WorldWideScience

Sample records for science learning ii

  1. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  2. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  3. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  4. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    Science.gov (United States)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  5. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  6. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  7. Ausubel's Theory of Learning and its Application to Introductory Science Part II--Primary Science: An Ausubelian View.

    Science.gov (United States)

    McClelland, J. A. G.

    1982-01-01

    In part 1 (SE 532 193) an outline of Ausubel's learning theory was given. The application of the theory to elementary school science is addressed in this part, clarifying what elementary science means and indicating how it relates to what may be expected to be already known by elementary school children. (Author/JN)

  8. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  9. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  10. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  11. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  12. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  13. Hydromania II: Journey of the Oncorhynchus. Summer Science Camp Curriculum 1994.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan; Swerin, Rod

    1995-01-01

    The Hydromania II curriculum was written for the third in a series of summer science camp experiences targeting students in grades 4--6 who generally have difficulty accessing supplementary academic programs. The summer science camp in Portland is a collaborative effort between Bonneville Power Administration (BPA), the US Department of Energy (DOE), and the Portland Parks and Recreation Community Schools Program along with various other cooperating businesses and organizations. The curriculum has also been incorporated into other summer programs and has been used by teachers to supplement classroom activities. Camps are designed to make available, affordable learning experiences that are fun and motivating to students for the study of science and math. Inner-city, under-represented minorities, rural, and low-income families are particularly encouraged to enroll their children in the program.

  14. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  15. Science with a vengeance: How the Military created the US Space Sciences after World War II

    Science.gov (United States)

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  16. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  17. An integrative review of in-class activities that enable active learning in college science classroom settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-10-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about 'active learning' in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are examined. Four categories of in-class activities emerge: (i) individual non-polling activities, (ii) in-class polling activities, (iii) whole-class discussion or activities, and (iv) in-class group activities. Examining the collection of identified in-class activities through the lens of a theoretical framework informed by constructivism and social interdependence theory, we synthesise the reviewed literature to propose the active learning strategies (ALSs) model and the instructional decisions to enable active learning (IDEAL) theory. The ALS model characterises in-class activities in terms of the degrees to which they are designed to promote (i) peer interaction and (ii) social interdependence. The IDEAL theory includes the ALS model and provides a framework for conceptualising different levels of the general concept 'active learning' and how these levels connect to instructional decision-making about using in-class activities. The proposed ALS model and IDEAL theory can be utilised to inform instructional decision-making and future research about active learning in college science courses.

  18. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  19. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  20. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  1. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  2. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  3. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  4. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  5. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  6. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  7. The Science of Learning. 2nd Edition

    Science.gov (United States)

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  8. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  9. Learning Science through Creating a `Slowmation': A case study of preservice primary teachers

    Science.gov (United States)

    Hoban, Garry; Nielsen, Wendy

    2013-01-01

    Many preservice primary teachers have inadequate science knowledge, which often limits their confidence in implementing the subject. This paper proposes a new way for preservice teachers to learn science by designing and making a narrated stop-motion animation as an instructional resource to explain a science concept. In this paper, a simplified way for preservice teachers to design and make an animation called 'slowmation' (abbreviated from 'slow animation') is exemplified. A case study of three preservice primary teachers creating one from start to finish over 2 h was conducted to address the following research question: How do the preservice primary teachers create a slowmation and how does this process influence their science learning? The method of inquiry used a case study design involving pre- and post-individual interviews in conjunction with a discourse analysis of video and audio data recorded as they created a slowmation. The data illustrate how the preservice teachers' science learning was related to their prior knowledge and how they iteratively revisited the content through the construction of five representations as a cumulative semiotic progression: (i) research notes; (ii) storyboard; (iii) models; (iv) digital photographs; culminating in (v) the narrated animation. This progression enabled the preservice teachers to revisit the content in each representation and make decisions about which modes to use and promoted social interaction. Creating a slowmation facilitated the preservice teachers' learning about the life cycle of a ladybird beetle and revised their alternative conceptions.

  10. Exhibitions as learning environments: a review of empirical research on students’ science learning at Natural History Museums, Science Museums and Science Centres

    Directory of Open Access Journals (Sweden)

    Nils Petter Hauan

    2014-04-01

    Full Text Available One aim for many natural history museums, science museums and science centres is to contribute to school-related learning in science. In this article we review published empirical studies of this challenging area. The review indicates that the effectiveness of educational activities at different types of science-communication venues (SCV in supporting students’ science learning varies. There is also evidence of interesting differences between activities, depending on how these activities are designed. Firstly, these activities can stimulate interest and conceptual focus through a well-designed combination of structure and openness. Secondly, they can stimulate talks and explorations related to the presented topics. We have identified two possible areas which might prove fruitful in guiding further research: an exploration of the effects of different designs for guided exploratory learning, and an evaluation of the effectiveness of educational activities by studying the presence and quality of the learning processes visitors are engaged in. 

  11. Learning approaches as predictors of academic performance in first year health and science students.

    Science.gov (United States)

    Salamonson, Yenna; Weaver, Roslyn; Chang, Sungwon; Koch, Jane; Bhathal, Ragbir; Khoo, Cheang; Wilson, Ian

    2013-07-01

    To compare health and science students' demographic characteristics and learning approaches across different disciplines, and to examine the relationship between learning approaches and academic performance. While there is increasing recognition of a need to foster learning approaches that improve the quality of student learning, little is known about students' learning approaches across different disciplines, and their relationships with academic performance. Prospective, correlational design. Using a survey design, a total of 919 first year health and science students studying in a university located in the western region of Sydney from the following disciplines were recruited to participate in the study - i) Nursing: n = 476, ii) Engineering: n = 75, iii) Medicine: n = 77, iv) Health Sciences: n = 204, and v) Medicinal Chemistry: n = 87. Although there was no statistically significant difference in the use of surface learning among the five discipline groups, there were wide variations in the use of deep learning approach. Furthermore, older students and those with English as an additional language were more likely to use deep learning approach. Controlling for hours spent in paid work during term-time and English language usage, both surface learning approach (β = -0.13, p = 0.001) and deep learning approach (β = 0.11, p = 0.009) emerged as independent and significant predictors of academic performance. Findings from this study provide further empirical evidence that underscore the importance for faculty to use teaching methods that foster deep instead of surface learning approaches, to improve the quality of student learning and academic performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Developing Deep Learning Applications for Life Science and Pharma Industry.

    Science.gov (United States)

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  14. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  15. Learning style preferences of Australian health science students.

    Science.gov (United States)

    Zoghi, Maryam; Brown, Ted; Williams, Brett; Roller, Louis; Jaberzadeh, Shapour; Palermo, Claire; McKenna, Lisa; Wright, Caroline; Baird, Marilyn; Schneider-Kolsky, Michal; Hewitt, Lesley; Sim, Jenny; Holt, Tangerine-Ann

    2010-01-01

    It has been identified that health science student groups may have distinctive learning needs. By university educators' and professional fieldwork supervisors' being aware of the unique learning style preferences of health science students, they have the capacity to adjust their teaching approaches to best fit with their students' learning preferences. The purpose of this study was to investigate the learning style preferences of a group of Australian health science students enrolled in 10 different disciplines. The Kolb Learning Style Inventory was distributed to 2,885 students enrolled in dietetics and nutrition, midwifery, nursing, occupational therapy, paramedics, pharmacy, physiotherapy, radiation therapy, radiography, and social work at one Australian university. A total of 752 usable survey forms were returned (response rate 26%). The results indicated the converger learning style to be most frequently preferred by health science students and that the diverger and accommodator learning styles were the least preferred. It is recommended that educators take learning style preferences of health science students into consideration when planning, implementing, and evaluating teaching activities, such as including more problem-solving activities that fit within the converger learning style.

  16. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  17. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  18. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  19. World War II Memorial Learning Activities.

    Science.gov (United States)

    Tennessee State Dept. of Education, Nashville.

    These learning activities can help students get the most out of a visit to the Tennessee World War II Memorial, a group of ten pylons located in Nashville (Tennessee). Each pylon contains informational text about the events of World War II. The ten pylons are listed as: (1) "Pylon E-1--Terror: America Enters the War against Fascism, June…

  20. DEVELOPING GUIDED DISCOVERY LEARNING MATERIALS USING MATHEMATICS MOBILE LEARNING APPLICATION AS AN ALTERNATIVE MEDIA FOR THE STUDENTS CALCULUS II

    Directory of Open Access Journals (Sweden)

    Sunismi .

    2015-12-01

    Full Text Available Abstract: The development research aims to develop guided-discovery learning materials of Calculus II by implementing Mathematics Mobile Learning (MML. The products to develop are MML media of Calculus II using guided discovery model for students and a guide book for lecturers. The study employed used 4-D development model consisting of define, design, develop, and disseminate. The draft of the learning materials was validated by experts and tried-out to a group of students. The data were analyzed qualitatively and quantitatively by using a descriptive technique and t-test. The findings of the research were appropriate to be used ad teaching media for the students. The students responded positively that the MML media of Calculus II using the guided-discovery model was interestingly structured, easily operated through handphones (all JAVA, android, and blackberry-based handphones to be used as their learning guide anytime. The result of the field testing showed that the guided-discovery learning materials of Calculus II using the Mathematics Mobile Learning (MML application was effective to adopt in learning Calculus II. Keywords: learning materials, guided-discovery, mathematics mobile learning (MML, calculus II PENGEMBANGAN BAHAN AJAR MODEL GUIDED DISCOVERY DENGAN APLIKASI MATHEMATICS MOBILE LEARNING SEBAGAI ALTERNATIF MEDIA PEMBELAJARAN MAHASISWA MATAKULIAH KALKULUS II Abstrak: Penelitian pengembangan ini bertujuan untuk mengembangkan bahan ajar matakuliah Kalkulus II model guided discovery dengan aplikasi Mathematics Mobile Learning (MML. Produk yang dikembangkan berupa media MML Kalkulus II dengan model guided discovery untuk mahasiswa dan buku panduan dosen. Model pengembangan menggunakan 4-D yang meliputi tahap define, design, develop, dan dissemination. Draf bahan ajar divalidasi oleh pakar dan diujicobakan kepada sejumlah mahasiswa. Data dianalisis secara kualitatif dan kuantitatif dengan teknik deskriptif dan uji t. Temuan penelitian

  1. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  2. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  3. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  4. Describing the on-line graduate science student: An examination of learning style, learning strategy, and motivation

    Science.gov (United States)

    Spevak, Arlene J.

    Research in science education has presented investigations and findings related to the significance of particular learning variables. For example, the factors of learning style, learning strategy and motivational orientation have been shown to have considerable impact upon learning in a traditional classroom setting. Although these data have been somewhat generous for the face-to-face learning situation, this does not appear to be the case for distance education, particularly the Internet-based environment. The purpose of this study was to describe the on-line graduate science student, regarding the variables of learning style, learning strategy and motivational orientation. It was believed that by understanding the characteristics of adult science learners and by identifying their learning needs, Web course designers and science educators could create on-line learning programs that best utilized students' strengths in learning science. A case study method using a questionnaire, inventories, telephone interviews and documents was applied to nine graduate science students who participated for ten weeks in an asynchronous, exclusively Internet mediated graduate science course at a large, Northeastern university. Within-case and cross-case analysis indicated that these learners displayed several categories of learning styles as well as learning strategies. The students also demonstrated high levels of both intrinsic and extrinsic motivation, and this, together with varying strategy use, may have compensated for any mismatch between their preferred learning styles and their learning environment. Recommendations include replicating this study in other online graduate science courses, administration of learning style and learning strategy inventories to perspective online graduate science students, incorporation of synchronous communication into on-line science courses, and implementation of appropriate technology that supports visual and kinesthetic learners. Although

  5. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  6. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  7. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  8. Cross-cultural comparisons of university students' science learning self-efficacy: structural relationships among factors within science learning self-efficacy

    Science.gov (United States)

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-04-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in explaining the relationships among these factors. Accordingly, this study aimed to investigate cultural differences in science learning self-efficacy and examine the relationships within factors constituting science learning self-efficacy by adopting a survey instrument for administration to students in the U.S. and Taiwan. A total of 218 university students (62.40% females) were surveyed in the U.S.A, and 224 university students (49.10% females) in Taiwan were also invited to take part in the study. The results of the structural equation modelling revealed cultural differences in the relationships among the factors of science learning self-efficacy. It was found that U.S. students' confidence in their ability to employ higher-order cognitive skills tended to promote their confidence in their ability to accomplish practical work, strengthening their academic self-efficacy. However, the aforementioned mediation was not found for the Taiwanese participants.

  9. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    Science.gov (United States)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  10. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  11. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  12. Eight-Legged Encounters—Arachnids, Volunteers, and Art help to Bridge the Gap between Informal and Formal Science Learning

    Science.gov (United States)

    Hebets, Eileen A.; Welch-Lazoritz, Melissa; Tisdale, Pawl; Wonch Hill, Trish

    2018-01-01

    Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage the public of all ages in science learning; learning that aligns with the Next Generation Science Standards (NGSS Disciplinary Core Ideas associated with Biodiversity and Evolution). We created, implemented, and evaluated a family-focused, interactive science event—Eight-Legged Encounters (ELE)—which encompasses more than twenty modular activities. Volunteers facilitated participant involvement at each activity station and original artwork scattered throughout the event was intended to attract visitors. Initial ELE goals were to increase interest in arachnids and science more generally, among ELE participants. In this study, we tested the efficacy of ELE in terms of (i) activity-specific visitation rates and self-reported interest levels, (ii) the self-reported efficacy of our use of volunteers and original artwork on visitor engagement, and (iii) self-reported increases in interest in both spiders and science more generally. We collected survey data across five ELE events at four museum and zoo sites throughout the Midwest. We found that all activities were successful at attracting visitors and capturing their interest. Both volunteers and artwork were reported to be effective at engaging visitors, though likely in different ways. Additionally, most participants reported increased interest in learning about arachnids and science. In summary, ELE appears effective at engaging the public and piquing their interest. Future work is now required to assess learning outcomes directly, as well as the ability for participants to transfer knowledge gain across learning environments. PMID:29495395

  13. Eight-Legged Encounters-Arachnids, Volunteers, and Art help to Bridge the Gap between Informal and Formal Science Learning.

    Science.gov (United States)

    Hebets, Eileen A; Welch-Lazoritz, Melissa; Tisdale, Pawl; Wonch Hill, Trish

    2018-02-26

    Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage the public of all ages in science learning; learning that aligns with the Next Generation Science Standards (NGSS Disciplinary Core Ideas associated with Biodiversity and Evolution). We created, implemented, and evaluated a family-focused, interactive science event- Eight-Legged Encounters (ELE )-which encompasses more than twenty modular activities. Volunteers facilitated participant involvement at each activity station and original artwork scattered throughout the event was intended to attract visitors. Initial ELE goals were to increase interest in arachnids and science more generally, among ELE participants. In this study, we tested the efficacy of ELE in terms of (i) activity-specific visitation rates and self-reported interest levels, (ii) the self-reported efficacy of our use of volunteers and original artwork on visitor engagement, and (iii) self-reported increases in interest in both spiders and science more generally. We collected survey data across five ELE events at four museum and zoo sites throughout the Midwest. We found that all activities were successful at attracting visitors and capturing their interest. Both volunteers and artwork were reported to be effective at engaging visitors, though likely in different ways. Additionally, most participants reported increased interest in learning about arachnids and science. In summary, ELE appears effective at engaging the public and piquing their interest. Future work is now required to assess learning outcomes directly, as well as the ability for participants to transfer knowledge gain across learning environments.

  14. Eight-Legged Encounters—Arachnids, Volunteers, and Art help to Bridge the Gap between Informal and Formal Science Learning

    Directory of Open Access Journals (Sweden)

    Eileen A. Hebets

    2018-02-01

    Full Text Available Increased integration and synergy between formal and informal learning environments is proposed to provide multiple benefits to science learners. In an effort to better bridge these two learning contexts, we developed an educational model that employs the charismatic nature of arachnids to engage the public of all ages in science learning; learning that aligns with the Next Generation Science Standards (NGSS Disciplinary Core Ideas associated with Biodiversity and Evolution. We created, implemented, and evaluated a family-focused, interactive science event—Eight-Legged Encounters (ELE—which encompasses more than twenty modular activities. Volunteers facilitated participant involvement at each activity station and original artwork scattered throughout the event was intended to attract visitors. Initial ELE goals were to increase interest in arachnids and science more generally, among ELE participants. In this study, we tested the efficacy of ELE in terms of (i activity-specific visitation rates and self-reported interest levels, (ii the self-reported efficacy of our use of volunteers and original artwork on visitor engagement, and (iii self-reported increases in interest in both spiders and science more generally. We collected survey data across five ELE events at four museum and zoo sites throughout the Midwest. We found that all activities were successful at attracting visitors and capturing their interest. Both volunteers and artwork were reported to be effective at engaging visitors, though likely in different ways. Additionally, most participants reported increased interest in learning about arachnids and science. In summary, ELE appears effective at engaging the public and piquing their interest. Future work is now required to assess learning outcomes directly, as well as the ability for participants to transfer knowledge gain across learning environments.

  15. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  16. Surrounded by Science: Learning Science in Informal Environments

    Science.gov (United States)

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  17. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  18. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  19. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  20. PENGEMBANGAN SCIENCE MOBILE LEARNING BERWAWASAN KONSERVASI BERBASIS ANDROID APP INVENTOR 2

    Directory of Open Access Journals (Sweden)

    Muhamad Taufiq

    2017-02-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk mengembangkan science mobile learning berwawasan konservasi berbasis android app inventor yang teruji baik dan mengetahui respon pengguna terhadap aplikasi science mobile learning sebagai suplemen materi pembelajaran berbasis mobile. Metodologi yang digunakan dalam pembuatan aplikasi ini ialah metodologi waterfall. Aplikasi science mobile leraning berwawasan konservasi ini diharapkan dapat membantu siswa secara khusus dan masyarakat ilmiah secara umum untuk mendapatkan kemudahan belajar konsep sains menggunakan perangkat smartphone tanpa harus mencetak mengunakan kertas (paperless. Aplikasi science mobile learning dilengkapi dengan fitur pendukung yaitu gambar, video dan quiz. Simpulan dalam penelitian ini yaitu telah dihasilkan aplikasi science mobile learning berwawasan konservasi layak digunakan untuk belajar konsep sains dan upaya pengurangan penggunaan kertas (paperless, aplikasi science mobile learning mendapatkan respon baik dari masyarakat pengguna terkait kemudahan akses, kesesuaian fitur dan konten sains, serta pemanfaatannya yang mendukung pengurangan penggunaan kertas. Abstract The purpose of this research was to develop science mobile learning conservation vission based on android app inventor well tested and find out the user response to the application of mobile learning science as a supplement materials of learning mobile based. The methodology used in the making of this application is the waterfall methodology. Science mobile learning applications conservation vission is expected to help the students in particular and the scientific community in general to get the ease of learning science concepts using a Smartphone device without having to print using paper (paperless. Applications of science mobile learning include by supporting features of images, videos and quizzes. The conclusions in this research that has generated the application of science mobile learning conservation vision

  1. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  2. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  3. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    Directory of Open Access Journals (Sweden)

    Hilman .

    2015-04-01

    Full Text Available Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on science process skills and cognitive learning outcomes. This experimental quasi studey used pretest-posttest control group design and consisted eighth grade students of SMP Negeri 1 Papalang Mamuju of West Sulawesi. The results showed there where significant positive effect of guided inquiry learning with mind map on process science skills and cognitive learning outcomes. Key Words: guided inquiry, mind map, science process skills, cognitive learning outcomes   Abstrak: Pembelajaran Ilmu Pengetahuan Alam (IPA di SMP bertujuan agar siswa dapat melakukan inkuiri ilmiah, meningkatkan pengetahuan, konsep, dan keterampilan IPA. Dalam pembelajaran, organisasi materi berperan penting dalam memudahkan anak belajar sehingga perlu ditelaah teknik yang memudahkan siswa membuat organisasi materi. Penelitian ini bertujuan mengetahui pengaruh pembelajaran inkuiri terbimbing dengan mind map terhadap keterampilan proses sains dan hasil belajar kognitif. Penelitian kuasi eksperimen ini menggunakan rancangan pre test-post test control group design dengan subjek penelitian siswa kelas VIII SMP Negeri 1 Papalang. Hasil penelitian menunjukkan ada pengaruh positif yang signifikan pembelajaran inkuiri terbimbing dengan mind map terhadap kemampuan keterampilan proses sains dan hasil belajar kognitif siswa. Kata kunci:  inkuiri terbimbing, mind map, keterampilan proses sains,  hasil belajar kognitif

  4. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  5. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    OpenAIRE

    Hilman .

    2015-01-01

    Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on...

  6. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  7. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  8. Science curiosity in learning environments: developing an attitudinal scale for research in schools, homes, museums, and the community

    Science.gov (United States)

    Weible, Jennifer L.; Toomey Zimmerman, Heather

    2016-05-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.

  9. Brain Type or Sex Differences? A structural equation model of the relation between brain type, sex, and motivation to learn science

    Science.gov (United States)

    Zeyer, Albert; Bölsterli, Katrin; Brovelli, Dorothee; Odermatt, Freia

    2012-03-01

    Sex is considered to be one of the most significant factors influencing attitudes towards science. However, the so-called brain type approach from cognitive science suggests that the difference in motivation to learn science does not primarily differentiate the girls from the boys, but rather the so-called systemisers from the empathizers. The present study investigates this hypothesis by using structural equation modelling on a sex-stratified sample of 500 male and female students of secondary II level. The results show, that the motivation to learn science is directly influenced by the systemizing quotient SQ, but not by sex. The impact of sex on the motivation to learn science, measured by five key concepts, only works indirectly, namely through the influence of sex on the SQ. The empathizing quotient (EQ) has no impact on the motivation to learn science. The SQ explains between 13 and 23 percent of the variation of the five key constructs. In female students, the impact of the SQ is very similar for all key concepts. In male students, it is highest for self-efficacy and lowest for assessment anxiety. The motivation to learn science is significantly larger for male students in all involved SMQ key concepts, but the difference is small. The interpretation of these findings and conclusions for science teaching and further research are discussed.

  10. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    -on activities and use significantly more multi-media and animation resources in the classroom. The “Discovering Plate Boundaries” jigsaw (Sawyer et al, this session) is a very useful example of how lessons were taught in Earth Science II. The USGS-developed “Tennis Ball Globe” or “Wegner Puzzle” can be used as appropriate Elicit/Engage activities. With only basic instructions, the students are first split into their specialty teams, then re-arranged into their specific plate teams. “Expert” explanation is limited to the very end of the lesson, and is most effective when tailored to the abilities of the class and particularly the interests the students had highlighted during their own discussions and presentations. Typical student comments as revealed on the daily evaluations were “It was very hard at first, but when I kept working with the maps, I found I really could figure it out myself,” “The coolest was where I figured out a new plate boundary might be forming,” and (in response to “How much did you learn today:”) “More than I wanted!”

  11. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula.

    Science.gov (United States)

    Campos-Sánchez, Antonio; López-Núñez, Juan Antonio; Carriel, Víctor; Martín-Piedra, Miguel-Ángel; Sola, Tomás; Alaminos, Miguel

    2014-03-10

    The students' motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade- motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Glynn Science Motivation Questionnaire II was used to compare students' motivation components to learn histology in 367 first-year male and female undergraduate students enrolled in medical, dentistry and pharmacy degree programs. For intrinsic motivation, career motivation and self-efficacy, the highest values corresponded to medical students, whereas dentistry students showed the highest values for self-determination and grade motivation. Genders differences were found for career motivation in medicine, self-efficacy in dentistry, and intrinsic motivation, self-determination and grade motivation in pharmacy. Career motivation and self-efficacy components correlated with final performance in histology of the students corresponding to the three curricula. Our results show that the overall motivational profile for learning histology differs among medical, dentistry and pharmacy students. This finding is potentially useful to foster their learning process, because if they are metacognitively aware of their motivation they will be better equipped to self-regulate their science-learning behavior in histology. This information could be useful for instructors and education policy makers to enhance curricula not only on the cognitive component of learning but also to integrate students' levels and types of motivation into the processes of planning, delivery and evaluation of medical education.

