WorldWideScience

Sample records for science lab msl

  1. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  2. Multi-Mission Geographic Information System for Science Operations: A Test Case Using MSL Data

    Science.gov (United States)

    Calef, F. J.; Abarca, H. E.; Soliman, T.; Abercrombie, S. P.; Powell, M. W.

    2017-06-01

    The Multi-Mission Geographic Information System (MMGIS) is a NASA AMMOS project in its second year of development, built to display and query science products in a spatial context. We present our progress building this tool using MSL in situ data.

  3. Mars Science Laboratory (MSL) - First Results of Pressure Observations

    Science.gov (United States)

    Harri, Ari-Matti; Kahanpää, Henrik; Kemppinen, Osku; Genzer, Maria; Gómez-Elvira, Javier; Haberle, Robert M.; Schmidt, Walter; Savijärvi, Hannu; Rodríquez-Manfredi, Jose Antonio; Rafkin, Scott; Polkko, Jouni; Richardson, Mark; Newman, Claire; de la Torre Juárez, Manuel; Martín-Torres, Javier; Paz Zorzano-Mier, Maria; Atlaskin, Evgeny; Kauhanen, Janne; Paton, Mark; Haukka, Harri

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS pressure observations and comparison of the measurements with modeling results. The REMS pressure device is provided by the Finnish Meteorological Institute. It is based on silicon micro-machined capacitive pressure sensors developed by Vaisala Inc. The pressure device makes use of two transducer electronics sections placed on a single multi-layer PCB inside the REMS Instrument Control Unit (ICU) with a filter-protected ventilation inlet to the ambient atmosphere. The absolute accuracy of the pressure device (< 3 Pa) and zero-drift (< 1 Pa/year) enables the investigations of long term and seasonal cycles of the Martian atmosphere. The relative accuracy, or repeatability, in the diurnal time scale is < 1.5 Pa, less than 2 % of the observed diurnal pressure variation at the landing site. The pressure device has special sensors with very high precision (less than 0.2 Pa) that makes it a good tool to study short-term atmospheric phenomena, e.g., dust devils and other convective vortices. The observed MSL pressure data enable us to study both the long term and short-term phenomena of the Martian atmosphere. This would add knowledge of these phenomena to that gathered by earlier Mars missions and modeling experiments [2,3]. Pressure observations are revealing new information on the local atmosphere and climate at Gale crater, and will shed light on the mesoscale and micrometeorological phenomena. Pressure observations show also

  4. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  5. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    Science.gov (United States)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  6. Digital Social Science Lab

    DEFF Research Database (Denmark)

    Svendsen, Michael; Lauersen, Christian Ulrich

    2015-01-01

    At the Faculty Library of Social Sciences (part of Copenhagen University Library) we are currently working intensely towards the establishment of a Digital Social Science Lab (DSSL). The purpose of the lab is to connect research, education and learning processes with the use of digital tools...... at the Faculty of Social Sciences. DSSL will host and facilitate an 80 m2 large mobile and intelligent study- and learning environment with a focus on academic events, teaching and collaboration. Besides the physical settings DSSL has two primary functions: 1. To implement relevant social scientific software...... and hardware at the disposal for students and staff at The Faculty of Social Sciences along with instruction and teaching in the different types of software, e.g. Stata, Nvivo, Atlas.ti, R Studio, Zotero and GIS-software. 2. To facilitate academic events focusing on use of digital tools and analytic software...

  7. Designing virtual science labs for the Islamic Academy of Delaware

    Science.gov (United States)

    AlZahrani, Nada Saeed

    Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the

  8. Creative Science Teaching Labs: New Dimensions in CPD

    Science.gov (United States)

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  9. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  10. Analysis list: msl-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available msl-1 Cell line,Larvae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/msl-1.1.tsv http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/msl-1.5.tsv http://dbarchive.biosciencedbc....jp/kyushu-u/dm3/target/msl-1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/msl-1.Cell_line.tsv,http:...//dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/msl-1.Larvae.tsv http://dbar...chive.biosciencedbc.jp/kyushu-u/dm3/colo/Cell_line.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Larvae.gml ...

