Formation for African American Female STEM Majors

    Science.gov (United States)

    Parker, Ashley Dawn

    2013-01-01

    This research seeks to understand the experiences of African American female undergraduates in STEM. It investigates how familial factors and science identity formation characteristics influence persistence in STEM while considering the duality of African American women's status in society. This phenomenological study was designed using critical…

  6. Five Women in Science, Technology, Engineering, and Mathematics Majors: A Portraiture of Their Lived Experiences

    Science.gov (United States)

    Torcivia, Patrice Prusko

    2012-01-01

    Numerous studies have addressed science, technology, engineering and mathematics (STEM) and their relation to education and gender ranging from elementary school pedagogy to career choices for traditional-aged college students. Little research has addressed nontraditional female students returning to the university to in the STEM fields. This…

  7. Using a dynamic, introductory-level volcanoes class as a means to introduce non-science majors to the geosciences

    Science.gov (United States)

    Cook, G. W.

    2012-12-01

    At the University of California, San Diego, I teach a quarter-long, introductory Earth Science class titled "Volcanoes," which is, in essence, a functional class in volcanology designed specifically for non-majors. This large-format (enrollment ~ 85), lecture-based class provides students from an assortment of backgrounds an opportunity to acquire much-needed (and sometimes dreaded) area credits in science, while also serving as an introduction to the Earth Science major at UCSD (offered through Scripps Institution of Oceanography). The overall goal of the course is to provide students with a stimulating and exciting general science option that, using an inherently interesting topic, introduces them to the fundamentals of geoscience. A secondary goal is to promote general science and geoscience literacy among the general population of UCSD. Student evaluations of this course unequivocally indicate a high degree of learning and interest in the material. The majority of students in the class (>80%) are non-science majors and very few students (degree-seeking students. In addition, only a handful of students have typically had any form of geology class beyond high school level Earth Science. Consequently, there are challenges associated with teaching the class. Perhaps most significantly, students have very little background—background that is necessary for understanding the processes involved in volcanic eruptions. Second, many non-science students have built-in anxieties with respect to math and science, anxieties that must be considered when designing curriculum and syllabi. It is essential to provide the right balance of technical information while remaining in touch with the audience. My approach to the class involves a dynamic lecture format that incorporates a wide array of multimedia, analogue demonstrations of volcanic processes, and small-group discussions of topics and concepts. In addition to teaching about volcanoes—a fascinating subject in and of

  8. Integrated Lecture and Laboratory Chemistry Components of Science Education Program for Early and Middle Childhood Education Majors

    Science.gov (United States)

    Lunsford, S. K.

    2004-05-01

    Two new chemistry courses were developed for early childhood and middle childhood education majors. The results of a pre- and posttest in the courses indicate success in developing student content knowledge and ability to problem solve. In addition these courses are designed to develop preservice teachers' understanding of the National Science Education Standards and foster support for implementing these standards in their classrooms. These courses provide materials, resources, and guidance in implementing the standards in their future teaching careers.

  9. Attrition of Women Business Majors in an Urban Community College.

    Science.gov (United States)

    Karlen, Janice M.

    2004-01-01

    Identified intervention protocols that could help reduce the attrition of women business majors at an urban community college. Review of academic progress data and data from student surveys which examined students' reasons for leaving the institution indicated that there was a need for support mechanisms throughout the freshman year and extending…

  10. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y

    2007-05-15

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs.

  11. Implementation of a Program on Experiencing and Application of Research Reactor for University Students Majoring in Science and Technology

    International Nuclear Information System (INIS)

    Seo, K. W.; Han, K. W.; Won, J. Y.; Ju, Y. C.; Ji, Y. J.; Oh, S. Y.

    2007-05-01

    This report was written as following contents, to develop a program for university students majoring in science and technology, which is intended to provide the students with opportunities to obtain hands on experience and knowledge on various nuclear technology, through experiments using HANARO and its facilities. Thus obtain experience and knowledge are expected to be a great help for their current study and for their selection of a specific future study area. The purpose of this research is as follows: - development of various curricula for specific research using HANARO and continuous operation of the developed curricula to provided university students with opportunities to use HANARO as part of their university study. - continuous operation of research reactor experimental programs for university students in nuclear field to make contribution to cultivating specialists. - development and operation of training programs of experiments using research reactor for university students majoring in nuclear engineering and also for university students majoring in diverse fields of science and technology such as physics, advanced metallurgy, mechanical engineering, energy engineering, radiological science, nanoscience, etc. to cultivate future potential users of HANARO as well as broadening the user group. As a whole, 263 students from 15 universities have completed the courses of the programs developed and offered by this project. Also, 5 textbooks have been developed to support the programs

  12. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen

    2014-01-01

    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  13. Non-Science Majors' Critical Evaluation of Websites in a Biotechnology Course

    Science.gov (United States)

    Halverson, Kristy L.; Siegel, Marcelle A.; Freyermuth, Sharyn K.

    2010-12-01

    Helping students develop criteria for judgment and apply examination skills is essential for promoting scientific literacy. With the increasing availability of the Internet, it is even more essential that students learn how to evaluate the science they gather from online resources. This is particularly true because publishing information on the web is not restricted to experts, and content quality can vary greatly across websites. The responsibility of evaluating websites falls upon the user. Little research has examined undergraduates' evaluation of web sites in science classes. The purpose of this study was to investigate on which websites college students selected and how they evaluated the websites used when developing individual positions about stem-cell research. We used a qualitative approach in search of patterns in undergraduates' website selection and evaluation criteria. We found that students used a variety of web resources from eleven types of websites to complete their independent research report. Students also used eleven evaluation criteria to evaluate these sources, some useful (e.g., credibility) and some not useful (e.g., readability). We found that university students struggled with critically evaluating online resources. Undergraduates need prompts to learn how to critically evaluate the science content provided within websites. This type of scaffold can facilitate useful evaluation and promote critical thinking required for becoming scientifically literate.

  14. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  15. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    Science.gov (United States)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  16. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    Science.gov (United States)

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  17. Using Internet-Based Robotic Telescopes to Engage Non-Science Majors in Astronomical Observation

    Science.gov (United States)

    Berryhill, K. J.; Coble, K.; Slater, T. F.; McLin, K. M.; Cominsky, L. R.

    2013-12-01

    Responding to national science education reform documents calling for students to have more opportunities for authentic research experiences, several national projects have developed online telescope networks to provide students with Internet-access to research grade telescopes. The nature of astronomical observation (e.g., remote sites, expensive equipment, and odd hours) has been a barrier in the past. Internet-based robotic telescopes allow scientists to conduct observing sessions on research-grade telescopes half a world away. The same technology can now be harnessed by STEM educators to engage students and reinforce what is being taught in the classroom, as seen in some early research in elementary schools (McKinnon and Mainwaring 2000 and McKinnon and Geissinger 2002), middle/high schools (Sadler et al. 2001, 2007 and Gehret et al. 2005) and undergraduate programs (e.g., McLin et al. 2009). This project looks at the educational value of using Internet-based robotic telescopes in a general education introductory astronomy course at the undergraduate level. Students at a minority-serving institution in the midwestern United States conducted observational programs using the Global Telescope Network (GTN). The project consisted of the use of planetarium software to determine object visibility, observing proposals (with abstract, background, goals, and dissemination sections), peer review (including written reviews and panel discussion according to NSF intellectual merit and broader impacts criteria), and classroom presentations showing the results of the observation. The GTN is a network of small telescopes funded by the Fermi mission to support the science of high energy astrophysics. It is managed by the NASA E/PO Group at Sonoma State University and is controlled using SkyNet. Data includes course artifacts (proposals, reviews, panel summaries, presentations, and student reflections) for six semesters plus student interviews. Using a grounded theory approach

  18. A Practical Model for Forecasting New Freshman Enrollment during the Application Period.

    Science.gov (United States)

    Paulsen, Michael B.

    1989-01-01

    A simple and effective model for forecasting freshman enrollment during the application period is presented step by step. The model requires minimal and readily available information, uses a simple linear regression analysis on a personal computer, and provides updated monthly forecasts. (MSE)

  19. Strategies Employed by Iranian EFL Freshman University Students in Extensive Listening: A Qualitative Research

    Science.gov (United States)

    Bidabadi, Farinaz Shirani; Yamat, Hamidah

    2014-01-01

    This paper discusses the findings of a qualitative study on the strategies employed by Iranian freshmen in extensive listening. A group of 12 freshman university students were purposefully selected based on their scores in the Oxford Placement Test administered. Four learners were identified as advanced, four as intermediate, and four as lower…

  20. Reorganizing Freshman Business Mathematics II: Authentic Assessment in Mathematics through Professional Memos

    Science.gov (United States)

    Green, Kris; Emerson, Allen

    2008-01-01

    The first part of this two-part paper [see EJ787497] described the development of a new freshman business mathematics (FBM) course at our college. In this paper, we discuss our assessment tool, the business memo, as a venue for students to apply mathematical skills, via mathematical modelling, to realistic business problems. These memos have…

  1. Exploring Cystic Fibrosis Using Bioinformatics Tools: A Module Designed for the Freshman Biology Course

    Science.gov (United States)

    Zhang, Xiaorong

    2011-01-01

    We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…

  2. Weight Changes, Exercise, and Dietary Patterns during Freshman and Sophomore Years of College.

    Science.gov (United States)

    Racette, Susan B.; Deusinger, Susan S.; Strube, Michael J.; Highstein, Gabrielle R.; Deusinger, Robert H.

    2005-01-01

    Weight gain and behavioral patterns during college may contribute to overweight and obesity in adulthood. The aims of this study were to assess weight, exercise, and dietary patterns of 764 college students (53% women, 47% men) during freshman and sophomore years. Students had their weight and height measured and completed questionnaires about…

  3. Does Hamlet Belong in Freshman Composition? The Debatable Role of Canonical Literature in Composition

    Science.gov (United States)

    Fitzwilliam, Marie A.

    2006-01-01

    The question of whether "Hamlet" belongs in a freshman composition classroom is one that institutions are making easier to answer, though perhaps for political rather than pedagogical reasons. This article describes a project in which Marie Fitzwilliam and her colleagues were asked to engage in a dialogue with the administration on…

  4. Freshman Year Dropouts: Interactions between Student and School Characteristics and Student Dropout Status

    Science.gov (United States)

    Zvoch, Keith

    2006-01-01

    Data from a large school district in the southwestern United States were analyzed to investigate relations between student and school characteristics and high school freshman dropout patterns. Application of a multilevel logistic regression model to student dropout data revealed evidence of school-to-school differences in student dropout rates and…

  5. Hot-Spots and Holiness: Faith-Based Topics in Freshman Composition.

    Science.gov (United States)

    Worth, Jan

    For an instructor of freshman composition at the University of Michigan at Flint, faith-based writing topics offer particular challenges and sometimes intersect in troubling ways with her own prejudices and personal history as a teacher and as a person. But if handled correctly, she believes that a teacher's interaction with students about…

  6. Pros and Cons of a Group Webpage Design Project in a Freshman Anatomy and Physiology Course

    Science.gov (United States)

    Crisp, Kevin M.; Jensen, Murray; Moore, Randy

    2007-01-01

    To generate motivation and promote the development of written communication skills, students in a freshman-level anatomy and physiology course for nonmajors created group webpages describing historically important diseases. After the groups had been formed, each individual was assigned specific components of the disease (e.g., causes or…

  7. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    Science.gov (United States)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  8. Monitoring Freshman College Experience Through Content Analysis of Tweets: Observational Study.

    Science.gov (United States)

    Liu, Sam; Zhu, Miaoqi; Young, Sean D

    2018-01-11

    Freshman experiences can greatly influence students' success. Traditional methods of monitoring the freshman experience, such as conducting surveys, can be resource intensive and time consuming. Social media, such as Twitter, enable users to share their daily experiences. Thus, it may be possible to use Twitter to monitor students' postsecondary experience. Our objectives were to (1) describe the proportion of content posted on Twitter by college students relating to academic studies, personal health, and social life throughout the semester; and (2) examine whether the proportion of content differed by demographics and during nonexam versus exam periods. Between October 5 and December 11, 2015, we collected tweets from 170 freshmen attending the University of California Los Angeles, California, USA, aged 18 to 20 years. We categorized the tweets into topics related to academic, personal health, and social life using keyword searches. Mann-Whitney U and Kruskal-Wallis H tests examined whether the content posted differed by sex, ethnicity, and major. The Friedman test determined whether the total number of tweets and percentage of tweets related to academic studies, personal health, and social life differed between nonexam (weeks 1-8) and final exam (weeks 9 and 10) periods. Participants posted 24,421 tweets during the fall semester. Academic-related tweets (n=3433, 14.06%) were the most prevalent during the entire semester, compared with tweets related to personal health (n=2483, 10.17%) and social life (n=1646, 6.74%). The proportion of academic-related tweets increased during final-exam compared with nonexam periods (mean rank 68.9, mean 18%, standard error (SE) 0.1% vs mean rank 80.7, mean 21%, SE 0.2%; Z=-2.1, P=.04). Meanwhile, the proportion of tweets related to social life decreased during final exams compared with nonexam periods (mean rank 70.2, mean 5.4%, SE 0.01% vs mean rank 81.8, mean 7.4%, SE 0.01%; Z=-4.8, P.05). However, during the final-exam periods

  9. Student and high-school characteristics related to completing a science, technology, engineering or mathematics (STEM) major in college

    Science.gov (United States)

    LeBeau, Brandon; Harwell, Michael; Monson, Debra; Dupuis, Danielle; Medhanie, Amanuel; Post, Thomas R.

    2012-04-01

    Background: The importance of increasing the number of US college students completing degrees in science, technology, engineering or mathematics (STEM) has prompted calls for research to provide a better understanding of factors related to student participation in these majors, including the impact of a student's high-school mathematics curriculum. Purpose: This study examines the relationship between various student and high-school characteristics and completion of a STEM major in college. Of specific interest is the influence of a student's high-school mathematics curriculum on the completion of a STEM major in college. Sample: The sample consisted of approximately 3500 students from 229 high schools. Students were predominantly Caucasian (80%), with slightly more males than females (52% vs 48%). Design and method: A quasi-experimental design with archival data was used for students who enrolled in, and graduated from, a post-secondary institution in the upper Midwest. To be included in the sample, students needed to have completed at least three years of high-school mathematics. A generalized linear mixed model was used with students nested within high schools. The data were cross-sectional. Results: High-school predictors were not found to have a significant impact on the completion of a STEM major. Significant student-level predictors included ACT mathematics score, gender and high-school mathematics GPA. Conclusions: The results provide evidence that on average students are equally prepared for the rigorous mathematics coursework regardless of the high-school mathematics curriculum they completed.

  10. Beliefs and Attitudes about Science and Mathematics in Pre-Service Elementary Teachers, STEM, and Non-STEM Majors in Undergraduate Physics Courses

    Science.gov (United States)

    Michaluk, Lynnette; Stoiko, Rachel; Stewart, Gay; Stewart, John

    2018-04-01

    Elementary teachers often hold inaccurate beliefs about the Nature of Science (NoS) and have negative attitudes toward science and mathematics. Using a pre-post design, the current study examined beliefs about the NoS, attitudes toward science and mathematics, and beliefs about the teaching of mathematics and science in a large sample study ( N = 343) of pre-service teachers receiving a curriculum-wide intervention to improve these factors in comparison with Science, Technology, Engineering, and Mathematics (STEM) and non-STEM majors in other physics courses ( N = 6697) who did not receive the intervention, over a 10-year period. Pre-service teachers evidenced initially more negative attitudes about mathematics and science than STEM majors and slightly more positive attitudes than non-STEM majors. Their attitudes toward mathematics and science and beliefs about the NoS were more similar to non-STEM than STEM majors. Pre-service teachers initially evidenced more positive beliefs about the teaching of mathematics and science, and their beliefs even increased slightly over the course of the semester, while these beliefs in other groups remained the same. Beliefs about the NoS and the teaching of mathematics and science were significantly negatively correlated for STEM and non-STEM majors, but were not significantly correlated for pre-service teachers. Beliefs about the NoS and attitudes toward mathematics and science were significantly positively correlated for both pre-service teachers and STEM students pursing the most mathematically demanding STEM majors. Attitudes toward science and mathematics were significantly positively correlated with accurate beliefs about the teaching of mathematics and science for all student groups.

  11. Freshman year alcohol and marijuana use prospectively predict time to college graduation and subsequent adult roles and independence.

    Science.gov (United States)

    Wilhite, Emily R; Ashenhurst, James R; Marino, Elise N; Fromme, Kim

    2017-06-15

    This study examined how freshman year substance use prospectively predicted time to college graduation, and whether delayed graduation predicted postponed adoption of adult roles and future substance use. Participants were part of a longitudinal study that began in 2004. The first analyses focused on freshman year (N = 2,050). The second analyses corresponded to a subset of participants at age 27 (N = 575). Measures included self-reported substance use, adult role adoption, and university reported graduation dates. Results indicated that frequent binge drinking and marijuana use during freshman year predicted delayed college graduation. Those who took longer to graduate were more likely to have lower incomes and were less likely to obtain a graduate degree. Taking 5-6 years to graduate was associated with greater likelihood of alcohol-related problems. Findings support the importance of interventions during freshman year of college to decrease substance use and promote timely graduation.

  12. Understanding the Changing Dynamics of the Gender Gap in Undergraduate Engineering Majors: 1971-2011

    Science.gov (United States)

    Sax, Linda J.; Kanny, M. Allison; Jacobs, Jerry A.; Whang, Hannah; Weintraub, Dayna S.; Hroch, Amber

    2016-01-01

    In this paper we examine the level and determinants of entering college students' plans to major in engineering. While the overall level of interest in engineering has fluctuated between 1971 and 2011, a very large gender gap in freshman interest remains. We find that the percent of first-year women who plan to major in engineering is roughly the…

  13. Stereotype threat's effect on women's achievement in chemistry: The interaction of achievement goal orientation for women in science majors

    Science.gov (United States)

    Conway-Klaassen, Janice Marjorie

    "Stereotype threat is being at risk of confirming, as a self-characteristic, a negative stereotype about one's group" (C. M. Steele & Aronson, 1995, p. 797). A stereotype threat effect then is described as the detrimental impact on a person's performance or achievement measurements when they are placed in a stereotype threat environment. For women, the negative stereotype that exists in our culture states that women are typically not as capable as men in mathematics or science subjects. This study specifically explored the potential impact of stereotype threat on women who have chosen a science-based college major. They were tested in the domain of chemistry, which is related to mathematics and often involves high level of mathematics skills. I attempted to generate a stereotype threat in the participants through describing a chemistry challenge exam as either one that had consistently shown a gender bias against women and to create a nullification effect by describing the exam as one that had shown no gender bias in the past. In the third experimental condition acting as a control, participants received only generic instructions related to taking the test itself. The second part of this study investigated whether stereotype threat effects could impact women's achievement goal orientations. In previous studies performance avoidance goal orientations have been associated with individuals placed in a stereotype threat environment. The findings on the stereotype threat effect were not significant for the chemistry challenge test achievement scores. This may be due to several factors. One factor may be the design of the chemistry challenge test and the instructions for the test. The other factor may be the women in this study. As individuals who have chosen a science based major, they may have developed coping skills and strategies that reduced the impact of a stereotype threat. It is also possible that the testing environment itself generated an implicit stereotype

  14. Characteristics Associated with Persistence and Retention among First-Generation College Students Majoring in Science, Technology, Engineering, or Math

    Science.gov (United States)

    Burnett, Lorie Lasseter

    Persistence and retention of college students is a great concern in American higher education. The dropout rate is even more apparent among first-generation college students, as well as those majoring in science, technology, engineering, and math (STEM). More students earning STEM degrees are needed to fill the many jobs that require the skills obtained while in college. More importantly, those students who are associated with a low-socioeconomic background may use a degree to overcome poverty. Although many studies have been conducted to determine the characteristics associated with student attrition among first-generation students or STEM majors, very little information exists in terms of persistence and retention among the combined groups. The current qualitative study identified some of the characteristics associated with persistence and retention among first-generation college students who are also STEM majors. Participants were juniors or seniors enrolled at a regional 4-year institution. Face-to-face interviews were conducted to allow participants to share their personal experiences as first-generation STEM majors who continue to persist and be retained by their institution. Tinto's Theory of Individual Departure (1987) was used as a framework for the investigation. This theory emphasizes personal and academic background, personal goals, disconnecting from one's own culture, and institutional integration as predictors of persistence. The findings of the investigation revealed that persisting first-generation STEM majors are often connected to family, but have been able to separate that connection with that of the institution. They also are goal-driven and highly motivated and have had varied pre-college academic experiences. These students are academically integrated and socially integrated in some ways, but less than their non-first-generation counterparts. They are overcoming obstacles that students from other backgrounds may not experience. They receive

  15. Final report for the Pre-Freshman Enrichment Program (PREP)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This project reflected cooperation across the disciplines in the physical sciences, engineering, mathematics and computer science. The University of the Pacific served as the center for this pre-college program. The idea was to use this link as a pilot program.