  12. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  13. A brief review of augmented reality science learning

    Science.gov (United States)

    Gopalan, Valarmathie; Bakar, Juliana Aida Abu; Zulkifli, Abdul Nasir

    2017-10-01

    This paper reviews several literatures concerning the theories and model that could be applied for science motivation for upper secondary school learners (16-17 years old) in order to make the learning experience more amazing and useful. The embedment of AR in science could bring an awe-inspiring transformation on learners' viewpoint towards the respective subject matters. Augmented Reality is able to present the real and virtual learning experience with the addition of multiple media without replacing the real environment. Due to the unique feature of AR, it attracts the mass attention of researchers to implement AR in science learning. This impressive technology offers learners with the ultimate visualization and provides an astonishing and transparent learning experience by bringing to light the unseen perspective of the learning content. This paper will attract the attention of researchers in the related field as well as academicians in the related discipline. This paper aims to propose several related theoretical guidance that could be applied in science motivation to transform the learning in an effective way.

  14. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  15. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  16. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  17. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  18. Classroom Preschool Science Learning: The Learner, Instructional Tools, and Peer-Learning Assignments

    Science.gov (United States)

    Reuter, Jamie M.

    The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to

  19. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  20. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  1. Implementation of Active Learning Method in Unit Operations II Subject

    OpenAIRE

    Ma'mun, Sholeh

    2018-01-01

    ABSTRACT: Active Learning Method which requires students to take an active role in the process of learning in the classroom has been applied in Department of Chemical Engineering, Faculty of Industrial Technology, Islamic University of Indonesia for Unit Operations II subject in the Even Semester of Academic Year 2015/2016. The purpose of implementation of the learning method is to assist students in achieving competencies associated with the Unit Operations II subject and to help in creating...

  2. Applying the Science of Learning to the Learning of Science: Newton's Second Law of Motion

    Science.gov (United States)

    Lemmer, Miriam

    2018-01-01

    Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton's second law of motion from a cognitive perspective that takes social factors into account. A…

  3. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  4. Science Hobbyists: Active Users of the Science-Learning Ecosystem

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…

  5. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  6. Improving student learning in calculus through applications

    Science.gov (United States)

    Young, C. Y.; Georgiopoulos, M.; Hagen, S. C.; Geiger, C. L.; Dagley-Falls, M. A.; Islas, A. L.; Ramsey, P. J.; Lancey, P. M.; Straney, R. A.; Forde, D. S.; Bradbury, E. E.

    2011-07-01

    Nationally only 40% of the incoming freshmen Science, Technology, Engineering and Mathematics (STEM) majors are successful in earning a STEM degree. The University of Central Florida (UCF) EXCEL programme is a National Science Foundation funded STEM Talent Expansion Programme whose goal is to increase the number of UCF STEM graduates. One of the key requirements for STEM majors is a strong foundation in Calculus. To improve student learning in calculus, the EXCEL programme developed two special courses at the freshman level called Applications of Calculus I (Apps I) and Applications of Calculus II (Apps II). Apps I and II are one-credit classes that are co-requisites for Calculus I and II. These classes are teams taught by science and engineering professors whose goal is to demonstrate to students where the calculus topics they are learning appear in upper level science and engineering classes as well as how faculty use calculus in their STEM research programmes. This article outlines the process used in producing the educational materials for the Apps I and II courses, and it also discusses the assessment results pertaining to this specific EXCEL activity. Pre- and post-tests conducted with experimental and control groups indicate significant improvement in student learning in Calculus II as a direct result of the application courses.

  7. Cross-Cultural Comparisons of University Students' Science Learning Self-Efficacy: Structural Relationships among Factors within Science Learning Self-Efficacy

    Science.gov (United States)

    Wang, Ya-Ling; Liang, Jyh-Chong; Tsai, Chin-Chung

    2018-01-01

    Science learning self-efficacy could be regarded as a multi-factor belief which comprises different aspects such as cognitive skills, practical work, and everyday application. However, few studies have investigated the relationships among these factors that compose science learning self-efficacy. Also, culture may play an important role in…

  8. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-04-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from the year 2000 onward. Major findings include that most of the studies focused on designing systems for mobile learning, followed by a combination of evaluating the effects of mobile learning and investigating the affective domain during mobile learning. The majority of the studies were conducted in the area of life sciences in informal, elementary (5-11 years) settings. Mobile devices were used in this strand of science easily within informal environments with real-world connections. A variety of research methods were employed, providing a rich research perspective. As the use of mobile learning continues to grow, further research regarding the use of mobile technologies in all areas and levels of science learning will help science educators to expand their ability to embrace these technologies.

  9. Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula

    Science.gov (United States)

    2014-01-01

    Background The students’ motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade- motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology. Methods Glynn Science Motivation Questionnaire II was used to compare students’ motivation components to learn histology in 367 first-year male and female undergraduate students enrolled in medical, dentistry and pharmacy degree programs. Results For intrinsic motivation, career motivation and self-efficacy, the highest values corresponded to medical students, whereas dentistry students showed the highest values for self-determination and grade motivation. Genders differences were found for career motivation in medicine, self-efficacy in dentistry, and intrinsic motivation, self-determination and grade motivation in pharmacy. Career motivation and self-efficacy components correlated with final performance in histology of the students corresponding to the three curricula. Conclusions Our results show that the overall motivational profile for learning histology differs among medical, dentistry and pharmacy students. This finding is potentially useful to foster their learning process, because if they are metacognitively aware of their motivation they will be better equipped to self-regulate their science-learning behavior in histology. This information could be useful for instructors and education policy makers to enhance curricula not only on the cognitive component of learning but also to integrate students’ levels and types of motivation into the processes of planning, delivery and evaluation of medical education. PMID:24612878

  10. Do Science Teachers Distinguish Between Their own Learning and the Learning of Their Students?

    Science.gov (United States)

    Brauer, Heike; Wilde, Matthias

    2018-02-01

    Learning beliefs influence learning and teaching. For this reason, teachers and teacher educators need to be aware of them. To support students' knowledge construction, teachers must develop appropriate learning and teaching beliefs. Teachers appear to have difficulties when analysing students' learning. This seems to be due to the inability to differentiate the beliefs about their students' learning from those about their own learning. Both types of beliefs seem to be intertwined. This study focuses on whether pre-service teachers' beliefs about their own learning are identical to those about their students' learning. Using a sample of pre-service teachers, we measured general beliefs about "constructivist" and "transmissive" learning and science-specific beliefs about "connectivity" and "taking pre-concepts into account". We also analysed the development of these four beliefs during teacher professionalisation by comparing beginning and advanced pre-service teachers. Our results show that although pre-service teachers make the distinction between their own learning and the learning of their students for the general tenets of constructivist and transmissive learning, there is no significant difference for science-specific beliefs. The beliefs pre-service teachers hold about their students' science learning remain closely tied to their own.

  11. Informal Science learning in PIBID: identifying and interpreting the strands

    Directory of Open Access Journals (Sweden)

    Thomas Barbosa Fejolo

    2013-10-01

    Full Text Available This paper presents a research on informal Science learning in the context of the Institutional Scholarship Program Initiation to Teaching (PIBID. We take as reference the strands of informal Science learning (FAC, representing six dimensions of learning, they are: 1 Development of interest in Science; 2 Understanding of scientific knowledge; 3 Engaging in scientific reasoning; 4 Reflection on Science; 5 Engagement in scientific practice; 6 Identification with Science. For the lifting data, it was used the filming record of the interactions and dialogues of undergraduate students while performing activities of Optical Spectroscopy in the laboratory. Based on the procedures of content analysis and interpretations through communication, we investigate which of the six strands were present during the action of the students in activities. As a result we have drawn a learning profile for each student by distributing communications in different strands of informal Science learning.

  12. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  13. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  14. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  15. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  16. Science learning motivation as correlate of students’ academic performances

    Directory of Open Access Journals (Sweden)

    Nhorvien Jay P. Libao

    2016-09-01

    Full Text Available This study was designed to analyze the relationship  of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, extrinsic motivation was found to be related with their academic performances among the indicators of motivations in learning science.

  17. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  18. Engaging Karen refugee students in science learning through a cross-cultural learning community

    Science.gov (United States)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  19. Self-regulated learning and science achievement in a community college

    Science.gov (United States)

    Maslin, (Louisa) Lin-Yi L.

    Self-regulated learning involves students' use of strategies and skills to adapt and adjust towards achievement in school. This research investigates the extent to which self-regulated learning is employed by community college students, and also the correlates of self-regulated learning: Is it used more by students in advanced science classes or in some disciplines? Is there a difference in the use of it by students who complete a science course and those who do not? How does it relate to GPA and basic skills assessments and science achievement? Does it predict science achievement along with GPA and assessment scores? Community college students (N = 547) taking a science course responded to the Motivated Strategies for Learning Questionnaire (MSLQ). The scales measured three groups of variables: (1) cognitive strategies (rehearsal, elaboration, organization, and critical thinking); (2) metacognitive self-regulation strategies (planning, monitoring, and self-regulation); and (3) resource management strategies (time and study environment, effort regulation, peer learning, and help-seeking). Students' course scores, college GPA, and basic skills assessment scores were obtained from faculty and college records. Students who completed a science course were found to have higher measures on cumulative college GPAs and assessment scores, but not on self-regulated learning. Self-regulated learning was found not to be used differently between students in the advanced and beginning science groups, or between students in different disciplines. The exceptions were that the advanced group scored higher in critical thinking but lower in effort regulation than the beginning group. Course achievement was found to be mostly unrelated to self-regulated learning, except for several significant but very weak and negative relationships in elaboration, self-regulation, help-seeking, and effort regulation. Cumulative GPA emerged as the only significant predictor of science achievement

  20. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    Science.gov (United States)

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-04-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science learning, that focused on science teaching, and that were transitional, with elements of both science learning and science teaching. These various service-learning experiences were designed to be "boundary experiences" for professional identity development (Geijsel & Meijers in Educational Studies, 3(4), 419-430, 2005), providing opportunities for PSETs to reflect on meanings in cultural contexts and how they are related to their own personal meanings. We analyzed written reflections and end-of-course oral reflection interviews from 42 PSETs on their various service-learning experiences. PSETs discussed themes related to the meanings they made of the service-learning experiences: (a) experiencing science in relation to their lives as humans and future teachers, (b) interacting with elementary students and other PSETs, and (c) making an impact in the physical environment and in the community. The connections that PSETs were making between the discursive spaces (service-learning contexts) and their own meaning-making of these experiences (as connected to their own interests in relation to their future professions and daily lives) shows evidence of the potential that various types of science service-learning experiences have for PSETs in developing inbound science teaching identity trajectories (Wenger in Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press, 1998). The findings of this study point to positive outcomes for PSETs when they participate in structured service-learning experiences along a learning to teaching continuum (246).

  1. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  2. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  3. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  4. On learning science and pseudoscience from prime-time television programming

    Science.gov (United States)

    Whittle, Christopher Henry

    The purpose of the present dissertation is to determine whether the viewing of two particular prime-time television programs, ER and The X-Files, increases viewer knowledge of science and to identify factors that may influence learning from entertainment television programming. Viewer knowledge of scientific dialogue from two science-based prime-time television programs, ER, a serial drama in a hospital emergency room and The X-Files, a drama about two Federal Bureau of Investigation agents who pursue alleged extraterrestrial life and paranormal activity, is studied. Level of viewing, education level, science education level, experiential factors, level of parasocial interaction, and demographic characteristics are assessed as independent variables affecting learning from entertainment television viewing. The present research involved a nine-month long content analysis of target television program dialogue and data collection from an Internet-based survey questionnaire posted to target program-specific on-line "chat" groups. The present study demonstrated that entertainment television program viewers incidentally learn science from entertainment television program dialogue. The more they watch, the more they learn. Viewing a pseudoscientific fictional television program does necessarily influence viewer beliefs in pseudoscience. Higher levels of formal science study are reflected in more science learning and less learning of pseudoscience from entertainment television program viewing. Pseudoscience learning from entertainment television programming is significantly related to experience with paranormal phenomena, higher levels of viewer parasocial interaction, and specifically, higher levels of cognitive parasocial interaction. In summary, the greater a viewer's understanding of science the more they learn when they watch their favorite science-based prime-time television programs. Viewers of pseudoscience-based prime-time television programming with higher levels

  5. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  6. Cooperative Learning and Learning Achievement in Social Science Subjects for Sociable Students

    Science.gov (United States)

    Herpratiwi; Darsono; Sasmiati; Pujiyatli

    2018-01-01

    Purpose: The research objective was to compare students' learning achievement for sociable learning motivation students in social science (IPS) using cooperative learning. Research Methods: This research used a quasi-experimental method with a pre-test/post-test design involving 35 fifth-grade students. The learning process was conducted four…

  7. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  8. ME science as mobile learning based on virtual reality

    Science.gov (United States)

    Fradika, H. D.; Surjono, H. D.

    2018-04-01

    The purpose of this article described about ME Science (Mobile Education Science) as mobile learning application learning of Fisika Inti. ME Science is a product of research and development (R&D) that was using Alessi and Trollip model. Alessi and Trollip model consists three stages that are: (a) planning include analysis of problems, goals, need, and idea of development product, (b) designing includes collecting of materials, designing of material content, creating of story board, evaluating and review product, (c) developing includes development of product, alpha testing, revision of product, validation of product, beta testing, and evaluation of product. The article describes ME Science only to development of product which include development stages. The result of development product has been generates mobile learning application based on virtual reality that can be run on android-based smartphone. These application consist a brief description of learning material, quizzes, video of material summery, and learning material based on virtual reality.

  9. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  10. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  11. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  12. Measuring the learning effectiveness of Web-based teacher professional development in the hypothesis based learning method of teaching science

    Science.gov (United States)

    Wilson, Penne L.

    2007-12-01

    interviews; Part II is a series of embedded, explanatory case studies which present an in-depth examination of three of the participants of this study to better understand the factors that influenced their learning of the HbL method of teaching science. Findings of this study indicate that teachers did learn the HbL method of teaching science through the online HbL workshop, the only place instruction in the HbL method was available. The structure of the online workshop which first introduced an element of the HbL process to teachers, next asked them to conduct a personal activity, and then to use a similar activity in their classrooms with students, and to reflect on the outcome of the activity, was successful in teaching the HbL method. Teachers expressed satisfaction with the structure of the online workshop and with the HbL method which they believed made learning science fun and which encouraged students to become more creative and critical thinkers, and also increased their knowledge of science concepts. The main motivation for learning HbL and the primary factor that led to teachers' satisfaction was the students' positive reaction to the HbL method. The teachers were encouraged because the students loved to do science after being introduced to HbL. Also identified in this study was the need by a participant for the inclusion of video models of teachers using the HbL method within the HbL online workshop. This suggestion demonstrated the need to incorporate more learning styles in the activities included in the HbL workshop in order to appeal to a wider audience of online learners.

  13. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  14. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  15. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  16. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  17. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    Science.gov (United States)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development

  18. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  19. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  20. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  1. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  2. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  3. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  4. Learning about the Nature of Science Using Algae

    Science.gov (United States)

    Edelmann, Hans G.; Martius, Thilo; Hahn, Achim; Schlüter, Kirsten; Nessler, Stefan H.

    2016-01-01

    Enquiry learning and teaching about the nature of science (NoS) is a key element of science education. We have designed an experimental setting for students aged 12-14 years to exercise enquiry-learning skills and to introduce students to the NoS aspects of creativity and imagination. It also illustrates the impact of carbon dioxide on the growth…

  5. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  6. Science learning motivation as correlate of students’ academic performances

    OpenAIRE

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P.; Dupa, Maria Elena D.; Bautista, Romiro Gordo

    2016-01-01

    This study was designed to analyze the relationship of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, e...

  7. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  8. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  9. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  10. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    Science.gov (United States)

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-08-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education, which are named as image- based AR and location- based AR. These approaches may result in different affordances for science learning. It is then found that students' spatial ability, practical skills, and conceptual understanding are often afforded by image-based AR and location-based AR usually supports inquiry-based scientific activities. After examining what has been done in science learning with AR supports, several suggestions for future research are proposed. For example, more research is required to explore learning experience (e.g., motivation or cognitive load) and learner characteristics (e.g., spatial ability or perceived presence) involved in AR. Mixed methods of investigating learning process (e.g., a content analysis and a sequential analysis) and in-depth examination of user experience beyond usability (e.g., affective variables of esthetic pleasure or emotional fulfillment) should be considered. Combining image-based and location-based AR technology may bring new possibility for supporting science learning. Theories including mental models, spatial cognition, situated cognition, and social constructivist learning are suggested for the profitable uses of future AR research in science education.

  11. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  12. Mathematics and Science Learning Opportunities in Preschool Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Pelatti, Christina Yeager; Miller, Heather Lynnine

    2014-01-01

    Research findings The present study observed and coded instruction in 65 preschool classrooms to examine (a) overall amounts and (b) types of mathematics and science learning opportunities experienced by preschool children as well as (c) the extent to which these opportunities were associated with classroom and program characteristics. Results indicated that children were afforded an average of 24 and 26 minutes of mathematics and science learning opportunities, respectively, corresponding to spending approximately 25% of total instructional time in each domain. Considerable variability existed, however, in the amounts and types of mathematics and science opportunities provided to children in their classrooms; to some extent, this variability was associated with teachers’ years of experience, teachers’ levels of education, and the socioeconomic status of children served in the program. Practice/policy Although results suggest greater integration of mathematics and science in preschool classrooms than previously established, there was considerable diversity in the amounts and types of learning opportunities provided in preschool classrooms. Affording mathematics and science experiences to all preschool children, as outlined in professional and state standards, may require additional professional development aimed at increasing preschool teachers’ understanding and implementation of learning opportunities in these two domains in their classrooms. PMID:25489205

  13. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  14. Facilitating long-term changes in student approaches to learning science.

    Science.gov (United States)

    Buchwitz, Brian J; Beyer, Catharine H; Peterson, Jon E; Pitre, Emile; Lalic, Nevena; Sampson, Paul D; Wakimoto, Barbara T

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007-2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students' high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to "think like a scientist" and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula.

  15. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  16. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  17. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  18. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2015-01-01

    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex

  19. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  20. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    Science.gov (United States)

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  1. How Environmental Attitudes Interact with Cognitive Learning in a Science Lesson Module

    Directory of Open Access Journals (Sweden)

    Maximiliane F. Schumm

    2016-01-01

    Full Text Available As cognitive knowledge plays a major role in supporting proenvironmental behavior, identification of individual aspects related to knowledge acquisition is essential. Our study monitored knowledge levels before and after a science-based lesson set in relation to self-reported behavior and attitudinal preferences (attitudes towards environmental Preservation and Utilization of 190 students (Mage  ± SD: 15.96 ± 0.55; 51.1% female. A knowledge questionnaire was completed once before and twice after participation. Additionally, (i the 2-MEV (two Major Environmental Values and (ii the GEB (General Ecological Behavior were applied. Girls showed higher Preservation but lower Utilization attitudes than boys did. Learning success was positively related to Preservation preferences (for girls as well as to behavior-based scores (for girls and boys. For boys, high preferences in Utilization were negatively correlated with learning achievement.

  2. Analysis of an Interactive Technology Supported Problem-Based Learning STEM Project Using Selected Learning Sciences Interest Areas (SLSIA)

    Science.gov (United States)

    Kumar, David Devraj

    2017-01-01

    This paper reports an analysis of an interactive technology-supported, problem-based learning (PBL) project in science, technology, engineering and mathematics (STEM) from a Learning Sciences perspective using the Selected Learning Sciences Interest Areas (SLSIA). The SLSIA was adapted from the "What kinds of topics do ISLS [International…

  3. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  4. Taiwanese Students' Science Learning Self-Efficacy and Teacher and Student Science Hardiness: A Multilevel Model Approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2016-01-01

    This study aimed to investigate the factors accounting for science learning self-efficacy (the specific beliefs that people have in their ability to complete tasks in science learning) from both the teacher and the student levels. We thus propose a multilevel model to delineate its relationships with teacher and student science hardiness (i.e.,…

  5. An exploration of equitable science teaching practices for students with learning disabilities

    Science.gov (United States)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  6. Preschool children's Collaborative Science Learning Scaffolded by Tablets

    Science.gov (United States)

    Fridberg, Marie; Thulin, Susanne; Redfors, Andreas

    2017-06-01

    This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.

  7. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  8. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  9. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  10. 2016 FACET-II Science Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark J., ed.

    2017-07-19

    The second in a series of FACET-II Science Workshops was held at SLAC National Accelerator Laboratory on October 17-19, 2016 [1]. The workshop drew thirty-five participants from eighteen different institutions including CERN, DESY, Ecole Polytechnique, FNAL, JAI, LBNL, LLNL, Radiabeam, Radiasoft, SLAC, Stony Brook, Strathclyde, Tech-X, Tsinghua, UC Boulder, UCLA and UT Austin. The 2015 workshop [2, 3] helped prioritize research directions for FACET-II. The 2016 workshop was focused on understanding what improvements are needed at the facility to support the next generation of experiments. All presentations are linked to the workshop website as a permanent record.

  11. Memorization techniques: Using mnemonics to learn fifth grade science terms

    Science.gov (United States)

    Garcia, Juan O.

    The purpose of this study was to determine whether mnemonic instruction could assist students in learning fifth-grade science terminology more effectively than traditional-study methods of recall currently in practice The task was to examine if fifth-grade students were able to learn a mnemonic and then use it to understand science vocabulary; subsequently, to determine if students were able to remember the science terms after a period of time. The problem is that in general, elementary school students are not being successful in science achievement at the fifth grade level. In view of this problem, if science performance is increased at the elementary level, then it is likely that students will be successful when tested at the 8th and 10th grade in science with the Texas Assessment of Knowledge and Skills (TAKS) in the future. Two research questions were posited: (1) Is there a difference in recall achievement when a mnemonic such as method of loci, pegword method, or keyword method is used in learning fifth-grade science vocabulary as compared to the traditional-study method? (2) If using a mnemonic in learning fifth-grade science vocabulary was effective on recall achievement, would this achievement be maintained over a span of time? The need for this study was to assist students in learning science terms and concepts for state accountability purposes. The first assumption was that memorization techniques are not commonly applied in fifth-grade science classes in elementary schools. A second assumption was that mnemonic devices could be used successfully in learning science terms and increase long term retention. The first limitation was that the study was conducted on one campus in one school district in South Texas which limited the generalization of the study. The second limitation was that it included random assigned intact groups as opposed to random student assignment to fifth-grade classroom groups.

  12. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  13. Learning and the transformative potential of citizen science.

    Science.gov (United States)

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    Science.gov (United States)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-01-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of…

  15. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  16. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  17. Supporting Three-Dimensional Science Learning: The Role of Curiosity-Driven Classroom Discourse

    Science.gov (United States)

    Johnson, Wendy Renae

    2017-01-01

    The National Research Council's "Framework for K-12 Science Education" (2011) presents a new vision for science education that calls for the integration of the three dimensions of science learning: science and engineering practices, crosscutting concepts, and disciplinary core ideas. Unlike previous conceptions of science learning that…

  18. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  19. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  20. Game-Based Learning in Science Education: A Review of Relevant Research

    Science.gov (United States)

    Li, Ming-Chaun; Tsai, Chin-Chung

    2013-12-01

    The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.