  11. ChemCam on MSL 2009: first laser induced breakdown spectrometer for space science

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory

    2008-01-01

    ChemCam is one of the 10 instrument suites on the Mars Science Laboratory, a martian rover being built by Jet Propulsion Laboratory, for the next NASA mission to Mars (MSL 2009). ChemCam is an instrument package consisting of two remote sensing instruments: a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). LIBS provides elemental compositions of rocks and soils, while the RMI places the LIBS analyses in their geomorphologic context. Both instruments rely on an autofocus capability to precisely focus on the chosen target, located at distances from the rover comprised between 1 and 9 m for LIBS, and 2 m and infinity for RMI. ChemCam will help determine which samples, within the vicinity of the MSL rover, are of sufficient interest to use the contact and in-situ instruments for further characterization. It will provide valuable analyses of samples that are inaccessible to contact and in-situ instruments, and of a much larger number of samples than can be done with this kind of instrument. ChemCam also has a capability to provide passive spectroscopy data of rocks and soils on Mars. ChemCam hardware consists of a Mast Unit (MU), provided by France, and a Body Unit (BU) built and tested in the USA. The Flight Model of the MU is assembled, tested and now available in the USA, while the BU is currently being assembled and tested. Both will be connected by the end of year '08 for end-to-end functional and performance tests, before delivery to JPL and assembly on the MSL rover. Launch is scheduled for October 09. After describing the concept of ChemCam, this presentation focuses on its French part, Mast Unit. The results presented show that Mast Unit is able to generate a plasma and collect its light, over the full applicable ranges of distances and temperatures on Mars.

  12. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  13. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    Science.gov (United States)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  14. Determination of the Light Element Fraction in MSL APXS Spectra

    Science.gov (United States)

    Perrett, G. M.; Pradler, I.; Campbell, J. L.; Gellert, R.; Leshin, L. A.; Schmidt, M. E.; Team, M.

    2013-12-01

    Additional light invisible components (ALICs), measured using the alpha particle X-ray spectrometer (APXS), represent all light elements (e.g. CO3, OH, H2O) present in a sample below Na, excluding bound oxygen. The method for quantifying ALICs was originally developed for the Mars Exploration Rover (MER) APXS (Mallet et al, 2006; Campbell et al, 2008). This method has been applied to data collected by the Mars Science Laboratory (MSL) APXS up to sol 269 using a new terrestrial calibration. ALICs are investigated using the intensity ratio of Pu L-alpha Compton and Rayleigh scatter peaks (C/R). Peak areas of the scattered X-rays are determined by the GUAPX fitting program. This experimental C/R is compared to a Monte Carlo simulated C/R. The ratio of simulated and experimental C/R values is called the K-value. ALIC concentrations are calculated by comparing the K-value to the fraction of all invisibles present; the invisible fraction is produced from the spectrum fit by GUAPX. This method is applied to MSL spectra with long integration duration (greater than 3 hours) and with energy resolution less than 180 eV at 5.9 keV. These overnight spectra encompass a variety of geologic materials examined by the Curiosity Rover, including volcanic and sedimentary lithologies. Transfer of the K-value calibration produced in the lab to the flight APXS has been completed and temperature, geometry and spectrum duration effects have been thoroughly examined. A typical limit of detection of ALICs is around 5 wt% with uncertainties of approximately 5 wt%. Accurate elemental concentrations are required as input to the Monte Carlo program (Mallet et al, 2006; Lee, 2010). Elemental concentrations are obtained from the GUAPX code using the same long duration, good resolution spectra used for determining the experimental C/R ratios (Campbell et al. 2012). Special attention was given to the assessment of Rb, Sr, and Y as these element peaks overlap the scatter peaks. Mineral effects

  15. Encouraging Creativity in the Science Lab

    Science.gov (United States)