  16. U.S. Institutional Research Productivity in Major Science Education Research Journals: Top 30 for 2000's

    Science.gov (United States)

    Barrow, Lloyd H.; Tang, Nai-en

    2013-01-01

    VonAalst (2010) used Google Scholar to identify the top four science education research journals: "Journal of Research in Science Teaching," "Science Education," "International Journal of Science Education," and "Journal of Science Teacher Education." U.S. institutional productivity for 2000-2009 for the…

  17. Major contributions to science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Andre

    1991-03-15

    It may look difficult to describe the scientific contributions of Léon Van Hove, who started his career as a pure mathematician, and then a mathematical physicist, and ended it as a phenomenologist and an adseveral of Léon's students, in particular N. Hugenholtz. In this domain, his contributions were numerous and fundamental.

  18. Major contributions to science

    International Nuclear Information System (INIS)

    Martin, Andre

    1991-01-01

    It may look difficult to describe the scientific contributions of Léon Van Hove, who started his career as a pure mathematician, and then a mathematical physicist, and ended it as a phenomenologist and an adseveral of Léon's students, in particular N. Hugenholtz. In this domain, his contributions were numerous and fundamental

  19. Predicting Freshman Grade Point Average From College Admissions Test Scores and State High School Test Scores

    OpenAIRE

    Koretz, Daniel; Yu, C; Mbekeani, Preeya Pandya; Langi, M.; Dhaliwal, Tasminda Kaur; Braslow, David Arthur

    2016-01-01

    The current focus on assessing “college and career readiness” raises an empirical question: How do high school tests compare with college admissions tests in predicting performance in college? We explored this using data from the City University of New York and public colleges in Kentucky. These two systems differ in the choice of college admissions test, the stakes for students on the high school test, and demographics. We predicted freshman grade point average (FGPA) from high school GPA an...

  20. Meteorology--An Interdisciplinary Base for Science Learning.

    Science.gov (United States)

    Howell, David C.

    1980-01-01

    Described is a freshman science program at Deerfield Academy (Deerfield, Mass.) in meteorology, designed as the first part of a three-year unified science sequence. Merits of the course, in which particular emphasis is placed on observation skills and making predictions, are enumerated. (CS)

  1. Teaching the process of science: faculty perceptions and an effective methodology.

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  2. Pre-freshman enrichment program [University of New Haven

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Connecticut Pre-Engineering Program, Inc. (CPEP), is a collaboration of school districts, businesses, colleges, universities, government and community organizations whose mission and program efforts are aimed at increasing the pool of African-American, Hispanic, Native-American Indian, Asian American, Women and other under-represented minority students who pursue mathematics, science, engineering and other technological based college study and careers. CPEP provides enrichment programs and activities throughout the year in New Haven. Since 1987, CPEP has sponsored summer enrichment programs designed to motivate and stimulate middle school and high school students to pursue careers in mathematics, science, engineering and other technology related fields. Through the Summer Enrichment Program, CPEP has been able to better prepare under-represented and urban students with skills that will facilitate their accessing colleges and professionals careers. The essential premise of the program design and academic content is that targeted students must be taught and nurtured as to develop their self-confidence and personal ambitions so that they can seriously plan for and commit to college-level studies. The program stresses multi-disciplinary hands-on science and mathematics experience, group learning and research, and career exploration and academic guidance. Students study under the direction of school teachers and role model undergraduate students. Weekly field trips to industrial sites, science centers and the shoreline are included in this program.

  3. Pharmacy Students’ Satisfaction Rate with their Majors and its Relationship with Educational Status in Kermanshah University of Medical Sciences (2014

    Directory of Open Access Journals (Sweden)

    Shahla Mirzaeei

    2016-12-01

    Full Text Available Introduction: Satisfaction of the students as educational institutions’ customers plays a major role in the performance and activities of the university. The aim of this study was to evaluate the degree of satisfaction of pharmacy students and their educational status in Kermanshah University of Medical Sciences in the year 2014. Methods: 48 pharmacy students at 9th to 11th semesters participated in this cross-sectional study. The students' satisfaction was evaluated in 14 different domains. Various fields related to basic and specialized training, educational space, communications, groups' performance, facilities and teaching space were investigated. Data were collected using a questionnaire whose validity was confirmed by experts, and its reliability has already been proven by Cronbach's alpha test. For comparing scores between bimodal variables, Mann-Whitney U test was used, and for comparisons between multimodal variables, Kruskal-Wallis test was used. The collected data were coded and analyzed using the statistical software SPSS.17. Results: The moderate students’ satisfaction with the entire fields was 70.8%, with women's satisfaction more than men’s. Students' satisfaction with the effectiveness of the education system and whether training is to increase the professional capabilities was 82.9%. Average students' satisfaction with the facilities such as laboratories, library and electronic sources was 77.1%. Conclusion: The overall satisfaction of pharmacy students with the School of Pharmacy was assessed as moderate. Thus, doing some actions to increase the level of satisfaction is necessary.

  4. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  5. Tinkering self-efficacy and team interaction on freshman engineering design teams

    Science.gov (United States)

    Richardson, Arlisa Labrie

    This study utilizes Bandura's theory of self-efficacy as a framework to examine the development of tinkering skills white working on a freshman engineering design team. The four sources of self-efficacy were analyzed in the context of tinkering within the design team. The research question, 'Does tinkering self-efficacy change for female students during the Freshman Engineering Design class while working on mixed sex teams?', was addressed using quantitative data collection and field observations. Approximately 41 students enrolled in a freshman engineering design class at a public university in the southwest participated by providing self-reports about their tinkering involvement during each design project. In addition, three mixed-sex student teams were observed while working to complete the course design projects. An observation protocol based on Bandura's sources of self efficacy, was used to document tinkering interactions within the three observed teams. The results revealed that Bandura's sources of self-efficacy influenced tinkering involvement. The self-efficacy source, performance accomplishment measured through prior tinkering experience, was the most influential on tinkering involvement. Unlike Bandura's ranking of influence, verbal persuasion was shown to correlate with more tinkering behaviors than the observation of others. The number of females on a team had no impact on tinkering involvement. Tinkering involvement did not change as students progressed from one project to another. However, the competitive nature of the design project appeared to have a negative impact on tinkering involvement and the division of tasks within the team. In addition, a difference was found in the female students' perception of their tinkering involvement and observation of their tinkering involvement. The findings suggest that effective implementation of teamwork including teamwork preparation, more emphasis on the design process and the elimination of competition

  6. The Impact of Transformational Leadership, Experiential Learning, and Reflective Journaling on the Conservation Ethic of Tertiary-Level Non-Science Majors

    Science.gov (United States)

    Reynolds, Bradley Robert

    2013-01-01

    The impact of transformational leadership, experiential learning, and reflective journaling on the conservation ethic of non-science majors in a general education survey course was investigated. The main research questions were: (1) Is the Conservation of Biodiversity professor a transformational leader? (2) Is there a difference in the…

  7. Measuring the Impact of App Inventor for Android and Studio-Based Learning in an Introductory Computer Science Course for Non-Majors

    Science.gov (United States)

    Ahmad, Khuloud Nasser

    2012-01-01

    A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…

  8. Why They Leave: The Impact of Stereotype Threat on the Attrition of Women and Minorities from Science, Math and Engineering Majors

    Science.gov (United States)

    Beasley, Maya A.; Fischer, Mary J.

    2012-01-01

    This paper examines the effects of group performance anxiety on the attrition of women and minorities from science, math, and engineering majors. While past research has relied primarily on the academic deficits and lower socioeconomic status of women and minorities to explain their absence from these fields, we focus on the impact of stereotype…

  9. Intending to stay: Positive images, attitudes, and classroom experiences as influences on students' intentions to persist in science and engineering majors

    Science.gov (United States)

    Wyer, Mary Beth

    2000-10-01

    Contemporary research on persistence in undergraduate education in science and engineering has focused primarily on identifying the structural, social, and psychological barriers to participation by students in underrepresented groups. As a result, there is a wealth of data to document why students leave their majors, but there is little direct empirical data to support prevailing presumptions about why students stay. Moreover, researchers have used widely differing definitions and measures of persistence, and they have seldom explored field differences. This study compared three ways of measuring persistence. These constituted three criterion variables: commitment to major, degree aspirations, and commitment to a science/engineering career. The study emphasized social factors that encourage students to persist, including four predictor variables---(1) positive images of scientists/engineers, (2) positive attitudes toward gender and racial equality, (3) positive classroom experiences, and (4) high levels of social integration. In addition, because researchers have repeatedly documented the degree to which women are more likely than men to drop out of science and engineering majors, the study examined the potential impact of gender in relation to these predictor variables. A survey was administered in the classroom to a total of 285 students enrolled in a required course for either a biological sciences and or an engineering major. Predictor variables were developed from standard scales, including the Images of Science/Scientists Scale, the Attitudes toward Women Scale, the Women in Science Scale, and the Perceptions of Prejudice Scale. Based on logistic regression models, results indicate that positive images of scientists and engineers was significantly related to improving the odds of students having a high commitment to major, high degree aspirations, and high commitment to career. There was also evidence that positive attitudes toward gender and racial equality

  10. Conceptual change through the use of student-generated analogies of photosynthesis and respiration by college non-science majors

    Science.gov (United States)

    Hill, Gary D.

    Two of the most important and difficult concepts in biology are photosynthesis and respiration. A pilot study was performed using student volunteers from introductory biology classes to assess student alternative frameworks regarding photosynthesis and respiration. The results of the pilot study were used to construct the Instrument for the Assessment of Respiration and Photosynthesis (IFARP). This was an 11-item, three-tier multiple choice instrument designed to conveniently assess the common misconceptions students have about these concepts upon entering a biology course. The first tier of each item of the IFARP contained a multiple choice question about photosynthesis or respiration. The second tier had a multiple choice question regarding the reason for the choice in the first tier. The third tier asked the students to indicate how confident they were in their responses, on a scale from 1 (not very confident) to 5 (very confident). The IFARP was administered as a pretest and posttest to a group of science non-majors in an introductory biology course. No significant changes were observed in student performance as measured by the IFARP between the pretest and posttest administrations. The students did, however, demonstrate a statistical increase in mean confidence levels regarding their knowledge of photosynthesis and respiration. Even though their comprehension and understanding regarding photosynthesis and respiration had not increased, the confidence they had in their responses about these two concepts had increased. The IFARP was also administered to a group of nursing student volunteers in an introductory microbiology course. This group of students also participated in the use of student-generated analogies as a learning strategy to alter conceptual frameworks. One test group of students provided analogies to photosynthesis and respiration, while the other test group provided analogies to two other concepts. No significant changes were observed in the

  11. The experiences of female high school students and interest in STEM: Factors leading to the selection of an engineering or computer science major

    Science.gov (United States)

    Genoways, Sharon K.

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough young scientists entering into the STEM professional pathways to replace all of the retiring professionals (Brown, Brown, Reardon, & Merrill, 2011; Harsh, Maltese, & Tai, 2012; Heilbronner, 2011; Scott, 2012). The problem is not necessarily due to a lack of STEM skills and concept proficiency. There also appears to be a lack of interest in these fields. Recent evidence suggests that many of the most proficient students, especially minority students and women, have been gravitating away from science and engineering toward other professions. (President's Council of Advisors on Science and Technology, 2010). The purpose of this qualitative research study was an attempt to determine how high schools can best prepare and encourage young women for a career in engineering or computer science. This was accomplished by interviewing a pool of 21 women, 5 recent high school graduates planning to major in STEM, 5 college students who had completed at least one full year of coursework in an engineering or computer science major and 11 professional women who had been employed as an engineer or computer scientist for at least one full year. These women were asked to share the high school courses, activities, and experiences that best prepared them to pursue an engineering or computer science major. Five central themes emerged from this study; coursework in physics and calculus, promotion of STEM camps and clubs, teacher encouragement of STEM capabilities and careers, problem solving, critical thinking and confidence building activities in the classroom, and allowing students the opportunity to fail and ask questions in a safe environment. These

  12. A comparative study of traditional lecture methods and interactive lecture methods in introductory geology courses for non-science majors at the college level

    Science.gov (United States)

    Hundley, Stacey A.

    In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.

  13. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University.

    Science.gov (United States)

    Caruso, Joseph P; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J; Saunders, Mary Jane

    2016-03-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested "The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery" to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014-15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  14. Sports-Oriented Model of Organization of Classes on Physical Education with Freshman

    Directory of Open Access Journals (Sweden)

    Olena Sіnіcina

    2018-03-01

    Full Text Available The article presents the results of questionnaires, which made it possible to determine the priority kinds of sports among the freshmen of the National University of Water Management and Nature Management. Respondents were offered the choice of the following sports: volleyball, basketball, football, mini football, swimming, track and field, table tennis, wrestling, weight sport, arm wrestling, chess, checkers, boxing, fitness. It was found that 33% of male freshman who took part in the study prioritized football above all. Volleyball is the second most common kind of sport among boys (it was chosen by 16% of respondents. The third position (11.4% of respondents was taken by basketball. The least popular (0.6% of the polled is the power kind of sports – weight lifting. Among female freshman, fitness was placed on the first place by 82% of respondents; athletics occupied the second position (4.8%; in the third place was tennis (4.2% of the respondents. The sports-oriented model of organizing the physical education courses provides students of the university who have chosen a certain sport to take part in competitions of different levels.

  15. Preservice Science Teachers' Attitudes towards Chemistry and Misconceptions about Chemical Kinetics

    Science.gov (United States)

    Çam, Aylin; Topçu, Mustafa Sami; Sülün, Yusuf

    2015-01-01

    The present study investigates preservice science teachers' attitudes towards chemistry; their misconceptions about chemical kinetics; and relationships between pre-service science teachers' attitudes toward chemistry and misconceptions about chemical kinetics were examined. The sample of this study consisted of 81 freshman pre-service science…

  16. A Tale of Two Majors: Explaining the Gender Gap in STEM Employment among Computer Science and Engineering Degree Holders

    Directory of Open Access Journals (Sweden)

    Sharon Sassler

    2017-07-01

    Full Text Available We examine factors contributing to the gender gap in employment in science, technology, engineering, and math (STEM among men and women with bachelor’s degrees in computer science and engineering, the two largest and most male-dominated STEM fields. Data come from the National Science Foundation’s (NSF Scientists and Engineers Statistical Data System (SESTAT from 1995 to 2008. Different factors are associated with persistence in STEM jobs among computer science and engineering degree holders. Conditional on receiving a degree in computer science, women are 14 percentage points less likely to work in STEM than their male counterparts. Controlling for demographic and family characteristics did little to change this gender gap. Women with degrees in engineering are approximately 8 percentage points less likely to work in STEM than men, although about half of this gap is explained by observed differences between men and women. We document a widening gender gap in STEM employment in computer science, but this gender gap narrows across college cohorts among those with degrees in engineering. Among recent computer science graduates, the gender gap in STEM employment for white, Hispanic, and black women relative to white men is even larger than for older graduates. Gender and race gaps in STEM employment for recent cohorts of engineering graduates are generally small, though younger Asian women and men no longer have an employment advantage relative to white men. Our results suggest that a one-size-fits-all approach to increasing women’s representation in the most male-dominated STEM fields may not work.

  17. Effectiveness of Three Case Studies and Associated Teamwork in Stimulating Freshman Interest in an Introduction to Engineering Course

    Science.gov (United States)

    McIntyre, Joseph S.

    2011-01-01

    The effectiveness of three case studies and associated teamwork to stimulate interest of college freshman in engineering was investigated by observing students. Case studies were assigned as laboratory team exercises in an introduction to engineering course at Auburn University. Student interest in the case studies was evaluated qualitatively…

  18. The Relationship between Listening Strategies Used by Iranian EFL Freshman University Students and Their Listening Proficiency Levels

    Science.gov (United States)

    Bidabadi, Farinaz Shirani; Yamat, Hamidah

    2011-01-01

    The purpose of the current study was to identify Iranian EFL freshman university students' listening proficiency levels and the listening strategies they employed to investigate the relationship between these two variables. A total of 92 freshmen were involved in this study. The Oxford Placement Test was employed to identify the learners'…

  19. The Chicken Soup Effect: The Role of Recreation and Intramural Participation in Boosting Freshman Grade Point Average

    Science.gov (United States)

    Gibbison, Godfrey A.; Henry, Tracyann L.; Perkins-Brown, Jayne

    2011-01-01

    Freshman grade point average, in particular first semester grade point average, is an important predictor of survival and eventual student success in college. As many institutions of higher learning are searching for ways to improve student success, one would hope that policies geared towards the success of freshmen have long term benefits…

  20. Entering Freshman Transfer and Career Students: A Comparison of Selected Educational Objectives with Recommendations for Transfer and Academic Advisement.

    Science.gov (United States)

    Padula, Mary S.

    The descriptive study investigated the extent to which entering freshman students and transfer students at Borough of Manhattan Community College (BMCC) are enrolled in degree programs that are compatible with their stated educational objectives, transfer intents, and degree intents. Subjects (N=376) enrolled in a mandatory orientation course were…

  1. A Teaching Method on Basic Chemistry for Freshman (II) : Teaching Method with Pre-test and Post-test

    OpenAIRE

    立木, 次郎; 武井, 庚二

    2004-01-01

    This report deals with review of a teaching method on basic chemistry for freshman in this first semester. We tried to review this teaching method with pre-test and post-test by means of the official and private questionnaires. Several hints and thoughts on teaching skills are obtained from this analysis.

  2. Comparing the AUDIT and 3 Drinking Indices as Predictors of Personal and Social Drinking Problems in Freshman First Offenders

    Science.gov (United States)

    O'Hare, Thomas

    2005-01-01

    The current study of 376 college freshman adjudicated the first time for breaking university drinking rules tested the predictive power of four alcohol consumption and problem drinking indices--recent changes in drinking (the Alcohol Change Index: ACI), heavy drinking, binge drinking index, and the Alcohol Use Disorders Identification Test (AUDIT)…

  3. A Teaching Method on Basic Chemistry for Freshman : Teaching Method with Pre-test and Post-test

    OpenAIRE

    立木, 次郎; 武井, 庚二

    2003-01-01

    This report deals with a teaching method on basic chemistry for freshman. This teaching method contains guidance and instruction to how to understand basic chemistry. Pre-test and post-test have been put into practice each time. Each test was returned to students at class in the following weeks.

  4. Interactive Web-Based and Hands-On Engineering Education: A Freshman Aerospace Design Course at MIT.

    Science.gov (United States)

    Newman, Dava J.

    "Introduction to Aerospace and Design" is a 3-hour per week freshman elective course at Massachusetts Institute of Technology (MIT) that culminates in a Lighter-Than-Air (LTA) vehicle design competition, exposing freshmen to the excitement of aerospace engineering design typically taught in the junior or senior years. In addition to the…

  5. Exploration of the Attitudes of Freshman Foreign Language Students toward Using Computers at a Turkish State University

    Science.gov (United States)

    Akbulut, Yavuz

    2008-01-01

    The present study expands the design of Warschauer (1996) surveying freshman foreign language students at a Turkish university. Motivating aspects of computer assisted instruction in terms of writing and e-mailing are explored through an exploratory factor analysis conducted on the survey developed by Warschauer (1996). Findings suggest that…

  6. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-03-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.

  7. Women in computer science: An interpretative phenomenological analysis exploring common factors contributing to women's selection and persistence in computer science as an academic major

    Science.gov (United States)

    Thackeray, Lynn Roy

    The purpose of this study is to understand the meaning that women make of the social and cultural factors that influence their reasons for entering and remaining in study of computer science. The twenty-first century presents many new challenges in career development and workforce choices for both men and women. Information technology has become the driving force behind many areas of the economy. As this trend continues, it has become essential that U.S. citizens need to pursue a career in technologies, including the computing sciences. Although computer science is a very lucrative profession, many Americans, especially women, are not choosing it as a profession. Recent studies have shown no significant differences in math, technical and science competency between men and women. Therefore, other factors, such as social, cultural, and environmental influences seem to affect women's decisions in choosing an area of study and career choices. A phenomenological method of qualitative research was used in this study, based on interviews of seven female students who are currently enrolled in a post-secondary computer science program. Their narratives provided meaning into the social and cultural environments that contribute to their persistence in their technical studies, as well as identifying barriers and challenges that are faced by female students who choose to study computer science. It is hoped that the data collected from this study may provide recommendations for the recruiting, retention and support for women in computer science departments of U.S. colleges and universities, and thereby increase the numbers of women computer scientists in industry. Keywords: gender access, self-efficacy, culture, stereotypes, computer education, diversity.

  8. Teaching Freshman Composition at a Science College: The Trouble with "Pharma-English"

    Science.gov (United States)

    Kirszner, Laurie G.

    1978-01-01

    The author's experiences teaching writing to students in a technical college point to the need for such students to have a general writing course rather than one restricted to technical writing. (MKM)

  9. Using a multicultural approach to teach chemistry and the nature of science to undergraduate non-majors

    Science.gov (United States)

    Goff, Peter; Boesdorfer, Sarah B.; Hunter, William

    2012-09-01

    This research documents the creation, implementation, and evaluation of a novel chemistry curriculum. The curriculum allowed students to create theories situated in a variety of cultures while they investigated chemical phenomena central to all civilizations; it was a way of synthesizing chemistry, the history and nature of science, inquiry, and multicultural education. Achieving both chemistry content and nature of science objectives were the main goals of the curriculum. A small sample of undergraduate students participated in the curriculum instead of attending a large lecture course. The novel curriculum covered the same chemistry topics as the large lecture course. Program efficacy was evaluated using a combination of grades, survey data, and interviews with the participating undergraduates. The results suggest that this curriculum was a successful start at engaging students and teaching them chemistry as well as nature of science concepts.