  1. Academic language and the challenge of reading for learning about science.

    Science.gov (United States)

    Snow, Catherine E

    2010-04-23

    A major challenge to students learning science is the academic language in which science is written. Academic language is designed to be concise, precise, and authoritative. To achieve these goals, it uses sophisticated words and complex grammatical constructions that can disrupt reading comprehension and block learning. Students need help in learning academic vocabulary and how to process academic language if they are to become independent learners of science.

  2. Learning design for science teacher training and educational development

    DEFF Research Database (Denmark)

    Bjælde, Ole Eggers; Caspersen, Michael E.; Godsk, Mikkel

    This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing and tran......This paper presents the impact and perception of two initiatives at the Faculty of Science and Technology, Aarhus University: the teacher training module ‘Digital Learning Design’ (DiLD) for assistant professors and postdocs, and the STREAM learning design model and toolkit for enhancing...... and transforming modules. Both DiLD and the STREAM model have proven to be effective and scalable approaches to encourage educators across all career steps to embrace the potentials of educational technology in science higher education. Moreover, the transformed modules have resulted in higher student satisfaction...

  3. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  4. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol.

    Science.gov (United States)

    Laverty, James T; Underwood, Sonia M; Matz, Rebecca L; Posey, Lynmarie A; Carmel, Justin H; Caballero, Marcos D; Fata-Hartley, Cori L; Ebert-May, Diane; Jardeleza, Sarah E; Cooper, Melanie M

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not.

  5. Globalising Service-Learning in the Social Sciences

    Science.gov (United States)

    Limoncelli, Stephanie A.

    2017-01-01

    The increasing internationalisation of social science curricula in undergraduate education along with the growth of service-learning has provided new opportunities to join the two. This article offers a refection and discussion of service-learning with placements in international nongovernmental organisations (INGOs), drawing from its application…

  6. Cooperative learning in science: intervention in the secondary school

    Science.gov (United States)

    Topping, K. J.; Thurston, A.; Tolmie, A.; Christie, D.; Murray, P.; Karagiannidou, E.

    2011-04-01

    The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications.

  7. Influence of Career Motivation on Science Learning in Korean High-School Students

    Science.gov (United States)

    Shin, Sein; Lee, Jun-Ki; Ha, Minsu

    2017-01-01

    Motivation to learn is an essential element in science learning. In this study, the role of career motivation in science learning was examined. In particular, first, a science motivation model that focused on career motivation was tested. Second, the role of career motivation as a predictor of STEM track choice was examined. Third, the effect of…

  8. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  9. The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning.

    Science.gov (United States)

    Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles

    2012-07-01

    Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.

  10. Improving the quality of learning in science through optimization of lesson study for learning community

    Science.gov (United States)

    Setyaningsih, S.

    2018-03-01

    Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.

  11. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  12. Taking Stock: Existing Resources for Assessing a New Vision of Science Learning

    Science.gov (United States)

    Alonzo, Alicia C.; Ke, Li

    2016-01-01

    A new vision of science learning described in the "Next Generation Science Standards"--particularly the science and engineering practices and their integration with content--pose significant challenges for large-scale assessment. This article explores what might be learned from advances in large-scale science assessment and…

  13. Citizen science on a smartphone: Participants' motivations and learning.

    Science.gov (United States)

    Land-Zandstra, Anne M; Devilee, Jeroen L A; Snik, Frans; Buurmeijer, Franka; van den Broek, Jos M

    2016-01-01

    Citizen science provides researchers means to gather or analyse large datasets. At the same time, citizen science projects offer an opportunity for non-scientists to be part of and learn from the scientific process. In the Dutch iSPEX project, a large number of citizens turned their smartphones into actual measurement devices to measure aerosols. This study examined participants' motivation and perceived learning impacts of this unique project. Most respondents joined iSPEX because they wanted to contribute to the scientific goals of the project or because they were interested in the project topics (health and environmental impact of aerosols). In terms of learning impact, respondents reported a gain in knowledge about citizen science and the topics of the project. However, many respondents had an incomplete understanding of the science behind the project, possibly caused by the complexity of the measurements. © The Author(s) 2015.

  14. Psychological Implications of Discovery Learning in Science

    Science.gov (United States)

    Kaufman, Barry A

    1971-01-01

    Describes five aspects of learning as applied to science instruction. Learning readiness, meaningfulness of material, activity and passivity, motivation, and transfer of training are presented in relation to psychological views stated by Ausubel, Bruner, Gagne, Hendrix, Karplus, Piaget, and Suchman. Views given by Gagne and Karplus are considered…

  15. Children's learning of science through literature

    Science.gov (United States)

    O'Kelly, James B.

    This study examined the effects of picture books belonging to different literary genres on the learning of science by primary grade students. These genres included modern fantasy, fiction, and nonfiction. The students were exposed to two topics through books, butterflies and snails. The study focused on the effects of those books on children's expressions of (a) knowledge, (b) erroneous information, (c) creative ideas, and (d) the support required to elicit information and ideas from the children. Sixty-one children from three kindergarten and three second grade participated. Children were designated by their teachers as being high or low with respect to academic achievement. These categories allowed measurement of interactions between literary genres, grade levels, and academic achievement levels. Children first learned about butterflies, and then about snails. For each topic, children were interviewed about their knowledge and questions of the topic. Teachers engaged their classes with a book about the topic. The children were re-interviewed about their knowledge and questions about the topic. No class encountered the same genre of book twice. Comparisons of the children's prior knowledge of butterflies and snails indicated that the children possessed significantly more knowledge about butterflies than about snails. Literary genre had one significant effect on children's learning about snails. Contrary to expectations, children who encountered nonfiction produced significantly more creative expressions about snails than children who encountered faction or modern fantasy. No significant effects for literary genre were demonstrated with respect to children's learning about butterflies. The outcomes of the study indicated that nonfiction had its strongest impact on the learning of science when children have a relatively small fund of knowledge about a topic. This study has implications for future research. The inclusion of a larger number of students, classes, and

  16. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research

    Science.gov (United States)

    Cheng, Kun-Hung; Tsai, Chin-Chung

    2013-01-01

    Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education,…

  17. Machine learning and data science in soft materials engineering

    Science.gov (United States)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  18. Machine learning and data science in soft materials engineering.

    Science.gov (United States)

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  19. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  20. The science teacher as the organic link in science learning: Identity, motives, and capital transfer

    Science.gov (United States)

    Alexakos, Konstantinos

    This life history study is based on in-depth interviews of five science teachers and explores themes of science teachers' experiences as science learners and how these experiences frame what I have come to call "the subjective aspects of teaching." These themes seem to imply that through such individual experiences individuals develop a personally unique lens through which they view and interpret science, science meanings, and science teaching and learning. Emerging themes created new questions to pursue and they in turn produced new themes. These were further investigated in an attempt to connect science learning and science teachers to broader issues in society. These themes include that of a dynamic, dialectical learning and understanding of science by the participants, developed and influenced through a combination of their families, their schools, and their professional experiences, and in which morals and passion play major roles. The theme of the "organic link" is also introduced and developed in this research. It includes these individuals' views of science and the scientific enterprise, their path to learning, their morals, passions, and choices, and their way of constructing knowledge and the transmission of such a process. As organic links, they are seen as a direct and necessary social connection between science and the science learner, and they foster educational experiences grounded in the social lives of their students. Not only are they seen as "transmitters" of science knowledge and the process of constructing knowledge, but they are also seen as correcting and adjusting perceived diversions of the students' thinking from that of their own. It is in this context that the concept of capital (human and cultural capital, as well as capital exchange) is also explored. These themes are seen as having immense impact on how these science teachers teach, where they teach, what is communicated to their students, and whether they become or remain science

  1. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  2. How WebQuests Can Enhance Science Learning Principles in the Classroom

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  3. The place of native language in Science teaching and learning in ...

    African Journals Online (AJOL)

    The effect of limited English language proficiency on the learning of science is investigated for some Junior Secondary School (J.S.S.) pupils. Despite serious efforts put up by pupils to learn science, difficulties in speaking and writing English were factors that limited their performance in science. Two types of schools: an ...

  4. Preparing medical students for future learning using basic science instruction.

    Science.gov (United States)

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  5. What recent research on diagrams suggests about learning with rather than learning from visual representations in science

    Science.gov (United States)

    Tippett, Christine D.

    2016-03-01

    The move from learning science from representations to learning science with representations has many potential and undocumented complexities. This thematic analysis partially explores the trends of representational uses in science instruction, examining 80 research studies on diagram use in science. These studies, published during 2000-2014, were located through searches of journal databases and books. Open coding of the studies identified 13 themes, 6 of which were identified in at least 10% of the studies: eliciting mental models, classroom-based research, multimedia principles, teaching and learning strategies, representational competence, and student agency. A shift in emphasis on learning with rather than learning from representations was evident across the three 5-year intervals considered, mirroring a pedagogical shift from science instruction as transmission of information to constructivist approaches in which learners actively negotiate understanding and construct knowledge. The themes and topics in recent research highlight areas of active interest and reveal gaps that may prove fruitful for further research, including classroom-based studies, the role of prior knowledge, and the use of eye-tracking. The results of the research included in this thematic review of the 2000-2014 literature suggest that both interpreting and constructing representations can lead to better understanding of science concepts.

  6. 2017 Hans O. Mauksch Address: Using the Science of Learning to Improve Student Learning in Sociology Classes

    Science.gov (United States)

    Messineo, Melinda

    2018-01-01

    The 2017 Mauksch Address invites readers to consider how the field of sociology might benefit from greater inclusion of the science of learning into its pedagogy. Results from a survey of 92 teaching and learning experts in sociology reveal the degree to which the discipline's understanding of teaching and learning is informed by the science of…

  7. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  8. Science Spots AR: A Platform for Science Learning Games with Augmented Reality

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva; Dirin, Amir; Suk, Hae-Jung

    2016-01-01

    Lack of motivation and of real-world relevance have been identified as reasons for low interest in science among children. Game-based learning and storytelling are prominent methods for generating intrinsic motivation in learning. Real-world relevance requires connecting abstract scientific concepts with the real world. This can be done by…

  9. Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol

    Science.gov (United States)

    Underwood, Sonia M.; Matz, Rebecca L.; Posey, Lynmarie A.; Carmel, Justin H.; Caballero, Marcos D.; Fata-Hartley, Cori L.; Ebert-May, Diane; Jardeleza, Sarah E.; Cooper, Melanie M.

    2016-01-01

    Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of “three-dimensional learning” is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not. PMID:27606671

  10. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  11. The Development of a Scientific Motive: How Preschool Science and Home Play Reciprocally Contribute to Science Learning

    Science.gov (United States)

    Gomes, Judith; Fleer, Marilyn

    2017-07-01

    There are a growing number of studies that have examined science learning for preschool children. Some research has looked into children's home experiences and some has focused on transition, practices, routines, and traditions in preschool contexts. However, little attention has been directed to the relationship between children's learning experiences at preschool and at home, and how this relationship can assist in the development of science concepts relevant to everyday life. In drawing upon Hedegaard's (Learning and child development, 2002) cultural-historical conception of motives and Vygotsky's (The collected works of L.S. Vygotsky: problems of general psychology, 1987) theory of everyday and scientific concept formation, the study reported in this paper examines one child, Jimmy (4.2 years), and his learning experiences at home and at preschool. Data gathering featured the video recording of 4 weeks of Jimmy's learning in play at home and at preschool (38.5 h), parent questionnaire and interviews, and researcher and family gathered video observations of home play with his parents (3.5 h). Findings show how a scientific motive develops through playful everyday learning moments at home and at preschool when scientific play narratives and resources are aligned. The study contributes to a more nuanced understanding of the science learning of young children and a conception of pedagogy that takes into account the reciprocity of home and school contexts for learning science.

  12. Learning Science Through Digital Video: Views on Watching and Creating Videos

    Science.gov (United States)

    Wade, P.; Courtney, A. R.

    2013-12-01

    In science, the use of digital video to document phenomena, experiments and demonstrations has rapidly increased during the last decade. The use of digital video for science education also has become common with the wide availability of video over the internet. However, as with using any technology as a teaching tool, some questions should be asked: What science is being learned from watching a YouTube clip of a volcanic eruption or an informational video on hydroelectric power generation? What are student preferences (e.g. multimedia versus traditional mode of delivery) with regard to their learning? This study describes 1) the efficacy of watching digital video in the science classroom to enhance student learning, 2) student preferences of instruction with regard to multimedia versus traditional delivery modes, and 3) the use of creating digital video as a project-based educational strategy to enhance learning. Undergraduate non-science majors were the primary focus group in this study. Students were asked to view video segments and respond to a survey focused on what they learned from the segments. Additionally, they were asked about their preference for instruction (e.g. text only, lecture-PowerPoint style delivery, or multimedia-video). A majority of students indicated that well-made video, accompanied with scientific explanations or demonstration of the phenomena was most useful and preferred over text-only or lecture instruction for learning scientific information while video-only delivery with little or no explanation was deemed not very useful in learning science concepts. The use of student generated video projects as learning vehicles for the creators and other class members as viewers also will be discussed.

  13. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  14. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  15. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  16. The Influence of Extracurricular Activities on Middle School Students' Science Learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-01-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science…

  17. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    Science.gov (United States)

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  18. Characteristics of workplace-based learning across higher health sciences education

    DEFF Research Database (Denmark)

    Mørcke, Anne Mette; Christensen, Mette Krogh; Henriksen, Jette

    the considerable differences found across the three educations concerning supervisors’ roles and expectations of students’ ability to master competences, as well as the differences in opportunities for independent learning activities at the workplaces. This might be rooted in the different traditions underpinning......Characteristics of workplace-based learning across higher health sciences education Background Workplace-based learning is a traditional part of health sciences educations and we find a rich literature on some of the core features. However, a number of questions remain and we contribute...... by exploring the characteristics of the learning activities at workplaces and students’ and supervisors’ roles during clerkships across educations. Summary of work We performed a short-term ethnographic study in medicine, nursing and sports science. Data was collected during nine days observing skills training...

  19. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  20. Leaders Who Learn: The Intersection of Behavioral Science, Adult Learning and Leadership

    Science.gov (United States)

    Sabga, Natalya I.

    2017-01-01

    This study examines if a relationship exists among three rich research streams, specifically the behavioral science of motivation, adult learning and leadership. What motivates adult professionals to continue learning and how is that connected to their style and efficacy as leaders? An extension of literature to connect Andragogy,…

  1. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  2. Elementary school children's science learning from school field trips

    Science.gov (United States)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  3. Strategic Game Moves Mediate Implicit Science Learning

    Science.gov (United States)

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  4. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  5. The College Science Learning Cycle: An Instructional Model for Reformed Teaching.

    Science.gov (United States)

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K-12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes-oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. © 2016 M. Withers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  7. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  8. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  9. The Influence of Skill Process of Science and Motivation to Students Learn of Creativity

    Directory of Open Access Journals (Sweden)

    Yoga Budi Bhakti

    2018-01-01

    Full Text Available This research aims to understand the influence process of science skill and motivation learning with creativity learn. Data about the process of scince skill, motivation and creativity learn collected by test questioner instrument. Data analysis with regression analysis and correlation . Research shows that: There is the influence of skill process of science to the process of creativity learn with correlation coefficient r = 0.634 , there is the influence of motivation learn students to creativity learning with correlation coefficient r = 0.55, the process of science skills and motivation to study for students influence of creativity learn with correlation coefficient r = 0.935. This study concluded that skill process of science and the motivation to study student could creative learning.

  10. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-01-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the "Next Generation Science Standards," prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning…

  11. Science Driven Instrumentation for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bergmann, Uwe [SLAC National Accelerator Lab., Menlo Park, CA (United States); Brunger, Axel [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bozek, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cocco, Daniele [SLAC National Accelerator Lab., Menlo Park, CA (United States); Devereaux, Tom [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Yuantao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, Hermann [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, Kelly [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galayda, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, Julia [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guhr, Markus [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, Jerome [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, Philip [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hodgson, Keith [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Zirong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kelez, Nicholas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Montanez, Paul [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-24

    The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.

  12. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  13. Simple webs of natural environment theme as a result of sharing in science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-03-01

    Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.

  14. Attitudes and learning difficulties in middle school science in South Korea

    Science.gov (United States)

    Jung, Eun Sook

    The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is

  15. Learning with Web Tools, Simulations, and Other Technologies in Science Classrooms

    Science.gov (United States)

    Campbell, Todd; Wang, Shaing Kwei; Hsu, Hui-Yin; Duffy, Aaron M.; Wolf, Paul G.

    2010-10-01

    This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science `from technology' with a framework and examples of students learning science `with technology'. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students' lives: life in school and life outside of school. This position paper is in response to the changing landscape of students' lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning `with technology' to enhance science learning.

  16. Designing for expansive science learning and identification across settings

    Science.gov (United States)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  17. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  18. Improving Group Work Practices in Teaching Life Sciences: Trialogical Learning

    Science.gov (United States)

    Tammeorg, Priit; Mykkänen, Anna; Rantamäki, Tomi; Lakkala, Minna; Muukkonen, Hanni

    2017-08-01

    Trialogical learning, a collaborative and iterative knowledge creation process using real-life artefacts or problems, familiarizes students with working life environments and aims to teach skills required in the professional world. We target one of the major limitation factors for optimal trialogical learning in university settings, inefficient group work. We propose a course design combining effective group working practices with trialogical learning principles in life sciences. We assess the usability of our design in (a) a case study on crop science education and (b) a questionnaire for university teachers in life science fields. Our approach was considered useful and supportive of the learning process by all the participants in the case study: the students, the stakeholders and the facilitator. Correspondingly, a group of university teachers expressed that the trialogical approach and the involvement of stakeholders could promote efficient learning. In our case in life sciences, we identified the key issues in facilitating effective group work to be the design of meaningful tasks and the allowance of sufficient time to take action based on formative feedback. Even though trialogical courses can be time consuming, the experience of applying knowledge in real-life cases justifies using the approach, particularly for students just about to enter their professional careers.

  19. Learning Robotics in a Science Museum Theatre Play: Investigation of Learning Outcomes, Contexts and Experiences

    Science.gov (United States)

    Peleg, Ran; Baram-Tsabari, Ayelet

    2017-12-01

    Theatre is often introduced into science museums to enhance visitor experience. While learning in museums exhibitions received considerable research attention, learning from museum theatre has not. The goal of this exploratory study was to investigate the potential educational role of a science museum theatre play. The study aimed to investigate (1) cognitive learning outcomes of the play, (2) how these outcomes interact with different viewing contexts and (3) experiential learning outcomes through the theatrical experience. The play `Robot and I', addressing principles in robotics, was commissioned by a science museum. Data consisted of 391 questionnaires and interviews with 47 children and 20 parents. Findings indicate that explicit but not implicit learning goals were decoded successfully. There was little synergy between learning outcomes of the play and an exhibition on robotics, demonstrating the effect of two different physical contexts. Interview data revealed that prior knowledge, experience and interest played a major role in children's understanding of the play. Analysis of the theatrical experience showed that despite strong identification with the child protagonist, children often doubted the protagonist's knowledge jeopardizing integration of scientific content. The study extends the empirical knowledge and theoretical thinking on museum theatre to better support claims of its virtues and respond to their criticism.

  20. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  1. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  2. Promoting Female Students' Learning Motivation towards Science by Exercising Hands-On Activities

    Science.gov (United States)

    Wen-jin, Kuo; Chia-ju, Liu; Shi-an, Leou

    2012-01-01

    The purpose of this study is to design different hands-on science activities and investigate which activities could better promote female students' learning motivation towards science. This study conducted three types of science activities which contains nine hands-on activities, an experience scale and a learning motivation scale for data…

  3. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  4. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  5. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  6. Social media for informal science learning in China: A case study

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2014-09-01

    Full Text Available This article reports a case study on a popular informal science learning community via social media in China, named GuoKr (meaning “nutshell” in English. Data were collected through a variety of Chinese social media and social networking sites, web-based community portals, and discussion boards. Content analyses and data mining were conducted to investigate how GuoKr successfully attracted and engaged public in informal learning on scientific topics in particular. The study found three key characteristics that contributed to the success of such learning communities: (a utilizing a variety of social media to empower participants with just-in-time, accidental learning opportunities; (b daily tweets related to emerging or ongoing social events or hot topics to provide brief but intriguing knowledge “bites”, which often leads to extended readings and related resources; and (c the integration of social media and traditional face-to-face local events to engage the public in science-related learning and knowledge sharing. Practical and research implications are discussed with suggestions for future research as related to ubiquitous learning communities for informal science learning.

  7. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    Science.gov (United States)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  8. Science + Writing = Super Learning. Writing Workshop.

    Science.gov (United States)

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  9. Exploring Social Learning through Upstream Engagement in Science and Technology

    DEFF Research Database (Denmark)

    Mortensen, Jonas Egmose

    This discussion paper deliberates on how the concept of social learning can be used for evaluating upstream engagement initiatives in science and technology.  The paper briefly introduces to the concept of upstream engagement and a concrete case, the UK Citizen Science for Sustainability project...... (SuScit), as an outset for discussing how the concept of social learning can be used for analysing and understanding relations between citizen participation, Science and research, and sustainability. A number of relevant research questions and methodological considerations are distilled...

  10. Unpacking the Paradox of Chinese Science Learners: Insights from Research into Asian Chinese School Students' Attitudes towards Learning Science, Science Learning Strategies, and Scientific Epistemological Views

    Science.gov (United States)

    Cheng, May Hung May; Wan, Zhi Hong

    2016-01-01

    Chinese students' excellent science performance in large-scale international comparisons contradicts the stereotype of the Chinese non-productive classroom learning environment and learners. Most of the existing explanations of this paradox are provided from the perspective of teaching and learning in a general sense, but little work can be found…

  11. Portable Tablets in Science Museum Learning: Options and Obstacles

    Science.gov (United States)

    Gronemann, Sigurd Trolle

    2017-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people's learning with portable tablets matches the…

  12. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    Science.gov (United States)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  13. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  14. Developing an Understanding of Higher Education Science and Engineering Learning Communities

    Science.gov (United States)

    Coll, Richard K.; Eames, Chris

    2008-01-01

    This article sets the scene for this special issue of "Research in Science & Technological Education", dedicated to understanding higher education science and engineering learning communities. We examine what the literature has to say about the nature of, and factors influencing, higher education learning communities. A discussion of…

  15. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  16. Targeted learning in data science causal inference for complex longitudinal studies

    CERN Document Server

    van der Laan, Mark J

    2018-01-01

    This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generatio...

  17. Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry; Quistgaard, Nana

    2010-01-01

    The purpose of this paper is to bring together research on learning and teaching in science – especially for scientific literacy and citizenship – with new insights into museum didactics in order to inform innovative ways of creating museum exhibits and visits and develop new ways of linking formal...... and informal learning environments. Knowledge from different domains that have evolved substantially over the past few decades is brought together with the intention of setting up some relatively concrete guidelines for arranging visits to science museums. First we examine new understandings of science...... learning in relation to the questions of why young people should learn science and what kind of science they should learn. We touch upon issues of scientific literacy and citizenship, dialogical processes, the nature of science, and inquiry-based teaching among others. Secondly, we relate our reflections...

  18. Student Buy-In to Active Learning in a College Science Course.

    Science.gov (United States)

    Cavanagh, Andrew J; Aragón, Oriana R; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I; Graham, Mark J

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure-persuasion-identification-commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students' course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. © 2016 A. J. Cavanagh et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  20. Portable Tablets in Science Museum Learning

    DEFF Research Database (Denmark)

    Gronemann, Sigurd Trolle

    2016-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people...... is identified. It is argued that, paradoxically, museums’ decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people’s traditional ideas of museums and learning. The assessment of the implications of museums’ integration...... of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners’ systemic expectations to learning and to their expectations to the digital experience influenced...