    Eyster, Linda

    2010-01-01

    Although science is a creative endeavor (NRC 1996, p. 46), many students think they are not encouraged--or even allowed--to be creative in the laboratory. When students think there is only one correct way to do a lab, their creativity is inhibited. Park and Seung (2008) argue for the importance of creativity in science classrooms and for the…

  16. Sleuthing the MSL EDL performance from an X band carrier perspective

    Science.gov (United States)

    Oudrhiri, Kamal; Asmar, Sami; Estabrook, Polly; Kahan, Daniel; Mukai, Ryan; Ilott, Peter; Schratz, Brian; Soriano, Melissa; Finley, Susan; Shidner, Jeremy

    During the Entry, Descent, and Landing (EDL) of NASA's Mars Science Laboratory (MSL), or Curiosity, rover to Gale Crater on Mars on August 6, 2012 UTC, the rover transmitted an X-band signal composed of carrier and tone frequencies and a UHF signal modulated with an 8kbps data stream. During EDL, the spacecraft's orientation is determined by its guidance and mechanical subsystems to ensure that the vehicle land safely at its destination. Although orientation to maximize telecom performance is not possible, antennas are especially designed and mounted to provide the best possible line of sight to Earth and to the Mars orbiters supporting MSL's landing. The tones and data transmitted over these links are selected carefully to reflect the most essential parameters of the vehicle's state and the performance of the EDL subsystems for post-EDL reconstruction should no further data transmission from the vehicle be possible. This paper addresses the configuration of the X band receive system used at NASA / JPL's Deep Space Network (DSN) to capture the signal spectrum of MSL's X band carrier and tone signal, examines the MSL vehicle state information obtained from the X band carrier signal only and contrasts the Doppler-derived information against the post-EDL known vehicle state. The paper begins with a description of the MSL EDL sequence of events and discusses the impact of the EDL maneuvers such as guided entry, parachute deploy, and powered descent on the frequency observables expected at the DSN. The range of Doppler dynamics possible is derived from extensive 6 Degrees-Of-Freedom (6 DOF) vehicle state calculations performed by MSL's EDL simulation team. The configuration of the DSN's receive system, using the Radio Science Receivers (RSR) to perform open-loop recording for both for nominal and off-nominal EDL scenarios, is detailed. Expected signal carrier power-to-noise levels during EDL are shown and their impact on signal detection is considered. Particula

  17. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  18. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  19. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    Science.gov (United States)

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  20. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  1. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  2. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  3. Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing

    Science.gov (United States)

    Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.

    2010-12-01

    Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the

  4. The History of Science and Technology at Bell Labs

    Science.gov (United States)

    Bishop, David

    2008-03-01

    Over the last 80 years, Bell Labs has been one of the most scientifically and technologically productive research labs in the world. Inventions such as the transistor, laser, cell phone, solar cell, negative feedback amplifier, communications satellite and many others were made there. Scientific breakthroughs such as discovery of the Big Bang, the wave nature of the electron, electron localization and the fractional quantum hall effect were also made there making Bell Labs almost unique in terms of large impacts in both science and technology. In my talk, I will discuss the history of the lab, talk about the present and give some suggestions for how I see it evolving into the future.

  5. Analysis of the environmental conditions at Gale Crater from MSL/REMS measurements

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G.; Torre-Juarez, M. de la; Vicente-Retortillo, A.; Kemppinen, O.; Renno, N.; Lemmon, M.

    2016-07-01

    The environmental conditions at Gale Crater during the first 1160 sols of the Mars Science Laboratory (MSL) mission are assessed using measurements taken by the Rover Environmental Monitoring Station (REMS) on-board the MSL Curiosity rover. REMS is a suite of sensors developed to assess the environmental conditions along the rover traverse. In particular, REMS has been measuring atmospheric pressure, atmospheric and ground temperature, relative humidity, UV radiation flux and wind speed. Here we analyze processed data with the highest confidence possible of atmospheric pressure, atmospheric and ground temperature and relative humidity. In addition, we estimate the daily UV irradiation at the surface of Gale Crater using dust opacity values derived from the Mastcam instrument. REMS is still in operation, but it has already provided the most comprehensive coverage of surface environmental conditions recorded by a spacecraft landed on Mars. (Author)