  10. Investigating Prospective Teachers' Perceived Problem-Solving Abilities in Relation to Gender, Major, Place Lived, and Locus of Control

    Science.gov (United States)

    Çakir, Mustafa

    2017-01-01

    The purpose of this study is to investigate prospective teachers' perceived personal problem-solving competencies in relation to gender, major, place lived, and internal-external locus of control. The Personal Problem-Solving Inventory and Rotter's Internal-External Locus of Control Scale were used to collect data from freshman teacher candidates…

  11. Using a Multicultural Approach to Teach Chemistry and the Nature of Science to Undergraduate Non-Majors

    Science.gov (United States)

    Goff, Peter; Boesdorfer, Sarah B.; Hunter, William

    2012-01-01

    This research documents the creation, implementation, and evaluation of a novel chemistry curriculum. The curriculum allowed students to create theories situated in a variety of cultures while they investigated chemical phenomena central to all civilizations; it was a way of synthesizing chemistry, the history and nature of science, inquiry, and…

  12. Exploring the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors: Motivators and strategies for achieving baccalaureate attainment

    Science.gov (United States)

    Carbajal, Sandy C.

    Drawing from Latino/a Critical Race Theory and the related Community Cultural Wealth (CCW) model, I concentrate on three forms of CCW---aspirational, navigational, and resistance capital---for this qualitative study on the undergraduate experience of Latina students in Science, Technology, Engineering, and Mathematics (STEM) majors, focusing on strategies and achieving baccalaureate attainment. I interviewed ten Latina students and asked them questions regarding their educational experiences in STEM majors, what contributed to their degree completion, and the strategies they employed for achieving baccalaureate attainment. I identified and described six themes within the study (the underrepresentation of Latinas in STEM majors, the lack of preparation by academic programs for upper division courses, motivators, involvement, time management, and support networks) that, when combined, contributed to participants' degree attainment. This study concludes with implications for policy and practice that would allow universities to better assist Latinas in STEM majors to achieve baccalaureate attainment.

  13. Guiding Students from Consuming Information to Creating Knowledge: A Freshman English Library Instruction Collaboration

    Directory of Open Access Journals (Sweden)

    Carolyn B. Gamtso

    2012-04-01

    Full Text Available In this paper we examine how faculty and librarians’ own approaches to and attitudes toward library tools, as well as their assumptions about student research practices, impede students’ ability to view learning as a recursive, creative, and ongoing inquiry. We propose first that librarians and faculty examine the assumptions of knowledge that characterize their respective university constituencies; second that they dismantle some of the disciplinary boundaries that separate these constituencies; third that they collaborate to craft analytical assignments that stress knowledge as process; and fourth that they transform library instruction from tool-based demonstrations to analytical, problem-based learning exercises. Finally, we describe how we have collaborated to craft a Freshman Composition library instruction session that moves beyond developing students’ information-gathering expertise by focusing on the development of transferable knowledge and critical thinking skills.

  14. The effects of higher-order questioning strategies on nonscience majors' achievement in an introductory environmental science course and their attitudes toward the environment

    Science.gov (United States)

    Eason, Grace Teresa

    The purpose of this quasi-experimental study was to determine the effect a higher-order questioning strategy (Bloom, 1956) had on undergraduate non-science majors' attitudes toward the environment and their achievement in an introductory environmental science course, EDS 1032, "Survey of Science 2: Life Science," which was offered during the Spring 2000 term. Students from both treatment and control groups (N = 63), which were determined using intact classes, participated in eight cooperative group activities based on the Biological Sciences Curriculum Studies (BSCS) 5E model (Bybee, 1993). The treatment group received a higher-order questioning method combined with the BSCS 5E model. The control group received a lower-order questioning method, combined with the BSCS 5E model. Two instruments were used to measure students' attitude and achievement changes. The Ecology Issue Attitude (EIA) survey (Schindler, 1995) and a comprehensive environmental science final exam. Kolb's Learning Style Inventory (KLSI, 1985) was used to measure students' learning style type. After a 15-week treatment period, results were analyzed using MANCOVA. The overall MANCOVA model used to test the statistical difference between the collective influences of the independent variables on the three dependent variables simultaneously was found to be not significant at alpha = .05. This differs from findings of previous studies in which higher-order questioning techniques had a significant effect on student achievement (King 1989 & 1992; Blosser, 1991; Redfield and Rousseau, 1981; Gall 1970). At the risk of inflated Type I and Type II error rates, separate univariate analyses were performed. However, none of the research factors, when examined collectively or separately, made any significant contribution to explaining the variability in EIA attitude, EIA achievement, and comprehensive environmental science final examination scores. Nevertheless, anecdotal evidence from student's self

  15. The Attitudes of Freshman Undergraduates in Learning English as a Second Language

    Directory of Open Access Journals (Sweden)

    Yvonne Jain

    2012-06-01

    Full Text Available The purpose of this study is to investigate the attitudes of tertiary students towards the learning of English language with regard to their gender, discipline and language proficiency. This descriptive study involved a total of 200 undergraduates from the Faculty of Education in Shah Alam, Selangor. The study employed two methods of data collection: questionnaire and semi- structured interviews. The findings revealed that there was a moderately positive attitude towards the learning of English language. However, the findings showed that the female respondents were more positive towards the learning of English language compared to their male counterparts while the Non Science major students had positive attitude towards learning English language compared to the Science major students. The study also showed that low proficiency students had better attitude towards English language compared to high proficiency students.

  16. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-01-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology,…

  17. An Investigation of School-Level Factors Associated with Science Performance for Minority and Majority Francophone Students in Canada

    Science.gov (United States)

    Sandilands, Debra; McKeown, Stephanie Barclay; Lyons-Thomas, Juliette; Ercikan, Kadriye

    2014-01-01

    Minority Francophone students in predominantly English-speaking Canadian provinces tend to perform lower on large-scale assessments of achievement than their Anglophone peers and majority Francophone students in Quebec. This study is the first to apply multilevel modeling methods to examine the extent to which school-level factors may be…

  18. Future Low Temperature Plasma Science and Technology: Attacking Major Societal Problems by Building on a Tradition of Scientific Rigor

    Science.gov (United States)

    Graves, David

    2014-10-01

    Low temperature plasma (LTP) science is unequivocally one of the most prolific areas for varied applications in modern technology. For example, plasma etching technology is essential for reliably and rapidly patterning nanometer scale features over areas approaching one square meter with relatively inexpensive equipment. This technology enabled the telecommunication and information processing revolution that has transformed human society. I explore two concepts in this talk. The first is that the firm scientific understanding of LTP is and has been the enabling feature of these established technological applications. And the second is that LTP technology is poised to contribute to several emerging societal challenges. Beyond the important, ongoing applications of LTP science to problems of materials processing related to energy generation (e.g. thin film solar cell manufacture), there are novel and less well known potential applications in food and agriculture, infection control and medicine. In some cases, the potentially low cost nature of the applications in so compelling that they can be thought of as examples of frugal innovation. Supported in part by NSF and DoE.

  19. Gender Differences in Self-Efficacy and Sense of Class and School Belonging for Majors in Science, Technology, Engineering, and Mathematics (STEM) Disciplines

    Science.gov (United States)

    Hogue, Barbara A.

    Research into women's underrepresentation in science, technology, engineering, and mathematics (STEM) disciplines has become a topic of interest due to the increasing need for employees with technical expertise and a shortage of individuals to fill STEM jobs. The discrepancy in women's representation between STEM and other fields cannot adequately be explained by factors such as women's need to balance work and family (medicine and law are both extremely demanding careers), women's fear of competition (admissions into medical and law schools are highly competitive), or women's inability to excel in science (e.g., entry into medicine requires excellent achievement in the basic sciences). The purpose of this study is to gain a deeper understanding of the role and/or impact a sense of belonging has inside and outside of STEM classrooms. Research questions focused on the role and/or impact of belonging contributes to students' self-efficacy beliefs as a STEM major. Bandura's self-efficacy theory serves as the theoretical framework. Data sources include close-ended surveys of 200 sophomore- and junior-level college students majoring in a STEM discipline. A quantitative exploratory approach allowed participants' responses to be analyzed using both correlation and multiple regression analyses to understand whether a student's sense of belonging is associated with his or her self-efficacy beliefs. Findings suggested that positive support systems impact students' self-efficacy and play a role in fostering students' motivation and decision to major in STEM disciplines. This study contributes to positive social change by providing empirical evidence faculty and administrators may use to promote university-based STEM support programs reflecting the impact belonging has on students' self-efficacy and potentially increasing the number of students majoring in STEM disciplines.

  20. Science-Technology-Society literacy in college non-majors biology: Comparing problem/case studies based learning and traditional expository methods of instruction

    Science.gov (United States)

    Peters, John S.

    This study used a multiple response model (MRM) on selected items from the Views on Science-Technology-Society (VOSTS) survey to examine science-technology-society (STS) literacy among college non-science majors' taught using Problem/Case Studies Based Learning (PBL/CSBL) and traditional expository methods of instruction. An initial pilot investigation of 15 VOSTS items produced a valid and reliable scoring model which can be used to quantitatively assess student literacy on a variety of STS topics deemed important for informed civic engagement in science related social and environmental issues. The new scoring model allows for the use of parametric inferential statistics to test hypotheses about factors influencing STS literacy. The follow-up cross-institutional study comparing teaching methods employed Hierarchical Linear Modeling (HLM) to model the efficiency and equitability of instructional methods on STS literacy. A cluster analysis was also used to compare pre and post course patterns of student views on the set of positions expressed within VOSTS items. HLM analysis revealed significantly higher instructional efficiency in the PBL/CSBL study group for 4 of the 35 STS attitude indices (characterization of media vs. school science; tentativeness of scientific models; cultural influences on scientific research), and more equitable effects of traditional instruction on one attitude index (interdependence of science and technology). Cluster analysis revealed generally stable patterns of pre to post course views across study groups, but also revealed possible teaching method effects on the relationship between the views expressed within VOSTS items with respect to (1) interdependency of science and technology; (2) anti-technology; (3) socioscientific decision-making; (4) scientific/technological solutions to environmental problems; (5) usefulness of school vs. media characterizations of science; (6) social constructivist vs. objectivist views of theories; (7

  1. Fake news of baby booms 9months after major sporting events distorts the public's understanding of early human development science.

    Science.gov (United States)

    Grech, Victor; Masukume, Gwinyai

    2017-12-01

    In France on 27/6/16, Iceland's men's national football team won 2-1, knocking England out of the UEFA European Championship. Nine months after this momentous Icelandic victory, Ásgeir Pétur Þorvaldsson a medical doctor in Iceland, posted a tweet in jest suggesting that a baby boom had occurred as a result of increased celebratory coital activity following the win. The media covered this widely but statistical analysis shows otherwise and this was confirmed by the original tweet source. Given the increase in fake scientific news, it is especially important for scientists to correct misinformation lest the public loses trust in science or gains a distorted understanding of known facts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Small country - big science: a report to the Prime Minister on Australia participation in major international accelerator and beam facilities

    International Nuclear Information System (INIS)

    1990-04-01

    This report examines the needs of Australian scientists for access to major scientific research facilities which, because of their very high costs, are not available in Australia. The report focuses on three areas of great need: synchrotron light sources, neutron scattering and high energy physics. Recommendations are made to provide access for Australian scientists to the synchrotron light source or Photon Factory at Tsukuba in Japan; the high flux neutron beam at Institut Laue Langevin (ILL) at Grenoble in France; and the high energy accelerator operated by the European Organization of Nuclear Research (CERN) at Geneva. Recommendations regarding the evaluation and management of projects are also included . 6 refs

  3. Increasing URM Undergraduate Student Success through Assessment-Driven Interventions: A Multiyear Study Using Freshman-Level General Biology as a Model System

    Science.gov (United States)

    Carmichael, Mary C.; St. Clair, Candace; Edwards, Andrea M.; Barrett, Peter; McFerrin, Harris; Davenport, Ian; Awad, Mohamed; Kundu, Anup; Ireland, Shubha Kale

    2016-01-01

    Xavier University of Louisiana leads the nation in awarding BS degrees in the biological sciences to African-American students. In this multiyear study with ∼5500 participants, data-driven interventions were adopted to improve student academic performance in a freshman-level general biology course. The three hour-long exams were common and administered concurrently to all students. New exam questions were developed using Bloom’s taxonomy, and exam results were analyzed statistically with validated assessment tools. All but the comprehensive final exam were returned to students for self-evaluation and remediation. Among other approaches, course rigor was monitored by using an identical set of 60 questions on the final exam across 10 semesters. Analysis of the identical sets of 60 final exam questions revealed that overall averages increased from 72.9% (2010) to 83.5% (2015). Regression analysis demonstrated a statistically significant correlation between high-risk students and their averages on the 60 questions. Additional analysis demonstrated statistically significant improvements for at least one letter grade from midterm to final and a 20% increase in the course pass rates over time, also for the high-risk population. These results support the hypothesis that our data-driven interventions and assessment techniques are successful in improving student retention, particularly for our academically at-risk students. PMID:27543637

  4. Freshman College Students’ Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course

    OpenAIRE

    Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

    2015-01-01

    Background Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Methods Data collected from 302 college freshmen in September 2013...

  5. Comparison of the effectiveness of collaborative groups and peer instruction in a large introductory physics course for science majors

    International Nuclear Information System (INIS)

    Kalman, C.S.; Milner-Bolotin, M.; Antimitova, T.

    2010-01-01

    We report on an experiment comparing examinations of concepts using slightly modified peer instruction (MPI) interventions with a conceptual conflict strategy based on collaborative groups (CG). Four interventions were utilized in two sections of an introductory physics course for science students. Both instructors and strategies were alternated in the two classes so that instructor dependence could be factored out and so that each class could serve as both an experimental and a control group. The gain on the Force Concept Inventory (FCI) used as a pre- and post-test is essentially the same in both classes. The instructors were experienced in use of MPI, but this was the first time that these instructors had used a collaborative group activity in their classes and only used it for the two interventions in each class described in this paper. CG appears to be more effective as a teaching method than PI. It also should be noted that the effectiveness of both teaching methods seems to be instructor independent as long as the instructors followed the same protocol. (author)

  6. An intensive primary-literature-based teaching program directly benefits undergraduate science majors and facilitates their transition to doctoral programs.

    Science.gov (United States)

    Kozeracki, Carol A; Carey, Michael F; Colicelli, John; Levis-Fitzgerald, Marc; Grossel, Martha

    2006-01-01

    UCLA's Howard Hughes Undergraduate Research Program (HHURP), a collaboration between the College of Letters and Science and the School of Medicine, trains a group of highly motivated undergraduates through mentored research enhanced by a rigorous seminar course. The course is centered on the presentation and critical analysis of scientific journal articles as well as the students' own research. This article describes the components and objectives of the HHURP and discusses the results of three program assessments: annual student evaluations, interviews with UCLA professors who served as research advisors for HHURP scholars, and a survey of program alumni. Students indicate that the program increased their ability to read and present primary scientific research and to present their own research and enhanced their research experience at UCLA. After graduating, they find their involvement in the HHURP helped them in securing admission to the graduate program of their choice and provided them with an advantage over their peers in the interactive seminars that are the foundation of graduate education. On the basis of the assessment of the program from 1998-1999 to 2004-2005, we conclude that an intensive literature-based training program increases student confidence and scientific literacy during their undergraduate years and facilitates their transition to postgraduate study.

  7. Comparison of the effectiveness of collaborative groups and peer instruction in a large introductory physics course for science majors

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, C.S., E-mail: Calvin.Kalman@concordia.ca [Concordia Univ., Dept. of Physics, Montreal, QC (Canada); Milner-Bolotin, M. [Univ. of British Columbia, Dept. of Curriculum and Pedagogy, Vancouver, BC (Canada); Antimitova, T. [Ryerson Univ., Dept. of Physics, Toronto, ON (Canada)

    2010-05-15

    We report on an experiment comparing examinations of concepts using slightly modified peer instruction (MPI) interventions with a conceptual conflict strategy based on collaborative groups (CG). Four interventions were utilized in two sections of an introductory physics course for science students. Both instructors and strategies were alternated in the two classes so that instructor dependence could be factored out and so that each class could serve as both an experimental and a control group. The gain on the Force Concept Inventory (FCI) used as a pre- and post-test is essentially the same in both classes. The instructors were experienced in use of MPI, but this was the first time that these instructors had used a collaborative group activity in their classes and only used it for the two interventions in each class described in this paper. CG appears to be more effective as a teaching method than PI. It also should be noted that the effectiveness of both teaching methods seems to be instructor independent as long as the instructors followed the same protocol. (author)

  8. Spectral Feature Analysis of Minerals and Planetary Surfaces in an Introductory Planetary Science Course

    Science.gov (United States)

    Urban, Michael J.

    2013-01-01

    Using an ALTA II reflectance spectrometer, the USGS digital spectral library, graphs of planetary spectra, and a few mineral hand samples, one can teach how light can be used to study planets and moons. The author created the hands-on, inquiry-based activity for an undergraduate planetary science course consisting of freshman to senior level…

  9. Predicting Freshman Grade Point Average From College Admissions Test Scores and State High School Test Scores

    Directory of Open Access Journals (Sweden)

    Daniel Koretz

    2016-09-01

    Full Text Available The current focus on assessing “college and career readiness” raises an empirical question: How do high school tests compare with college admissions tests in predicting performance in college? We explored this using data from the City University of New York and public colleges in Kentucky. These two systems differ in the choice of college admissions test, the stakes for students on the high school test, and demographics. We predicted freshman grade point average (FGPA from high school GPA and both college admissions and high school tests in mathematics and English. In both systems, the choice of tests had only trivial effects on the aggregate prediction of FGPA. Adding either test to an equation that included the other had only trivial effects on prediction. Although the findings suggest that the choice of test might advantage or disadvantage different students, it had no substantial effect on the over- and underprediction of FGPA for students classified by race-ethnicity or poverty.

  10. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  11. Predicting who will major in a science discipline: Expectancy-value theory as part of an ecological model for studying academic communities

    Science.gov (United States)

    Sullins, Ellen S.; Hernandez, Delia; Fuller, Carol; Shiro Tashiro, Jay

    Research on factors that shape recruitment and retention in undergraduate science majors currently is highly fragmented and in need of an integrative research framework. Such a framework should incorporate analyses of the various levels of organization that characterize academic communities (i.e., the broad institutional level, the departmental level, and the student level), and should also provide ways to study the interactions occurring within and between these structural levels. We propose that academic communities are analogous to ecosystems, and that the research paradigms of modern community ecology can provide the necessary framework, as well as new and innovative approaches to a very complex area. This article also presents the results of a pilot study that demonstrates the promise of this approach at the student level. We administered a questionnaire based on expectancy-value theory to undergraduates enrolled in introductory biology courses. Itself an integrative approach, expectancy-value theory views achievement-related behavior as a joint function of the person's expectancy of success in the behavior and the subjective value placed on such success. Our results indicated: (a) significant gender differences in the underlying factor structures of expectations and values related to the discipline of biology, (b) expectancy-value factors significantly distinguished biology majors from nonmajors, and (c) expectancy-value factors significantly predicted students' intent to enroll in future biology courses. We explore the expectancy-value framework as an operationally integrative framework in our ecological model for studying academic communities, especially in the context of assessing the underrepresentation of women and minorities in the sciences. Future research directions as well as practical implications are also discussed.

  12. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    Science.gov (United States)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students

  13. Problem drinking among at-risk college students: The examination of Greek involvement, freshman status, and history of mental health problems.

    Science.gov (United States)

    Martinez, Haley S; Klanecky, Alicia K; McChargue, Dennis E

    2018-02-06

    Scarce research has examined the combined effect of mental health difficulties and demographic risk factors such as freshman status and Greek affiliation in understanding college problem drinking. The current study is interested in looking at the interaction among freshman status, Greek affiliation, and mental health difficulties. Undergraduate students (N = 413) from a private and public Midwestern university completed a large online survey battery between January 2009 and April 2013. Data from both schools were aggregated for the analyses. After accounting for gender, age, and school type, the three-way interaction indicated that the highest drinking levels were reported in freshman students who reported a history of mental health problems although were not involved in Greek life. Findings are discussed in the context of perceived social norms, as well as alcohol-related screenings and intervention opportunities on college campuses.