  1. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  2. Learning Outcomes and Affective Factors of Blended Learning of English for Library Science

    Science.gov (United States)

    Wentao, Chen; Jinyu, Zhang; Zhonggen, Yu

    2016-01-01

    English for Library Science is an essential course for students to command comprehensive scope of library knowledge. This study aims to compare the learning outcomes, gender differences and affective factors in the environments of blended and traditional learning. Around one thousand participants from one university were randomly selected to…

  3. Student Buy-In to Active Learning in a College Science Course

    Science.gov (United States)

    Cavanagh, Andrew J.; Aragón, Oriana R.; Chen, Xinnian; Couch, Brian; Durham, Mary; Bobrownicki, Aiyana; Hanauer, David I.; Graham, Mark J.

    2016-01-01

    The benefits of introducing active learning in college science courses are well established, yet more needs to be understood about student buy-in to active learning and how that process of buy-in might relate to student outcomes. We test the exposure–persuasion–identification–commitment (EPIC) process model of buy-in, here applied to student (n = 245) engagement in an undergraduate science course featuring active learning. Student buy-in to active learning was positively associated with engagement in self-regulated learning and students’ course performance. The positive associations among buy-in, self-regulated learning, and course performance suggest buy-in as a potentially important factor leading to student engagement and other student outcomes. These findings are particularly salient in course contexts featuring active learning, which encourage active student participation in the learning process. PMID:27909026

  4. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  5. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    Science.gov (United States)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  6. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  7. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  8. The influence of extracurricular activities on middle school students' science learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-07-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.

  9. Learning science in a cooperative setting: Academic achievement and affective outcomes

    Science.gov (United States)

    Lazarowitz, Reuven; Hertz-Lazarowitz, Rachel; Baird, J. Hugh

    A learning unit in earth science was taught to high school students, using a jigsaw-group mastery learning approach. The sample consisted of 73 students in the experimental group and 47 students who learned the topic in an individualized mastery learning approach. The study lasted 5 weeks. Pretests and posttests on academic achievement and affective outcomes were administered. Data were treated with an analysis of covariance. The results show that students of the experimental group achieved significantly higher on academic outcomes, both normative and objective scores. On the creative essay test, the differences in number of ideas and total essay score were not significant between the groups, although the mean scores for number of words were higher for the individualized mastery learning group. On the affective domain, jigsaw-group mastery learning students scored significantly higher on self-esteem, number of friends, and involvement in the classroom. No differences were found in cohesiveness, cooperation, competition, and attitudes toward the subject learned. The results are discussed through the evaluation and comparison of the two methods of instruction used in this study.The cooperative learning movement began in junior high schools as part of the desegregation process, aiming at facilitating positive ethnic relations and increasing academic achievement and social skills among diverse students (Aronson, Stephan, Sikes, Blaney, & Snapp, 1978; Sharan & Hertz-Lazarowitz, 1980; Slavin, 1980). However, elementary teachers quickly recognized the potential of cooperative methods, and such methods were adopted freely in elementary schools before becoming widespread on the junior and senior high level. It has only been during the past few years that application of cooperative learning has been studied extensively with these older students.Cooperative learning methods generally involve heterogeneous groups working together on tasks that are deliberately structured to

  10. Authentic school science knowing and learning in open-inquiry science laboratories

    CERN Document Server

    Roth, Wolff-Michael

    1995-01-01

    According to John Dewey, Seymour Papert, Donald Schon, and Allan Collins, school activities, to be authentic, need to share key features with those worlds about which they teach. This book documents learning and teaching in open-inquiry learning environments, designed with the precepts of these educational thinkers in mind. The book is thus a first-hand report of knowing and learning by individuals and groups in complex open-inquiry learning environments in science. As such, it contributes to the emerging literature in this field. Secondly, it exemplifies research methods for studying such complex learning environments. The reader is thus encouraged not only to take the research findings as such, but to reflect on the process of arriving at these findings. Finally, the book is also an example of knowledge constructed by a teacher-researcher, and thus a model for teacher-researcher activity.

  11. Learning Activities That Combine Science Magic Activities with the 5E Instructional Model to Influence Secondary-School Students' Attitudes to Science

    Science.gov (United States)

    Lin, Jang-Long; Cheng, Meng-Fei; Chang, Ying-Chi; Li, Hsiao-Wen; Chang, Jih-Yuan; Lin, Deng-Min

    2014-01-01

    The purpose of this study was to investigate how learning materials based on Science Magic activities affect student attitudes to science. A quasi-experimental design was conducted to explore the combination of Science Magic with the 5E Instructional Model to develop learning materials for teaching a science unit about friction. The participants…

  12. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  13. Does Formative Assessment Improve Student Learning and Performance in Soil Science?

    Science.gov (United States)

    Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.

    2012-01-01

    Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…

  14. A Cross Age Study of Elementary Students' Motivation towards Science Learning

    Science.gov (United States)

    Guvercin, Ozge; Tekkaya, Ceren; Sungur, Semra

    2010-01-01

    The purpose of this study was to investigate the effect of grade level and gender on elementary school students' motivation towards science learning. A total of 2231 sixth and eight grade students participated in the study. Data were collected through Students' Motivation towards Science Learning Questionnaire. Two-way Multivariate Analysis of…

  15. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  16. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  17. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  18. NASA’s Universe of Learning: Engaging Subject Matter Experts to Support Museum Alliance Science Briefings

    Science.gov (United States)

    Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn

    2018-06-01

    NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this

  19. Uncovering Young Children's Motivational Beliefs about Learning Science

    Science.gov (United States)

    Oppermann, Elisa; Brunner, Martin; Eccles, Jacquelynne S.; Anders, Yvonne

    2018-01-01

    Young children, ages 5-6 years, develop first beliefs about science and themselves as science learners, and these beliefs are considered important precursors of children's future motivation to pursue science. Yet, due to a lack of adequate measures, little is known about young children's motivational beliefs about learning science. The present…

  20. Science Teachers' Perceptions of the Relationship Between Game Play and Inquiry Learning

    Science.gov (United States)

    Mezei, Jessica M.

    The implementation of inquiry learning in American science classrooms remains a challenge. Teachers' perceptions of inquiry learning are predicated on their past educational experiences, which means outdated methods of learning may influence teachers' instructional approaches. In order to enhance their understanding and ultimately their implementation of inquiry learning, teachers need new and more relevant models. This study takes a preliminary step exploring the potential of game play as a valuable experience for science teachers. It has been proposed that game play and inquiry experiences can embody constructivist processes of learning, however there has been little work done with science teachers to systematically explore the relationship between the two. Game play may be an effective new model for teacher education and it is important to understand if and how teachers relate game playing experience and knowledge to inquiry. This study examined science teachers' game playing experiences and their perceptions of inquiry experiences and evaluated teacher's recognition of learning in both contexts. Data was collected through an online survey (N=246) and a series of follow-up interviews (N=29). Research questions guiding the study were: (1) What is the nature of the relationship between science teachers' game experience and their perceptions of inquiry? (2) How do teachers describe learning in and from game playing as compared with inquiry science learning? and (3) What is the range of similarities and differences teachers articulate between game play and inquiry experiences?. Results showed weak quantitative links between science teachers' game experiences and their perceptions of inquiry, but identified promising game variables such as belief in games as learning tools, game experiences, and playing a diverse set of games for future study. The qualitative data suggests that teachers made broad linkages in terms of parallels of both teaching and learning. Teachers

  1. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    Science.gov (United States)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  2. Perspectives on competency-based medical education from the learning sciences.

    Science.gov (United States)

    Swing, Susan R

    2010-01-01

    A central component of competency-based medical education is a framework of higher-order and more fundamental competencies whose purpose is to focus instruction and learning. In the language of the learning sciences, many of these competencies are complex cognitive-perceptual or cognitive-motor skills. Competency-based medical education has been criticized for being reductionistic, that is, for focusing on atomistic skills and failing to capture the essence of professional activities as manifested by complex, integrated capabilities. The value of identifying fundamental skill components is supported by theory and evidence from the learning sciences, however. Complex skills are constructed from fundamental, component skills. Proficient performance of the former is achieved as components are refined and integrated during repeated performance of the skill in a realistic context and as feedback on performance is provided. Competency-based medical education does not propose specific methods for teaching competencies. The learning and instructional sciences, however, posit a number of conditions for learning that support the acquisition of simple skills and their flexible integration into complex capabilities. Learners' motivation and self-regulation skills will also have an impact on the extent to which they engage in learning processes that result in the integration of knowledge and skills into complex competencies.

  3. Data Science and Optimal Learning for Material Discovery and Design

    Science.gov (United States)

    ; Optimal Learning for Material Discovery & Design Data Science and Optimal Learning for Material inference and optimization methods that can constrain predictions using insights and results from theory directions in the application of information theoretic tools to materials problems related to learning from

  4. SciEthics Interactive: Science and Ethics Learning in a Virtual Environment

    Science.gov (United States)

    Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth

    2013-01-01

    Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…

  5. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  6. Robotic Fish to Aid Animal Behavior Studies and Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul

    The application of robotic fish in the fields of animal behavior and informal science learning are new and relatively untapped. In the context of animal behavior studies, robotic fish offers a consistent and customizable stimulus that could contribute to dissect the determinants of social behavior. In the realm of informal science learning, robotic fish are gaining momentum for the possibility of educating the general public simultaneously on fish physiology and underwater robotics. In this dissertation, the design and development of a number of robotic fish platforms and prototypes and their application in animal behavioral studies and informal science learning settings are presented. Robotic platforms for animal behavioral studies focused on the utilization replica or same scale prototypes. A novel robotic fish platform, featuring a three-dimensional swimming multi-linked robotic fish, was developed with three control modes varying in the level of robot autonomy offered. This platform was deployed at numerous science festivals and science centers, to obtain data on visitor engagement and experience.

  7. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    Science.gov (United States)

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for

  8. Applying the Science of Learning: Evidence-Based Principles for the Design of Multimedia Instruction

    Science.gov (United States)

    Mayer, Richard E.

    2008-01-01

    During the last 100 years, a major accomplishment of psychology has been the development of a science of learning aimed at understanding how people learn. In attempting to apply the science of learning, a central challenge of psychology and education is the development of a science of instruction aimed at understanding how to present material in…

  9. Principal Leadership for Technology-enhanced Learning in Science

    Science.gov (United States)

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2008-02-01

    Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.

  10. Contemporary machine learning: techniques for practitioners in the physical sciences

    Science.gov (United States)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. The effects of contextual learning instruction on science achievement of male and female tenth-grade students

    Science.gov (United States)

    Ingram, Samantha Jones

    The purpose of this study was to investigate the effects of the contextual learning method on science performance, attitudes toward science, and motivational factors that influence high school students to learn science. Gender differences in science performance and attitudes toward science were also investigated. The sample included four tenth-grade classes of African-American students enrolled in Chemistry I. All students were required to review for the Alabama High School Graduation Exam in Science. Students were administered a science pretest and posttest to measure science performance. A two-way analysis of covariance was performed on the test data. The results showed a main effect of contextual learning instruction on science achievement and no significant differences between females' and males' performance in science. The Science Attitude and the Alabama High School Graduation Exam (AHSGE) Review Class Surveys were administered to assess students' beliefs and attitudes toward science. The Science Attitude Survey results indicated a control effect in three subscales: perception of guardian's attitude, attitude toward success in science, and perception of teacher's attitude. No significant differences resulted between males and females in their beliefs about science from the attitude survey. However, students' attitudes toward science were more favorable in the contextual learning classes based on the results of the Review Class Survey. The survey data revealed that both males and females in the contextual classes had positive attitudes toward science and toward being active participants in the learning process. Qualitative data on student motivation were collected to examine the meaningfulness of the contextual learning content and materials. The majority of the students in the treatment (96%) and the control groups (86%) reported high interest in the lesson on Newton's three laws of motion. Both the treatment and the control groups indicated their interest

  12. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  13. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  14. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    Science.gov (United States)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  15. Taking Stock: Implications of a New Vision of Science Learning for State Science Assessment

    Science.gov (United States)

    Wertheim, Jill

    2016-01-01

    This article presents the author's response to the article "Taking Stock: Existing Resources for Assessing a New Vision of Science Learning" by Alonzo and Ke (this issue), which identifies numerous challenges that the Next Generation Science Standards (NGSS) pose for large-scale assessment. Jill Werthem comments that among those…

  16. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  17. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  18. Remote and Virtual Instrumentation Platform for Distance Learning

    Directory of Open Access Journals (Sweden)

    Tom Eppes

    2010-08-01

    Full Text Available This journal presents distance learning using the National Instruments ELVIS II and how Multisim can be combined with ELVIS II for distance learning. National Instrument’s ELVIS II is a new version that can easily be used for e-learning. It features 12 of the commonly used instruments in engineering and science laboratories, including an oscilloscope, a function generator, a variable power supply, and an isolated digital multi-meter in a low-cost and easy-to-use platform and completes integration with Multisim software for SPICE simulation, which simplifies the teaching of circuit design. As NI ELVIS II is based on LabView, designers can easily customize the 12 instruments or can create their own using the provided source code for the instruments.

  19. Validity of "Hi_Science" as instructional media based-android refer to experiential learning model

    Science.gov (United States)

    Qamariah, Jumadi, Senam, Wilujeng, Insih

    2017-08-01

    Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.

  20. An Argument for Formative Assessment with Science Learning Progressions

    Science.gov (United States)

    Alonzo, Alicia C.

    2018-01-01

    Learning progressions--particularly as defined and operationalized in science education--have significant potential to inform teachers' formative assessment practices. In this overview article, I lay out an argument for this potential, starting from definitions for "formative assessment practices" and "learning progressions"…

  1. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    Science.gov (United States)

    Smith, Deborah C.; Jang, Shinho

    2011-01-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles…

  2. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  3. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  4. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  5. Guest Editorial: Special Section on Learning Systems for Science and Technology Education

    NARCIS (Netherlands)

    Bredeweg, B.; McLaren, B.M.; Biswas, B.

    2013-01-01

    Computer-based technology can significantly enhance science education and training, as well as shape both what and how people learn. With this special issue of the IEEE Transactions on Learning Technologies (TLT), we present contributions that address education and training in science and technology

  6. Test-enhanced learning: the potential for testing to promote greater learning in undergraduate science courses.

    Science.gov (United States)

    Brame, Cynthia J; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval can enhance long-term learning in a laboratory setting; various testing formats can promote learning; feedback enhances the benefits of testing; testing can potentiate further study; and benefits of testing are not limited to rote memory. Most of these studies were performed in a laboratory environment, so we also present summaries of experiments suggesting that the benefits of testing can extend to the classroom. Finally, we suggest opportunities that these observations raise for the classroom and for further research. © 2015 C. J. Brame and R. Biel. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  8. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  9. Enabling People Who Are Blind to Experience Science Inquiry Learning through Sound-Based Mediation

    Science.gov (United States)

    Levy, S. T.; Lahav, O.

    2012-01-01

    This paper addresses a central need among people who are blind, access to inquiry-based science learning materials, which are addressed by few other learning environments that use assistive technologies. In this study, we investigated ways in which learning environments based on sound mediation can support science learning by blind people. We used…

  10. Taking an active stance: How urban elementary students connect sociocultural experiences in learning science

    Science.gov (United States)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-12-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.

  11. Utilization of Smartphones in Science Teaching and Learning in Selected Universities in Ghana

    Science.gov (United States)

    Twum, Rosemary

    2017-01-01

    This study was designed to examine the use of mobile phone, a widespread technology, and determined how this technology influences science students' learning. The study intended to examine the use of smartphones in science teaching and learning and propose of model in the use of smartphones for teaching and learning. The research design employed…

  12. Engaging in vocabulary learning in science: the promise of multimodal instruction

    Science.gov (United States)

    Townsend, Dianna; Brock, Cynthia; Morrison, Jennifer D.

    2018-02-01

    To a science 'outsider', science language often appears unnecessarily technical and dense. However, scientific language is typically used with the goal of being concise and precise, which allows those who regularly participate in scientific discourse communities to learn from each other and build upon existing scientific knowledge. One essential component of science language is the academic vocabulary that characterises it. This mixed-methods study investigates middle school students' (N = 59) growth in academic vocabulary as it relates to their teacher's instructional practices that supported academic language development. Students made significant gains in their production of general academic words, t(57) = 2.32, p = .024 and of discipline-specific science words, t(57) = 3.01, p = .004 in science writing. Results from the qualitative strand of this inquiry contextualised the students' learning of academic vocabulary as it relates to their teacher's instructional practices and intentions as well as the students' perceptions of their learning environment. These qualitative findings reveal that both the students and their teacher articulated that the teacher's intentional use of resources supported students' academic vocabulary growth. Implications for research and instruction with science language are shared.

  13. A Comparative Study of the Quality of Teaching Learning Process at Post Graduate Level in the Faculty of Science and Social Science

    Science.gov (United States)

    Shahzadi, Uzma; Shaheen, Gulnaz; Shah, Ashfaque Ahmed

    2012-01-01

    The study was intended to compare the quality of teaching learning process in the faculty of social science and science at University of Sargodha. This study was descriptive and quantitative in nature. The objectives of the study were to compare the quality of teaching learning process in the faculty of social science and science at University of…

  14. Promoting Prospective Elementary Teachers' Learning to Use Formative Assessment for Life Science Instruction

    Science.gov (United States)

    Sabel, Jaime L.; Forbes, Cory T.; Zangori, Laura

    2015-06-01

    To support elementary students' learning of core, standards-based life science concepts highlighted in the Next Generation Science Standards, prospective elementary teachers should develop an understanding of life science concepts and learn to apply their content knowledge in instructional practice to craft elementary science learning environments grounded in students' thinking. To do so, teachers must learn to use high-leverage instructional practices, such as formative assessment, to engage students in scientific practices and connect instruction to students' ideas. However, teachers may not understand formative assessment or possess sufficient science content knowledge to effectively engage in related instructional practices. To address these needs, we developed and conducted research within an innovative course for preservice elementary teachers built upon two pillars—life science concepts and formative assessment. An embedded mixed methods study was used to evaluate the effect of the intervention on preservice teachers' (n = 49) content knowledge and ability to engage in formative assessment practices for science. Findings showed that increased life content knowledge over the semester helped preservice teachers engage more productively in anticipating and evaluating students' ideas, but not in identifying effective instructional strategies to respond to those ideas.

  15. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  16. The Predictive Effects of Motivation toward Learning Science on TIMSS Grade 8 Students' Science Achievement: A Comparative Study between Malaysia and Singapore

    Science.gov (United States)

    Lay, Yoon Fah; Chandrasegaran, A. L.

    2016-01-01

    TIMSS routinely presents very powerful evidence showing that students with more positive motivation toward learning science have substantially higher achievement. The results from TIMSS 2011 are consistent with previous assessments. This study explored the predictive effects of motivation toward learning science on science achievement among…

  17. Embedding spiritual value through science learning

    Science.gov (United States)

    Johan, H.; Suhandi, A.; Wulan, A. R.; Widiasih; Ruyani, A.; Karyadi, B.; Sipriyadi

    2018-05-01

    The purpose of this study was to embed spiritual value through science learning program especially earth planet. Various phenomena in earth planet describe a divinity of super power. This study used quasi experimental method with one group pre-test-post-test design. Convenience sampling was conducted in this study. 23 pre-service physics teacher was involved. Pre-test and post-test used a questionnaire had been conducted to collected data of spiritual attitude. Open ended question had been utilized at post-test to collected data. A fourth indicators of spiritual value related to divinity of God was used to embed spiritual value. The results show a shifted of students’ awareness to divinity of God. Before implementing the earth planet learning, 85.8% of total students strongly agree that learning activity embed spiritual value while after learning process, it increased be 93.4%. After learning earth planet, it known that students’ spiritual value was influenced by character of earth planet concept which unobservable and media visual which display each incredible phenomena process in our earth planet. It can be concluded that spiritual value can be embedded through unobservable phenomena of during learning earth planet process.

  18. Crumpled Molecules and Edible Plastic: Science Learning Activation in Out-of-School Time

    Science.gov (United States)

    Dorph, Rena; Schunn, Christian D.; Crowley, Kevin

    2017-01-01

    The Coalition for Science After School highlights the dual nature of outcomes for science learning during out-of- school time (OST): Learning experiences should not only be positive in the moment, but also position youth for future success. Several frameworks speak to the first set of immediate outcomes--what youth learn, think, and feel as the…

  19. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    Science.gov (United States)

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  20. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-12-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.

  1. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  2. Service-Learning in the Environmental Sciences for Teaching Sustainability Science

    Science.gov (United States)

    Truebe, S.; Strong, A. L.

    2016-12-01

    Understanding and developing effective strategies for the use of community-engaged learning (service-learning) approaches in the environmental geosciences is an important research need in curricular and pedagogical innovation for sustainability. In 2015, we designed and implemented a new community-engaged learning practicum course through the Earth Systems Program in the School of Earth, Energy and Environmental Sciences at Stanford University focused on regional open space management and land stewardship. Undergraduate and graduate students partnered with three different regional land trust and environmental stewardship organizations to conduct quarter-long research projects ranging from remote sensing studies of historical land use, to fire ecology, to ranchland management, to volunteer retention strategies. Throughout the course, students reflected on the decision-making processes and stewardship actions of the organizations. Two iterations of the course were run in Winter and Fall 2015. Using coded and analyzed pre- and post-course student surveys from the two course iterations, we evaluate undergraduate and graduate student learning outcomes and changes in perceptions and understanding of sustainability science. We find that engagement with community partners to conduct research projects on a wide variety of aspects of open space management, land management, and environmental stewardship (1) increased an understanding of trade-offs inherent in sustainability and resource management and (2) altered student perceptions of the role of scientific information and research in environmental management and decision-making. Furthermore, students initially conceived of open space as purely ecological/biophysical, but by the end of the course, (3) their understanding was of open space as a coupled human/ecological system. This shift is crucial for student development as sustainability scientists.

  3. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  4. Cooperative Learning about Nature of Science with a Case from the History of Science

    Science.gov (United States)

    Wolfensberger, Balz; Canella, Claudia

    2015-01-01

    This paper reports a predominantly qualitative classroom study on cooperative learning about nature of science (NOS) using a case from the history of science. The purpose of the research was to gain insight into how students worked with the historical case study during cooperative group work, how students and teachers assessed the teaching unit,…

  5. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  6. Developing a Mobile Learning Management System for Outdoors Nature Science Activities Based on 5E Learning Cycle

    Science.gov (United States)

    Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng

    2015-01-01

    Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…

  7. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  8. An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio

    2017-01-01

    Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…

  9. Professional learning communities (PLCs) for early childhood science education

    Science.gov (United States)

    Eum, Jungwon

    This study explored the content, processes, and dynamics of Professional Learning Community (PLC) sessions. This study also investigated changes in preschool teachers' attitudes and beliefs toward science teaching after they participated in two different forms of PLCs including workshop and face-to-face PLC as well as workshop and online PLC. Multiple sources of data were collected for this study including participant artifacts and facilitator field notes during the PLC sessions. The participants in this study were eight teachers from NAEYC-accredited child care centers serving 3- to 5-year-old children in an urban Midwest city. All teachers participated in a workshop entitled, "Ramps and Pathways." Following the workshop, the first group engaged in face-to-face PLC sessions and the other group engaged in online PLC sessions. Qualitative data were collected through audio recordings, online archives, and open-ended surveys. The teachers' dialogue during the face-to-face PLC sessions was audiotaped, transcribed, and analyzed for emerging themes. Online archives during the online PLC sessions were collected and analyzed for emerging themes. Four main themes and 13 subthemes emanated from the face-to-face sessions, and 3 main themes and 7 subthemes emanated from the online sessions. During the face-to-face sessions, the teachers worked collaboratively by sharing their practices, supporting each other, and planning a lesson together. They also engaged in inquiry and reflection about their science teaching and child learning in a positive climate. During the online sessions, the teachers shared their thoughts and documentation and revisited their science teaching and child learning. Five themes and 15 subthemes emanated from the open-ended survey responses of face-to-face group teachers, and 3 themes and 7 subthemes emanated from the open-ended survey responses of online group teachers. Quantitative data collected in this study showed changes in teachers' attitudes and

  10. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  11. Perceptions versus Realities: Exploring Needs and Science Learning Outcomes In the Mississippi Delta

    Science.gov (United States)

    Fitts, Lacey S.