  6. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  7. A CNES remote operations center for the MSL ChemCam instrument

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Roger C [Los Alamos National Laboratory; Lafaille, Vivian [CNES; Lorgny, Eric [CNES; Baroukh, Julien [CNES; Gaboriaud, Alain [CNES; Saccoccio, Muriel [CNES; Perez, Rene [CNES; Gasnault, Olivier [CNRS/CESR; Maurice, Sylvestre [CNRS/CESR; Blaney, Diana [JPL

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7 m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.

  8. Science Outside the Lab: Helping Graduate Students in Science and Engineering Understand the Complexities of Science Policy.

    Science.gov (United States)

    Bernstein, Michael J; Reifschneider, Kiera; Bennett, Ira; Wetmore, Jameson M

    2017-06-01

    Helping scientists and engineers challenge received assumptions about how science, engineering, and society relate is a critical cornerstone for macroethics education. Scientific and engineering research are frequently framed as first steps of a value-free linear model that inexorably leads to societal benefit. Social studies of science and assessments of scientific and engineering research speak to the need for a more critical approach to the noble intentions underlying these assumptions. "Science Outside the Lab" is a program designed to help early-career scientists and engineers understand the complexities of science and engineering policy. Assessment of the program entailed a pre-, post-, and 1 year follow up survey to gauge student perspectives on relationships between science and society, as well as a pre-post concept map exercise to elicit student conceptualizations of science policy. Students leave Science Outside the Lab with greater humility about the role of scientific expertise in science and engineering policy; greater skepticism toward linear notions of scientific advances benefiting society; a deeper, more nuanced understanding of the actors involved in shaping science policy; and a continued appreciation of the contributions of science and engineering to society. The study presents an efficacious program that helps scientists and engineers make inroads into macroethical debates, reframe the ways in which they think about values of science and engineering in society, and more thoughtfully engage with critical mediators of science and society relationships: policy makers and policy processes.

  9. ESIP Lab: Supporting Development of Earth Sciences Cyberinfrastructure through Innovation Commons

    Science.gov (United States)

    Burgess, A. B.; Robinson, E.

    2017-12-01

    The Earth Science Information Partners (ESIP) is an open, networked community that brings together science, data and information technology practitioners from across sectors. Participation in ESIP is beneficial because it provides an intellectual commons to expose, gather and enhance in-house capabilities in support of an organization's own mandate. Recently, ESIP has begun to explore piloting activities that have worked in the U.S. in other countries as a way to facilitate international collaboration and cross-pollination. The newly formed ESIP Lab realizes the commons concept by providing a virtual place to come up with with new solutions through facilitated ideation, take that idea to a low stakes development environment and potentially fail, but if successful, expose developing technology to domain experts through a technology evaluation process. The Lab does this by supporting and funding solution-oriented projects that have discrete development periods and associated budgets across organizations and agencies. In addition, the Lab provides access to AWS cloud computing resources, travel support, virtual and in-person collaborative platform for distributed groups and exposure to the ESIP community as an expert pool. This cycle of ideation to incubation to evaluation and ultimately adoption or infusion of Earth sciences cyberinfrastructure empowers the scientific community and has spawned a variety of developments like community-led ontology portals, ideas for W3C prov standard improvement and an evaluation framework that pushes technology forward and aides in infusion. The Lab is one of these concepts that could be implemented in other countries and the outputs of the Lab would be shared as a commons and available across traditional borders. This presentation will share the methods and the outcomes of the Lab and seed ideas for adoption internationally.