  14. Library Instruction for Freshman English: A Multi-Year Assessment of Student Learning

    Directory of Open Access Journals (Sweden)

    Susan Gardner Archambault

    2011-01-01

    Full Text Available Objective – The objective of this study was twofold: 1 to assess the effectiveness of curriculum changes made from the 2009 freshman English library instruction curriculum to the 2010 curriculum at Loyola Marymount University (LMU; and 2 to evaluate the effectiveness of library instruction delivered via a “blended” combination of face-to-face and online instruction versus online instruction alone.Methods – An experimental design compared random samples of student scores from 2009 and 2010 worksheets to determine the effects of a new curriculum on student learning. A second experiment examined the effect of delivery method on student learning by comparing scores from a group of students receiving only online instruction against a group receiving blended instruction.Results – The first component of the study, which compared scores between 2009 and 2010 to examine the effects of the curriculum revisions, had mixed results. Students scored a significantly higher mean in 2010 on completing and correctly listing book citation components than in 2009, but a significantly lower mean on constructing a research question. There was a significant difference in the distribution of scores for understanding differences between information found on the Internet versus through the Library that was better in 2010 than 2009, but worse for narrowing a broad research topic. For the study that examined computer aided instruction, the group of students receiving only computer-assisted instruction did significantly better overall than the group receiving blended instruction. When separate tests were run for each skill, two particular skills, generating keywords and completing book citation and location elements, resulted in a significantly higher mean.Conclusions – The comparison of scores between 2009 and 2010 were mixed, but the evaluation process helped us identify continued problems in the teaching materials to address in the next cycle of revisions

  15. Freshman Students‟ Attitudes and Behavior towards Advanced Grammar and Composition Teaching

    Directory of Open Access Journals (Sweden)

    Romel M. Aceron

    2015-11-01

    Full Text Available Teaching English advanced grammar and composition to college students is important as it provides them with high level of understanding and competence in the language. It guides them in putting words together into sentences and makes them orally produce sounds clearly and effectively. This paper aims to determine the attitudes and behavior towards advanced grammar and composition teaching among freshman college students of Batangas State University. Descriptive method of research has been used to analyze and interpret data. The following instruments such as self-made questionnaire, focus group discussion, data analysis, interview guide, have been utilized to gather data. To analyze and interpret data, mean scores have been used. Pearson’s (r Product Moment Correlation Method has been utilized to treat the null hypothesis with regard to the attitudes and behavior of the students towards advanced grammar and composition teaching. Based on the findings of the study, the students sometimes understand and feel the subject matters, i.e., morphology, phonology, grammar and usage, and mechanics and composition writing. They are also sometimes ready in particular lesson and activity which are given to them in class. The study also reveals that there is no significant relationship between the students’ attitudes and behavior towards AGCT. In this regard, college students taking advanced grammar and composition course must be well-motivated to understand, and must have the readiness to perform the activities entail in the subject areas of morphology, phonology, grammar and usage, and mechanics and composition writing through teacher’s varied approaches, strategies, researches, and integration.

  16. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  17. Testing a Model of the Relationship of Demographic, Affective, and Fitness Variables to Academic Achievement among Non-Science Majors at an Independent University

    Science.gov (United States)

    Dutra, Andrew Martin

    The purpose of this study was to determine the relationship of specific attributes of college students to their academic achievement at an independent university in central Florida. Academic achievement was measured as the numeric score on the final exam in a survey-of-science course (EDS 1032) required for non-science majors. Attribute sets included personological, affective, and fitness variables. A hypothesized diagram of the direct and indirect effects among these attributes relative to academic achievement was developed and tested using data collected Spring 2014 from 168 students in four sections of EDS 1032 at Florida Institute of Technology. Multiple regression results revealed that 19% of the variance in a students' academic achievement was due to the influence of these three sets of research factors; this was found to be statistically significant. The results of mediation analyses also indicated that three variables had significant direct effects on academic achievement, namely gender, number of academic credits, and sports motivation. In addition, gender had a significant indirect effect on academic achievement via stress, and the number of academic credits had a significant indirect effect on academic achievement via sports motivation. These findings indicated that female students scored roughly six points higher than male students on this final exam. Also, gender's influence on academic achievement was partially attributable to the student's level of stress (e.g., male students with high levels of stress had lower grades on this final exam than female students with the same level of stress). In addition, it was found that students taking more academic credits were likely to score higher on this final exam than those students taking fewer credits. Further, as students' level of sports amotivation increased, the strength of the relationship between the number of student academic credits and academic achievement decreased. These results support Self

  18. Do Biology Majors Really Differ from Non–STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students—including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences—if any exist—between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non–STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non–STEM majors are not unilaterally science averse; non–STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non–STEM majors are less likely than biology majors to see science as personally relevant; and non–STEM majors populations are likely to be more diverse—with respect to incoming knowledge, perceptions, backgrounds, and skills—than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. PMID:28798210

  19. Sundials in the shade: A study of women's persistence in the first year of a computer science program in a selective university

    Science.gov (United States)

    Powell, Rita Manco

    Currently women are underrepresented in departments of computer science, making up approximately 18% of the undergraduate enrollment in selective universities. Most attrition in computer science occurs early in this major, in the freshman and sophomore years, and women drop out in disproportionately greater numbers than their male counterparts. Taking an ethnographic approach to investigating women's experiences and progress in the first year courses in the computer science major at the University of Pennsylvania, this study examined the pre-college influences that led these women to the major and the nature of their experiences in and outside of class with faculty, peers, and academic support services. This study sought an understanding of the challenges these women faced in the first year of the major with the goal of informing institutional practice about how to best support their persistence. The research reviewed for this study included patterns of leaving majors in science, math and engineering (Seymour & Hewitt 1997), the high school preparation needed to pursue math and engineering majors in college (Strenta, Elliott, Adair, Matier, & Scott, 1994), and intervention programs that have positively impacted persistence of women in computer science (Margolis & Fisher, 2002). The research method of this study employed a series of personal interviews over the course of one calendar year with fourteen first year women who had either declared on intended to declare the computer science major in the School of Engineering and Applied Science at the University of Pennsylvania. Other data sources were focus groups and personal interviews with faculty, administrators, admissions and student life professionals, teaching assistants, female graduate students, and male first year students at the University of Pennsylvania. This study found that the women in this study group came to the University of Pennsylvania with a thorough grounding in mathematics, but many either had

  20. Relation between eating habits and a high body mass index among freshman students: a cross-sectional study.

    Science.gov (United States)

    Gunes, Fatma Esra; Bekiroglu, Nural; Imeryuz, Nese; Agirbasli, Mehmet

    2012-06-01

    This study aimed to examine the relation between eating habits and a high body mass index (BMI) in first-year freshman university students and included 2525 freshman university students 18 to 22 years old from a Turkish population. İn this study, 48% of the students were men. They were asked to complete a questionnaire on their dietary habits including the frequency of their consumption of individual food items, demographic data, and smoking habit. The effects of eating habits on increased BMI (≥25) were analyzed. Of 2259 subjects included in the analyses, 322 were overweight or obese and 1937 had normal and thin BMI (ender, recent weight change, and high number of meals as independent predictors of obesity/overweight. Frequent consumptions of beer, alcoholic drinks other than beer and wine (e.g., spirits including whisky, gin, raki, vodka), coffee, tea, coke, red meat, variety meat, and eggs were associated with a significantly higher risk of obesity/overweight, whereas frequent consumption of snacks was associated with a low risk. Findings of further studies, possibly taking into consideration the absolute quantities of consumption along with cultural and local issues, would guide the adoption of healthier feeding behaviors in this particular age group.

  1. Item response theory analysis of the Utrecht Work Engagement Scale for Students (UWES-S) using a sample of Japanese university and college students majoring medical science, nursing, and natural science.

    Science.gov (United States)

    Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo

    2017-10-30

    The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.

  2. Major depression

    Science.gov (United States)

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  3. An Analysis of Factors Affecting Choice of Majors in Science, Mathematics, and Engineering at the University of Michigan. Research Report #23.

    Science.gov (United States)

    Manis, Jean D.; And Others

    Women have traditionally not entered the fields of science and mathematics. This study examines survey responses of University of Michigan seniors interested in science for factors associated with the attraction away from the sciences among women, and reasons why they are more attracted to other fields. The survey respondents were senior women…

  4. WWC Review of the Report "Freshman Year Financial Aid Nudges: An Experiment to Increase FAFSA Renewal and College Persistence." What Works Clearinghouse Single Study Review

    Science.gov (United States)

    What Works Clearinghouse, 2014

    2014-01-01

    The 2014 study, Freshman Year Financial Aid Nudges: An Experiment to Increase FAFSA Renewal and College Persistence, measured the impact of sending text message reminders regarding annual Free Application for Federal Student Aid (FAFSA) renewal to first-year college students who were already receiving financial aid. The study sample included 808…

  5. An Examination of Higher Educational Stakeholders' Perceptions on the Effectiveness of Retention Efforts That Impact Student Persistence from Freshman to Sophomore Year

    Science.gov (United States)

    Lantta, Melissa M.

    2013-01-01

    The first year of college is critical to the growth and retention of the freshman college student. Students enter college with a wide range of backgrounds, skills and dispositions and it is the responsibility of the institution to do all it can to assist students in achieving their education goals. The purpose of this mixed methods research design…

  6. Evaluation of the Effectiveness of the Integration of a LITEE Case Study for a Freshman Level Mechanical Engineering Course at The University of Toledo

    Science.gov (United States)

    Franchetti, Matthew

    2011-01-01

    The purpose of this paper is to report the findings of the integration of a manufacturing case study to a freshman level mechanical engineering course at The University of Toledo. The approach to integrate this case study into the class was completed via weekly assignments analyzing the case, small group discussion, and weekly group discussion.…

  7. Socioeconomic Status and the Relationship between the SAT® and Freshman GPA: An Analysis of Data from 41 Colleges and Universities. Research Report No. 2009-1

    Science.gov (United States)

    Sackett, Paul R.; Kuncel, Nathan R.; Arneson, Justin J.; Cooper, Sara R.; Waters, Shonna D.

    2009-01-01

    Critics of educational admissions tests assert that tests measure nothing other than socioeconomic status (SES), and that their apparent validity in predicting academic performance is an artifact of SES. We examine relationships among SAT, SES, and freshman grades in 41 colleges and universities and show that (a) SES is related to SAT scores (r =…

  8. A Reconstruction of Development of the Periodic Table Based on History and Philosophy of Science and Its Implications for General Chemistry Textbooks

    Science.gov (United States)

    Brito, Angmary; Rodriguez, Maria A.; Niaz, Mansoor

    2005-01-01

    The objectives of this study are: (a) elaboration of a history and philosophy of science (HPS) framework based on a reconstruction of the development of the periodic table; (b) formulation of seven criteria based on the framework; and (c) evaluation of 57 freshman college-level general chemistry textbooks with respect to the presentation of the…

  9. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  10. Food, Environment, Engineering and Life Sciences Program (Invited)

    Science.gov (United States)

    Mohtar, R. H.; Whittaker, A.; Amar, N.; Burgess, W.

    2009-12-01

    Food, Environment, Engineering and Life Sciences Program Nadia Amar, Wiella Burgess, Rabi H. Mohtar, and Dale Whitaker Purdue University Correspondence: mohtar@purdue.edu FEELS, the Food, Environment, Engineering and Life Sciences Program is a grant of the National Science Foundation for the College of Agriculture at Purdue University. FEELS’ mission is to recruit, retain, and prepare high-achieving students with financial difficulties to pursue STEM (Science, Technology, Engineering, and Mathematics) careers. FEELS achieves its goals offering a scholarship of up to 10,000 per student each year, academic, research and industrial mentors, seminars, study tables, social and cultural activities, study abroad and community service projects. In year one, nine low-income, first generation and/or ethnic minority students joined the FEELS program. All 9 FEELS fellows were retained in Purdue’s College of Agriculture (100%) with 7 of 9 (77.7%) continuing to pursue STEM majors. FEELS fellows achieved an average GPA in their first year of 3.05, compared to the average GPA of 2.54 for low-income non- FEELS students in the College of Agriculture. A new cohort of 10 students joined the program in August 2009. FEELS fellows received total scholarships of nearly 50,000 for the 2008-2009 academic year. These scholarships were combined with a holistic program that included the following key elements: FEELS Freshman Seminars I and II, 2 study tables per week, integration activities and frequent meetings with FEELS academic mentors and directors. Formative assessments of all FEELS activities were used to enhance the first year curriculum for the second cohort. Cohort 1 will continue into their second year where the focus will be on undergraduate research. More on FEELS programs and activities: www.purdue.edu/feels.

  11. The Experiences of Female High School Students and Interest in STEM: Factors Leading to the Selection of an Engineering or Computer Science Major

    Science.gov (United States)

    Genoways, Sharon K.

    2017-01-01

    STEM (Science, Technology, Engineering and Math) education creates critical thinkers, increases science literacy, and enables the next generation of innovators, which leads to new products and processes that sustain our economy (Hossain & Robinson, 2012). We have been hearing the warnings for several years, that there simply are not enough…

  12. Do Biology Majors Really Differ from Non-STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students-including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences-if any exist-between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non-STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non-STEM majors are not unilaterally science averse; non-STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non-STEM majors are less likely than biology majors to see science as personally relevant; and non-STEM majors populations are likely to be more diverse-with respect to incoming knowledge, perceptions, backgrounds, and skills-than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. © 2017 S. Cotner et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Major Roads

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data set contains roadway centerlines for major roads (interstates and trunk highways) found on the USGS 1:24,000 mapping series. These roadways are current...

  14. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  15. Ventures in science status report, Summer 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  16. Correlates of Alcohol and Marijuana Use within a College Freshman Population.

    Science.gov (United States)

    Dull, R. Thomas

    1992-01-01

    Studied correlations between self-reported alcohol and marijuana use by college students (n=557) and peer and parental alcohol use, family alcohol abuse, and legalization attitudes. Major predictors for alcohol use were maternal alcohol use followed by peer use. Major predictors for marijuana use were desire for legalization followed by peer use…

  17. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  18. Freshman College Students' Reasons for Enrolling in and Anticipated Benefits from a Basic College Physical Education Activity Course.

    Science.gov (United States)

    Lackman, Jeremy; Smith, Matthew Lee; McNeill, Elisa Beth

    2015-01-01

    Given the rise in US obesity rates in adulthood, efforts are needed to assess physical activity engagement during the college years as a strategy to promote a lifetime of being physically active. This study identifies the reasons incoming college freshman enrolled in basic physical education activity courses (BPEAC) and the perceived benefits they anticipated receiving as a result of course participation. Data collected from 302 college freshmen in September 2013 were analyzed. A paper-based questionnaire was administered to 78% of BPEAC sections offered at a large Southeastern University. Frequencies were presented for all participants, which were then compared by sex and course type. Kappa statistics were calculated to examine the concordance between participants' reasons for enrolling in the course and the benefits they anticipated from course enrollment. Diverse physical, mental, social, and academic reasons for enrolling in BPEAC were reported by study participants. Varied anticipated benefits from course participation were reported as well. Reported enrollment reasons and anticipated benefits differed by sex and course type. High concordance between matched enrollment reasons and anticipated benefits was observed. Implications highlight the need for universities to provide quality BPEAC, promote high-quality instruction, and offer a wide variety of physical education courses to meet the diverse needs of students.

  19. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. "Did You Say 50% of My Grade?"--Teaching Introductory Physics to Non-Science Majors through a Haunted Physics Lab

    Science.gov (United States)

    Donaldson, Nancy

    2010-01-01

    Several years ago I attended an AAPT Haunted Physics Workshop taught by Dr. Tom Zepf from Creighton University. Dr. Zepf's highly successful Haunted Physics Lab at Creighton was put on every October by his physics majors. I found the concept of exhibiting physics projects in a "fun" way to students, faculty, and the public very exciting, so an…

  1. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  2. La gestión didáctica del proceso de enseñanza-aprendizaje de las ciencias básicas en las carreras de ingeniería Didactics, teaching and learning sciences at engineering majors

    Directory of Open Access Journals (Sweden)

    Gladys Raquel Núñez Lazala

    2017-01-01

    Full Text Available The process of education of engineering students still shows several weak points. One important shortcoming relates to the application and transfer of basic sciences contents to professional and ordinary life situations. Among other causes, this is the result of a fragmented and de contextualized approach that fails to illustrate engineer students the connection between scientific knowledge and disciplines to professional problems. The authors surveyed professors to evaluate the management of didactic issues in the teaching-learning process of engineering majors. They used documentary analysis and literature review to build a theoretical framework; the authors provide a framework that provides the basis for leading the teaching and learning of basic sciences to engineer students from a communicative and contextualized approach.

  3. An exploratory study on cultural variations in oral health attitudes, behaviour and values of freshman (first-year) dental students.

    Science.gov (United States)

    Kawamura, M; Wright, F A C; Declerck, D; Freire, M C M; Hu, D Y; Honkala, E; Lévy, G; Kalwitzki, M; Polychronopoulou, A; Yip, H K; Kinirons, M J; Eli, I; Petti, S; Komabayashi, T; Kim, K J; Razak, A A A; Srisilapanan, P; Kwan, S Y L

    2005-08-01

    To identify similarities and differences in oral health attitudes, behaviour and values among freshman dental students. Cross-cultural survey of dental students. 18 cultural areas. 904 first-year dental students completed the Hiroshima University-Dental Behavioural Inventory (HU-DBI) translated into their own languages. Individual areas were clustered by similarity in responses to the questions. The first group displayed an 'occidental-culture orientation' with the exception of Brazil (Cluster 1 comprised: Australia, United Kingdom, Ireland, Belgium and Brazil, Cluster 2: Germany, Italy, Finland and France). The second group displayed an 'oriental-cultural orientation' with the exception of Greece and Israel (Cluster 3 comprised: China and Indonesia, and Cluster 4: Japan, Korea, Israel, Hong Kong, Malaysia, Thailand and Greece). Australia and United Kingdom were the countries that were most alike. Ireland was the 'neighbour' to these countries. Greece and Malaysia had similar patterns of oral health behaviour although geographic conditions are very different. Although it was considered that in Hong Kong, occidental nations have affected the development of education, it remained in the oriental-culture group. Comparison with the data from the occidentals indicates that a higher percentage of the orientals put off going to the dentist until they have toothache (p < 0.001). Only a small proportion of the occidentals (8%) reported a perception of inevitability in having false teeth, whereas 33% of the orientals held this fatalistic belief (p = 0.001). Grouping the countries into key cultural orientations and international clusters yielded plausible results, using the HU-DBI.

  4. Interdisciplinary Project Experiences: Collaboration between Majors and Non-Majors

    Science.gov (United States)

    Smarkusky, Debra L.; Toman, Sharon A.

    2014-01-01

    Students in computer science and information technology should be engaged in solving real-world problems received from government and industry as well as those that expose them to various areas of application. In this paper, we discuss interdisciplinary project experiences between majors and non-majors that offered a creative and innovative…

  5. Discourse in freshman engineering teams: The relationship between verbal persuasions, self-efficacy, and achievement

    Science.gov (United States)

    Yasar, Senay

    Collaborative teamwork is a common practice in both science and engineering schools and workplaces. This study, using a mixed-methods approach, was designed to identify which team discourse characteristics are correlated with changes in student self-efficacy and achievement. Bandura's self-efficacy theory constitutes the theoretical framework. Seven teams, consisting of first-year engineering students, took the pre- and post-surveys and were video- and audio-recorded during a semester-long Introduction to Engineering Design course. Three instruments were developed: a self-efficacy survey, a team interaction observation protocol, and a team interaction self-report survey. The reliability and validity of these instruments were established. An iterative process of code development and refinement led to the development of thirty-five discourse types, which were grouped under six discourse categories: task-oriented, response-oriented, learning-oriented, support-oriented, challenge-oriented, and disruptive. The results of the quantitative data analysis showed that achievement and gain in self-efficacy were significantly correlated ( r=.55, p<.01). There was also a positive correlation between support-orientated discourse and post self-efficacy scores ( r=.43, p<.05). Negative correlations were observed between disruptive discourse behaviors and post self-efficacy (r=-.48, p<.05). Neither being challenged by peers nor receiving negative feedback revealed significant correlations with student self-efficacy. In addition, no direct correlations between the team discourse characteristics and achievement were found. These findings suggest that collaborative teamwork can lead to achievement to the extent that it supports self-efficacy. They also suggest that interactions such as receiving positive or negative feedback have less impact on self-efficacy than does the overall constructive behavior of the group. The qualitative component of the study, which focused on three case

  6. Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees

    Science.gov (United States)

    Rodenbusch, Stacia E.; Hernandez, Paul R.; Simmons, Sarah L.; Dolan, Erin L.

    2016-01-01

    National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score–matching to control for student-level differences, we tested the effect of participating in FRI on students’ probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students’ GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. PMID:27252296

  7. Unstable identity compatibility: how gender rejection sensitivity undermines the success of women in science, technology, engineering, and mathematics fields.

    Science.gov (United States)

    Ahlqvist, Sheana; London, Bonita; Rosenthal, Lisa

    2013-09-01

    Although the perceived compatibility between one's gender and science, technology, engineering, and mathematics (STEM) identities (gender-STEM compatibility) has been linked to women's success in STEM fields, no work to date has examined how the stability of identity over time contributes to subjective and objective STEM success. In the present study, 146 undergraduate female STEM majors rated their gender-STEM compatibility weekly during their freshman spring semester. STEM women higher in gender rejection sensitivity, or gender RS, a social-cognitive measure assessing the tendency to perceive social-identity threat, experienced larger fluctuations in gender-STEM compatibility across their second semester of college. Fluctuations in compatibility predicted impaired outcomes the following school year, including lower STEM engagement and lower academic performance in STEM (but not non-STEM) classes, and significantly mediated the relationship between gender RS and STEM engagement and achievement in the 2nd year of college. The week-to-week changes in gender-STEM compatibility occurred in response to negative academic (but not social) experiences.