    The Mississippi Delta (MS Delta) is a high-poverty region in northwestern Mississippi located between the Mississippi and Yazoo rivers. The Delta is home to sixteen rural counties with over seventy failing or underperforming schools. Many of these schools lack the resources necessary to ensure adequate opportunities for all students. Learning outcomes for the state are among the lowest in the nation, and scores in the rural Delta are far below the state average. Graduating seniors take the ACT college entrance exam, with about 10% of Mississippi seniors scoring as "college-ready" in science. The region has a critical shortage of science teachers, and many schools do not offer advanced science courses. This study assessed teachers' needs, identified key characteristics of the secondary science programs in which they teach, and sought to understand conditions affecting science learning outcomes. An inventory of science teachers' needs was administered to teachers in the region. The greatest needs were material resources, high quality training, and strategies for improving poor reading and problem-solving skills of students. Of the factors examined, the percentage of students receiving free lunch had the strongest correlation with science learning outcomes in the school, higher than access to resources, number of science courses offered, and level of self-reported teacher need. A three-tiered approach to improving science learning outcomes has been developed, emphasizing community relationships, targeted professional development, and relevant science curriculum.

  12. Perspectives on learning through research on critical issues-based science center exhibitions

    Science.gov (United States)

    Pedretti, Erminia G.

    2004-07-01

    Recently, science centers have created issues-based exhibitions as a way of communicating socioscientific subject matter to the public. Research in the last decade has investigated how critical issues-based installations promote more robust views of science, while creating effective learning environments for teaching and learning about science. The focus of this paper is to explore research conducted over a 10-year period that informs our understanding of the nature of learning through these experiences. Two specific exhibitions - Mine Games and A Question of Truth - provide the context for discussing this research. Findings suggest that critical issues-based installations challenge visitors in different ways - intellectually and emotionally. They provide experiences beyond usual phenomenon-based exhibitions and carry the potential to enhance learning by personalizing subject matter, evoking emotion, stimulating dialogue and debate, and promoting reflexivity. Critical issues-based exhibitions serve as excellent environments in which to explore the nature of learning in these nonschool settings.

  13. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  14. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  15. Lessons Learned from Developing and Operating the Kepler Science Pipeline and Building the TESS Science Pipeline

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    The experience acquired through development, implementation and operation of the KeplerK2 science pipelines can provide lessons learned for the development of science pipelines for other missions such as NASA's Transiting Exoplanet Survey Satellite, and ESA's PLATO mission.

  16. The Role of Emotion in Informal Science Learning: Testing an Exploratory Model

    Science.gov (United States)

    Staus, Nancy L.; Falk, John H.

    2017-01-01

    Although there is substantial research on the effect of emotions on educational outcomes in the classroom, relatively little is known about how emotion affects learning in informal science contexts. We examined the role of emotion in the context of an informal science learning experience by utilizing a path model to investigate the relationships…

  17. Students' perceptions of learning environment in Guilan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mahdokht Taheri

    2013-05-01

    Full Text Available  Background and purpose: There is an increasing interest and concern regarding the role of learning environment in undergraduate medical education in recent years. Educational environment is one of the most important factors determining the success of an effective curriculum. The quality of educational environment has been identified to be crucial for effective learning.we compared the perceptions of Basic sciences students and clinical phase regarding the learning environment and also to identify the gender related differences in their perceptions.Method: In this study, the Dundee Ready Education Environment Measure (DREEM inventory was used. The total score for all subscales is 200. In this study, DREEM was administered to undergraduate medical students of basic sciences students (n=120, and clinical phase (n= 100 and the scores were compared using a nonparametric test.Results Between the two batches, basic sciences students were found to be more than satisfied with the learning environment at GUMS compared to the clinical phase. Gender wise, there was not much difference in the students' perceptions.Conclusion: This study revealed that both groups of students perceived learning environment relatively more Negative than Positive in GUMS. It is essential for faculty members to place more efforts on observing principals of instructional design and create an appropriate educational environment in order to provide a better learning for students.Keywords:LEARNING ENVIRONMENT,,MEDICAL SCHOOL

  18. Commentary on "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning"

    Science.gov (United States)

    Hewitt, Jim

    2015-01-01

    The article, "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning" is an interesting study that operates at the intersection of learning theory and learning analytics. The authors observe that the relationship between learning theory and research in the learning analytics field is constrained by several…

  19. Part Two: Learning Science Through Digital Video: Student Views on Watching and Creating Videos

    Science.gov (United States)

    Wade, P.; Courtney, A. R.

    2014-12-01

    The use of digital video for science education has become common with the wide availability of video imagery. This study continues research into aspects of using digital video as a primary teaching tool to enhance student learning in undergraduate science courses. Two survey instruments were administered to undergraduate non-science majors. Survey One focused on: a) What science is being learned from watching science videos such as a "YouTube" clip of a volcanic eruption or an informational video on geologic time and b) What are student preferences with regard to their learning (e.g. using video versus traditional modes of delivery)? Survey Two addressed students' perspectives on the storytelling aspect of the video with respect to: a) sustaining interest, b) providing science information, c) style of video and d) quality of the video. Undergraduate non-science majors were the primary focus group in this study. Students were asked to view video segments and respond to a survey focused on what they learned from the segments. The storytelling aspect of each video was also addressed by students. Students watched 15-20 shorter (3-15 minute science videos) created within the last four years. Initial results of this research support that shorter video segments were preferred and the storytelling quality of each video related to student learning.

  20. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students

    Directory of Open Access Journals (Sweden)

    Donna M. Kridelbaugh

    2015-11-01

    Full Text Available Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” solutions from the general public to help solve societal issues, often requiring nothing more than brainstorming and a computer to submit ideas. Online citizen science thus provides an excellent platform to expand the accessibility of experiential learning opportunities for a broad range of nonmajor science students at institutions with limited resources (e.g., community colleges. I created an activity for a general microbiology lecture to engage students in hands-on experiences via participation in online citizen-science projects. The objectives of the assignment were for students to: 1 understand that everyone can be a scientist; 2 learn to be creative and innovative in designing solutions to health and science challenges; and 3 further practice science communication skills with a written report. This activity is designed for introductory science courses with nonmajor science students who have limited opportunities to participate in undergraduate research experiences.

  1. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  2. Designing learning spaces for interprofessional education in the anatomical sciences.

    Science.gov (United States)

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  3. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  4. Learning Science in Informal Environments: People, Places, and Pursuits

    Science.gov (United States)

    Bell, Philip, Ed.; Lewenstein, Bruce, Ed.; Shouse, Andrew W., Ed.; Feder, Michael A., Ed.

    2009-01-01

    Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and…

  5. Science Learning via Multimedia Portal Resources: The Scottish Case

    Science.gov (United States)

    Elliot, Dely; Wilson, Delia; Boyle, Stephen

    2014-01-01

    Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…

  6. The Learning Science through Theatre Initiative in the Context of Responsible Research and Innovation

    Directory of Open Access Journals (Sweden)

    Zacharoula Smyrnaiou

    2017-10-01

    Full Text Available Fostering Responsible Research and Innovation (RRI is the next big step in the methodological teaching of Science. This is the solution towards an open classroom and innovation system of learning. The school science teaching needs to become more engaging. Science education should be an essential component of a learning continuum not only in classroom, but also for all, from pre- school to active engaged citizenship. "The Learning Science Through Theatre" Initiative creates a network of knowledge and collaboration between different communities by learning about science through other disciplines and learning about other disciplines through science. Forty Three (43 theatrical performances during the school years 2014-2016 were organized by secondary school students (2000 subjects which embed both scientific concepts and cultural/ social elements which are expressed by embodied, verbal interaction and analogies. The methodology constitutes a merging of qualitative, quantitative and grounded theory analysis. The data were classified into categories and they were cross- checked by registrations forms, filled by the teachers. Results show that the acquisition of knowledge is successful with the co- existence of multiple semiotic systems and the theatrical performances are compatible with the principles of RRI.

  7. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    Science.gov (United States)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  8. Resiliency and collateral learning in science in some students of cree ancestry

    Science.gov (United States)

    Sutherland, Dawn

    2005-07-01

    In the context of schooling, resiliency refers to the ability to thrive academically despite adverse circumstances. In this study the relationship between academic resilience and student's collateral learning is explored in 20 students of Cree ancestry. The individual resilience of each student was examined by identifying protective factors for school leaving within the microsystem of each student's ecological framework. Student responses to questions related to motivation and engagement were ranked. In addition, students' perception of the influence of family and peers on individual attributes toward schooling was ranked.To gain insight into the collateral learning aspects of science learning in Cree students, the participants in this study were asked to reflect on their learning strategies through the use of critical incidents. The relationship between collateral learning and resiliency was also explored.This study found that students possessing a greater number of protective factors were more likely to learn science in a way described by Jegede's collateral learning theory. Responses to critical incidents indicate some Cree students hold at least two sources of knowledge to explain some science concepts and therefore may adopt a collateral learning strategy. The importance these students place on earned or experiential knowledge is evident in the interviews. Some suggestions for classroom instruction are offered in conclusion.

  9. Adoption, adaptation, and abandonment: Appropriation of science education professional development learning

    Science.gov (United States)

    Longhurst, Max L.

    Understanding factors that impact teacher utilization of learning from professional development is critical in order maximize the educational and financial investment in teacher professional learning. This study used a multicase mixed quantitative and qualitative methodology to investigate the factors that influence teacher adoption, adaption, or abandonment of learning from science teacher professional development. The theoretical framework of activity theory was identified as a useful way to investigate the phenomenon of teacher appropriation of pedagogical practices from professional development. This framework has the capacity to account for a multitude of elements in the context of a learning experience. In this study educational appropriation is understood through a continuum of how an educator acquires and implements both practical and conceptual aspects of learning from professional development within localized context. The variability associated with instructional changes made from professional development drives this inquiry to search for better understandings of the appropriation of pedagogical practices. Purposeful sampling was used to identify two participants from a group of eighth-grade science teachers engaged in professional development designed to investigate how cyber-enabled technologies might enhance instruction and learning in integrated science classrooms. The data from this investigation add to the literature of appropriation of instructional practices by connecting eight factors that influence conceptual and practical tools with the development of ownership of pedagogical practices in the appropriation hierarchy. Recommendations are shared with professional development developers, providers, and participants in anticipation that future science teaching experiences might be informed by findings from this study.

  10. The Use of Mobile Learning in Science: A Systematic Review

    Science.gov (United States)

    Crompton, Helen; Burke, Diane; Gregory, Kristen H.; Gräbe, Catharina

    2016-01-01

    The use of mobile learning in education is growing at an exponential rate. To best understand how mobile learning is being used, it is crucial to gain a collective understanding of the research that has taken place. This systematic review reveals the trends in mobile learning in science with a comprehensive analysis and synthesis of studies from…

  11. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  12. THE MEDIATING ROLE OF SCIENCE MUSEUM IN STRUCTURING AND SYNTHESIS OF LEARNING

    Directory of Open Access Journals (Sweden)

    Fanny Angulo Delgado

    2016-10-01

    Full Text Available Understanding the mediating role of science museum in learning scientific content in school, it involves reflecting on the contributions of research to the question of what and how people learn in non-conventional educational settings. It has been shown that most people spend less than 3% of their lives learning in school, which emphasizes the importance of conceptualizing what they are and how much of their learning take place. While that question is resolved, it speaks at this bioassay on the complementary relationship between the museum and the school, as both institutions share the same educational purpose, but differ in the ways of achieving it. The science museum joins the class as a mediator that facilitates student learning as part of an education that promotes understanding of the phenomena of the world through models, which means that school learning goes in stages, one of which is that students have opportunity to structure new knowledge and synthesize on its own model. For this it is necessary that students speak, read, listen and write in science class, while the thought is expressed in language to attest to the facts. These communication skills arise in science class as indicators of mediation exercised by the museum and allow us to understand that it takes place in at least two dimensions: museographic and didactics.

  13. Families Support Their Children's Success in Science Learning by Influencing Interest and Self-efficacy

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan; Ben-Eliyahu, Adar

    2016-01-01

    How is a child's successful participation in science learning shaped by their family's support? We focus on the critical time period of early adolescents, testing (i) whether the child's perception of family support is important for both choice preferences to participate in optional learning experiences and engagement during science learning, and…

  14. Learning Styles of Mexican Food Science and Engineering Students

    Science.gov (United States)

    Palou, Enrique

    2006-01-01

    People have different learning styles that are reflected in different academic strengths, weaknesses, skills, and interests. Given the almost unlimited variety of job descriptions within food science and engineering, it is safe to say that students with every possible learning style have the potential to succeed as food scientists and engineers.…

  15. Formal, Non-Formal and Informal Learning in the Sciences

    Science.gov (United States)

    Ainsworth, Heather L.; Eaton, Sarah Elaine

    2010-01-01

    This research report investigates the links between formal, non-formal and informal learning and the differences between them. In particular, the report aims to link these notions of learning to the field of sciences and engineering in Canada and the United States, including professional development of adults working in these fields. It offers…

  16. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  17. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    Science.gov (United States)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  18. Toward enhanced learning of science: An educational scheme for informal science institutions

    Science.gov (United States)

    Suzuki, Midori

    Current educational operation for informal science institutions tend to be based on the staff's experience and intuition rather than on educational theories or research findings. This status study sought research evidence for an educational scheme to give informal science institutions. Evidence for this scheme came from surveys to determine specific circumstances of educational operations and visitor behaviors. The Provus discrepancy model, seeking gaps between the actual and desired states, guided this investigation of how informal science education institution staff view the nature and status of educational operations. Another investigation sought visitors' views of the effectiveness of the main idea for exhibit understanding (n=68 for each group of with the main idea and without the main idea), effective labels (n=68), expectations toward on-site lessons(n=22 and 65 for student groups, and n=2 for teachers), and possibilities for assessments of museum operations. Institutional data were collected via a web portal, with a separate site created for administrators (n=41), exhibit developers (n=21), and program planners (n=35). The survey asked about actual and desired states in terms of goals and roles of staff, contents of exhibits and programs, assessment, and professional development. The four visitor surveys were administered individually at the North Carolina Museum of Natural Sciences. The institutional survey found that most institutions focus on attitudinal reinforcement rather than visitor learning, do not overtly value research or long-term assessment, and value partnerships with K-12 schools more than other groups. It is also clarified that the staff do not have a clear vision of the nature or function of an operations manuals. Large gaps were found between the actual and desired states in terms of assessment (administrators, exhibit developers, and program planners), professional development (exhibit developers and program planners), and partnerships

  19. Internet-Based Science Learning: A Review of Journal Publications

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen

    2011-01-01

    Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…

  20. STENCIL: Science Teaching European Network for Creativity and Innovation in Learning

    Science.gov (United States)

    Cattadori, M.; Magrefi, F.

    2013-12-01

    STENCIL is an european educational project funded with support of the European Commission within the framework of LLP7 (Lifelong Learning Programme) for a period of 3 years (2011 - 2013). STENCIL includes 21 members from 9 European countries (Bulgaria, Germany, Greece, France, Italy, Malta, Portugal, Slovenia, Turkey.) working together to contribute to the general objective of improving science teaching, by promoting innovative methodologies and creative solutions. Among the innovative methods adept a particolar interest is a joint partnership between a wide spectrum of type of institutions such as schools, school authorities, research centres, universities, science museums, and other organizations, representing differing perspectives on science education. STENCIL offers to practitioners in science education from all over Europe, a platform; the web portal - www.stencil-science.eu - that provides high visibility to schools and institutions involved in Comenius and other similar European funded projects in science education. STENCIL takes advantage of the positive results achieved by the former European projects STELLA - Science Teaching in a Lifelong Learning Approach (2007 - 2009) and GRID - Growing interest in the development of teaching science (2004-2006). The specific objectives of the project are : 1) to identify and promote innovative practices in science teaching through the publication of Annual Reports on Science Education; 2) to bring together science education practitioners to share different experiences and learn from each other through the organisation of periodical study visits and workshops; 3) to disseminate materials and outcomes coming from previous EU funded projects and from isolated science education initiatives through the STENCIL web portal, as well as through international conferences and national events. This contribution aims at explaining the main features of the project together with the achieved results during the project's 3 year

  1. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  2. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    Science.gov (United States)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  3. Special ways of knowing in science: expansive learning opportunities with bilingual children with learning disabilities

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-09-01

    The field of bilingual special education is currently plagued with contradictions resulting in a serious underrepresentation of emergent bilinguals with learning disabilities in professional science fields. This underrepresentation is due in large part to the fact that educational systems around the world are inadequately prepared to address the educational needs of these children; this inadequacy is rooted in a lack of understanding of the linguistic and cultural factors impacting learning. Accepting such a premise and assuming that children learn in unexpected ways when instructional practices attend to culture and language, this study documents a place-based learning experience integrating geoscience and literacy in a fourth-grade dual language classroom. Data sources include transcribed audio-taped conversations from learning experience sessions and interviews that took place as six focus children, who had been identified as having specific learning disabilities, read published science texts (i.e. texts unaltered linguistically or conceptually to meet the needs of the readers). My analysis revealed that participants generated responses that were often unexpected if solely analyzed from those Western scientific perspectives traditionally valued in school contexts. However, these responses were also full of purposeful and rich understandings that revealed opportunities for expansive learning. Adopting a cultural historical activity theory perspective, instructional tools such as texts, visuals, and questions were found to act as mediators impacting the learning in both activity systems: (a) teacher- researcher learning from children, and (b) children learning from teachers. I conclude by suggesting that there is a need to understand students' ways of knowing to their full complexity, and to deliberately recognize teachers as learners, researchers, and means to expansive learning patterns that span beyond traditional learning boundaries.

  4. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  5. Service-Learning in the Computer and Information Sciences Practical Applications in Engineering Education

    CERN Document Server

    Nejmeh, Brian A

    2012-01-01

    A road map for service-learning partnerships between information science and nonprofit organizations While service-learning is a well-known educational method for integrating learning experiences with community service, it is only now beginning to emerge in computer and information sciences (CIS). Offering a truly global perspective, this book introduces for the first time an essential framework for service learning in CIS, addressing both the challenges and opportunities of this approach for all stakeholders involved-faculty, students, and community nonprofit organizations (NPOs), both dome

  6. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  7. Reflections on providing sport science support for athletes with learning difficulties.

    Science.gov (United States)

    Hills, Laura; Utley, Andrea

    2010-01-01

    To highlight the benefits and the need for sport science support for athletes with learning difficulties, and to reflect on our experience of working with the GB squad for athletes with learning difficulties. A review of key and relevant literature is presented, followed by a discussion of the sport science support provision and the issues that emerged in working with athletes with learning difficulties. Pre- and post- physiological tests along with evaluations of athletes' potential to benefit from sport psychology support were conducted. The aim of these tests was to provide information for the athletes and the coaches on fitness levels, to use this information to plan future training, and to identify how well the performance could be enhanced. A case study is presented for one athlete, who had competed in distance events. The focus is the psychological support that was provided. It is clear that athletes with learning difficulties require the same type of sports science support as their mainstream peers. However, sport scientists will need to consider ways to extend their practice in order to provide the appropriate level of support.

  8. Linking Essential Learning Outcomes and Interprofessional Collaborative Practice Competency in Health Science Undergraduates

    Science.gov (United States)

    Reed, Carole-Rae; Garcia, Luis Ivan; Slusser, Margaret M.; Konowitz, Sharon; Yep, Jewelry

    2017-01-01

    Assessing student learning outcomes and determining achievement of the Interprofessional Collaborative Practice (IPCEP) Core Competency of Values/Ethics in a generic pre-professional Bachelor of Science in Health Science (BSHS) program is challenging. A course level Student Learning Outcome (SLO) is: "….articulate the impact of personal…

  9. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    Science.gov (United States)

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  10. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    Science.gov (United States)

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  11. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-01-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…

  12. "Wow! Look at That!": Discourse as a Means to Improve Teachers' Science Content Learning in Informal Science Institutions

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Judith S.; Lederman, Norman G.

    2014-01-01

    Currently, it is not clear whether professional development staff at Informal Science Institutions (ISIs) are considering the way exhibits contribute to the social aspects of learning as described by the contextual model of learning (CML) (Falk & Dierking in "The museum experience." Whalesback, Washington, 1992; "Learning from…

  13. A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives

    Science.gov (United States)

    Tytler, Russell; Prain, Vaughan

    2010-10-01

    Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.

  14. Beyond Construction: Five arguments for the role and value of critique in learning science

    Science.gov (United States)

    Henderson, J. Bryan; MacPherson, Anna; Osborne, Jonathan; Wild, Andrew

    2015-07-01

    This paper argues that science education has overemphasized the importance of construction at the expense of critique. In doing so, it draws on two key premises-Ford's argument that the construction of knowledge requires a dialectic between construction and critique and Mercier and Sperber's theory of argumentative reasoning that critique is essential for epistemic vigilance. Five separate cases are presented which argue that the absence of critique within school science limits the opportunities for students to engage in scientific reasoning making the learning of science less effective. These five arguments incorporate research literature surrounding the nature of science, epistemology, literacy, pedagogy, and motivation. Furthermore, we draw on data collected from cognitive think-aloud interviews to show that students can, with the appropriate prompts, engage in the important epistemic activity of critique. We conclude by examining the implications for the teaching and learning of science. In essence, we argue that the undervaluing of critique within the curriculum and pedagogy of school science results in a failure to develop the analytical faculties which are the valued hall mark of the practicing scientist; a misrepresentation of the nature of science; and, more importantly, a less effective learning experience. Critique, therefore, needs to play a central role in the teaching and learning of science.

  15. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  16. The application of language-game theory to the analysis of science learning: Developing an interpretive classroom-level learning framework

    Science.gov (United States)

    Ahmadibasir, Mohammad

    In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the

  17. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  18. Educational Psychology's Past and Future Contributions to the Science of Learning, Science of Instruction, and Science of Assessment

    Science.gov (United States)

    Mayer, Richard E.

    2018-01-01

    Patricia Alexander (2018) provides a thought-provoking analysis of the past and future of educational psychology. Based on the themes in Alexander's paper, the present paper explores the past and future of educational psychology's contributions to: (a) the science of learning, corresponding to Alexander's theme of "a focus on learning as a…

  19. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  20. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking

  1. Using Wikis and Collaborative Learning for Science Teachers' Professional Development

    Science.gov (United States)

    Chen, Y-H.; Jang, S-J.; Chen, P-J.

    2015-01-01

    Wiki bears great potential to transform learning and instruction by scaffolding personal and social constructivism. Past studies have shown that proper application of wiki benefits both students and teachers; however, few studies have integrated wiki and collaborative learning to examine the growth of science teachers' "Technological,…

  2. Supporting cognitive engagement in a learning-by-doing learning environment: Case studies of participant engagement and social configurations in Kitchen Science Investigators

    Science.gov (United States)

    Gardner, Christina M.

    Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities. To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams, & Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these

  3. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  4. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    Science.gov (United States)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  5. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    Science.gov (United States)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-12-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  6. Exploring PCK ability of prospective science teachers in reflective learning on heat and transfer

    Science.gov (United States)

    Nurmatin, S.; Rustaman, N. Y.