  10. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    Science.gov (United States)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  11. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    Science.gov (United States)

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  12. Designing inquiry learning spaces for online labs in the Go-Lab platform

    NARCIS (Netherlands)

    de Jong, Ton; Gillet, Dennis; Sotiriou, Sofoklis; Agogi, Ellinogermaniki; Zacharia, Zacharias

    2015-01-01

    The Go-Lab project (http://www.go-lab-project.eu/) aims to enable the integration of online labs through inquiry-based learning approaches into science classrooms. Through the use of an advanced plug and play technological solution the Go-Lab project opens up remote science laboratories, data

  13. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  14. Games, Simulations and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2012-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations and games. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  15. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  16. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.

    Directory of Open Access Journals (Sweden)

    Erica Larschan

    Full Text Available Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

  17. Lab coats in Hollywood science, scientists, and cinema

    CERN Document Server

    Kirby, David A

    2013-01-01

    Stanley Kubrick’s 2001: A Space Odyssey, released in 1968, is perhaps the most scientifically accurate film ever produced. The film presented such a plausible, realistic vision of space flight that many moon hoax proponents believe that Kubrick staged the 1969 moon landing using the same studios and techniques. Kubrick’s scientific verisimilitude in 2001 came courtesy of his science consultants—including two former NASA scientists—and the more than sixty-five companies, research organizations, and government agencies that offered technical advice. Although most filmmakers don’t consult experts as extensively as Kubrick did, films ranging from A Beautiful Mind and Contact to Finding Nemo and The Hulk have achieved some degree of scientific credibility because of science consultants. In Lab Coats in Hollywood, David Kirby examines the interaction of science and cinema: how science consultants make movie science plausible, how filmmakers negotiate scientific accuracy within production constraints, and ...

  18. The Science Teaching Self-Efficacy of Prospective Elementary Education Majors Enrolled in Introductory Geology Lab Sections

    Science.gov (United States)

    Baldwin, Kathryn A.

    2014-01-01

    This study examined prospective elementary education majors' science teaching self-efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI-B) was administered during the first and last lab class sessions. Additionally, students were…

  19. Simulations, Games, and Virtual Labs for Science Education: a Compendium and Some Examples

    Science.gov (United States)

    Russell, R. M.

    2011-12-01

    We have assembled a list of computer-based simulations, games, and virtual labs for science education. This list, with links to the sources of these resources, is available online. The entries span a broad range of science, math, and engineering topics. They also span a range of target student ages, from elementary school to university students. We will provide a brief overview of this web site and the resources found on it. We will also briefly demonstrate some of our own educational simulations, including the "Very, Very Simple Climate Model", and report on formative evaluations of these resources. Computer-based simulations and virtual labs are valuable resources for science educators in various settings, allowing learners to experiment and explore "what if" scenarios. Educational computer games can motivate learners in both formal and informal settings, encouraging them to spend much more time exploring a topic than they might otherwise be inclined to do. Part of this presentation is effectively a "literature review" of numerous sources of simulations, games, and virtual labs. Although we have encountered several nice collections of such resources, those collections seem to be restricted in scope. They either represent materials developed by a specific group or agency (e.g. NOAA's games web site) or are restricted to a specific discipline (e.g. geology simulations and virtual labs). This presentation directs viewers to games, simulations, and virtual labs from many different sources and spanning a broad range of STEM disciplines.

  20. Governing Methods: Policy Innovation Labs, Design and Data Science in the Digital Governance of Education

    Science.gov (United States)

    Williamson, Ben

    2015-01-01

    Policy innovation labs are emerging knowledge actors and technical experts in the governing of education. The article offers a historical and conceptual account of the organisational form of the policy innovation lab. Policy innovation labs are characterised by specific methods and techniques of design, data science, and digitisation in public…

  1. Expanding the Role of an Earth Science Data System: The GHRC Innovations Lab

    Science.gov (United States)

    Conover, H.; Ramachandran, R.; Smith, T.; Kulkarni, A.; Maskey, M.; He, M.; Keiser, K.; Graves, S. J.