  8. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    Science.gov (United States)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  9. A Comparison between Anxiety and Self-esteem amongst High School Freshman Students(Male and Female with Amblyopia in Gachsaran in 2015

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Karim Afzali

    2016-05-01

    Full Text Available The present research intends to investigate and compare the relationship between anxiety and self-esteem amongst high school freshman students (male and female with Amblyopia in Gachsaran city. To this end, all the male and female freshman students (1st Grade in high school suffering from Amblyopia in Gachsaran participated in the study as the research statistical population among which 80 students, including 40 girls and 40 boys, were selected based on Simple Random Sampling Method. Materials and tools used in this research included Beck Anxiety Inventory (BAI, Cooper-smith Self-esteem Inventory (CSEI and Snellen chart. In order to analyze results obtained from the present research, t-student test and correlation coefficient were used to investigate the relationship between the variables. Accordingly, the results indicated that: there is a statistically significant relationship between anxiety and self-esteem in students with Amblyopia (P˂0.000. Statistically significant difference in anxiety between male and female students with Amblyopia (P˂0.05 was observed. The results also showed that there is no any statistically significant difference in self-esteem between male and female students with Amblyopia (P˂0.66.

  10. Improving physical activity, mental health outcomes, and academic retention in college students with Freshman 5 to Thrive: COPE/Healthy Lifestyles.

    Science.gov (United States)

    Melnyk, Bernadette; Kelly, Stephanie; Jacobson, Diana; Arcoleo, Kimberly; Shaibi, Gabriel

    2014-06-01

    To assess the preliminary effects of a new course entitled Freshman 5 to Thrive/COPE Healthy Lifestyles on the cognitive beliefs, knowledge, mental health outcomes, healthy lifestyle choices, physical activity, and retention of college freshmen. Measures included demographics, nutrition knowledge, healthy lifestyle beliefs, healthy lifestyle perceived difficulty, healthy lifestyle choices, Beck Youth Inventories-II (anxiety, depression, anxiety, and destructive behavior), step count via pedometer, and college retention. The experimental COPE (Creating Opportunities for Personal Empowerment) group had greater intentions to live a healthy lifestyle (p = .02) versus the comparison group. COPE students also significantly increased their physical activity (p = .003) from baseline to postintervention and had a higher college retention rate than students who did not take the course. In addition, there was a significant decrease in depressive and anxiety symptoms in COPE students whose baseline scores were elevated. The Freshman 5 to Thrive Course is a promising intervention that can be used to enhance healthy lifestyle behaviors and improve mental health outcomes in college freshmen. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  11. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  12. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  13. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  14. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ... consist of special issues on major events or important thematic issues. ... of sources, including plant and animal by- products.

  15. The University of Minnesota Morris (UMM) STEP Program: an initiative to encourage the participation of Native Americans in the sciences

    Science.gov (United States)

    Cotter, J. F.

    2009-12-01

    The goal of the UMM STEP program is to increase the number of graduates in STEM fields through innovative curricular, recruiting and mentoring strategies. A unique focus of the UMM STEP program is increasing the number of Native American science majors. The STEP program fosters a summer research environment where peer interaction and mentoring creates a web of support. To do so we will establish a supportive and fulfilling pipeline that: 1) Identifies Native American students and involves them in research while they are high school; 2) Mentors and prepares participants for university academics the summer before their freshman year; 3) Provides a complete tuition waiver, mentoring and a support network throughout their undergraduate career; and 4) Involves participants in an active and dynamic summer undergraduate research environment where under-represented individuals are in the majority. The third and fourth components of this pipeline are in very good shape. The Morris campus was originally established as an Indian School in 1887. When the federal government deeded the Indian school campus to the University of Minnesota a stipulation was that Native American students attend the college for free. At present, 196 Native Americans are enrolled at UMM (50 are STEM majors). The UMM STEP research experience provides the unique opportunity to interact with a scientific community that both breaks down a number of traditional barriers and aids in the maturation of these students as scientists. In Summer 2008, 4 students were involved in summer research and in 2009 seven Native American students participated. Early efforts of the UMM STEP program are encouraging. UMM Admissions staff used the UMM STEP program to recruit Native American students and the P.I. phoned “uncommitted admits”, visited reservations and hosted reservation student visits. The result was an increase in freshman Native American Science majors from 7 in Fall 2007, 15 in fall 2008 and 20 in fall

  16. Big Science

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-05-15

    Astronomy, like particle physics, has become Big Science where the demands of front line research can outstrip the science budgets of whole nations. Thus came into being the European Southern Observatory (ESO), founded in 1962 to provide European scientists with a major modern observatory to study the southern sky under optimal conditions.

  17. Beating the Freshman 15

    Science.gov (United States)

    ... pile on the portions in the dining hall, eat dinners of french fries and ice cream, and indulge in sugary and salty snacks to fuel late-night study sessions. In addition, you ... sometimes eat in response to anxiety, homesickness, sadness, or stress, ...

  18. Freshman Health Topics

    Science.gov (United States)

    Hovde, Karen

    2011-01-01

    This article examines a cluster of health topics that are frequently selected by students in lower division classes. Topics address issues relating to addictive substances, including alcohol and tobacco, eating disorders, obesity, and dieting. Analysis of the topics examines their interrelationships and organization in the reference literature.…

  19. Flipping Freshman Mathematics

    Science.gov (United States)

    Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen

    2015-01-01

    Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…

  20. An investigation on the level of awareness, attitude, and interest among medicine, dentistry, and pharmacy students toward their majors on entering university: The case of Islamic Azad University, Tehran medical sciences branch

    Directory of Open Access Journals (Sweden)

    Farhad Adhami Moghadam

    2017-01-01

    Full Text Available Introduction: Having awareness, interest, and positive attitude toward one's fields of study leads to the development of a compatibility between demands and expectations on the one hand and future career on the other hand. This study was carried out to determine the level of awareness, attitude, and interest of medicine, dentistry, and pharmacy students of Islamic Azad University, Tehran Medical Sciences Branch toward their own field of study on entering university. Materials and Methods: This research is a basic descriptive study conducted on 273 students who had just entered university. This study was performed using census. Data collection instrument was a four-part questionnaire which included demographic information, and questions measuring students' awareness, attitude, and interest. Results: With regard to their field of study, there was no statistically significant difference in the average of students' awareness (P = 0.731. The attitude of medicine students was significantly more positive than pharmacy and dentistry students (P < 0.001, and the attitude of dentistry students was significantly more positive than that of pharmacy students (P = 0.460. Medical students' interest level was significantly higher than that of pharmacy and dentistry students (P < 0.05, and the interest level of dentistry students was significantly greater than the interest level of pharmacy students (P = 024/0. There was a statistically significant positive relationship between awareness and attitude and between awareness and interest in all of the study subjects (P < 0.001. Conclusion: The study results indicated that having a high level of awareness toward one's major led students studying in medicine, dentistry, and pharmacy to experience a more positive attitude and a higher level of interest. Thus, before entering the university, academic counseling will be beneficial for acquiring a better understanding of most majors, a goal which could be provided

  1. Personality, academic majors and performance

    DEFF Research Database (Denmark)

    Vedel, Anna; Thomsen, Dorthe Kirkegaard; Larsen, Lars

    2015-01-01

    Personality–performance research typically uses samples of psychology students without questioning their representativeness. The present article reports two studies challenging this practice. Study 1: group differences in the Big Five personality traits were explored between students (N = 1067......) in different academic majors (medicine, psychology, law, economics, political science, science, and arts/humanities), who were tested immediately after university enrolment. Study 2: six and a half years later the students’ academic records were obtained, and predictive validity of the Big Five personality...... traits and their subordinate facets was examined in the various academic majors in relation to Grade Point Average (GPA). Significant group differences in all Big Five personality traits were found between students in different academic majors. Also, variability in predictive validity of the Big Five...

  2. Early Engagement in Course-Based Research Increases Graduation Rates and Completion of Science, Engineering, and Mathematics Degrees.

    Science.gov (United States)

    Rodenbusch, Stacia E; Hernandez, Paul R; Simmons, Sarah L; Dolan, Erin L

    2016-01-01

    National efforts to transform undergraduate biology education call for research experiences to be an integral component of learning for all students. Course-based undergraduate research experiences, or CUREs, have been championed for engaging students in research at a scale that is not possible through apprenticeships in faculty research laboratories. Yet there are few if any studies that examine the long-term effects of participating in CUREs on desired student outcomes, such as graduating from college and completing a science, technology, engineering, and mathematics (STEM) major. One CURE program, the Freshman Research Initiative (FRI), has engaged thousands of first-year undergraduates over the past decade. Using propensity score-matching to control for student-level differences, we tested the effect of participating in FRI on students' probability of graduating with a STEM degree, probability of graduating within 6 yr, and grade point average (GPA) at graduation. Students who completed all three semesters of FRI were significantly more likely than their non-FRI peers to earn a STEM degree and graduate within 6 yr. FRI had no significant effect on students' GPAs at graduation. The effects were similar for diverse students. These results provide the most robust and best-controlled evidence to date to support calls for early involvement of undergraduates in research. © 2016 S. Rodenbusch et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Cognitive Styles Used in Evidence Citation by Ancient Christian Authors: The Psychology of a Major Ancient Controversy over the Historicity of the Pentateuch, and Its Implications for Science Education Today

    Directory of Open Access Journals (Sweden)

    Philip J. Senter

    2017-02-01

    Full Text Available Cognitive experiential self-theory recognizes two cognitive styles that humans use as modes of everyday thinking – experiential thinking and rational thinking – which appear to be products of two functional systems in the brain. These cognitive styles are diagnosable in writing samples of authors who cite evidence in support of a position. Here, I report an analysis of writing samples of opponents in a momentous ancient controversy. Christian authors of the first five centuries disagreed as to whether the stories in the Pentateuch were literal, accurate records of history that could be interpreted allegorically (the literocredist camp or included non-historical stories that were allegory only (the allophorist camp. Cognitive analysis of their evidence citations reveals a predominance of experiential thinking in literocredists and rational thinking in allophorists in reference to this question. This finding augments those of previous studies that implicate the experiential thinking system as the source of today’s biblical literocredism, and shows that the connection between experiential thinking and literocredism is millennia-old. This study also reveals that the allophorist position was dominant among Christian writers in the first three centuries and that the literocredist position did not rise into prominence until the fourth century, suggesting a major cognitive shift among theologians in that century. These findings elucidate the psychology of a prominent ancient controversy but also are relevant to current science education, because the literocredist mindset continues today as anti-evolution bias. The role of cognitive style in such bias has profound implications for classroom strategies for conceptual change.

  4. Ventures in science status report, Summer 1992. [Program description and Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrick, Wayne C.

    1992-01-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  5. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  6. Brewing Science

    Science.gov (United States)

    Pelter, Michael

    2006-01-01

    Following the brewing process from grain to glass, this course uses the biological and chemical principles of brewing to teach science to the nonscience major. Discussion of the scientific aspects of malting, mashing, fermentation, and the making of different beer styles is complemented by laboratory exercises that use scientific methods to…

  7. Wyndham Science.

    Science.gov (United States)

    Messel, H.

    Described is the Wyndham science component of the program designed for the six years of secondary schooling for students in New South Wales, Australia. A subjective evaluation of the program and suggestions for improving course materials and teaching are given. There are six major sections in the report: (1) a general outline of the structure and…

  8. Is normal science good science?

    Directory of Open Access Journals (Sweden)

    Adrianna Kępińska

    2015-09-01

    Full Text Available “Normal science” is a concept introduced by Thomas Kuhn in The Structure of Scientific Revolutions (1962. In Kuhn’s view, normal science means “puzzle solving”, solving problems within the paradigm—framework most successful in solving current major scientific problems—rather than producing major novelties. This paper examines Kuhnian and Popperian accounts of normal science and their criticisms to assess if normal science is good. The advantage of normal science according to Kuhn was “psychological”: subjective satisfaction from successful “puzzle solving”. Popper argues for an “intellectual” science, one that consistently refutes conjectures (hypotheses and offers new ideas rather than focus on personal advantages. His account is criticized as too impersonal and idealistic. Feyerabend’s perspective seems more balanced; he argues for a community that would introduce new ideas, defend old ones, and enable scientists to develop in line with their subjective preferences. The paper concludes that normal science has no one clear-cut set of criteria encompassing its meaning and enabling clear assessment.

  9. Wagging ETOM's Long Tail: MOOCs, Hangouts on Air, and Formal and Informal Undergraduate Experiences with Climate Change Science and Clean Energy Solutions

    Science.gov (United States)

    Haines-Stiles, G.; Alley, R. B.; Akuginow, E.; McNeal, K.; Blockstein, D.

    2014-12-01

    Climate change can reasonably be described as a "wicked problem" meaning that it is complex, difficult and multi-faceted, although critical to equitable development and the sustainability of human civilization. But while the Wikipedia definition says such problems are "impossible" to solve, not even to try will lead to certain failure. "Earth: The Operators' Manual" (ETOM) was an NSF-funded informal science education project with 3 hour-long TV programs appearing on PBS in 2011 and 2012, along with live presentations by series host, Penn State's Richard Alley, and others at 5 major science centers. Uniquely among climate change programming, ETOM gave equal time to identifying solutions along with climate science, and made all its materials freely available via YouTube. Formal and informal science educators can register to download HD videos for classroom and outreach use, and signups have ranged from middle schools to 4-year colleges. Building on the success of the series and Alley's companion tradebook of the same name, Penn State working with Coursera invited Alley to develop a MOOC entitled "Energy, The Environment and Our Future" that similarly combined the essential science along with clean energy solutions. The course reached more than 30,000 students in the first semester of 2014. More recently the ETOM team has partnered with the National Council for Science and the Environment (NCSE) to develop "READ for the EARTH," an NSF EAGER project, offering campuses the opportunity to adopt Alley's book, the ETOM videos (including "How To Talk To An Ostrich"), NCSE's www.CAMELclimatechange.org web site and other resources for both formal and informal uses. Some campuses have used the book with honors classes, and some are exploring adapting ETOM as a first year reading experience for all freshman. Our presentation will share reactions to the MOOC, to the pilot phases of "READ for the EARTH" and present both qualitative and quantitative results. Some of the most

  10. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  11. Introducing Research Methods to Undergraduate Majors Through an On-Campus Observatory with The University of Toledo's Ritter Observatory

    Science.gov (United States)

    Richardson, Noel; Hardegree-Ullman, Kevin; Bjorkman, Jon Eric; Bjorkman, Karen S.; Ritter Observing Team

    2017-01-01

    With a 1-m telescope on the University of Toledo (OH) main campus, we have initiated a grad student-undergraduate partnership to help teach the undergraduates observational methods and introduce them to research through peer mentorship. For the last 3 years, we have trained up to 21 undergraduates (primarily physics/astronomy majors) in a given academic semester, ranging from freshman to seniors. Various projects are currently being conducted by undergraduate students with guidance from graduate student mentors, including constructing three-color images, observations of transiting exoplanets, and determination of binary star orbits from echelle spectra. This academic year we initiated a large group research project to help students learn about the databases, journal repositories, and online observing tools astronomers use for day-to-day research. We discuss early inclusion in observational astronomy and research of these students and the impact it has on departmental retention, undergraduate involvement, and academic success.

  12. Major Sport Venues

    Data.gov (United States)

    Department of Homeland Security — The Major Public Venues dataset is composed of facilities that host events for the National Association for Stock Car Auto Racing, Indy Racing League, Major League...

  13. Major Depression Among Adults

    Science.gov (United States)

    ... Depressive Episode Among Adolescents Data Sources Share Major Depression Definitions Major depression is one of the most ... Bethesda, MD 20892-9663 Follow Us Facebook Twitter YouTube Google Plus NIMH Newsletter NIMH RSS Feed NIMH ...

  14. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  15. Effects of using presentation formats that accommodate the learner's multiple intelligences on the learning of freshman college chemistry concepts

    Science.gov (United States)

    Brown Wright, Gloria Aileen

    Howard Gardner's Theory of Multiple Intelligences identifies linguistic, spatial and logical-mathematical intelligences as necessary for learning in the physical sciences. He has identified nine intelligences which all persons possess to varying degrees, and says that learning is most effective when learners receive information in formats that correspond to their intelligence strengths. This research investigated the importance of the multiple intelligences of students in first-year college chemistry to the learning of chemistry concepts. At three pre-selected intervals during the first-semester course each participant received a tutorial on a chemistry topic, each time in a format corresponding to a different one of the three intelligences, just before the concept was introduced by the class lecturer. At the end of the experiment all subjects had experienced each of the three topics once and each format once, after which they were administered a validated instrument to measure their relative strengths in these three intelligences. The difference between a pre- and post-tutorial quiz administered on each occasion was used as a measure of learning. Most subjects were found to have similar strengths in the three intelligences and to benefit from the tutorials regardless of format. Where a difference in the extent of benefit occurred the difference was related to the chemistry concept. Data which indicate that students' preferences support these findings are also included and recommendations for extending this research to other intelligences are made.

  16. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  17. Age at Menarche and Choice of College Major: Implications for STEM Majors

    Science.gov (United States)

    Brenner-Shuman, Anna; Waren, Warren

    2013-01-01

    Even though boys and girls in childhood perform similarly in math and spatial thinking, after puberty fewer young women pursue majors that emphasize abilities such as science, technology, engineering, and math (STEM) in college. If postpubertal feminization contributes to a lower likelihood of choosing STEM majors, then young women who enter…

  18. Prospects after Major Trauma

    NARCIS (Netherlands)

    Holtslag, H.R.

    2007-01-01

    Introduction. After patients survived major trauma, their prospects, in terms of the consequences for functioning, are uncertain, which may impact severely on patient, family and society. The studies in this thesis describes the long-term outcomes of severe injured patients after major trauma. In

  19. Science and Community Engagement: Connecting Science Students with the Community

    Science.gov (United States)

    Lancor, Rachael; Schiebel, Amy

    2018-01-01

    In this article we describe a course on science outreach that was developed as part of our college's goal that all students participate in a meaningful community engagement experience. The Science & Community Engagement course provides a way for students with science or science-related majors to learn how to effectively communicate scientific…

  20. The Relationships among Learning Behaviors, Major Satisfaction, and Study Skills of First-Year Medical Students.

    Science.gov (United States)

    Park, Minjung

    2011-06-01

    This study aims at increasing our understanding of first-year medical students' learning behaviors, major satisfaction, and study skills. We investigate different features of freshmen's behavior in relation to learning and explore the extent to which freshmen were satisfied with their major and perceived their study skills. A total of 106 freshmen participated in this study. At midyear, first-year medical students were asked to complete a questionnaire that included the learning behaviors, major satisfaction, and study skills. The data collected from the survey were analyzed using t-test, ANOVA, chi-square test, correlation analysis, and multiple regression analysis. The study reported that most of freshmen had a lot of difficulties in studying at medical school by lack of prior learning. Despite first-year students, they were studying hard their major. Freshmen spent studying an average of 1 hour or less than 2 hours every day. The study also indicated that of major satisfaction, the overall satisfaction of the department was the highest and the satisfaction in learning environment was the lowest. There were significant differences among the freshmen on the major satisfaction due to admission process, academic performance, and housing type. Of 11 study skills, while freshman highly perceived their teamwork, stress management, and reading skills, their weak study skills identified in this study were writing, note taking, time management, and test taking skills. There were significant differences among the freshmen on the study skills due to gender and academic performance. Finally, freshmen's learning behaviors and major satisfaction were significantly associated with some of study skills. This study may have implications for the academic adjustment and learning processes in the first year. We need to consider variables such as learning behaviors, major satisfaction, and study skills, when discussing about how to maximize the learning potential of medical students

  1. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  2. Major operations and activities

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development.

  3. A major safety overhaul

    CERN Multimedia

    2003-01-01

    A redefined policy, a revamped safety course, an environmental project... the TIS (Technical Inspection and Safety) Division has begun a major safety overhaul. Its new head, Wolfgang Weingarten, explains to the Bulletin why and how this is happening.

  4. Allegheny County Major Rivers

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains locations of major rivers that flow through Allegheny County. These shapes have been taken from the Hydrology dataset. The Ohio River,...

  5. Major operations and activities

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development

  6. Exploring Pair Programming Benefits for MIS Majors

    Science.gov (United States)

    Dongo, Tendai; Reed, April H.; O'Hara, Margaret

    2016-01-01

    Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS) and Software Engineering (SE) majors have identified benefits such as technical productivity, program/design quality, academic…

  7. THE MAJOR COASTAL COMMUNITIES OF NORTH CAROLINA.

    Science.gov (United States)

    Marine Science Project, Beaufort, NC.

    IDENTIFIED IN THIS MARINE SCIENCE HANDBOOK ARE 5 MAJOR TYPES OF NATURAL HABITATS--(1) OPEN BEACH AND ANY OTHER SEAWARD-FACING, UNPROTECTED STRAND, (2) GROINS, JETTIES, PILINGS, AND ROCK BULKHEADS, (3) SAND AND/OR MUD FLAT, (4) SALT MARSH, AND (5) UPLAND COMMUNITIES. EACH HABITAT IS DESCRIBED IN TERMS OF TYPICAL PLANTS AND ANIMALS, ADAPTATIONS, AND…

  8. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  9. The effect of psycho-educational intervention on the life quality of major depressive patients referred to hospitals affiliated to Shiraz University of Medical Sciences in Shiraz-Iran.