    2016-02-01

    Learning can be planned by the person him/herself when he or she tries to reflect his/her learning. A study involving prospective science teachers in junior secondary schools was carried out to analyze their ability on Pedagogical Content Knowledge (PCK) in reflective learning after teaching practice. The study was focused especially in creating Pedagogical and Professional Repertoires (PaP-eRs) as part of resource-folios. PaP-eRs as a narrative writing in the learning activities are created by prospective science teachers after lesson plan implementation. Making the narrative writing is intended that prospective science teachers can reflect their learning in teaching. Research subjects are six prospective science teachers who are implementing "Program Pengalaman Lapangan" (PPL) in two junior secondary schools in Bandung, West Java, Indonesia. All of them were assigned by supervisor teachers to teach VII grade students on certain topic "heat and its transfer". Instruments used as a means of collecting data in this study is PaP-eRs. Collected PaP-eRs were then analyzed using PaP-eRs analysis format as instruments for analysis. The result of analyzing PaP-eRs indicates that learning activities, which narrated, involve initial activities, core activities and final activities. However, any activity, which is narrated just superficial as its big line so the narration cannot be, used as reflective learning. It indicates that PCK ability of prospective science teachers in creating narrative writing (PaP-eRs) for reflective learning is still low.

  7. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  8. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  9. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  10. The Effectiveness of Traditional and 21st Century Teaching Tools on Students' Science Learning

    Science.gov (United States)

    Bellflower, Julie V.

    Any student seeking a high school diploma from the public school system in one U.S. state must pass the state's high school graduation test. In 2009, only 88% of students at one high school in the state met the basic proficiency requirements on the science portion of the test. Because improved science education has been identified as an explicit national goal, the purpose of this mixed methods study was to determine whether traditional teaching tools (notes, lecture, and textbook) or 21st century teaching tools (online tutorials, video games, YouTube, and virtual labs) lead to greater gains in students' science learning. Bruner's constructivist and Bandura's social cognitive theories served as the foundations for the study. Quantitative research questions were used to investigate the relationship between the type of teaching tools used and student learning gains. Quantitative data from students' pre and posttests were collected and analyzed using a dependent samples t-test. Qualitative data were collected through a focus group interview and participant journals. Analysis of the qualitative data included coding the data and writing a descriptive narrative to convey the findings. Results showed no statistically significant differences in students' science achievement: both types of teaching tools led to student learning gains. As a result, an action plan was developed to assist science educators in the implementation of traditional and 21st century teaching tools that can be used to improve students' science learning. Implications for positive social change included providing science educators with a specific plan of action that will enhance students' science learning, thereby increasing science scores on the state and other high stakes tests.

  11. Science writing heurisitc: A writing-to-learn strategy and its effect on student's science achievement, science self-efficacy, and scientific epistemological view

    Science.gov (United States)

    Caukin, Nancy S.

    The purpose of this mixed-methods study was to determine if employing the writing-to-learn strategy known as a "Science Writing Heuristic" would positively effect students' science achievement, science self-efficacy, and scientific epistemological view. The publications Science for All American, Blueprints for Reform: Project 2061 (AAAS, 1990; 1998) and National Science Education Standards (NRC 1996) strongly encourage science education that is student-centered, inquiry-based, active rather than passive, increases students' science literacy, and moves students towards a constructivist view of science. The capacity to learn, reason, problem solve, think critically and construct new knowledge can potentially be experienced through writing (Irmscher, 1979; Klein, 1999; Applebee, 1984). Science Writing Heuristic (SWH) is a tool for designing science experiences that move away from "cookbook" experiences and allows students to design experiences based on their own ideas and questions. This non-traditional classroom strategy focuses on claims that students make based on evidence, compares those claims with their peers and compares those claims with the established science community. Students engage in reflection, meaning making based on their experiences, and demonstrate those understandings in multiple ways (Hand, 2004; Keys et al, 1999, Poock, nd.). This study involved secondary honors chemistry students in a rural prek-12 school in Middle Tennessee. There were n = 23 students in the group and n = 8 in the control group. Both groups participated in a five-week study of gases. The treatment group received the instructional strategy known as Science Writing Heuristic and the control group received traditional teacher-centered science instruction. The quantitative results showed that females in the treatment group outscored their male counterparts by 11% on the science achievement portion of the study and the males in the control group had a more constructivist scientific

  12. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    Science.gov (United States)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  13. Pre-Service Teachers' Attitudes toward Teaching Science and Their Science Learning at Indonesia Open University

    Science.gov (United States)

    Suprapto, Nadi; Mursid, Ali

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward…

  14. Teachers' learning about research for enhancing students' thinking skills in science learning

    Science.gov (United States)

    Nammungkhun, Wisanugorn; Satchukorn, Sureerat; Saenpuk, Nudchanard; Yuenyong, Chokchai; Chantharanuwong, Warawun

    2018-01-01

    This paper aimed to clarify teachers' learning about research for enhancing students' thinking skills in science learning. The study applied the lens of sociocultural view of learning to discuss teachers' learning about research. Participants included teachers who participated in the project of thinking research schools: research for enhancing students' thinking skills. The project of thinking research schools provided participants chance to learn knowledge about research and thinking research, doing research and publication, and participate in the international conference. Methodology regarded ethnographic research. The tools of interpretation included participant observation, interview, and document analysis. The researchers as participants of the research project of thinking research schools tried to clarify what they learned about research from their way of seeing the view of research about enhancing students' thinking skills through participant observation. The findings revealed what and how teachers as apprenticeship learn about research through legitimate peripheral participation in the research project community of practice. The paper clarified teachers' conceptualization about research for enhancing students' thinking through the workshop, doing research, writing up research article with supported by experts, presenting research in the international conference, editing their research article on the way of publishing, and so on.

  15. Mn(II), Zn(II) and VO(II) Schiff

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 3. Synthesis and characterisation of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) Schiff base complexes derived from o-phenylenediamine and acetoacetanilide. N Raman Y Pitchaikani Raja A Kulandaisamy. Inorganic Volume 113 Issue 3 June 2001 pp 183-189 ...

  16. Impact of interactive online units on learning science among students with learning disabilities and English learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-03-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p English learner status, indicating that these two groups performed similarly to their peers; students with learning disabilities had significantly lower assessment scores overall. Teachers and students were moderately satisfied with the units.

  17. Pathways of professional learning for elementary science teachers using computer learning environments

    Science.gov (United States)

    Williams, Latonya Michelle

    This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.

  18. The Effect of Scaffolded Strategies on Content Learning in a Designed Science Cyberlearning Environment

    Science.gov (United States)

    Kern, Cynthia Lee

    2013-01-01

    Scientific inscriptions--graphs, diagrams, and data--and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in…

  19. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  20. Relationships among constructivist learning environment perceptions, motivational beliefs, self-regulation and science achievement

    Science.gov (United States)

    Kingir, Sevgi; Tas, Yasemin; Gok, Gulsum; Sungur Vural, Semra

    2013-11-01

    Background. There are attempts to integrate learning environment research with motivation and self-regulation research that considers social context influences an individual's motivation, self-regulation and, in turn, academic performance. Purpose. This study explored the relationships among constructivist learning environment perception variables (personal relevance, uncertainty, shared control, critical voice, student negotiation), motivational beliefs (self-efficacy, intrinsic interest, goal orientation), self-regulation, and science achievement. Sample. The sample for this study comprised 802 Grade 8 students from 14 public middle schools in a district of Ankara in Turkey. Design and methods. Students were administered 4 instruments: Constructivist Learning Environment Survey, Goal Achievement Questionnaire, Motivated Strategies for Learning Questionnaire, and Science Achievement Test. LISREL 8.7 program with SIMPLIS programming language was used to test the conceptual model. Providing appropriate fit indices for the proposed model, the standardized path coefficients for direct effects were examined. Results. At least one dimension of the constructivist learning environment was associated with students' intrinsic interest, goal orientation, self-efficacy, self-regulation, and science achievement. Self-efficacy emerged as the strongest predictor of both mastery and performance avoidance goals rather than the approach goals. Intrinsic value was found to be significantly linked to science achievement through its effect on self-regulation. The relationships between self-efficacy and self-regulation and between goal orientation and science achievement were not significant. Conclusion. In a classroom environment supporting student autonomy and control, students tend to develop higher interest in tasks, use more self-regulatory strategies, and demonstrate higher academic performance. Science teachers are highly recommended to consider these findings when designing

  1. Improving together: collaborative learning in science communication, ClimateSnack case study

    Science.gov (United States)

    Heuzé, C.; Reeve, M. A.

    2016-02-01

    Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.

  2. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  3. Why Change to Active Learning? Pre-Service and In-Service Science Teachers' Perceptions

    Science.gov (United States)

    O'Grady, Audrey; Simmie, Geraldine Mooney; Kennedy, Therese

    2014-01-01

    This article explores pre-service and in-service science teachers' perceptions on active learning, and examines the effectiveness of active learning by pre-service science teachers in the Irish second level classroom through a two-phase study. In the first phase, data on perceptions were gathered from final year pre-service teachers and in-service…

  4. Making connections: Where STEM learning and Earth science data services meet

    Science.gov (United States)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Weigel, A. M.

    2016-12-01

    STEM learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems. Micro articles are short academic texts that enable a reader to quickly understand a scientific phenomena, a case study, or an instrument used to collect data. While originally designed to increase data discovery and usability, micro articles also serve as a reliable starting point for project-based learning, an educational approach in STEM education, for high school and higher education environments. This presentation will highlight micro articles at the Global Hydrology Resource Center data center and will demonstrate the potential applications of micro articles in project-based learning.

  5. ScienceToGo.org: Using 'Ozzie the Ostrich' to Build Local Partnerships around Climate Change Learning

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.; Wilson, R.; Rabkin, D.; Thompson, S. R.

    2015-12-01

    How can an informal science learning project about climate change facilitate alliances among unlikely parties? We found a sweet spot of collaboration among private, public, and the non-profit sectors by borrowing strength and leveraging common interests. Using mass transit and out of home media, we created a diverse community around a learning campaign that starred an ostrich named "Ozzie." In 2013-14, ScienceToGo.org ran a series of 12 engaging posters and placards staring 'Ozzie the Ostrich' on the Massachusetts Bay Transit Authority's Red and Orange subway lines targeting a daily audience of 400,000+ riders. The curriculum was divided into three phases: reality, relevance, and hope. Phase I established the reality of climate change (3 months). Phase II helped T-riders appreciate the relevancy of climate change to the local environment of Boston (4 months). Phase III engaged Bostonians with an array of hopeful examples of how people, companies, and organizations are effectively creating a more sustainable future (5 months). The focus of this presentation will be on the relationships that emerged from the work that went into Phase III. Engaging urban populations with climate change science is a difficult challenge since cities seem so removed from the 'natural environment.' However, mass transit provides an inherent means of communicating environmental messages with a cross section of the urban population. Our team felt that any messaging curriculum for an urban subway system must complement the scary reality of a changing climate with hopeful solutions that exist for dealing with it effectively. Urban areas such as Boston must develop adaptation and mitigation strategies that will help them not only survive, but thrive in a changing environment. Making our audience aware of the amazing efforts in this area was the goal of Phase III. There were three parts to our efforts: the signage on the subway, above ground ostriches, and social events. During the presentation

  6. E-LEARNING IN PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCE

    Directory of Open Access Journals (Sweden)

    A. Vyas

    2016-06-01

    Full Text Available Science and technology are evolving leaps and bounds. The advancements in GI-Science for natural and built environment helps in improving the quality of life. Learning through education and training needs to be at par with those advancements, which plays a vital role in utilization of technology. New technologies that creates new opportunities have enabled Geomatics to broaden the horizon (skills and competencies. Government policies and decisions support the use of geospatial science in various sectors of governance. Mapping, Land management, Urban planning, Environmental planning, Industrialization are some of the areas where the geomatics has become a baseline for decision making at national level. There is a need to bridge the gap between developments in geospatial science and its utilization and implementation. To prepare a framework for standardisation it is important to understand the theories of education and prevailing practices, with articulate goals exploring variety of teaching techniques. E-Learning is an erudition practice shaped for facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources through digital and network-enabled technology. It is a shift from traditional education or training to ICT-based flexible and collaborative learning based on the community of learners, academia, professionals, experts and facilitators. Developments in e-learning is focussed on computer assisted learning which has become popular because of its potential for providing more flexible access to content and instruction at any time, from any place (Means et al, 2009. With the advent of the geo-spatial technology, fast development in the software and hardware, the demand for skilled manpower is increasing and the need is for training, education, research and dissemination. It suggests inter-organisational cooperation between academia, industry, government and international

  7. E-Learning in Photogrammetry, Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Vyas, Anjana; König, Gerhard

    2016-06-01

    Science and technology are evolving leaps and bounds. The advancements in GI-Science for natural and built environment helps in improving the quality of life. Learning through education and training needs to be at par with those advancements, which plays a vital role in utilization of technology. New technologies that creates new opportunities have enabled Geomatics to broaden the horizon (skills and competencies). Government policies and decisions support the use of geospatial science in various sectors of governance. Mapping, Land management, Urban planning, Environmental planning, Industrialization are some of the areas where the geomatics has become a baseline for decision making at national level. There is a need to bridge the gap between developments in geospatial science and its utilization and implementation. To prepare a framework for standardisation it is important to understand the theories of education and prevailing practices, with articulate goals exploring variety of teaching techniques. E-Learning is an erudition practice shaped for facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources through digital and network-enabled technology. It is a shift from traditional education or training to ICT-based flexible and collaborative learning based on the community of learners, academia, professionals, experts and facilitators. Developments in e-learning is focussed on computer assisted learning which has become popular because of its potential for providing more flexible access to content and instruction at any time, from any place (Means et al, 2009). With the advent of the geo-spatial technology, fast development in the software and hardware, the demand for skilled manpower is increasing and the need is for training, education, research and dissemination. It suggests inter-organisational cooperation between academia, industry, government and international collaboration. There is a

  8. Merlin C. Wittrock's Enduring Contributions to the Science of Learning

    Science.gov (United States)

    Mayer, Richard E.

    2010-01-01

    Among his many accomplishments in educational psychology, Merlin C. Wittrock is perhaps best remembered for his enduring contributions to the science of learning. His vision of how learning works is best explicated in articles published in "Educational Psychologist" (Wittrock, 1974, 1978, 1989, 1991, 1992), beginning with his classic 1974 article,…

  9. Problem-Based Learning in the Physical Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  10. Use of Digital Game Based Learning and Gamification in Secondary School Science: The Effect on Student Engagement, Learning and Gender Difference

    Science.gov (United States)

    Khan, Amna; Ahmad, Farzana Hayat; Malik, Muhammad Muddassir

    2017-01-01

    This study aimed to identify the impact of a game based learning (GBL) application using computer technologies on student engagement in secondary school science classrooms. The literature reveals that conventional Science teaching techniques (teacher-centered lecture and teaching), which foster rote learning among students, are one of the major…

  11. Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students

    Science.gov (United States)

    Lewis, Y.

    2006-05-01

    Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying

  12. The Effect of Blended Learning and Social Media-Supported Learning on the Students' Attitude and Self-Directed Learning Skills in Science Education

    Science.gov (United States)

    Akgunduz, Devrim; Akinoglu, Orhan

    2016-01-01

    The main purpose of this study is to investigate the effect of blended learning and social media supported learning on the students' attitude and self-directed learning skills in Science Education. This research took place with the 7th grade 74 students attending to a primary school in Kadikoy, Istanbul and carried out "Our Body Systems"…

  13. Transformations in Kenyan Science Teachers' Locus of Control: The Influence of Contextualized Science and Emancipated Student Learning

    Science.gov (United States)

    Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.

    2015-01-01

    This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about…

  14. An evaluation of an enquiry based learning strategy for the science of imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, Sarah, E-mail: Sarah.Naylor@shu.ac.uk [Diagnostic Imaging, Sheffield Hallam University, Collegiate Campus, Sheffield (United Kingdom)

    2011-11-15

    Diagnostic radiography is a science based health course. Due to the variation in science background of the students at entry level the imaging science modules can be problematic. Enquiry based learning (EBL) was introduced as teaching strategy in an imaging science module in order to promote learner autonomy and enhance the student experience. The module was evaluated using a questionnaire containing both open and closed questions. The impact of working as a team was a strong theme emerging from the evaluation of the project, with the majority of students viewing teamwork as beneficial to their learning. It was identified that they gained support from the team, and this assisted their learning. The enhancement of transferable skills and the promotion of learner autonomy were achieved. Areas for further investigation are the utilisation of peer assessment and a science event for the summative assessment.

  15. An evaluation of an enquiry based learning strategy for the science of imaging technology

    International Nuclear Information System (INIS)

    Naylor, Sarah

    2011-01-01

    Diagnostic radiography is a science based health course. Due to the variation in science background of the students at entry level the imaging science modules can be problematic. Enquiry based learning (EBL) was introduced as teaching strategy in an imaging science module in order to promote learner autonomy and enhance the student experience. The module was evaluated using a questionnaire containing both open and closed questions. The impact of working as a team was a strong theme emerging from the evaluation of the project, with the majority of students viewing teamwork as beneficial to their learning. It was identified that they gained support from the team, and this assisted their learning. The enhancement of transferable skills and the promotion of learner autonomy were achieved. Areas for further investigation are the utilisation of peer assessment and a science event for the summative assessment.

  16. Science policy in changing times

    International Nuclear Information System (INIS)

    Greenwood, M.R.C.

    1995-01-01

    Like many scientists who were born right after World War II and who have learned a lot about physics, physical sciences, and biology from some of the incredible discoveries that were made in the defense laboratories, I have always been fascinated with Los Alamos. One of the marvelous opportunities that my job in Washington presented was to get to know a good deal more about the physical science world and the Department of Energy (DOE) laboratories, particularly Los Alamos since the Manhattan Project

  17. Science Teaching Orientations and Technology-Enhanced Tools for Student Learning

    Science.gov (United States)

    Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.

    2013-01-01

    This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced…

  18. For the Love of Science: Learning Orientation and Physical Science Success

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert; Almarode, John

    2010-02-01

    An individual's motivational orientation serves as a drive to action and can influence their productivity. This study examines how the goal orientation of students towards the pursuit of their graduate degree in physics and chemistry influences their future success outcomes as practicing scientists. Two main orientations are focused on: performance (or ego/ability) orientation and learning (or task/mastery) orientation. The data was obtained as part of Project Crossover, which applied a mixed methodological approach to studying the transition from graduate student to scientist in the physical sciences. Using regression analysis on survey data from 2353 PhD holders in physics and chemistry, we found that individuals exhibiting a learning orientation were more productive than those exhibiting a performance orientation in terms of first-author publications and grant funding. Furthermore, given equal salary, learning-oriented physical scientists produced more first-author publications than average. )

  19. Impact of Interactive Online Units on Learning Science among Students with Learning Disabilities and English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-01-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71…

  20. Crossing the Cartesian Divide: An Investigation into the Role of Emotion in Science Learning

    Science.gov (United States)

    Staus, Nancy L.

    Although many science educators and researchers believe that emotion is an important part of the learning process, few researchers have dealt with the topic in a systematic fashion. The purpose of this study was to examine the role of emotion in the learning process, particularly in the learning of science content. My study utilized a dimensional perspective which defined emotion in terms of arousal and valence, and drew on research from the fields of psychology and neuroscience to examine how emotion affects different aspects of cognition such as attention and memory. On the basis of these findings, I developed and tested a path model to investigate the predicted relationships among emotional arousal, valence, attention, intrinsic motivation and short- and long-term learning outcomes. I conducted the study in two phases. The first phase took place in a psychology laboratory in which participants watched either an exciting or neutral nature video, read a factual article related to the video and were tested on their learning. The second phase took place at the Oregon Coast Aquarium in which participants watched a narrated otter or sea lion presentation and took a short posttest after the show. In both phases, participants' emotional arousal, valence, attention, and motivation levels were also measured for inclusion in the model. The results indicated that emotional arousal was an important predictor of short-term learning in both experiments although its effect was fully mediated by attention at the aquarium. In addition, negative valence (displeasure) and intrinsic motivation were strong predictors of short-term learning in the laboratory experiment. At the aquarium, the narrator of the animal presentation strongly affected both attention and short-term learning---visitors who listened to a non-scripted rather than a scripted narration paid more attention and had significantly better short-term learning outcomes. In the aquarium study, emotional arousal correlated

  1. Student Motivation from and Resistance to Active Learning Rooted in Essential Science Practices

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Barlow, Angela T.; Smith-Walters, Cindi

    2017-12-01

    Several studies have found active learning to enhance students' motivation and attitudes. Yet, faculty indicate that students resist active learning and censure them on evaluations after incorporating active learning into their instruction, resulting in an apparent paradox. We argue that the disparity in findings across previous studies is the result of variation in the active learning instruction that was implemented. The purpose of this study was to illuminate sources of motivation from and resistance to active learning that resulted from a novel, exemplary active-learning approach rooted in essential science practices and supported by science education literature. This approach was enacted over the course of 4 weeks in eight sections of an introductory undergraduate biology laboratory course. A plant concept inventory, administered to students as a pre-, post-, and delayed-posttest indicated significant proximal and distal learning gains. Qualitative analysis of open-response questionnaires and interviews elucidated sources of motivation and resistance that resulted from this active-learning approach. Several participants indicated this approach enhanced interest, creativity, and motivation to prepare, and resulted in a challenging learning environment that facilitated the sharing of diverse perspectives and the development of a community of learners. Sources of resistance to active learning included participants' unfamiliarity with essential science practices, having to struggle with uncertainty in the absence of authoritative information, and the extra effort required to actively construct knowledge as compared to learning via traditional, teacher-centered instruction. Implications for implementation, including tips for reducing student resistance to active learning, are discussed.

  2. Perceived impact on student engagement when learning middle school science in an outdoor setting

    Science.gov (United States)

    Abbatiello, James

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes outdoors for regular classroom instruction. This study identified the potential impacts that learning in an outdoor setting might have on student engagement when learning middle school science. One sixth-grade middle school class participated in this case study, and students participated in outdoor intervention lessons where the instructional environment was a courtyard on the middle school campus. The outdoor lessons consisted of the same objectives and content as lessons delivered in an indoor setting during a middle school astronomy unit. Multiple sources of data were collected including questionnaires after each lesson, a focus group, student work samples, and researcher observations. The data was triangulated, and a vignette was written about the class' experiences learning in an outdoor setting. This study found that the feeling of autonomy and freedom gained by learning in an outdoor setting, and the novelty of the outdoor environment did increase student engagement for learning middle school science. In addition, as a result of this study, more work is needed to identify how peer to peer relationships are impacted by learning outdoors, how teachers could best utilize the outdoor setting for regular science instruction, and how learning in an outdoor setting might impact a feeling of stewardship for the environment in young adults.

  3. A rights-based approach to science literacy using local languages: Contextualising inquiry-based learning in Africa

    Science.gov (United States)

    Babaci-Wilhite, Zehlia

    2017-06-01

    This article addresses the importance of teaching and learning science in local languages. The author argues that acknowledging local knowledge and using local languages in science education while emphasising inquiry-based learning improve teaching and learning science. She frames her arguments with the theory of inquiry, which draws on perspectives of both dominant and non-dominant cultures with a focus on science literacy as a human right. She first examines key assumptions about knowledge which inform mainstream educational research and practice. She then argues for an emphasis on contextualised learning as a right in education. This means accounting for contextualised knowledge and resisting the current trend towards de-contextualisation of curricula. This trend is reflected in Zanzibar's recent curriculum reform, in which English replaced Kiswahili as the language of instruction (LOI) in the last two years of primary school. The author's own research during the initial stage of the change (2010-2015) revealed that the effect has in fact proven to be counterproductive, with educational quality deteriorating further rather than improving. Arguing that language is essential to inquiry-based learning, she introduces a new didactic model which integrates alternative assumptions about the value of local knowledge and local languages in the teaching and learning of science subjects. In practical terms, the model is designed to address key science concepts through multiple modalities - "do it, say it, read it, write it" - a "hands-on" experiential combination which, she posits, may form a new platform for innovation based on a unique mix of local and global knowledge, and facilitate genuine science literacy. She provides examples from cutting-edge educational research and practice that illustrate this new model of teaching and learning science. This model has the potential to improve learning while supporting local languages and culture, giving local languages their

  4. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in

  5. Science Achievement in TIMSS Cognitive Domains Based on Learning Styles

    Science.gov (United States)

    Kablan, Zeynel; Kaya, Sibel

    2013-01-01

    Problem Statement: The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects. Understanding how different learning styles might influence science achievement may guide educators in their efforts to raise achievement. This study is an attempt to examine…

  6. Exploring a Century of Advancements in the Science of Learning

    Science.gov (United States)

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  7. Learning science as a potential new source of understanding and improvement for continuing education and continuing professional development.