    2013-12-01

    The Global Hydrology Resource Center is a NASA Earth Science Distributed Active Archive Center (DAAC), managed in partnership by the Earth Science Department at NASA's Marshall Space Flight Center and the University of Alabama in Huntsville's Information Technology and Systems Center. Established in 1991, the GHRC processes, archives and distributes global lightning data from space, airborne and ground based observations from hurricane science field campaigns and Global Precipitation Mission (GPM) ground validation experiments, and satellite passive microwave products. GHRC's close association with the University provides a path for technology infusion from the research center into the data center. The ITSC has a long history of designing and operating science data and information systems. In addition to the GHRC and related data management projects, the ITSC also conducts multidisciplinary research in many facets of information technology. The coupling of ITSC research with the operational GHRC Data Center has enabled the development of new technologies that directly impact the ability of researchers worldwide to apply Earth science data to their specific domains of interest. The GHRC Innovations Lab will provide a showcase for emerging geoinformatics technologies resulting from NASA-sponsored research at the ITSC. Research products to be deployed in the Innovations Lab include: * Data Albums - curated collections of information related to a specific science topic or event with links to relevant data files from different sources. * Data Prospecting - combines automated data mining techniques with user interaction to provide for quick exploration of large volumes of data. * Provenance Browser - provides for graphical exploration of data lineage and related contextual information. In the Innovations Lab, these technologies can be targeted to GHRC data sets, and tuned to address GHRC user interests. As technologies are tested and matured in the Innovations Lab, the

  2. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    Science.gov (United States)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  3. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  4. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  5. LIB LAB the Library Laboratory: hands-on multimedia science communication

    Science.gov (United States)

    Fillo, Aaron; Niemeyer, Kyle

    2017-11-01

    Teaching scientific research topics to K-12 audiences in an engaging and meaningful way does not need to be hard; with the right insight and techniques it can be fun to encourage self-guided STEAM (science, technology, engineering, arts, and mathematics) exploration. LIB LAB, short for Library Laboratory, is an educational video series produced by Aaron J. Fillo at Oregon State University in partnership with the Corvallis-Benton County Public Library targeted at K-12 students. Each episode explores a variety of scientific fundamentals with playful experiments and demonstrations. The video lessons are developed using evidence-based practices such as dispelling misconceptions, and language immersion. Each video includes directions for a related experiment that young viewers can conduct at home. In addition, science kits for these at-home experiments are distributed for free to students through the public library network in Benton County, Oregon. This talk will focus on the development of multimedia science education tools and several techniques that scientists can use to engage with a broad audience more effectively. Using examples from the LIB LAB YouTube Channel and collection of hands-on science demonstrations and take-home kits, this talk will present STEAM education in action. Corvallis-Benton County Public Library.

  6. Creating a lab to facilitate high school student engagement in authentic paleoclimate science practices

    Science.gov (United States)

    Maloney, A.; Walsh, E.

    2012-12-01

    A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.

  7. Enter FameLab and become the new face of science in Switzerland

    CERN Multimedia

    Paola Catapano, FameLab@Cern Project coordinator, Communication Group

    2011-01-01

    Are you 18 to 35 years old and studying or working in science in Switzerland? Are you passionate about your job and keen on exciting public imagination with a vision of the 21st century of science? Then this competition is for you!   FameLab is an international science communication competition for young researchers. It aims to find the new voices of science and engineering across the world. CERN has been chosen as the venue of the regional semi-finals for Switzerland. To compete, all you have to do is prepare a 3-minute talk that is scientifically accurate but also engaging to a non-scientific audience and impress your jury and your audience on Saturday 4 Februrary, 2012 at the Globe of Science and Innovation. Famelab aims to provide new opportunities for scientists to develop their skills as communicators. FameLab was set up in 2005 by Cheltenham Festivals, one of the UK’s premier cultural organisations, in partnership with NESTA (Nat...