    Science.gov (United States)

    Sharif, Farkhondeh; Nourian, Kheirollah; Ashkani, Hamid; Zoladl, Mohamad

    2012-09-01

    Depression is the world's fourth most prevalent health problem which is associated with substantial mortality, direct medical cost, diminished life quality, and significant physical and psychosocial impairment. This study aimed to investigate the effect of psycho-educational intervention on the life quality of major depressive patients. Sixty patients who were willing and had met the required criteria for participation were selected from hospitals in Shiraz city, Iran. So 30 of the patients were assigned to the experimental group and 30 others to the control group. For data collection, a two part questionnaire was developed, the first part consists of 13 items related to general characteristics and the second part with 36 items on life quality were used. The experimental group was divided into five subgroups of 6 patients. For each group, six intervention sessions were scheduled. The control group did not receive the intervention. The questionnaires were completed for all subjects in the experimental and control groups before and 1 month after the end of psycho-educational intervention. Tabulated data were analyzed using chi-square, independent and pair T-test. The results of the study indicated that psycho-educational intervention in comparison with other available treatments proved to be more effective on eight domains of life quality in the experimental group. A significant difference was observed for all the domains (P educational intervention can be used as an auxiliary treatment in improving life quality and decreasing depression in patients suffering from major depressive disorder.

  10. O contributo das ciências sociais para a análise de acidentes maiores: dois modelos em confronto The contribution of social sciences to analysis of major accidents: two models in comparison

    Directory of Open Access Journals (Sweden)

    João Areosa

    2012-07-01

    Full Text Available Os acidentes maiores são um problema social relevante, dado que podem afetar alguns pilares importantes das sociedades contemporâneas, como as populações, as infraestruturas ou as próprias organizações onde estes eventos ocorrerem. Este tipo de acidentes surge em organizações de alto-risco, onde interagem, entre outros, aspetos de natureza técnica, tecnológica, social e organizacional. Neste artigo confrontamos a perspetiva das organizações de alta fiabilidade e a teoria dos acidentes normais, explorando as principais virtudes e limites de cada um destes modelos. Iremos verificar que o seu modo de compreender os acidentes, bem como as formas de prevenção propostas são parcialmente antagónicos.Major accidents are a relevant social problem, because they can affect certain important pillars of contemporary societies such as population, infrastructures, and the very organizations in which the events occurred. Major accidents arise in high-risk organizations, where technical, technological, social, and organizational factors interact. In this paper we confront the theory of High Reliability Organizations (HRO and the Normal Accidents Theory (NAT, exploring the virtues and limitations of each model.

  11. Changing epistemological beliefs with nature of science implementations

    Science.gov (United States)

    Johnson, Keith; Willoughby, Shannon

    2018-06-01

    This article discusses our investigation regarding nature of science (NOS) implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS material was integrated into the classroom. Our original study covered two years of baseline data and one year of treatment data. Two additional years of treatment course data have revealed intriguing new insights into our students' epistemic belief structure. To monitor the evolution of belief structures across each semester we used student pre-post data on the Epistemological Beliefs About the Physical Sciences (EBAPS) assessment. The collected data were also partitioned and analyzed according to the following variables: college (Letters of Science, Business, Education, etc.), degree (BA or BS), status (freshman, sophomore, etc.), and gender (male or female). We find that the treatment course no longer undergoes significant overall epistemic deterioration after a semester of instruction. We also acquire a more detailed analysis of these findings utilizing the aforementioned variables. Most notably, we see that this intervention had a pronounced positive impact on males and on students within the college of Education, Arts & Architecture, and those with no concentration. Lastly, whether or not students believe their ability to learn science is innate or malleable did not seem to change, remaining a rigid construct with student epistemologies.

  12. Changing epistemological beliefs with nature of science implementations

    Directory of Open Access Journals (Sweden)

    Keith Johnson

    2018-02-01

    Full Text Available This article discusses our investigation regarding nature of science (NOS implementations and epistemological beliefs within an undergraduate introductory astronomy course. The five year study consists of two years of baseline data in which no explicit use of NOS material was implemented, then three years of subsequent data in which specific NOS material was integrated into the classroom. Our original study covered two years of baseline data and one year of treatment data. Two additional years of treatment course data have revealed intriguing new insights into our students’ epistemic belief structure. To monitor the evolution of belief structures across each semester we used student pre-post data on the Epistemological Beliefs About the Physical Sciences (EBAPS assessment. The collected data were also partitioned and analyzed according to the following variables: college (Letters of Science, Business, Education, etc., degree (BA or BS, status (freshman, sophomore, etc., and gender (male or female. We find that the treatment course no longer undergoes significant overall epistemic deterioration after a semester of instruction. We also acquire a more detailed analysis of these findings utilizing the aforementioned variables. Most notably, we see that this intervention had a pronounced positive impact on males and on students within the college of Education, Arts & Architecture, and those with no concentration. Lastly, whether or not students believe their ability to learn science is innate or malleable did not seem to change, remaining a rigid construct with student epistemologies.

  13. Major international sport profiles.

    Science.gov (United States)

    Patel, Dilip R; Stier, Bernhard; Luckstead, Eugene F

    2002-08-01

    Sports are part of the sociocultural fabric of all countries. Although different sports have their origins in different countries, many sports are now played worldwide. International sporting events bring athletes of many cultures together and provide the opportunity not only for athletic competition but also for sociocultural exchange and understanding among people. This article reviews five major sports with international appeal and participation: cricket, martial arts, field hockey, soccer, and tennis. For each sport, the major aspects of physiological and biomechanical demands, injuries, and prevention strategies are reviewed.

  14. Major New Initiatives

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Major New Initiatives. Multi-party multi-rate video conferencing OOPS. Live Lecture OOPS. Rural ATM Machine Vortex. Finger print detection HP-IITM. Medical Diagnostic kit NeuroSynaptic. LCD projection system TeNeT. Web Terminal MeTeL Midas. Entertainment ...

  15. Major planning enquiries

    Energy Technology Data Exchange (ETDEWEB)

    Shore, P

    1978-11-01

    This is a speech delivered by the U.K. Secretary of State for the Environment in Manchester (UK) on September 13th 1978. It outlines the Minister's views on the role and significance of major planning inquiries - such as that proposed to be held on the Commercial Demonstration Fast Reactor. (CDFR) (author).

  16. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  17. Unity in Major Themes

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Davis, Philip J.

    We describe and explain the desire, common among mathematicians, both for unity and independence in its major themes. In the dialogue that follows, we express our spontaneous and considered judgment and reservations; by contrasting the development of mathematics as a goal-driven process as opposed...

  18. Creativity Styles of Freshman Students.

    Science.gov (United States)

    Kumar, V. K.; And Others

    1991-01-01

    First-year college students (n=182) were tested to determine their beliefs about and approaches to creative endeavors. Students self-identified as creative employed a greater number of techniques such as brainstorming and were less motivated by the goal of developing a final product, compared to those identified as least creative. (JDD)

  19. Composing Science

    Science.gov (United States)

    Atkins, Leslie

    2015-03-01

    The course Scientific Inquiry at California State University was developed by faculty in biology, physics and English to meet ``writing proficiency'' requirements for non-science majors. Drawing from previous work in composition studies, the position that we take in this course is that we should be engaging students in writing that replicates the work that writing does in science, rather than replicating the particular structural conventions characteristic of scientific writing. That is, scientists use writing to have, remember, share, vet, challenge, and stabilize ideas, and our course requires students use writing to achieve those aims, rather than produce writing that obeys particular conventions of scientific writing. This talk will describe how we have integrated findings from composition studies with a course on scientific inquiry, and provide examples of how scientific communication has resulted from this dialogue. Funding by NSF #1140860.

  20. Language and Science.

    Science.gov (United States)

    Atkinson, Dwight

    1999-01-01

    Reviews recent applied linguistic research on science and language, especially studies conducted during the period between 1990 and 1998. Outlines major changes that have taken place in this area since van Naerssen and Kaplan's 1987 review. (Author/VWL)

  1. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  2. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  3. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    Bolderman, J. W.

    1997-01-01

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  4. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  5. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  6. The Ursa Major supercluster

    International Nuclear Information System (INIS)

    Schuch, N.J.

    1983-01-01

    An optical and a radio survey have been carried out. The optical observations consist of a spectroscopic survey in which redshift data for cluster galaxies and optical identifications of radio sources were obtained with the 98-inch Isaac Newton telescope at the Royal Greenwich Observatory, and the 200-inch Hale telescope; the photographic survey in B, V and R colors was made with the 48-inch Schmidt telescope at Palomar. Some results on the galaxy distribution in the Ursa Major supercluster are briefly discussed. (Auth.)

  7. Securing Major Events

    International Nuclear Information System (INIS)

    Loeoef, Susanna

    2013-01-01

    When asked why the IAEA should provide nuclear security support to countries that organize large public events, Nuclear Security Officer Sophia Miaw answers quickly and without hesitation. ''Imagine any major public event such as the Olympics, a football championship, or an Expo. If a dirty bomb were to be exploded at a site where tens of thousands of people congregate, the radioactive contamination would worsen the effects of the bomb, increase the number of casualties, impede a rapid emergency response, and cause long term disruption in the vicinity,'' she said. Avoiding such nightmarish scenarios is the driving purpose behind the assistance the IAEA offers States that host major sporting or other public events. The support can range from a single training course to a comprehensive programme that includes threat assessment, training, loaned equipment and exercises. The type and scope of assistance depends on the host country's needs. ''We incorporate nuclear security measures into their security plan. We don't create anything new,'' Miaw said

  8. Characterizing the epistemological development of physics majors

    Directory of Open Access Journals (Sweden)

    Elizabeth Gire

    2009-02-01

    Full Text Available Students in introductory physics courses are likely to have views about physics that differ from those of experts. However, students who continue to study physics eventually become experts themselves. Presumably these students either possess or develop more expertlike views. To investigate this process, the views of introductory physics students majoring in physics are compared with the views of introductory physics students majoring in engineering. In addition, the views of physics majors are assessed at various stages of degree progress. The Colorado learning attitudes about science survey is used to evaluate students’ views about physics, and students’ overall survey scores and responses to individual survey items are analyzed. Beginning physics majors are significantly more expertlike than nonmajors in introductory physics courses, and this high level of sophistication is consistent for most of undergraduate study.

  9. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Communicating Science

    Science.gov (United States)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience

  11. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  12. Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    G Grobler

    2013-08-01

    Full Text Available The treatment guideline draws on several international guidelines: (iPractice Guidelines of the American Psychiatric Association (APAfor the Treatment of Patients with Major Depressive Disorder, SecondEdition;[1](ii Clinical Guidelines for the Treatment of DepressiveDisorders by the Canadian Psychiatric Association and the CanadianNetwork for Mood and Anxiety Treatments (CANMAT;[2](iiiNational Institute for Clinical Excellence (NICE guidelines;[3](iv RoyalAustralian and New Zealand College of Psychiatrists Clinical PracticeGuidelines Team for Depression (RANZCAP;[4](v Texas MedicationAlgorithm Project (TMAP Guidelines;[5](vi World Federation ofSocieties of Biological Psychiatry (WFSBP Treatment Guideline forUnipolar Depressive Disorder;[6]and (vii British Association forPsychopharmacology Guidelines.[7

  13. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  14. Science Curriculum Guide, Level 4.

    Science.gov (United States)

    Newark School District, DE.

    The fourth of four levels in a K-12 science curriculum is outlined. In Level 4 (grades 9-12), science areas include earth science, biology, chemistry, and physics. Six major themes provide the basis for study in all levels (K-12). These are: Change, Continuity, Diversity, Interaction, Limitation, and Organization. In Level 4, all six themes are…

  15. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  16. Informal learning in SME majors for African American female undergraduates

    OpenAIRE

    Ezella McPherson

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as the framework to better understand their opportunities to engage in free-choice science learning. The article demonstrates that African American women have access to cultural capital and informal sci...

  17. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  18. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  19. The science writing tool

    Science.gov (United States)

    Schuhart, Arthur L.

    This is a two-part dissertation. The primary part is the text of a science-based composition rhetoric and reader called The Science Writing Tool. This textbook has seven chapters dealing with topics in Science Rhetoric. Each chapter includes a variety of examples of science writing, discussion questions, writing assignments, and instructional resources. The purpose of this text is to introduce lower-division college science majors to the role that rhetoric and communication plays in the conduct of Science, and how these skills contribute to a successful career in Science. The text is designed as a "tool kit," for use by an instructor constructing a science-based composition course or a writing-intensive Science course. The second part of this part of this dissertation reports on student reactions to draft portions of The Science Writing Tool text. In this report, students of English Composition II at Northern Virginia Community College-Annandale were surveyed about their attitudes toward course materials and topics included. The findings were used to revise and expand The Science Writing Tool.

  20. Women's decision to major in STEM fields

    Science.gov (United States)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer

  1. A Sustainable Energy Laboratory Course for Non-Science Majors

    Science.gov (United States)

    Nathan, Stephen A.; Loxsom, Fred

    2016-01-01

    Sustainable energy is growing in importance as the public becomes more aware of climate change and the need to satisfy our society's energy demands while minimizing environmental impacts. To further this awareness and to better prepare a workforce for "green careers," we developed a sustainable energy laboratory course that is suitable…

  2. ISO Science Legacy A Compact Review of ISO Major Achievements

    CERN Document Server

    Cesarsky, Catherine J

    2006-01-01

    Stars are born and die in clouds of gas and dust, opaque to most types of radiation, but transparent in the infrared. Requiring complex detectors, space missions and cooled telescopes, infrared astronomy is the last branch of this discipline to come of age. After a very successful sky survey performed in the eighties by the IRAS satellite, the Infrared Space Observatory, in the nineties, brought spectacular advances in the understanding of the processes giving rise to powerful infrared emission by a great variety of celestial sources. Outstanding results have been obtained on the bright comet Hale-Bopp, and in particular of its water spectrum, as well as on the formation, chemistry and dynamics of planetary objects in the solar system. Ideas on the early stages of stellar formation and on the stellar initial mass function have been clarified. ISO is the first facility in space able to provide a systematic diagnosis of the physical phenomena and the chemistry in the close environment of pre-main sequence stars...

  3. A comparison of major petroleum life cycle models | Science ...

    Science.gov (United States)

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  4. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  5. Using Robotics to Improve Retention and Increase Comprehension in Introductory Programming Courses

    Science.gov (United States)

    Pullan, Marie

    2013-01-01

    Several college majors, outside of computer science, require students to learn computer programming. Many students have difficulty getting through the programming sequence and ultimately change majors or drop out of college. To deal with this problem, active learning techniques were developed and implemented in a freshman programming logic and…

  6. Using Amphibians and Reptiles to Learn the Process of Science

    Science.gov (United States)

    Greene, Janice Schnake; Greene, Brian D.

    2005-01-01

    Although every student must take some science courses to graduate, understanding the process of science is important, and some students never seem to really grasp science. The National Science Education Standards stress process as a major component in science instruction. The standards state that scientific inquiry is basic to science education…

  7. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  8. Informal learning in SME majors for African American female undergraduates

    Directory of Open Access Journals (Sweden)

    Ezella McPherson

    2014-11-01

    Full Text Available This research investigates how eight undergraduate African American women in science, math, and engineering (SME majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as the framework to better understand their opportunities to engage in free-choice science learning. The article demonstrates that African American women have access to cultural capital and informal science learning inside and outside of home and school environments in P-16 settings. In primary and secondary schools, African American girls acquire cultural capital and access to free-choice science learning in the home environment, museums, science fairs, student organizations and clubs. However, in high school African American female teenagers have fewer informal science learning opportunities like those such as those provided in primary school settings. In college, cultural capital is transmitted through informal science learning that consisted of involvement in student organizations, research projects, seminars, and conferences. These experiences contributed to their engagement and persistence in SME fields in K-16 settings. This research adds to cultural capital and informal science learning research by allowing scholars to better understand how African American women have opportunities to learn about the hidden curriculum of science through informal science settings throughout the educational pipeline.

  9. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  10. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  11. The Majority of Library Clients Still Use Person-to-Person Interaction When Asking Reference Questions. A review of: De Groote, Sandra L. “Questions Asked at the Virtual and Physical Health Sciences Reference Desk: How Do They Compare and What Do They Tell Us?” Medical Reference Services Quarterly 24.2 (Summer 2005: 11-23.

    Directory of Open Access Journals (Sweden)

    Suzanne Pamela Lewis

    2006-03-01

    /staff. undergarduate student, graduate student, non0UIC, unknown; mode of submission (email, chat, phone, in person; and type of question asked (directional, ready reference, in-depth/mediated, instructional, technical, accounts/status and other. In subsequent analysis, the original seven types of questions were further broken down into 19 categories. Main results - It was not possible to undertake a meta-analysis or systematic review of the studies identified in the literature review because of differences in time frames, settings and the categories used to code reference questions. However the following trends emerged: directional questions accounted for between 30 and 35% of questions asked at both the physical and virtual reference desks; the remainder of questions were generally about known item searched, library policies and services, research, dadabase use and quick reference. The statistics collected at UIC Library of the Health Sciences over the period July 1997 to June 2003 were analyzed. Coded reference questions fell into one of four categories; ready reference, in-depth reference, mediated searched and digital reference. There was a noticeable drop in the number of reference questions received in 1999/2000 which reflects trends reported in some of the studies identified in the literature review. The number of mediated searches decreased from 154 in 1997-98 to 4 in 2002/2003, but the number of digital reference questions increased from 0 to 508 in the same period. Statistics were collected over the month of November 2003 for 939 questions asked at the reference and information desks which included: 38 email; 48 chat; 156 phone; and 697 in person. The major findings were as follows: - appoximately 55% of questions were reference questions (33.5% ready reference, 9.7% in-depth/mediated, 9.7% instructional; 30% were directional; and 10% were technical; it is not stated what the remaining 5% of questions were; - library clients who asked the questions comprised graduate

  12. Access to major overseas research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bolderman, J. W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year. 1 fig.

  13. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  14. The structural science of functional materials.

    Science.gov (United States)

    Catlow, C Richard A

    2018-01-01

    The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.

  15. Exploration of Science Parks

    Institute of Scientific and Technical Information of China (English)

    Xiong Huibing; Sun Nengli

    2005-01-01

    Science parks have developed gready in the world, whereas empirical researches have showed that science parks based on linear model cannot guarantee the creation of innovation. Hi-tech innovation is derived from flow and management of information. The commercial and social interactions between in-parks and off-park firms and research institutions act as the key determinant for innovation.Industrial clustering is the rational choice for further developing Chinese science parks and solving some problems such as the lack of dear major industries and strong innovation sense, etc.

  16. Using the Humanities to Teach Neuroscience to Non-majors.

    Science.gov (United States)

    McFarlane, Hewlet G; Richeimer, Joel

    2015-01-01

    We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement.

  17. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  18. Evaluation Science

    Science.gov (United States)

    Patton, Michael Quinn

    2018-01-01

    Culturally and politically science is under attack. The core consequence of perceiving and asserting evaluation as science is that it enhances our credibility and effectiveness in supporting the importance of science in our world and brings us together with other scientists to make common cause in supporting and advocating for science. Other…

  19. Science/s.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Tricoire

    2005-03-01

    Full Text Available Un forum a été organisé en mars par la Commission européenne. Il s’appelait « Science in Society ». Depuis 2000 la Commission a mis en place un Plan d’Action élaboré pour que soit promue « la science » au sein du public, afin que les citoyens prennent de bonnes décisions, des décisions informées. Il s’agit donc de développer la réflexivité au sein de la société, pour que cette dernière agisse avec discernement dans un monde qu’elle travaille à rendre durable. ...

  20. Weaving History through the Major

    Science.gov (United States)

    Mayfield, Betty

    2014-01-01

    The benefits of including the study of the history of mathematics in the education of mathematics majors have been discussed at length elsewhere. Many colleges and universities now offer a History of Mathematics course for mathematics majors, for mathematics education majors, or for general credit. At Hood College, we emphasize our commitment to…

  1. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  2. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  3. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  4. Hollywood Science: Good for Hollywood, Bad for Science?