    Science.gov (United States)

    Van Hoof, Thomas J; Doyle, Terrence J

    2018-01-15

    Learning science is an emerging interdisciplinary field that offers educators key insights about what happens in the brain when learning occurs. In addition to explanations about the learning process, which includes memory and involves different parts of the brain, learning science offers effective strategies to inform the planning and implementation of activities and programs in continuing education and continuing professional development. This article provides a brief description of learning, including the three key steps of encoding, consolidation and retrieval. The article also introduces four major learning-science strategies, known as distributed learning, retrieval practice, interleaving, and elaboration, which share the importance of considerable practice. Finally, the article describes how learning science aligns with the general findings from the most recent synthesis of systematic reviews about the effectiveness of continuing medical education.

  8. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-04-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on students' self-regulation in science classrooms. Data collected from 1360 science students in grades 8, 9 and 10 in five public schools in Perth, Western Australia were utilized to validate the questionnaires and to investigate the hypothesized relationships. Structural Equation Modeling analysis suggested that student cohesiveness, investigation and task orientation were the most influential predictors of student motivation and self-regulation in science learning. In addition, learning goal orientation, task value and self-efficacy significantly influenced students' self-regulation in science. The findings offer potential opportunities for educators to plan and implement effective pedagogical strategies aimed at increasing students' motivation and self-regulation in science learning.

  9. Are Learning Assistants Better K-12 Science Teachers?

    Science.gov (United States)

    Gray, Kara E.; Webb, David C.; Otero, Valerie K.

    2010-10-01

    This study investigates how the undergraduate Learning Assistant (LA) experience affects teachers' first year of teaching. The LA Program provides interested science majors with the opportunity to explore teaching through weekly teaching responsibilities, an introduction to physics education research, and a learning community within the university. Some of these LAs are recruited to secondary science teacher certification programs. We hypothesized that the LA experience would enhance the teaching practices of the LAs who ultimately become teachers. To test this hypothesis, LAs were compared to a matched sample of teachers who completed the same teacher certification program as the LAs but did not have the LA "treatment." LAs and "non-LAs" were compared through interviews, classroom observations, artifact packages, and observations made with Reformed Teacher Observation Protocol (RTOP) collected within the first year of teaching. Some differences were found; these findings and their implications are discussed.

  10. A Discussion of Students Understanding, Learning and Application of Theory of Science within Humanities and Social Science

    DEFF Research Database (Denmark)

    Wiberg, Merete

    when they learn a disciplinary area and in this context design strategies for investigations and project writing. Due to the massification of education and research (Gibbons 1998, 2005) in most universities the tendency is that science and research have become oriented towards practice, partnerships...... is to discuss the role of theory of science in teaching and learning in the actual university context. It is to be discussed why a discussion of ontological complexity is relevant for the understanding of scientific work for both the researcher of today and the academics which are to apply research strategies......: European Educational Research Journal, Volume 6, no. 2, 2007 Nowotny, H. Scott, P., Gibbons, M. (2011). Re-Thinking Science, Cambridge: Polity Press Wittgenstein, L. (1984). Philosophische Untersuchungen. I: Wittgenstein, L. Werkausgabe Band 1. Frankfurt am Main: Suhrkamp....

  11. KEEFEKTIFAN MULTIMEDIA BERBASIS KOMPUTER UNTUK PEMBELAJARAN ILMU PENGETAHUAN SOSIAL KELAS IV SD PERCOBAAN II DEPOK SLEMAN

    Directory of Open Access Journals (Sweden)

    Sri Budyartati

    2016-11-01

    Full Text Available This research aims at: (1 identifying the effecteiveness of multi media-based learning on Social Science; (2 describing the attractiveness of multi media-based learning on Social Science; which is carried out at SD Percobaan II Caturtunggal Depok Sleman Yogyakarta, term 2007/2008. The research design is pretest-posttest control group design. The data are drwan through tests which are analized quantitatively; and questionaire to measure the attractiveness of multimedia-based learning model, which will be analized qualitatavely. The treatment is carried out out by using storyboard, which is approved by experts of multimedia and teaching method. The result of the analysis shows that multi media-based learning model significantly influence the students’ achievement in Social Science. While the attractivemess of multi media-based learning relatively high, which is shown by 4.2 of average (in 1-5 scale measure.

  12. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-01-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered…

  13. Effects of Computer-Assisted Jigsaw II Cooperative Learning Strategy on Physics Achievement and Retention

    Science.gov (United States)

    Gambari, Isiaka Amosa; Yusuf, Mudasiru Olalere

    2016-01-01

    This study investigated the effects of computer-assisted Jigsaw II cooperative strategy on physics achievement and retention. The study also determined how moderating variables of achievement levels as it affects students' performance in physics when Jigsaw II cooperative learning is used as an instructional strategy. Purposive sampling technique…

  14. Science learning and literacy performance of typically developing, at-risk, and disabled, non-English language background students

    Science.gov (United States)

    Larrinaga McGee, Patria Maria

    Current education reform calls for excellence, access, and equity in all areas of instruction, including science and literacy. Historically, persons of diverse backgrounds or with disabilities have been underrepresented in science. Gaps are evident between the science and literacy achievement of diverse students and their mainstream peers. The purpose of this study was to document, describe, and examine patterns of development and change in the science learning and literacy performance of Hispanic students. The two major questions of this study were: (1) How is science content knowledge, as evident in oral and written formats, manifested in the performance of typically developing, at-risk, and disabled non-English language background (NELB) students? and (2) What are the patterns of literacy performance in science, and as evident in oral and written formats, among typically developing, at-risk, and disabled NELB students? This case study was part of a larger research project, the Promise Project, undertaken at the University of Miami, Coral Gables, Florida, under the sponsorship of the National Science Foundation. The study involved 24 fourth-grade students in seven classrooms located in Promise Project schools where teachers were provided with training and materials for instruction on two units of science content: Matter and Weather. Four students were selected from among the fourth-graders for a closer analysis of their performance. Qualitative and quantitative data analysis methods were used to document, describe, and examine specific events or phenomena in the processes of science learning and literacy development. Important findings were related to (a) gains in science learning and literacy development, (b) students' science learning and literacy development needs, and (c) general and idiosyncratic attitudes toward science and literacy. Five patterns of science "explanations" identified indicated a developmental cognitive/linguistic trajectory in science

  15. STEM-based science learning implementation to identify student’s personal intelligences profiles

    Science.gov (United States)

    Wiguna, B. J. P. K.; Suwarma, I. R.; Liliawati, W.

    2018-05-01

    Science and technology are rapidly developing needs to be balanced with the human resources that have the qualified ability. Not only cognitive ability, but also have the soft skills that support 21st century skills. Science, Technology, Engineering, and Mathematics (STEM) Education is a solution to improve the quality of learning and prepare students may be able to trained 21st century skills. This study aims to analyse the implementation of STEM-based science learning on Newton’s law of motion by identifying the personal intelligences profile junior high school students. The method used in this research is pre experiment with the design of the study one group pre-test post-test. Samples in this study were 26 junior high school students taken using Convenience Sampling. Students personal intelligences profile after learning STEM-based science uses two instruments, self-assessment and peer assessment. Intrapersonal intelligence profile based self-assessment and peer assessment are respectively 69.38; and 64.08. As for interpersonal intelligence for self-assessment instrument is 73 and the peer assessment is 60.23.

  16. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  17. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    Science.gov (United States)

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Assessment for Learning in Inquiry Based Science Education

    DEFF Research Database (Denmark)

    Fornaguera, Cristina Carulla

    The study looks at assessment for learning and Inquiry Based Science Education —IBSE— as concepts established in a diversity of geographical areas, where the traditional summative assessment shapes what most individuals share as being experienced as assessment. Based on Leontiev and Radford...... the analytical process. The main contribution was the analysis and the results of researcher movement from a view of assessment considering learning as a psychological process in the mind, independent of the everyday life of individuals, towards one considering the inseparability of collective and individual...... as identifying and differentiating forms of researching assessment, changing the researcher’s perspective on research, and imagining a new theoretical approach to assessment for learning....

  19. Exploring the Intersections of Science and History Learning

    Science.gov (United States)

    Hughes, Catherine; Cosbey, Allison

    2016-01-01

    How can history museums incorporate Science, Technology, Engineering and Math (STEM) activities while preserving their missions and identities? How do interdisciplinary experiences lead to learning? A cross-institutional exhibit development and evaluation team wrestled with these ideas as they developed "Create.Connect," an National…

  20. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  1. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  2. Is There a Relationship between Brain Type, Sex and Motivation to Learn Science?

    Science.gov (United States)

    Zeyer, Albert; Wolf, Sarah

    2010-01-01

    Whilst sex is considered to be one of the most significant factors influencing attitudes towards science, previous research seems to suggest that, at least in non-science classes, there is no correlation between sex and motivation to learn science. The present study investigates a mixed group of science and non-science students of upper secondary…

  3. Investigating Elementary Teachers' Thinking About and Learning to Notice Students' Science Ideas

    Science.gov (United States)

    Luna, Melissa Jo

    Children naturally use observations and everyday thinking to construct explanations as to why phenomena happen in the world. Science instruction can benefit by starting with these ideas to help children build coherent scientific understandings of how the physical world works. To do so, science teaching must involve attending to students' ideas so that those ideas become the basis for learning. Yet while science education reform requires teachers to pay close attention to their students' ideas, we know little about what teachers think this means in practice. To examine this issue, my dissertation research is two-fold. First, I examine teacher thinking by investigating how teachers understand what it means to pay attention to students' science ideas. Specifically, using new digital technology, three participating teachers captured moments of student thinking in the midst of instruction. Analysis of these moments reveals that teachers capture many different kinds of moments containing students' ideas and think about students' science ideas in different ways at different times. In particular, these three teachers most often think about students' ideas as being (a) from authority, (b) from experience, and (c) under construction. Second, I examine teacher learning through the development of an innovative science teaching video club model. The model differs from previous research on video clubs in several key ways in an attempt to focus teachers on student thinking in a sustained way. I investigate the ways in which this model was effective for engaging teachers in noticing and making sense of their students' science ideas during one implementation. Results indicate that teachers talked about student thinking early, often, and in meaningful ways. Science education leaders have recognized the potential of science teaching video clubs as a form of professional development, and the model presented in this work promotes the conditions for successful teacher learning. This

  4. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  5. Supporting students' learning in the domain of computer science

    Science.gov (United States)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  6. So you want to share your science…. Connecting to the world of informal science learning.

    Science.gov (United States)

    Alpert, Carol Lynn

    2018-04-25

    Scientists can reap personal rewards through collaborations with science and natural history museums, zoos, botanical gardens, aquaria, parks, and nature preserves, and, while doing so, help to advance science literacy and broaden participation in the natural sciences. Beyond volunteer opportunities, which allow scientists to contribute their knowledge and passion within the context of existing programs and activities, there are also opportunities for scientists to bring their knowledge and resources to the design and implementation of new learning experiences for visitors to these informal science learning organizations (ISLOs). Well-designed education outreach plans that leverage the expertise and broad audiences of ISLOs can also enhance the prospects of research grant proposals made to agencies such as National Science Foundation, which encourage researchers to pay careful attention to the broader impacts of their research as well as its intellectual merit. Few scientists, however, have had the opportunity to become familiar with the pedagogy and design of informal or 'free-choice' science learning, and fewer still know how to go about the process of collaborating with ISLO's in developing and implementing effective programs, exhibits, and other learning experiences. This article, written by an experienced science museum professional, provides guidance for individual scientists and research groups interested in pursuing effective education outreach collaborations with science museums and other ISLOs. When prospective partners begin discussions early in the proposal development process, they increase the likelihood of successful outcomes in funding, implementation, and impact. A strategic planning worksheet is provided, along with a carefully-selected set of further resources to guide the design and planning of informal science learning experiences.

  7. Problem-Based Learning in the Life Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom; Parker, Joyce; Eberhardt, Janet

    2016-01-01

    "Problem-Based Learning in the Life Science Classroom, K-12" offers a great new way to ignite your creativity. Authors Tom McConnell, Joyce Parker, and Janet Eberhardt show you how to engage students with scenarios that represent real-world science in all its messy, thought-provoking glory. The scenarios prompt K-12 learners to immerse…

  8. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  9. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  10. Chemistry teachers’ understanding of science process skills in relation of science process skills assessment in chemistry learning

    Science.gov (United States)

    Hikmah, N.; Yamtinah, S.; Ashadi; Indriyanti, N. Y.

    2018-05-01

    A Science process skill (SPS) is a fundamental scientific method to achieve good knowledge. SPS can be categorized into two levels: basic and integrated. Learning SPS helps children to grow as individuals who can access knowledge and know how to acquire it. The primary outcomes of the scientific process in learning are the application of scientific processes, scientific reasoning, accurate knowledge, problem-solving, and understanding of the relationship between science, technology, society, and everyday life’s events. Teachers’ understanding of SPS is central to the application of SPS in a learning process. Following this point, this study aims to investigate the high school chemistry teachers’ understanding of SPS pertains to their assessment of SPS in chemistry learning. The understanding of SPS is measured from the conceptual and operational aspects of SPS. This research uses qualitative analysis method, and the sample consists of eight chemistry teachers selected by random sampling. A semi-structured interview procedure is used to collect the data. The result of the analysis shows that teachers’ conceptual and operational understanding of SPS is weak. It affects the accuracy and appropriateness of the teacher’s selection of SPS assessment in chemistry learning.

  11. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  12. Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue

    Science.gov (United States)

    Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper

    2015-01-01

    This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…

  13. ClimateNet: A Machine Learning dataset for Climate Science Research

    Science.gov (United States)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.

    2017-12-01

    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  14. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-04-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.

  15. Can Questions Facilitate Learning from Illustrated Science Texts?

    Science.gov (United States)

    Iding, Marie K.

    1997-01-01

    Examines the effectiveness of using questions to facilitate processing of diagrams in science texts. Investigates three different elements in experiments on college students. Finds that questions about illustrations do not facilitate learning. Discusses findings with reference to cognitive load theory, the dual coding perspective, and the…

  16. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  17. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    OpenAIRE

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self...

  18. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  19. Investigation of Primary Education Second Level Students' Motivations toward Science Learning in Terms of Various Factors

    Science.gov (United States)

    Sert Çibik, Ayse

    2014-01-01

    The purpose of this research was to investigate the primary education second level students' motivations towards science learning in terms of various factors. Within the research, the variation of the total motivational scores in science learning according to the gender, class, socio-economic levels, success in science-technology course and…

  20. Effects of color in the learning of science

    Science.gov (United States)

    Sánchez Juárez, A.; Granda, César W.; Castillo, D.; Jaramillo, Johanna E.; Melgar, Guissella K.

    2017-09-01

    The teaching of science is a global problem, general studies have been carried out which take into account the effects of color in the educational environment and have had revealing results, however a study has not been made to measure the effects of color in the learning of the sciences, in this specific case of Physics and mathematics. A study of the effects of color on science teaching was conducted, controlling color of various materials such as slides used in class, markers on blackboard, pens, paper sheets, laboratory materials and teacher's clothing color. In this paper we present results of student academic performance, opinion about the subject, development of logical abilities and a comparison with the teaching of science in a free way, that is to say, without control of color. There is also a study of color effects in science education distinguishing between genders and finally comparing the general results in the educational field with those obtained in this work.

  1. Implementation of Real-World Experiential Learning in a Food Science Course Using a Food Industry-Integrated Approach

    Science.gov (United States)

    Hollis, Francine H.; Eren, Fulya

    2016-01-01

    Success skills have been ranked as the most important core competency for new food science professionals to have by food science graduates and their employers. It is imperative that food science instructors promote active learning in food science courses through experiential learning activities to enhance student success skills such as oral and…

  2. Teaching and Learning Science Through Song: Exploring the experiences of students and teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-12-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.

  3. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  4. Towards a pedagogical model for science education: bridging educational contexts through a blended learning approach

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The development of this design framework started as a response to complex

  5. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  6. On Learning Natural-Science Categories That Violate the Family-Resemblance Principle.

    Science.gov (United States)

    Nosofsky, Robert M; Sanders, Craig A; Gerdom, Alex; Douglas, Bruce J; McDaniel, Mark A

    2017-01-01

    The general view in psychological science is that natural categories obey a coherent, family-resemblance principle. In this investigation, we documented an example of an important exception to this principle: Results of a multidimensional-scaling study of igneous, metamorphic, and sedimentary rocks (Experiment 1) suggested that the structure of these categories is disorganized and dispersed. This finding motivated us to explore what might be the optimal procedures for teaching dispersed categories, a goal that is likely critical to science education in general. Subjects in Experiment 2 learned to classify pictures of rocks into compact or dispersed high-level categories. One group learned the categories through focused high-level training, whereas a second group was required to simultaneously learn classifications at a subtype level. Although high-level training led to enhanced performance when the categories were compact, subtype training was better when the categories were dispersed. We provide an interpretation of the results in terms of an exemplar-memory model of category learning.

  7. APLIKASI MOBILE LEARNING TUTORIAL PENGKABELAN DALAM MATA KULIAH JARINGAN KOMPUTER II DI STMIK AMIKOM PURWOKERTO

    Directory of Open Access Journals (Sweden)

    Tri Handoko

    2011-02-01

    Full Text Available Tujuan penelitian ini adalah membuat aplikasi mobile learning tutorial pengkabelan dalam mata kuliah jaringan komputer II di STMIK AMIKOM Purwokerto. Metode pengumpulan data yang digunakan untuk membuat aplikasi ini adalah metode kepustakaan dan metode observasi secara langsung. Untuk pengembangan sistem dalam penelitian ini menggunakan metode SDLC (System Development Life Cycle, dengan teknik pengembangan sistem waterfall model.Hasil penelitian ini berupa aplikasi mobile learning tutorial pengkabelan dalam mata kuliah jaringan komputer II di STMIK AMIKOM Purwokerto. Aplikasi yang dihasilkan berektensi .swf dan dapat dijalankan menggunakan flashlite player.

  8. GeoBus: bringing experiential Earth science learning to secondary schools in the UK

    Science.gov (United States)

    Pike, C. J.; Robinson, R. A. J.; Roper, K. A.

    2014-12-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Over 30,000 pupils will have been involved in experiential Earth science learning activities by December 2014, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning in Scotland and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. Three potentially unsurprising observations hold true for all the schools that GeoBus visits: young learners like to experiment and use unfamiliar equipment to make measurements, the element of competition stimulates learners to ask questions and maintain focus and enthusiasum

  9. "From the Beginning, I Felt Empowered": Incorporating an Ecological Approach to Learning in Elementary Science Teacher Education

    Science.gov (United States)

    Birmingham, Daniel; Smetana, Lara; Coleman, Elizabeth

    2017-09-01

    While a renewed national dialog promotes the importance of science education for future technological and economic viability, students must find science personally relevant to themselves and their communities if the goals set forth in recent reform movements are to be achieved. In this paper, we investigate how incorporating an ecological perspective to learning in teacher education, including opportunities to participate with science in connection to their everyday lives, influenced the ways in which elementary teacher candidates (TCs) envisioned learning and doing science and its potential role in their future classroom. We draw from data collected across three sections of a field-based elementary methods course focused on learning to teach science and social studies through inquiry. We argue that participating in an authentic interdisciplinary inquiry project impacted the ways in which TCs conceived of science, their identities as science learners and teachers and their commitments to bringing inquiry-based science instruction to their future classrooms. This paper addresses issues regarding access to quality science learning experiences in elementary classrooms through empowering TCs to build identities as science learners and teachers in order to impact conditions in their future classrooms.

  10. The Comparison of Solitary and Collaborative Modes of Game-Based Learning on Students' Science Learning and Motivation

    Science.gov (United States)

    Chen, Ching-Huei; Wang, Kuan-Chieh; Lin, Yu-Hsuan

    2015-01-01

    In this study, we investigated and compared solitary and collaborative modes of game-based learning in promoting students' science learning and motivation. A total of fifty seventh grade students participated in this study. The results showed that students who played in a solitary or collaborative mode demonstrated improvement in learning…

  11. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  12. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    Science.gov (United States)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  13. The Ways to Promote Pre-service Science Teachers’ Pedagogical Content Knowledge for Inquiry in Learning Management in Science Course

    Directory of Open Access Journals (Sweden)

    Siriphan Satthaphon

    2017-09-01

    Full Text Available This classroom action research aimed to study the ways to promote pre-service science teachers’ pedagogical content knowledge for inquiry (PCK for inquiry. The participants were 37 students who enrolled in Learning Management in Science course in academic year 2014. Multiple data sources including students’ lesson plans, reflective journals, teacher’s logs, and worksheets were collected. The inductive approach was used to analyze data. The findings revealed the ways to promote pre-service science teachers’ PCK for inquiry consisted of being teacher’s explicit role model ; providing students to reflect their practices that link between their knowledge and understandings ; reflection from video case ; collaboration between students and teacher in learning activities planning, and allowing students to practice in actual situation could be better influence students not only reflect their understandings but also design, and teach science through inquiry.

  14. Using the Instructional Core to Implement a Professional Learning Programme for Primary Science Teachers in Australia: Teacher Learning and Student Skill Outcomes

    Science.gov (United States)

    Loughland, Tony; Nguyen, Hoa Thi Mai

    2016-01-01

    There has been a call for effective professional learning to improve the quality of the science teaching of primary teachers in Australia. It seems from the literature that teaching science effectively is a challenging endeavour for primary teachers. Professional learning based on the instructional core framework is an emerging approach that has…

  15. Engaging Karen Refugee Students in Science Learning through a Cross-Cultural Learning Community

    Science.gov (United States)

    Harper, Susan G.