  8. THE EFFECTIVENESS OF E-LAB TO IMPROVE GENERIC SCIENCE SKILLS AND UNDERSTANDING THE CONCEPT OF PHYSICS

    Directory of Open Access Journals (Sweden)

    J. Siswanto

    2016-01-01

    Full Text Available The aimed of this sudy are: (1 investigate the effectiveness of E-Lab to improve generic science skills and understanding the concepts oh physics; and (2 investigate the effect of generic science skills towards understanding the concept of students after learning by using the E-Lab. The method used in this study is a pre-experimental design with one group pretest-posttest. Subjects were students of Physics Education in University PGRI Semarang with methode random sampling. The results showed that: (1 learning to use E-Lab effective to increase generic science skills of students; and (2 Generic science skills give positive effect on student conceptual understanding on the material of the photoelectric effect, compton effect, and electron diffraction. Tujuan penelitian ini yaitu: (1 menyelidiki efektifitas E-Lab untuk meningkatkan keterampilan generik sains dan pemahaman konsep mahasiswa; dan (2  menyelidiki pengaruh keterampilan generik sains terhadap pemahaman konsep mahasiswa setelah dilakukan pembelajaran dengan menggunakan E-Lab. Metode penelitian yang digunakan dalam penelitian ini adalah pre-experimental dengan desain one group pretest-posttest. Subjek penelitian adalah mahasiswa Program Studi Pendidikan  Fisika  Universitas PGRI Semarang, dengan metode pengambilan sampel penelitian secara random. Hasil penelitian menunjukkan bahwa bahwa: (1 pembelajaran menggunakan E-Lab efektif untuk meningkatkan keterampilan generik sains mahasiswa; dan  (2 Keterampilan generik sains berpengaruh positif terhadap pemahaman konsep mahasiswa pada materi efek fotolistrik, efek compton, dan difraksi elektron. 

  9. Advances in Discrete-Event Simulation for MSL Command Validation

    Science.gov (United States)

    Patrikalakis, Alexander; O'Reilly, Taifun

    2013-01-01

    In the last five years, the discrete event simulator, SEQuence GENerator (SEQGEN), developed at the Jet Propulsion Laboratory to plan deep-space missions, has greatly increased uplink operations capacity to deal with increasingly complicated missions. In this paper, we describe how the Mars Science Laboratory (MSL) project makes full use of an interpreted environment to simulate change in more than fifty thousand flight software parameters and conditional command sequences to predict the result of executing a conditional branch in a command sequence, and enable the ability to warn users whenever one or more simulated spacecraft states change in an unexpected manner. Using these new SEQGEN features, operators plan more activities in one sol than ever before.

  10. Differences between Lab Completion and Non-Completion on Student Performance in an Online Undergraduate Environmental Science Program

    Science.gov (United States)

    Corsi, Gianluca

    2011-12-01

    Web-based technology has revolutionized the way education is delivered. Although the advantages of online learning appeal to large numbers of students, some concerns arise. One major concern in online science education is the value that participation in labs has on student performance. The purpose of this study was to assess the relationships between lab completion and student academic success as measured by test grades, scientific self-confidence, scientific skills, and concept mastery. A random sample of 114 volunteer undergraduate students, from an online Environmental Science program at the American Public University System, was tested. The study followed a quantitative, non-experimental research design. Paired sample t-tests were used for statistical comparison between pre-lab and post-lab test grades, two scientific skills quizzes, and two scientific self-confidence surveys administered at the beginning and at the end of the course. The results of the paired sample t-tests revealed statistically significant improvements on all post-lab test scores: Air Pollution lab, t(112) = 6.759, p virtual reality platforms and digital animations. Future research is encouraged to investigate possible correlations between socio-demographic attributes and academic success of students enrolled in online science programs in reference to lab completion.

  11. The Art-Science Connection: Students Create Art Inspired by Extracurricular Lab Investigations

    Science.gov (United States)

    Hegedus, Tess; Segarra, Verónica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina

    2016-01-01

    The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…

  12. 2014 FameLab heat: CERN welcomes 11 new stars of science communication!