    Science.gov (United States)

    Perkowitz, Sidney

    2009-03-01

    Like it or not, most science depicted in feature films is in the form of science fiction. This isn't likely to change any time soon, if only because science fiction films are huge moneymakers for Hollywood. But beyond that, these films are a powerful cultural force. They reach millions as they depict scientific ideas from DNA and cloning to space science, whether correctly or incorrectly; reflect contemporary issues of science and society like climate change, nuclear power and biowarfare; inspire young people to become scientists; and provide defining images -- or stereotypes -- of scientists for the majority of people who've never met a real one. Certainly, most scientists feel that screen depictions of science and scientists are badly distorted. Many are, but not always. In this talk, based on my book Hollywood Science [1], I'll show examples of good and bad screen treatments of science, scientists, and their impact on society. I'll also discuss efforts to improve how science is treated in film and ways to use even bad movie science to convey real science. [4pt] [1] Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, New York, 2007). ISBN: 978-0231142809

  5. Exploring Pair Programming Benefits for MIS Majors

    Directory of Open Access Journals (Sweden)

    April H. Reed

    2016-12-01

    Full Text Available Pair programming is a collaborative programming practice that places participants in dyads, working in tandem at one computer to complete programming assignments. Pair programming studies with Computer Science (CS and Software Engineering (SE majors have identified benefits such as technical productivity, program/design quality, academic performance, and increased satisfaction for their participants. In this paper, pair programming is studied with Management Information Systems (MIS majors, who (unlike CS and SE majors taking several programming courses typically take only one programming course and often struggle to develop advanced programming skills within that single course. The researchers conducted two pair programming experiments in an introductory software development course for MIS majors over three semesters to determine if pair programming could enhance learning for MIS students. The program results, researchers’ direct observations, and participants’ responses to a survey questionnaire were analyzed after each experiment. The results indicate that pair programming appears to be beneficial to MIS students’ technical productivity and program design quality, specifically the ability to create programs using high-level concepts. Additionally, results confirmed increased student satisfaction and reduced frustration, as the pairs worked collaboratively to produce a program while actively communicating and enjoying the process.

  6. The National Science Foundation and the History of Science

    Science.gov (United States)

    Rothenberg, Marc

    2014-01-01

    The National Science Foundation (NSF) is the major funder of the history of science in the United States. Between 1958 and 2010, the NSF program for the history of science has given 89 awards in the history of astronomy. This paper analyzes the award recipients and subject areas of the awards and notes significant shifts in the concentration of award recipients and the chronological focus of the research being funded.

  7. Communicating Science: The Profile of Science Journalists in Spain

    Science.gov (United States)

    Cassany, Roger; Cortiñas, Sergi; Elduque, Albert

    2018-01-01

    Science journalists are mainly responsible for publicly communicating science, which, in turn, is a major indicator of the social development of democratic societies. The transmission of quality scientific information that is rigorously researched and understandable is therefore crucial, and demand for this kind of information from both…

  8. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samir M Zaid. Articles written in Journal of Earth System Science. Volume 126 Issue 4 June 2017 pp 50. Provenance of coastal dune sands along Red Sea, Egypt · Samir M Zaid · More Details Abstract Fulltext PDF. Texture, mineralogy, and major and trace element ...

  9. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  10. Modern Science Fiction.

    Science.gov (United States)

    Dailey, Jennie Ora Marriott

    The major prerequisite to studying science fiction as literature is determining the criteria by which it is to be evaluated. A middle ground which recognizes both literary merit and the genre's uniqueness (scientific orientation, dominancy of idea, and interest of speculation) proves to be the most workable approach and stresses the versatility…

  11. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  12. Mathematical Sciences in Australia

    Science.gov (United States)

    Thomas, Jan; Muchatuta, Michelle; Wood, Leigh

    2009-01-01

    This article investigates enrolment trends in mathematical sciences in Australian universities. Data has been difficult to extract and the coding for mathematical disciplines has made investigation challenging. We show that the number of mathematics major undergraduates in Australia is steadily declining though the number studying…

  13. Better Science Through Safety.

    Science.gov (United States)

    Gerlovich, Jack A.; Downs, Gary E.

    Following a brief description of the major components found effective in school safety programs (safety management, education, and services) and data on school accidents in Iowa, this book addresses various aspects of safety related to science instruction, emphasizing that responsibility for safety must be shared by both teacher and students.…

  14. Communicating science beyond the MMJ

    African Journals Online (AJOL)

    nanotechnology, fracking, and GMOs, just to name a few hot topics of recent years. In Malawi, levels of poverty, literacy, and access to information are challenges to science communication. However, given that the majority of research conducted in Malawi is medical or social science-related and involves human subjects, ...

  15. The Incoming Statistical Knowledge of Undergraduate Majors in a Department of Mathematics and Statistics

    Science.gov (United States)

    Cook, Samuel A.; Fukawa-Connelly, Timothy

    2016-01-01

    Studies have shown that at the end of an introductory statistics course, students struggle with building block concepts, such as mean and standard deviation, and rely on procedural understandings of the concepts. This study aims to investigate the understandings entering freshman of a department of mathematics and statistics (including mathematics…

  16. How the “Queen Science” Lost Her Crown: A Brief Social History of Science Fairs and the Marginalization of Social Science

    Directory of Open Access Journals (Sweden)

    Jonathan Marx

    2004-10-01

    Full Text Available Science fairs at one time started out with an interest of increasing participation in the sciences. But as time has passed, the definition of science has been narrowed to the point where any possible social science project has been eliminated in favor of the bench sciences only. Even here, natural curiosity of students has been deemphasized. It is not surprising that science majors in the USA are becoming fewer and fewer given the narrowing of the disciplines. Young people are discouraged from majoring in science by the science establishment.

  17. Sciences & Nature

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... Sciences & Nature, the Scientific Journal edited by the University of ... Subjects covered include agronomy, sciences of the earth, environment, biological, ...

  18. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ..... circulation patterns include the nutrient-rich Somali ...... matical Structures in Computer Science 24: e240311.

  19. Unconventional Internships for English Majors.

    Science.gov (United States)

    Otto, Don H.

    After five years of research, the English department at St. Cloud (Minnesota) State University created an internship program for English majors. The philosophy behind the program is that the typical experience of the English major in college is excellent preparation for what the college graduate will be doing in most careers in business,…

  20. Do You Have Major Depression?

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Depression Do You Have Major Depression? Past Issues / Fall 2009 Table of Contents Simple ... member may have major depression. —NIMH Types of Depression Just like other illnesses, such as heart disease, ...

  1. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    interesting and daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'.Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials.InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid–liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices.Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single

  2. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  3. An Introductory Course: The Vector Space Theory of Matter

    Science.gov (United States)

    Matsen, F. A.

    1972-01-01

    A course for superior freshmen for both science and liberal arts majors that satisfies the freshman chemistry requirement is discussed. It has been taught for six years and utilizes the new math'' which is based on the elementary concept of a set. A syllabus for the two semesters is included. (DF)

  4. 2015 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2016-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation, e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  5. Factors that influence women's dispositions toward science

    Science.gov (United States)

    Atria, Catherine Graczyk

    Females have been underrepresented in the study of science and science careers for decades although advancements have been made in closing this gender gap, the gap persists particularly in the physical sciences. Variables which influence a woman's desire to pursue and maintain a science course of study and career must be discovered. The United States lags behind other industrialized countries in the fields of science, math, and engineering. Females comprise an estimated half of the population; their potential contributions cannot be ignored or overlooked. This retrospective research study explores the personal experiences of ten women enrolled in science majors, with science related career plans. The goal of this study is to describe the factors that influence the participants' interest in science. The findings, the effect of science coursework, science teachers' personality and manner, other influential educational personnel, role models and mentors, external influences exclusive of school, parental influence, locus of control and positive attitudes toward science confirm what other researchers have found.

  6. Why did you decide to become a Geoscience Major: A Critical Incident Study for the Development of Recruiting Programs for Inspiring Interests in the Geosciences Amongst Pre-College Students

    Science.gov (United States)

    Carrick, T. L.; Miller, K. C.; Levine, R.; Martinez-Sussmann, C.; Velasco, A. A.

    2011-12-01

    Anecdotally, it is often stated that the majority of students that enter the geosciences usually do so sometime after their initial entrance into college. With the objective of providing concrete and useful information for individuals developing programs for inspiring interest in the Geosciences amongst pre-college students and trying to increase the number of freshman Geoscience majors, we conducted a critical incident study. Twenty-two students, who were undergraduate or graduate Geoscience majors, were asked, "Why did you decide to major in the Geosciences?" in a series of interviews. Their responses were then used to identify over 100 critical incidents, each of which described a specific behavior that was causally responsible for a student's choice to major in Geoscience. Using these critical incidents, we developed a preliminary taxonomy that is comprised of three major categories: Informal Exposure to the Geosciences (e.g., outdoor experiences, family involvement), Formal Exposure to the Geosciences (e.g., academic experiences, program participation) and a Combined Informal and Formal Exposure (e.g., media exposure). Within these three main categories we identified thirteen subcategories. These categories and subcategories, describe, classify, and provide concrete examples of strategies that were responsible for geosciences career choices. As a whole, the taxonomy is valuable as a new, data-based guide for designing geosciences recruitment programs for the pre-college student population.

  7. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'. Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials. InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid-liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices. Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single carbon

  8. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  9. Stenting of major airway constriction

    International Nuclear Information System (INIS)

    Wu Xiaomei

    2002-01-01

    Objective: To investigate the correlated issues in the stenting treatment of major airway constriction. Methods: Nineteen cases of major airway stenting procedure were studied retrospectively. The clinical choice of stents of different advantages or deficiencies were discussed. The importance of intravenous anesthesia supporting, life-parameters monitoring during the procedures and the prevention of complications were analysed. Results: Under intravenous and local anesthesia, 19 Wallstents had been successively placed and relieved 19 cases of major airway constrictions due to malignant or benign diseases (15 of tumors, 3 of tuberculosis, 1 of tracheomalacia). Intravenous anesthesia and life-parameters monitoring had made the procedures more safe and precise. Conclusions: Major airway stenting is an reliable method for relieving tracheobronchial stenosis; and intravenous anesthesia supporting and life-parameters monitoring guarantee the satisfactions of procedures

  10. Major hazards onshore and offshore

    International Nuclear Information System (INIS)

    1992-01-01

    This symposium continues the tradition of bringing together papers on a topic of current interest and importance in terms of process safety - in this case, Major Hazards Onshore and Offshore. Lord Cullen in his report on the Piper Alpha disaster has, in effect, suggested that the experience gained in the control of major hazards onshore during the 1980s should be applied to improve safety offshore during the 1990s. This major three-day symposium reviews what has been learned so far with regard to major hazards and considers its present and future applications both onshore and offshore. The topics covered in the programme are wide ranging and deal with all aspects of legislation, the application of regulations, techniques for evaluating hazards and prescribing safety measures in design, construction and operation, the importance of the human factors, and recent technical developments in protective measures, relief venting and predicting the consequences of fires and explosions. (author)

  11. Capabilities: Science Pillars

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  12. Faces of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  13. Bradbury Science Museum

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  14. Office of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  15. Liquid in the major incision

    International Nuclear Information System (INIS)

    Herrera Jaramillo, Diego Alberto; Ortega Jaramillo, Hector

    2003-01-01

    We present the case of a patient with spill pleural extending in the left major incision. In the chest thorax PA, we could observe one of the complex radiographic appearances that take the reconfiguration of fluid in this localization, being this appearance dependent of the patient's position. Some points are also discussed on the anatomy of the major incisions and some of their radiographic characteristics

  16. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  17. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  18. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    Science.gov (United States)

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  19. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  20. Japan's Four Major Smart Cities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    A brief overview is given of initiatives, developments, projects, investment, incentives and business opportunities for Dutch companies in Japan with regard to smart cities. The four major smart cities are Yokohama City, Toyota City, Keihanna City (Kyoto Prefecture's Kansai Science Park), and Kitakyushu City.

  1. Predicting mortality in damage control surgery for major abdominal ...

    African Journals Online (AJOL)

    has increased the survival rate after major trauma to over. 50%.1-6. The term ... Package for the Social Sciences (SPSS) for Windows, ver- sion 12.0 (SAS .... J Surg 2004; 91: 1095-1101. 8. American College of Surgeon's Committee on Trauma. Advanced Trauma. Life Support Manual. Chicago: ACS, 1997: 11-242. Table Iv.

  2. An Animated Introduction to Relational Databases for Many Majors

    Science.gov (United States)

    Dietrich, Suzanne W.; Goelman, Don; Borror, Connie M.; Crook, Sharon M.

    2015-01-01

    Database technology affects many disciplines beyond computer science and business. This paper describes two animations developed with images and color that visually and dynamically introduce fundamental relational database concepts and querying to students of many majors. The goal is for educators in diverse academic disciplines to incorporate the…

  3. Preparation of Social Studies Teachers at Major Research Universities.

    Science.gov (United States)

    Dumas, Wayne

    1993-01-01

    Reports on a study of the preparation of secondary social studies teachers at major state-supported research universities. Finds relatively few institutions have followed the Holmes Group recommendations and many continue to prepare broad field social studies teachers leaving them deficient in some social science fields. (CFR)

  4. The Experience and Persistence of College Students in STEM Majors

    Science.gov (United States)

    Xu, Yonghong Jade

    2018-01-01

    In this study, an online survey was constructed based on the extant literature on college student success. The survey was used to collect data from a sample of college students in science, technology, engineering, and math (STEM) majors in order to examine their learning experiences and to identify the factors that may influence their persistence…

  5. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  6. Major ion chemistry of the Son River, India: Weathering processes ...

    Indian Academy of Sciences (India)

    Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment. Chinmaya Maharana, Sandeep Kumar Gautam,. Abhay Kumar Singh and Jayant K Tripathi. J. Earth Syst. Sci. 124(6) cO Indian Academy of Sciences. Supplementary data ...

  7. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  8. Science and technology

    CERN Document Server

    Chorafas, Dimitris N

    2014-01-01

    The aim of this book is to explore science and technology from the viewpoint of creating new knowledge, as opposed to the reinterpretation of existing knowledge in ever greater but uncertain detail. Scientists and technologists make progress by distinguishing between what they regard as meaningful and what they consider as secondary or unimportant. The meaningful is dynamic; typically, the less important is static. Science and technology have made a major contribution to the culture and to the standard of living of our society. From antiquity to the present day, the most distinguished scientis

  9. Using the Humanities to Teach Neuroscience to Non-majors

    Science.gov (United States)

    McFarlane, Hewlet G.; Richeimer, Joel

    2015-01-01

    We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement. PMID:26240533

  10. Doubling the number of physics majors who teach

    Science.gov (United States)

    Marder, Michael

    2009-03-01

    The American Physical Society has adopted a doubling initiative to increase the number of physics majors. One of the main motivations is to increase the number of physics majors certified to teach secondary physics. I will review some of the possible strategies for reaching this goal, and discuss some of the steps we have taken with UTeach, the program for secondary science and mathematics teacher preparation at The University of Texas at Austin.I will discuss the roles of curriculum revision, financial support, and community support in convincing majors to teach. Finally, I will talk about the expansion of UTeach into engineering.

  11. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  12. Major Decisions: Motivations for Selecting a Major, Satisfaction, and Belonging

    Science.gov (United States)

    Soria, Krista M.; Stebleton, Michael

    2013-01-01

    In this paper, we analyzed the relationship between students' motivations for choosing academic majors and their satisfaction and sense of belonging on campus. Based on a multi-institutional survey of students who attended large, public, research universities in 2009, the results suggest that external extrinsic motivations for selecting a major…

  13. Deconstructing science

    Science.gov (United States)

    Trifonas, Peter Pericles

    2012-12-01

    In this paper I expand on the premises of Jesse Bazzul's thesis in his paper, Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity, exploring the implications of the ideologies within the culturally emerging logic of science exposes the incommensurability of intents and purposes in its methods and epistemology. I argue that science needs to acknowledge the subjectivity at its core to make space for non-absolute agents and new fields of study.

  14. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  15. A Midsummer Night's Science

    CERN Multimedia

    2001-01-01

    Last year, the first Science Night attracted nearly 1500 people. Dipping into history for the space of one night? This is the idea of Geneva's Museum of the History of Science, which is organizing its second Science Night, on 7 and 8 July, on the history of science. The first such event, held last year, was a considerable success with almost 15 000 visitors. The second Science Night, to be held in the magnificent setting of the Perle du Lac Park in Geneva, promises to be a winner too. By making science retell its own history, this major event is intended to show how every scientific and technical breakthrough is the culmination of a long period of growth that began hundreds of years in the past. Dozens of activities and events are included in this programme of time travel: visitors can study the night sky through telescopes and see what Galileo first observed, and then go to see a play on the life of the Italian scientist. Another play, commissioned specially for the occasion, will honour Geneva botanist De ...

  16. Science transfer for development

    International Nuclear Information System (INIS)

    Salam, A.

    1985-01-01

    Despite the recent realisation that science and technology are the sustenance and major hope for economic betterment, the third world, barring a few countries like Argentina, Brazil, China and India, has taken to science - as distinct from technology - as only a marginal activity. This is also true of the aid - giving agencies of the richer countries, of the agencies of the UN and also unfortunately of the scientific communities of the developed countries which might naturally be expected to be the Third World's foremost allies. Policy makers, prestigious commissions (like the Brandt Commission) as well as aid-givers, speak uniformly of problems of technology transfer to the developing countries as if that is all that is involved. Very few within the developing world appear to stress that for long term effectiveness, technology transfers must always be accompanied by science transfers; that the science of today is the technology of tomorrow. Science transfer is effected by and to communities of scientists. Such communities (in developing countries) need building up to a critical size in their human resources and infrastructure. This building up calls for wise science policies, with long term commitment, generous patronage, self governance and free international contacts. Further, in our countries, the high level scientist must be allowed to play a role in nation building as an equal partner to the professional planner, the economist and the technologist. Few developing countries have promulgated such policies: few aid agencies have taken it as their mandate to encourage and help build up the scientific infrastructure. (author)

  17. Australian synchrotron radiation science

    International Nuclear Information System (INIS)

    White, J.W.

    1996-01-01

    Full text: The Australian Synchrotron Radiation Program, ASRP, has been set up as a major national research facility to provide facilities for scientists and technologists in physics, chemistry, biology and materials science who need access to synchrotron radiation. Australia has a strong tradition in crystallography and structure determination covering small molecule crystallography, biological and protein crystallography, diffraction science and materials science and several strong groups are working in x-ray optics, soft x-ray and vacuum ultra-violet physics. A number of groups whose primary interest is in the structure and dynamics of surfaces, catalysts, polymer and surfactant science and colloid science are hoping to use scattering methods and, if experience in Europe, Japan and USA can be taken as a guide, many of these groups will need third generation synchrotron access. To provide for this growing community, the Australian National Beamline at the Photon Factory, Tsukuba, Japan, has been established since 1990 through a generous collaboration with Japanese colleagues, the beamline equipment being largely produced in Australia. This will be supplemented in 1997 with access to the world's most powerful synchrotron x-ray source at the Advanced Photon Source, Argonne National Laboratory, USA. Some recent experiments in surface science using neutrons as well as x-rays from the Australian National Beamline will be used to illustrate one of the challenges that synchrotron x-rays may meet

  18. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  19. Longitudinal assessment of neuropsychological function in major depression.

    Science.gov (United States)

    Douglas, Katie M; Porter, Richard J

    2009-12-01

    Neuropsychological impairment is a core component of major depression, yet its relationship to clinical state is unclear. The aims of the present review were to determine which neuropsychological domains and tasks were most sensitive to improvement in clinical state in major depression and to highlight the methodological issues in such research. Studies that included a baseline and at least one follow-up neuropsychological testing session in adults with major depression were identified using MEDLINE, Web of Science and ScienceDirect databases. Thirty studies were included in the review. Findings in younger adult populations suggested that improvement in mood was most strongly related to improved verbal memory and verbal fluency, while measures of executive functioning and attention tended to remain impaired across treatment. In late-life major depression, improved psychomotor speed was most closely related to treatment response, but there was much inconsistency between study findings, which may be due to methodological issues. In major depression, particular neuropsychological domains are more strongly related to clinical state than others. The findings from the present review suggest that the domains most sensitive to clinical state are verbal learning and memory, verbal fluency and psychomotor speed. In contrast, measures of attention and executive functioning perhaps represent more trait-like markers of major depression. With further methodologically sound research, the changes in neuropsychological function associated with treatment response may provide a means of evaluating different treatment strategies in major depression.

  20. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  1. Experiences that influence a student's choice on majoring in physics

    Science.gov (United States)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an

  2. Inequalities Theory of Majorization and Its Applications

    CERN Document Server

    Marshall, Albert W; Arnold, Barry

    2011-01-01

    This book’s first edition has been widely cited by researchers in diverse fields. The following are excerpts from reviews. “Inequalities: Theory of Majorization and its Applications” merits strong praise. It is innovative, coherent, well written and, most importantly, a pleasure to read. … This work is a valuable resource!” (Mathematical Reviews). “The authors … present an extremely rich collection of inequalities in a remarkably coherent and unified approach. The book is a major work on inequalities, rich in content and original in organization.” (Siam Review). “The appearance of … Inequalities in 1979 had a great impact on the mathematical sciences. By showing how a single concept unified a staggering amount of material from widely diverse disciplines–probability, geometry, statistics, operations research, etc.–this work was a revelation to those of us who had been trying to make sense of his own corner of this material.” (Linear Algebra and its Applications). This greatly expanded...