    2017-01-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as…

  16. Learning the pedagogical implications of student diversity: The lived experience of preservice teachers learning to teach secondary science in diverse classrooms

    Science.gov (United States)

    Larkin, Doug

    This study explores the nature of the changes in thinking that occur in prospective teachers during teacher education programs, particularly as these changes pertain to the pedagogical implications of student diversity within the teaching of high school science. The specific research question examined here is: How do preservice secondary science teachers' conceptions about what it means to teach science in diverse classrooms change during a teacher education program, and in what ways are these changes influenced by their science methods courses and student teaching experiences? The theory of conceptual change serves as the framework for understanding preservice teacher learning in this study. In this research, I describe the experiences of six prospective secondary science teachers from four different teacher education programs located in the Midwestern United States using a multiple case study approach. Qualitative data was collected from students through interviews, questionnaires, teaching portfolios, written coursework, lesson planning materials, and naturalistic observations of student teaching. The questionnaire and interview protocols were based on those developed for the Teacher Education and Learning to Teach study (NCRTE, 1991) and adapted for specific science content areas. Findings of this study include the fact that participants came to view the salience of diversity in science teaching primarily in terms of students' interest, motivation, and engagement. Also, it appeared prospective teachers needed to first recognize the role that student thinking plays in learning before being able to understand the pedagogical implications of student diversity became possible. Finally, while all of the participants increasingly valued student ideas, they did so for a wide variety of reasons, not all of which related to student learning. The implications section of this study highlights opportunities for drawing on science education research to inform multicultural

  17. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  18. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    Science.gov (United States)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  19. The Innovative Immersion of Mobile Learning into a Science Curriculum in Singapore: an Exploratory Study

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit; Wu, Longkai; Xie, Wenting

    2016-08-01

    With advancements made in mobile technology, increasing emphasis has been paid to how to leverage the affordances of mobile technology to improve science learning and instruction. This paper reports on a science curriculum supported by an inquiry-based framework and mobile technologies. It was developed by teachers and researchers in a multiyear program of school-based research. The foci of this paper is on the design principles of the curriculum and its enactment, and the establishment of a teacher learning community. Through elucidating the design features of the innovative curriculum and evaluating teacher and student involvement in science instruction and learning, we introduce the science curriculum, called Mobilized 5E Science Curriculum (M5ESC), and present a representative case study of how one experienced teacher and her class adopted the curriculum. The findings indicate the intervention promoted this teacher's questioning competency, enabled her to interact with students frequently and flexibly in class, and supported her technology use for promoting different levels of cognition. Student learning was also improved in terms of test achievement and activity performance in and out of the classroom. We propose that the study can be used to guide the learning design of mobile technology-supported curricula, as well as teacher professional development for curriculum enactment.

  20. Science Learning in Rural Australia: Not Necessarily the Poor Cousin

    Science.gov (United States)

    Tytler, Russell; Symington, David

    2015-01-01

    There is considerable evidence suggesting that students in rural schools lag behind their city counterparts in measures of science literacy and attitude to science learning. If we are to address this situation we need to build as full a picture as we can of the key features of what is a complex and varied rural schooling context. In this article…

  1. Preparing new nurses with complexity science and problem-based learning.

    Science.gov (United States)

    Hodges, Helen F

    2011-01-01

    Successful nurses function effectively with adaptability, improvability, and interconnectedness, and can see emerging and unpredictable complex problems. Preparing new nurses for complexity requires a significant change in prevalent but dated nursing education models for rising graduates. The science of complexity coupled with problem-based learning and peer review contributes a feasible framework for a constructivist learning environment to examine real-time systems data; explore uncertainty, inherent patterns, and ambiguity; and develop skills for unstructured problem solving. This article describes a pilot study of a problem-based learning strategy guided by principles of complexity science in a community clinical nursing course. Thirty-five senior nursing students participated during a 3-year period. Assessments included peer review, a final project paper, reflection, and a satisfaction survey. Results were higher than expected levels of student satisfaction, increased breadth and analysis of complex data, acknowledgment of community as complex adaptive systems, and overall higher level thinking skills than in previous years. 2011, SLACK Incorporated.

  2. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  3. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  4. Examination of Pre-Service Science Teachers' Activities Using Problem Based Learning Method

    Science.gov (United States)

    Ekici, Didem Inel

    2016-01-01

    In this study, both the activities prepared by pre-service science teachers regarding the Problem Based Learning method and the pre-service science teachers' views regarding the method were examined before and after applying their activities in a real class environment. 69 pre-service science teachers studying in the 4th grade of the science…

  5. "What" and "how" does a mentor teacher learn during a secondary science teacher candidate's internship?

    Science.gov (United States)

    Ashmann, Scott A.

    Teaching science for understanding is hard work. Not many teachers leave a teacher education program sufficiently prepared to engage in this practice. In fact, many veteran teachers struggle with this complicated task, so effective professional development is needed. One approach that may hold some promise is being a mentor teacher to an intern. To investigate this possibility, the following central question guided this study: "What" and "how" does a secondary science teacher learn about the practices of teaching from the experience of being a mentor teacher for a science intern? A conceptual framework based on three planes of focus was utilized in this study. These planes are (a) a focus on the larger learning community and context, (b) a focus on the local learning community and activities, and (c) a focus on learners and purposes. Data were collected on two focus mentor teachers. These data included observations of interactions between the mentor and intern, responses to clarifying questions, interviews with other science teachers, and observations of both the mentor and the intern teaching lessons. Relationships among the characteristics of the context of the school and science department with the mentor teacher's theory of learning and teaching practices and the patterns of practice the mentor used in responding to specific occasions for learning were explored. It was found that these characteristics are related to five elements of mentor teacher learning: the social environment, resource use, defining tasks, the learning process, and the nature of a satisfactory conclusion. Two conclusions were made. The first was that remarkably detailed parallels exist among key elements in the context in which a mentor teacher works, the mentor teacher's approaches to teaching and learning, and the mentor's response to occasions for learning during the internship. The second was that differences among mentors in these key elements could account for differences in "what

  6. Problem-based learning versus traditional science instruction: Achievement and interest in science of middle grades minority females

    Science.gov (United States)

    Mungin, Rochelle E.

    This quantitative study examined science interest and achievement of middle school minority females in both traditional science classes and Problem-based Learning (PBL) science classes. The purpose of this study was to determine if there is a significant difference between traditional teaching and the PBL teaching method. The researcher also looked for a significant relationship between interest in science and achievement in science. This study used survey data from parents of female middle school science students to measure student interest in science concepts. The population of interest for this study was 13--15 year old eighth grade females from various racial make-ups such as, African American, Hispanic, Bi-racial, Asian, and Other Pacific Islander. Student achievement data was retrieved from the 8th grade science fall common assessed benchmark exam of both test groups. The results of the survey along with the benchmark data was to shed light on the way adolescent females learn and come to embrace science. The findings may provide guidance for science educators seeking to reach their minority female students and guide their achievement levels higher than before. From the results of the t-test and Pearson correlation test of this study, it can be concluded that while this study did not show a significant difference in academic achievement or interest between the two teaching styles, it revealed that interest in science has a positive role to play in the academic success of minority girls in science. The practical implications for examining these issues are to further the research on solutions for closing the minority and gender achievement gaps. The results of this study have implications for researchers as well as practitioners in the field of education.

  7. The learning of sciences: a gradual change in the way of learning. The case of vision

    Directory of Open Access Journals (Sweden)

    Bettina M. Bravo

    2009-11-01

    Full Text Available Learning the scientific way of knowledge implies a change in the most implicit principles that guide comprehension, interpretation and explanation of scientific phenomena as well as a change in the type of associated reasoning. With the aim of favouring this type of learning, a teaching programme was developed in relation to vision and implemented with a group of secondary school students. The way of learning of these students was observed at different teaching stages. Findings suggest that during the learning process the way students learn seems to change gradually and that students construct “intermediate” models (right but incomplete that become the basis for the construction of a systemic model proposed by school science.

  8. Improving Learning in a Traditional, Large-Scale Science Module with a Simple and Efficient Learning Design

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    2014-01-01

    the impact on teaching and learning in terms of how the teacher and the students used the materials and the impact on the students’ performance and satisfaction. The article concludes that replacing face-to-face lectures with webcasts and online activities has the potential to improve learning in terms...... of a better student performance, higher student satisfaction, and a higher degree of flexibility for the students. In addition, the article discusses implications of using learning design for educational development, how learning design may help breaking with the perception that facilitating blended learning...... is a daunting process, and, ultimately, its potential for addressing some of the grand challenges in science education and the political agenda of today....

  9. Reformed Teaching and Learning in Science Education: A Comparative Study of Turkish and US Teachers

    Science.gov (United States)

    Ozfidan, Burhan; Cavlazoglu, Baki; Burlbaw, Lynn; Aydin, Hasan

    2017-01-01

    Achievements of educational reform advantage constructivist understandings of teaching and learning, and therefore highlight a shift in beliefs of teachers and apply these perceptions to the real world. Science teachers' beliefs have been crucial in understanding and reforming science education as beliefs of teachers regarding learning and…

  10. Engaging students in learning science through promoting creative reasoning

    Science.gov (United States)

    Waldrip, Bruce; Prain, Vaughan

    2017-10-01

    Student engagement in learning science is both a desirable goal and a long-standing teacher challenge. Moving beyond engagement understood as transient topic interest, we argue that cognitive engagement entails sustained interaction in the processes of how knowledge claims are generated, judged, and shared in this subject. In this paper, we particularly focus on the initial claim-building aspect of this reasoning as a crucial phase in student engagement. In reviewing the literature on student reasoning and argumentation, we note that the well-established frameworks for claim-judging are not matched by accounts of creative reasoning in claim-building. We develop an exploratory framework to characterise and enact this reasoning to enhance engagement. We then apply this framework to interpret two lessons by two science teachers where they aimed to develop students' reasoning capabilities to support learning.

  11. Impact of Service-Learning Experiences in Culinary Arts and Nutrition Science

    Science.gov (United States)

    Daugherty, Jamie B.

    2015-01-01

    A grant from a regional nonprofit organization for the 2012-2013 academic year facilitated the revision of an existing course learning objective in a Culinary Nutrition lab course--performing effective culinary demonstrations--to include a service-learning experience. This course is a graduation requirement in a research- and science-based…

  12. Student Motivation and Learning in Mathematics and Science: A Cluster Analysis

    Science.gov (United States)

    Ng, Betsy L. L.; Liu, W. C.; Wang, John C. K.

    2016-01-01

    The present study focused on an in-depth understanding of student motivation and self-regulated learning in mathematics and science through cluster analysis. It examined the different learning profiles of motivational beliefs and self-regulatory strategies in relation to perceived teacher autonomy support, basic psychological needs (i.e. autonomy,…

  13. Learning science in informal environments: people, places and pursuits. A review by the US National Science Council

    OpenAIRE

    Paola Rodari

    2009-01-01

    In January this year, the US saw the publication of the preview of an impressive review work on the practices and the studies concerning learning science outside schools and universities, i.e. what is referred to as informal education.The document, promoted by the National Science Council of scientific academies (National Academy of Science, National Academy of Engineering and Institute of Medicine), is the result of the work by a committee comprising 14 specialists who collected, discussed a...

  14. Vocabulary Learning Strategies of Japanese Life Science Students

    Science.gov (United States)

    Little, Andrea; Kobayashi, Kaoru

    2015-01-01

    This study investigates vocabulary learning strategy (VLS) preferences of lower and higher proficiency Japanese university science students studying English as a foreign language. The study was conducted over a 9-week period as the participants received supplemental explicit VLS instruction on six strategies. The 38 participants (14 males and 24…

  15. Unintended Learning in Primary School Practical Science Lessons from Polanyi's Perspective of Intellectual Passion

    Science.gov (United States)

    Park, Jisun; Song, Jinwoong; Abrahams, Ian

    2016-01-01

    This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term "unintended" learning to distinguish it from "intended" learning that appears in teachers' learning objectives. Data were collected using…

  16. Promoting autonomous learning in English through the implementation of Content and Language Integrated Learning (CLIL in science and maths subjects

    Directory of Open Access Journals (Sweden)

    Andriani Putu Fika

    2018-01-01

    Full Text Available Autonomous learning is a concept in which the learner has the ability to take charge of their own learning. It becomes a notable aspect that should be perceived by students. The aim of this research is for finding out the strategies used by grade two teachers in Bali Kiddy Primary School to promote autonomous learning in English through the implementation of Content and Language Integrated Learning in science and maths subjects. This study was designed in the form of descriptive qualitative study. The data were collected through observation, interview, and document study. The result of the study shows that there are some strategies of promoting autonomous learning in English through the implementation of CLIL in Science and Maths subjects. Those strategies are table of content training, questioning & presenting, journal writing, choosing activities, and using online activity. Those strategies can be adopted or even adapted as the way to promote autonomous learning in English subject.

  17. Augmented Reality in science education – affordances for student learning

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    2016-01-01

    Most extant studies examining augmented reality (AR) have focused on the technology itself. This paper presents findings addressing the issue of AR for educational purposes based on a sequential survey distributed to 35 expert science teachers, ICT designers and science education researchers from...... four countries. There was consensus among experts in relation to a focus on ‘learning before technology’, and they in particular supplemented affordances identified in literature with perspectives related to interactivity, a creator perspective and inquiry based science. Expert reflections were...

  18. Emotional Climate and High Quality Learning Experiences in Science Teacher Education

    Science.gov (United States)

    Bellocchi, Alberto; Ritchie, Stephen M.; Tobin, Kenneth; King, Donna; Sandhu, Maryam; Henderson, Senka

    2014-01-01

    The role of emotion during learning encounters in science teacher education is under-researched and under-theorized. In this case study, we explore the emotional climates (ECs), that is, the collective states of emotional arousal, of a preservice secondary science education class to illuminate practice for producing and reproducing high quality…

  19. A qualitative study of science education in nursing school: Narratives of Hispanic female nurses' sense of identity and participation in science learning

    Science.gov (United States)

    Gensemer, Patricia S.

    The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and

  20. Learning styles of students of Baqiyatallah University of Medical Sciences in 2012

    Directory of Open Access Journals (Sweden)

    Hojat Rashidi-jahan

    2013-06-01

    Full Text Available Introduction: Understanding the learning styles of students may help educational planning and improve the learning. This study aims to assess learning styles, and relevant determinants, of students who study in various disciplines of medical sciences at Baqiyatallah University of Medical Sciences (BUMS in 2012. Methods: In this cross-sectional study, 180 students from BUMS were selected randomly. Data were collected sing the Kolb learning style questionnaire during April/May 2012. One-way ANOVA, Student t-test, Chi-square or Fisher exact tests were used for analyzing the data. Results: The mean age of participants was 29.3±7.0, majority of them were males. The preferred learning styles were diverger (76.7%, accommodator (12.8%, assimilator (7.8% and converger (2.8% respectively. The results showed that the factors such as age, sex, marriage status, father and mother education, grade point average (GPA and academic degree could be important to determine learning style characteristics of students. The findings also indicate that the preferred learning style among the students with different GPAs or academic degrees are not different considerably. Conclusion: Regarding the most preferred leaning style by the, proper planning to address proper teaching styles according to the preferred learning styles is necessary.

  1. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  2. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    Directory of Open Access Journals (Sweden)

    Robert H. Tai

    2010-05-01

    Full Text Available An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.

  3. Science Professional Learning Communities: Beyond a singular view of teacher professional development

    Science.gov (United States)

    Jones, M. Gail; Gardner, Grant E.; Robertson, Laura; Robert, Sarah

    2013-07-01

    Professional Learning Communities (PLCs) are frequently being used as a vehicle to transform science education. This study explored elementary teachers' perceptions about the impact of participating in a science PLC on their own professional development. With the use of The Science Professional Learning Communities Survey and a semi-structured interview protocol, elementary teachers' perceptions of the goals of science PLCs, the constraints and benefits of participation in PLCs, and reported differences in the impact of PLC participation on novice and experienced teachers were examined. Sixty-five elementary teachers who participated in a science PLC were surveyed about their experiences, and a subsample of 16 teachers was interviewed. Results showed that most of the teachers reported their science PLC emphasized sharing ideas with other teachers as well as working to improve students' science standardized test scores. Teachers noted that the PLCs had impacted their science assessment practices as well as their lesson planning. However, a majority of the participants reported a differential impact of PLCs depending on a teacher's level of experience. PLCs were reported as being more beneficial to new teachers than experienced teachers. The interview results demonstrated that there were often competing goals and in some cases a loss of autonomy in planning science lessons. A significant concern was the impact of problematic interpersonal relationships and communication styles on the group functioning. The role of the PLC in addressing issues related to obtaining science resources and enhancing science content knowledge for elementary science teachers is discussed.

  4. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  5. GeoBus: bringing Earth science learning to secondary schools in the UK

    Science.gov (United States)

    Robinson, Ruth; Roper, Kathryn; Pike, Charlotte

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Almost 35,000 pupils will have been involved in experiential Earth science learning activities by April 2015, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning within the Scotland Curriculum for Excellence, and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. A key aim of GeoBus is to incorporate research outcomes directly into workshops, and to involve early career researchers in project development. One example that is currently in progress is a set of hydrology workshops that focus on the water

  6. International workshop on learning by modelling in science education

    NARCIS (Netherlands)

    Bredeweg, B.; Salles, P.; Biswas, G.; Bull, S.; Kay, J.; Mitrovic, A.

    2011-01-01

    Modelling is nowadays a well-established methodology in the sciences, supporting the inquiry and understanding of complex phenomena and systems in the natural, social and artificial worlds. Hence its strong potential as pedagogical approach fostering students' learning of scientific concepts and

  7. Differences in the classroom: learning about practices of two science teachers

    Directory of Open Access Journals (Sweden)

    Elaine Soares França

    2012-12-01

    Full Text Available In this research, a case study, we adopted ethnography as logic of inquiry to learn about teaching for diverse groups in middle school science classrooms. Multiple data sources were used: participant observation, video and audio records, field notes and semi-structured interviews. We analyzed interviews with two teachers, as well as classroom episodes to construct, through contrast, a characterization of two types of practice involving diversity in the classroom. The first teacher show concerns with introducing students in school culture. She tried to “translate” terms that students do not understand, explaining their meanings. In this process, teaching subject matter knowledge (SMK is a secondary goal. The other teacher emphasized SMK, trying to establish connections between science content and students’ everyday life experiences. Both teachers do not acknowledge significant influences in science learning related to gender, social class, and ethnicity.

  8. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  9. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    Science.gov (United States)

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  10. Geology Museum-Based Learning in Soil Science Education

    Science.gov (United States)

    Mikhailova, E. A.; Tennant, C. H.; Post, C. J.; Cicimurri, C.; Cicimurri, D.

    2013-01-01

    Museums provide unique learning opportunities in soil science. The Bob Campbell Geology Museum in Clemson, SC, features an exhibit of minerals and rocks common in the state and in its geologic history. We developed a hands-on laboratory exercise utilizing an exhibit that gives college students an opportunity to visualize regional minerals and…

  11. Improving Science Process Skills for Primary School Students Through 5E Instructional Model-Based Learning

    Science.gov (United States)

    Choirunnisa, N. L.; Prabowo, P.; Suryanti, S.

    2018-01-01

    The main objective of this study is to describe the effectiveness of 5E instructional model-based learning to improve primary school students’ science process skills. The science process skills is important for students as it is the foundation for enhancing the mastery of concepts and thinking skills needed in the 21st century. The design of this study was experimental involving one group pre-test and post-test design. The result of this study shows that (1) the implementation of learning in both of classes, IVA and IVB, show that the percentage of learning implementation increased which indicates a better quality of learning and (2) the percentage of students’ science process skills test results on the aspects of observing, formulating hypotheses, determining variable, interpreting data and communicating increased as well.

  12. Game-Based Learning in Science Education: A Review of Relevant Research

    Science.gov (United States)

    Li, Ming-Chaun; Tsai, Chin-Chung

    2013-01-01

    The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and…

  13. Portable Tablets in Science Museum Learning: Options and Obstacles

    Science.gov (United States)

    Gronemann, Sigurd Trolle

    2017-06-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people's learning with portable tablets matches the intentions of the museums. By applying media and information literacy (MIL) components as analytical dimensions, a pattern of discrepancies between young people's expectations, their actual learning and the museums' approaches to framing such learning is identified. It is argued that, paradoxically, museums' decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people's traditional ideas of museums and learning. The assessment of the implications of museums' integration of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners' systemic expectations to learning and to their expectations to the digital experience influenced by their leisure use.

  14. The impact of a STS/Constructivist learning approach on the beliefs and attitudes of preservice science teachers

    Science.gov (United States)

    Akcay, Hakan

    The purpose of this study was to determine the impact of an Science-Technology-Society (STS) course for preservice science teachers. The course was designed to change not only preservice science teachers' attitudes toward science, scientists and science courses, but also the awareness and use of STS/Constructivist approaches in teaching. It also focuses on changes in preservice science teachers regarding the effectiveness of an STS/Constructivist learning environment. Both qualitative and quantitative research methods were used with and a one-group pretest-posttest design. The instruments were administered to the preservice science teachers at the beginning of the semester as pre-tests and again at the end of the semester as post-tests. Data gathered from pre- and post-administration were analyzed for each of the instruments that provide answers to the research questions. The sample consists of forty-one pre-service science teachers who were enrolled in the Societal & Educational Applications of Biological Concepts course during the spring semester of the 2004 and 2005 academic years at the University of Iowa. The major findings for the study include the following: (1) Preservice science teachers showed significantly growth over the semester in their perceptions concerning STS/Constructivism, beliefs about science teaching and learning, and attitudes toward science and technology, and their implications for society. These significant changes were not affected by gender nor grade (elementary vs secondary) level. (2) Preservice science teachers gain in understanding of how students learn with STS/Constructivist approaches. They also increased their use of STS/Constructivist approaches which were developed and applied to teaching science for all students. (3) Preservice science teachers showed statistically significant growth toward an STS/Constructivist philosophy of science teaching and learning in terms of student actions in the classroom, as well as their

  15. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  16. Teacher learning in technology professional development and its impact on student achievement in science

    Science.gov (United States)

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-07-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their applications in science inquiry pedagogy. Three self-reporting teacher instruments were used alongside their student achievement scores on the end-of-year state-science-test. The teacher self-reporting measures investigated technological literacy, ICT capabilities, and pedagogical beliefs about science inquiry pedagogy. Data were collected every year, and descriptive statistics, t-tests, and Pearson's correlations were used for analysis. We found teachers' technological skills and ICT capabilities increasing over time with significant gains each year. Additionally, teachers' pedagogical beliefs changed to become more science inquiry oriented over time; however, the gains were not significant until after the second year of TPD. Comparisons of teacher learning and belief measures with student achievement revealed that the students' performance was correlated to teachers' pedagogical beliefs about science inquiry, but not to their technological skills nor to their ICT capabilities. This research suggests that pedagogical considerations should be foregrounded in TPD and that this may require more longitudinal TPD to ensure that technology integration in science instruction is consequential to student learning.

  17. Conceptualizing science learning as a collective social practice: changing the social pedagogical compass for a child with visual impairment

    Science.gov (United States)

    Fleer, Marilyn; March, Sue

    2015-09-01

    The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of preschool children with visual impairment using cultural-historical theory. This paper seeks to fill this gap by presenting a study of one child with Albinism who participated in a unit of early childhood science where fairy tales were used for learning about the concepts of sound and growth. This paper reports upon the social and material conditions that were created to support learning in the preschool, whilst also examining how the learning of growth and sound were supported at home. The study found three new pedagogical features for inclusion: Imagination in science; Ongoing scientific narrative; and Scientific mirroring. It was found that when a dialectical reading of home and centre practices feature, greater insights into inclusive pedagogy for science learning are afforded, and a view of science as a collective enterprise emerges. It is argued that a cultural-historical conception of inclusion demands that the social conditions, rather than the biology of the child, is foregrounded, and through this greater insights into how science learning for children with visual impairment is gained.

  18. Influence of Psychosocial Classroom Environment on Students' Motivation and Self-Regulation in Science Learning: A Structural Equation Modeling Approach

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill M.

    2013-01-01

    The primary aim of this study was two-fold: 1) to identify salient psychosocial features of the classroom environment that influence students' motivation and self-regulation in science learning; and 2) to examine the effect of the motivational constructs of learning goal orientation, science task value and self-efficacy in science learning on…

  19. Impact of Project-Based Curriculum Materials on Student Learning in Science: Results of a Randomized Controlled Trial

    Science.gov (United States)

    Harris, Christopher J.; Penuel, William R.; D'Angelo, Cynthia M.; DeBarger, Angela Haydel; Gallagher, Lawrence P.; Kennedy, Cathleen A.; Cheng, Britte Haugen; Krajcik, Joseph S.

    2015-01-01

    The "Framework for K-12 Science Education" (National Research Council, 2012) sets an ambitious vision for science learning by emphasizing that for students to achieve proficiency in science they will need to participate in the authentic practices of scientists. To realize this vision, all students will need opportunities to learn from…

  20. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.