  3. Life sciences recruitment objectives

    Science.gov (United States)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  4. The Art and Science of Tactics

    Science.gov (United States)

    1977-01-01

    THE ART AND SCIENCE OF TACTICS by MAJOR ROBERT A. DOUGHTY, US ARMY E stablishing the nature of tactics has been a pastime of professional...tactics in the US Army have implicitly begun to assume that tactics is more an exact science than an " art and science ." As one recent military writer...and 19th centuries generally agreed that tactics was more an art than it was a science . Many agreed with the terse definition given by Antoine

  5. The Art and Science of Defense Logistics

    Science.gov (United States)

    1995-04-01

    The Art And Science Of Defense Logistics CSC 1995 SUBJECT AREA - Logistics THE ART AND SCIENCE OF DEFENSE LOGISTICS...Government EXECUTIVE SUMMARY Title: The Art and Science of Defense Logistics Author: Major S. I. Schuler, USMC Research Questions: 1...00-1995 4. TITLE AND SUBTITLE The Art And Science Of Defense Logistics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  6. Materials Sciences Division long range plan

    International Nuclear Information System (INIS)

    1984-12-01

    The intent of this document is to provide a framework for programmatic guidance into the future for Materials Sciences. The Materials Sciences program is the basic research program for materials in the Department of Energy. It includes a wide variety of activities associated with the sciences related to materials. It also includes the support for developing, constructing, and operating major facilities which are used extensively but not exclusively by the materials sciences

  7. Major KEEP Findings, 1971 - 1975.

    Science.gov (United States)

    Kamehameha Schools, Honolulu, HI. Kamehameha Early Education Project.

    This report lists the 34 major research findings from the Kamehameha Early Education Program (KEEP) for the years 1971-1975. Each finding is accompanied by a listing of KEEP technical reports and working papers which contain information relevant to that finding. Included among areas covered in the findings are: (1) student motivation, (2) teacher…

  8. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a ne...

  9. Understanding Business Majors' Learning Styles

    Science.gov (United States)

    Giordano, James; Rochford, Regina A.

    2005-01-01

    Recently, business education programs have experienced a decline in enrollment and an increase in attrition. To understand these issues and recommend solutions, the learning styles of 503 first-year business majors at an urban community college were examined. The results demonstrated that: (a) 94% of the participants were analytic learners; (b)…

  10. Epidemiology of major depressive disorder

    NARCIS (Netherlands)

    Stegenga, B.T.

    2011-01-01

    Major depressive disorder (MDD) is a serious health problem and will be the second leading cause of burden of disease worldwide by 2030. To be able to prevent MDD, insight into risk factors for the onset of MDD is of clear importance. On the other hand, if onset of MDD has occurred, one may argue

  11. Rediscovering Major N. Clark Smith.

    Science.gov (United States)

    Buckner, Reginald T.

    1985-01-01

    Historians of American music education have yet to recognize a Black music educator as important and worthy of observation. This article discusses a candidate--Major Nathaniel Clark Smith, a little-known Black music educator, composer of more than a hundred works, businessman, humanitarian, and teacher of numerous big-name jazz musicians. (RM)

  12. Endocrinopathies in thalassemia major patient

    Science.gov (United States)

    Lubis, D. A.; Yunir, E. M.

    2018-03-01

    Advanced in chelation therapy and regular blood transfusion have marked improvements in the life expectancy of patients with thalassemia major, however these patients still have to deal with several complications. We report a 19-year-old male, presented with multiple endocrine complication-related thalassemia; hypogonadism, short stature, osteoporosis with history of fracture, and subclinical hypothyroid.

  13. Physics momentum 'stars' draw majors

    CERN Multimedia

    Lindström, I

    2003-01-01

    Over the past decade, the number of University of Arizona students declaring physics as their major has doubled, amid a national decline. According to a recent report by the National Task Force on Undergraduate Physics, it is the university's dedication to its undergraduate physics program which draws students in (1 page).

  14. Major Depression Can Be Prevented

    Science.gov (United States)

    Munoz, Ricardo F.; Beardslee, William R.; Leykin, Yan

    2012-01-01

    The 2009 Institute of Medicine report on prevention of mental, emotional, and behavioral disorders (National Research Council & Institute of Medicine, 2009b) presented evidence that major depression can be prevented. In this article, we highlight the implications of the report for public policy and research. Randomized controlled trials have shown…

  15. Dirichlet polynomials, majorization, and trumping

    International Nuclear Information System (INIS)

    Pereira, Rajesh; Plosker, Sarah

    2013-01-01

    Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)

  16. Managemant of NASA's major projects

    Science.gov (United States)

    James, L. B.

    1973-01-01

    Approaches used to manage major projects are studied and the existing documents on NASA management are reviewed. The work consists of: (1) the project manager's role, (2) request for proposal, (3) project plan, (4) management information system, (5) project organizational thinking, (6) management disciplines, (7) important decisions, and (8) low cost approach.

  17. Dimensions of flow during an experiential wilderness science program

    Science.gov (United States)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and

  18. The sciences of science communication.

    Science.gov (United States)

    Fischhoff, Baruch

    2013-08-20

    The May 2012 Sackler Colloquium on "The Science of Science Communication" brought together scientists with research to communicate and scientists whose research could facilitate that communication. The latter include decision scientists who can identify the scientific results that an audience needs to know, from among all of the scientific results that it would be nice to know; behavioral scientists who can design ways to convey those results and then evaluate the success of those attempts; and social scientists who can create the channels needed for trustworthy communications. This overview offers an introduction to these communication sciences and their roles in science-based communication programs.

  19. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  20. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high ... or by any means without permission in writing from the copyright holder. ..... Journal of Chemical Engineering Research and Design 82 ... Indian Ocean Marine Science Association Technical.

  1. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  2. Life sciences

    International Nuclear Information System (INIS)

    Day, L.

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs

  3. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, Portugal. Copy Editor Timothy Andrew. Published biannually. Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high quality research generated in the Western Indian Ocean (WIO) ...

  4. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  5. Enhancing Science Literacy and Art History Engagement at Princeton Through Collaboration Between the University Art Museum and the Council on Science and Technology

    Science.gov (United States)

    Riihimaki, C. A.; White, V. M.

    2016-12-01

    The importance of innovative science education for social science and humanities students is often under-appreciated by science departments, because these students typically do not take science courses beyond general education requirements, nor do they contribute to faculty research programs. However, these students are vitally important in society—for example as business leaders or consultants, and especially as voters. In these roles, they will be confronted with decisions related to science in their professional and personal lives. The Council on Science and Technology at Princeton University aims to fill this education gap by developing and supporting innovative programs that bring science to cross-disciplinary audiences. One of our most fruitful collaborations has been with the Princeton University Art Museum, which has an encyclopedic collection of over 92,000 works of art, ranging from antiquity to the contemporary. Our work includes 1) bringing introductory environmental science courses to the Museum to explore how original works of art of different ages can serve as paleo-environmental proxies, thereby providing a means for discussing broader concepts in development of proxies and validation of reconstructions; 2) sponsoring a panel aimed at the general public and composed of science faculty and art historians who discussed the scientific and art historical contexts behind Albert Bierstadt's Mount Adams, Washington, 1875 (oil on canvas, gift of Mrs. Jacob N. Beam, accession number y1940-430), including the landscape's subjects, materials, technique, and style; and 3) collaborating on an installation of photographs relevant to a freshman GIS course, with an essay about the artwork written by the students. This first-hand study of works of art encourages critical thinking and an empathetic approach to different historical periods and cultures, as well as to the environment. Our collaboration additionally provides an opportunity to engage more students in

  6. Report of the surface science workshop

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized

  7. Report of the surface science workshop

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Yates, J.T. Jr.; Clinton, W.

    1977-03-01

    A three-day workshop was held to review the various areas of energy development and technology in which surface science plays major roles and makes major contributions, and to identify the major surface-science-related problem areas in the fields with ERDA's mission in the fossil, nuclear, fusion, geothermal, and solar energy technologies and in the field of environmental control. The workshop activities are summarized. (GHT)

  8. It's the science stupid

    International Nuclear Information System (INIS)

    Cipriano, J.

    1994-01-01

    In this presentation the project director deals with many of the complaints directed toward the Superconducting Super Collider project from diverse fronts. The project has been able to meet major milestones on time, in most instances within budget, and management projections are that it will continue on this coarse. The project is contributing, and will continue to contribute to science, to technology spinoffs, to economic development in the area, to technology transfer in many areas including commercial superconductivity, etc

  9. Web Science emerges

    OpenAIRE

    Shadbolt, Nigel; Berners-Lee, Tim

    2008-01-01

    The relentless rise in Web pages and links is creating emergent properties, from social networks to virtual identity theft, that are transforming society. A new discipline, Web Science, aims to discover how Web traits arise and how they can be harnessed or held in check to benefit society. Important advances are beginning to be made; more work can solve major issues such as securing privacy and conveying trust.

  10. Factors which deter potential science/math teachers from teaching; changes necessary to ameliorate their concerns

    Science.gov (United States)

    Evans, Robert H.

    In light of the perceived national need for more science and math teachers, this study was conceived to:1.Identify teaching oriented students among freshmen at a mid-western engineering school, who have chosen NOT to become teachers;2.Find out what reasons these potential science and math teachers have for deciding not to pursue teaching careers;3.Determine what amelioration of these problems would be necessary for them to no longer be factors which would inhibit students from becoming teachers.Of a random sample of 110 students drawn from a freshman class, 98 participated fully in the study. Each participant took Holland's Self-Directed Search to determine teaching orientation and author-constructed instruments to assess their concerns about teaching.Results showed teaching oriented students avoided teaching due to low starting salaries, lack of job security, low maximum salaries, not wanting to do the work teacher's do, poor job availability and discouragement by family and friends. Starting salaries of 21,693 and salaries of 32,600 for a teacher with a B.A. and 10 years experience were among the changes deemed necessary to make teaching attractive.

  11. Stitching together the heterogeneous party: A complementary social data science experiment

    Directory of Open Access Journals (Sweden)

    Anders Blok

    2017-11-01

    Full Text Available The era of ‘big data’ studies and computational social science has recently given rise to a number of realignments within and beyond the social sciences, where otherwise distinct data formats – digital, numerical, ethnographic, visual, etc. – rub off and emerge from one another in new ways. This article chronicles the collaboration between a team of anthropologists and sociologists, who worked together for one week in an experimental attempt to combine ‘big’ transactional and ‘small’ ethnographic data formats. Our collaboration is part of a larger cross-disciplinary project carried out at the Danish Technical University (DTU, where high-resolution transactional data from smartphones allows for recordings of social networks amongst a freshman class (N = 800. With a parallel deployment of ethnographic fieldwork among the DTU students, this research set-up raises a number of questions concerning how to assemble disparate ‘data-worlds’ and to what epistemological and political effects? To address these questions, a specific social event – a lively student party – was singled out from the broader DTU dataset. Our experimental collaboration used recordings of Bluetooth signals between students’ phones to visualize the ebb and flow of social intensities at the DTU party, juxtaposing these with ethnographic field-notes on shifting party atmospheres. Tracing and reflecting on the process of combining heterogeneous data, the article offers a concrete case of how a ‘stitching together’ of digital and ethnographic data-worlds might take place.

  12. Interdisciplinary Science in the Classroom

    Science.gov (United States)

    French, L. M.; Lopresti, V. C.; Papali, P.

    1993-05-01

    The practice of science is by its very nature interdisciplinary. Most school curricula, however, present science as a "layer cake" with one year each of biology, chemistry, earth science, and physics. Students are too often left with a fragmented, disjointed view of the sciences as separate and distinct bodies of information. The continuity of scientific thought and the importance of major ideas such as energy, rates of change, and the nature of matter are not seen. We describe two efforts to integrate the sciences in a middle school curriculum and in an introductory science course for prospective elementary teachers. Introductory physical science for eighth graders at the Park School has three major units: "Observing the Sky", "The Nature of Matter", and "The Nature of Light". The course moves from simple naked-eye observations of the Sun and Moon to an understanding of the apparent motions of the Sun and of the Earth's seasons. In "The Nature of Matter", students construct operational definitions of characteristic properties of matter such as density, boiling point, solubility, and flame color. They design and perform many experiments and conclude by separating a mixture of liquids and solids by techniques such as distillation and fractional crystallization. In studying flame tests, students learn that different materials have different color "signatures" and that the differences can be quantified with a spectroscope. They then observe solar absorption lines with their spectroscopes and discover which elements are present in the Sun. Teachers of young children are potentially some of the most powerful allies in increasing our country's scientific literacy, yet most remain at best uneasy about science. At Wheelock College we are designing a course to be called "Introduction to Natural Science" for elementary education majors. We will address special needs of many in this population, including science anxiety and poor preparation in mathematics. A broad conceptual

  13. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  14. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  15. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  16. Distance majorization and its applications.

    Science.gov (United States)

    Chi, Eric C; Zhou, Hua; Lange, Kenneth

    2014-08-01

    The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton's method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications.

  17. Neurobiology of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Rosa Villanueva

    2013-01-01

    Full Text Available We survey studies which relate abnormal neurogenesis to major depressive disorder. Clinically, descriptive gene and protein expression analysis and genetic and functional studies revised here show that individual alterations of a complex signaling network, which includes the hypothalamic-pituitary-adrenal axis; the production of neurotrophins and growth factors; the expression of miRNAs; the production of proinflammatory cytokines; and, even, the abnormal delivery of gastrointestinal signaling peptides, are able to induce major mood alterations. Furthermore, all of these factors modulate neurogenesis in brain regions involved in MDD, and are functionally interconnected in such a fashion that initial alteration in one of them results in abnormalities in the others. We highlight data of potential diagnostic significance and the relevance of this information to develop new therapeutic approaches. Controversial issues, such as whether neurogenesis is the basis of the disease or whether it is a response induced by antidepressant treatments, are also discussed.

  18. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  19. Revolutionary Science.

    Science.gov (United States)

    Casadevall, Arturo; Fang, Ferric C

    2016-03-01

    On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind's view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn's formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. Copyright © 2016 Casadevall and Fang.

  20. Science packages

    Science.gov (United States)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  1. Introduction: Commercialization of Academic Science and a New Agenda for Science Education

    Science.gov (United States)

    Irzik, Gürol

    2013-01-01

    Certain segments of science are becoming increasingly commercialized. This article discusses the commercialization of academic science and its impact on various aspects of science. It also aims to provide an introduction to the articles in this special issue. I briefly describe the major factors that led to this phenomenon, situate it in the…

  2. Investigating University Students' Preferences to Science Communication Skills: A Case of Prospective Science Teacher in Indonesia

    Science.gov (United States)

    Suprapto, Nadi; Ku, Chih-Hsiung

    2016-01-01

    The purpose of this study was to investigate Indonesian university students' preferences to science communication skills. Data collected from 251 students who were majoring in science education program. The Learning Preferences to Science Communication (LPSC) questionnaire was developed with Indonesian language and validated through an exploratory…

  3. The Contribution of Science-Rich Resources to Public Science Interest

    Science.gov (United States)

    Falk, John H.; Pattison, Scott; Meier, David; Bibas, David; Livingston, Kathleen

    2018-01-01

    This preliminary study examined the effect that five major sources of public science education--schools, science centers, broadcast media, print media, and the Internet--had on adults' science interest "values" and "cognitive predispositions." Over 3,000 adults were sampled in three U.S. metropolitan areas: Los Angeles,…

  4. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  5. Epidemiology of major depressive disorder

    OpenAIRE

    Stegenga, B.T.

    2011-01-01

    Major depressive disorder (MDD) is a serious health problem and will be the second leading cause of burden of disease worldwide by 2030. To be able to prevent MDD, insight into risk factors for the onset of MDD is of clear importance. On the other hand, if onset of MDD has occurred, one may argue that different course patterns of MDD can be identified and that it is essential to examine their relationship to symptoms and function over time. Insight into these course patterns could assist in p...

  6. Aostra claims major oilsands breakthrough

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that Alberta Oil Sands Technology and Research Authority (Aostra) has completed a horizontal well in-situ steam injection project it calls a major breakthrough in commercially producing bitumen from the bast Athabasca oilsands deposit in Alberta. Aostra the its $71 million (Canadian) proof of concept pilot underground test facility (UTF) near Fort McMurray, achieved a 60% bitumen recovery rate, compared with less than 20% recovery typically achieved with Alberta bitumen. More than 100,000 bbl of bitumen was produced during the project

  7. Vanpooling: the three major approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sears, P.M.

    1979-08-01

    The manual provides technical assistance to existing or prospective vanpool sponsors. It is designed to help them promote vanpooling in its three major approaches: employer sponsored, third party sponsored, and driver owned and operated. The first chapter is an overview of vanpooling and a second chapter, on vanpool marketing, is addressed to ridesharing coordinators and others whose responsibilities include the promotion of vanpooling. Some fact sheets on the three approaches provide convenient summaries of the needs and opportunities of each approach and suggest solutions to practical problems likely to be encountered in starting new vanpool programs.

  8. Majority rule on heterogeneous networks

    International Nuclear Information System (INIS)

    Lambiotte, R

    2008-01-01

    We focus on the majority rule (MR) applied on heterogeneous networks. When the underlying topology is homogeneous, the system is shown to exhibit a transition from an ordered regime to a disordered regime when the noise is increased. When the network exhibits modular structures, in contrast, the system may also exhibit an asymmetric regime, where the nodes in each community reach an opposite average opinion. Finally, the node degree heterogeneity is shown to play an important role by displacing the location of the order-disorder transition and by making the system exhibit non-equipartition of the average spin

  9. Societal risk and major disasters

    International Nuclear Information System (INIS)

    Clement, C.F.

    1989-01-01

    A disaster can be defined as an event, or a series of events, in which a large number of people is adversely affected by a single cause. This definition includes man-made accidents, like that at Chernobyl, as well as the natural disasters that insurance companies are sometimes pleased to describe as Acts of God. In 1986 alone, 12,000 people died and 2.2 million were made homeless by 215 major accidents or disasters. The nature of risk is examined in this paper. (author)

  10. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the ... tidal height and amplitude can influence light penetra- ...... to environmental parameters in cage culture area of Sepanggar Bay, Malaysia.

  11. science poster

    Indian Academy of Sciences (India)

    Administrator

    SRN ADARSH COLLEGE. Cordially invites ... in. Science. " " Date : 11-03-2014 Time : 9:30 am ... SITADEVI RATANCHAND NAHAR ADARSH PU COLLEGE ? ... ADARSH INSTITUTE OF MANAGEMENT AND INFORMATION TECHNOLOGY ?

  12. Marine Science

    African Journals Online (AJOL)

    pod diversity and distribution are important especially since studies on marine biodiversity are scarce .... Method II –. Zamoum &. Furla (2012) protocol. Method III. – Geist et al (2008) protocol ..... Public Library Of Science One 8: 51273.

  13. Science Topics

    Science.gov (United States)

    EPA is one of the world’s leading environmental and human health research organizations. Science provides the foundation for Agency policies, actions, and decisions made on behalf of the American people.

  14. Forensic Science.

    Science.gov (United States)

    Brettell, T. A.; Saferstein, R.

    1989-01-01

    Presents a review of articles appealing to forensic practitioners. Topics include: drugs and poisons, forensic biochemistry, and trace evidence. Lists noteworthy books published on forensic science topics since 1986. (MVL)

  15. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  16. Molecular sciences

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The research in molecular sciences summarized includes photochemistry, radiation chemistry, geophysics, electromechanics, heavy-element oxidizers , heavy element chemistry collisions, atoms, organic solids. A list of publications is included

  17. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue .... shell growth is adversely affected. ... local stressors in action, such as ocean acidification ..... that the distribution of many intertidal sessile animals.

  18. The Impact of Teachers and Their Science Teaching on Students' "Science Interest": A Four-Year Study

    Science.gov (United States)

    Logan, Marianne R.; Skamp, Keith R.

    2013-01-01

    There is a crisis in school science in Australia and this may be related to insufficient students developing an interest in science. This extended study looked at changes in 14 students' interest in science as they moved through junior secondary school into Year 10. Although the majority of these students still had an interest in science in Year…

  19. World science

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The aim of the Third World Network of Scientific Organizations (TWNSO), established last year with its headquarters in Trieste, Italy, is to promote the role of science and technology in developing countries. TWNSO, under the presidency of Abdus Salam, is an offshoot of the Third World Academy of Sciences, which has pushed the cause of international scientific collaboration since its establishment in 1983. (orig./HSI).

  20. Carnegie Science Academy Web Site

    Science.gov (United States)

    Kotwicki, John; Atzinger, Joe; Turso, Denise

    1997-11-01

    The Carnegie Science Academy is a professional society "For Teens...By Teens" at the Carnegie Science Center in Pittsburgh. The CSA Web Site [ http://csa.clpgh.org ] is designed for teens who have an interest in science and technology. This online or virtual science academy provides resources for teens in high school science classes. The Web site also allows students around the world to participate and communicate with other students, discuss current events in science, share opinions, find answers to questions, or make online friends. Visitors can enjoy the main components of the site or sign up for a free membership which allows access to our chat room for monthly meeting, online newsletter, members forum, and much more. Main components to the site include a spot for cool links and downloads, available for any visitor to download or view. Online exhibits are created by students to examine and publish an area of study and also allow teachers to easily post classroom activities as exhibits by submitting pictures and text. Random Access, the interactive part of the academy, allows users to share ideas and opinions. Planet CSA focuses on current events in science and the academy. In the future the CSA Web site will become a major resource for teens and science teachers providing materials that will allow students to further enhance their interest and experiences in science.