    CERN Multimedia

    2014-01-01

    The 2014 Swiss heat of the popular FameLab competition took place Thursday, 27 March at CERN. 11 young researchers from CERN, the Universities of Geneva, Lausanne and Neuchâtel, and the EPFL competed for the sought-after title of FameLab finalist. The winner and the four runners-up will participate in the Masterclass and the Swiss final, and just one will go on to represent Switzerland at the international Cheltenham Science Festival in the UK. Some of the participants share their feedback with us.   The FameLab 2014 contestants after their talks, at the Globe of Science and Innovation on 27 March. Miquel Oliu Barton (Swiss finalist): Amazed by the other contestants' performances, I almost forgot the stage fright! But then I was given the hands-free microphone and knew the time had come to talk about my research to a large audience and to the cameras.... Both with fear and excitement, I played that three-minute game and, though it felt really short, I enjoyed it very much. Th...

  13. The efficiency of metacognitive development embedded within a motivating lab regarding pre-service science teachers’ learning outcomes

    OpenAIRE

    Deniz Sarıbaş; Hale Bayram

    2010-01-01

    The aim of this study was to improve pre-service science teachers’ science process skills and attitude towards chemistry by developing their metacognitive skills embedded within a motivating chemistry laboratory. The sample of the study was 54 pre-service science teachers who took the first year chemistry lab course at Marmara University. Both the control (n=27) and the experimental group (n=27) carried out 11 experiments, each of which was performed over a lab course. The students comp...

  14. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  15. GeneLab: Open Science For Exploration

    Science.gov (United States)

    Galazka, Jonathan

    2018-01-01

    The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.

  16. Lab-oriented radical innovations as drivers of paradigm shifts in science

    NARCIS (Netherlands)

    Coccia, M.

    2014-01-01

    An interesting problem in the economics of innovation and strategic management of labs is to explain the drivers of breakthroughs and paradigm shifts in science. This study confronts the issue by analysing a main case study: the technological determinant of the discovery of quasi-periodic materials

  17. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  18. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  19. The effects of different gender groupings on middle school students' performance in science lab

    Science.gov (United States)

    Drab, Deborah D.

    Grouping students for labs in science classes is a common practice. This mixed methods quasi-experimental action research study examines homogeneous and heterogeneous gender grouping strategies to determine what gender grouping strategy is the most effective in a coeducational science classroom setting. Sixth grade students were grouped in same-gender and mixed-gender groups, alternating each quarter. Over the course of an academic year, data were collected from four sources. The teacher-researcher observed groups working during hands-on activities to collect data on student behaviors. Students completed post-lab questionnaires and an end-of-course questionnaire about their preferences and experiences in the different grouping strategies. Student scores on written lab assignments were also utilized. Data analysis focused on four areas: active engagement, student achievement, student perceptions of success and cooperative teamwork. Findings suggest that teachers may consider grouping students of different ability levels according to different gender grouping strategies to optimize learning.

  20. Faculty Perceptions of Students in Life and Physical Science Research Labs

    Science.gov (United States)

    Gonyo, Claire P.; Cantwell, Brendan

    2015-01-01

    This qualitative study involved interviews of 32 faculty principle investigators at three research institutions and explored how they view the role of students within physical and life science labs. We used socialization theory and student engagement literature to analyze faculty views, which can contribute to student investment in STEM fields.…

  1. Do Policies that Encourage Better Attendance in Lab Change Students' Academic Behaviors and Performances in Introductory Science Courses?

    Science.gov (United States)

    Moore, Randy; Jensen, Philip A.

    2008-01-01

    Science courses with hands-on investigative labs are a typical part of the general education requirements at virtually all colleges and universities. In these courses, labs that satisfy a curricular requirement for "lab experience" are important because they provide the essence of the scientific experience--that is, they give students…

  2. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  3. Data-Oriented Astrophysics at NOAO: The Science Archive & The Data Lab

    Science.gov (United States)

    Juneau, Stephanie; NOAO Data Lab, NOAO Science Archive

    2018-06-01

    As we keep progressing into an era of increasingly large astronomy datasets, NOAO’s data-oriented mission is growing in prominence. The NOAO Science Archive, which captures and processes the pixel data from mountaintops in Chile and Arizona, now contains holdings at Petabyte scales. Working at the intersection of astronomy and data science, the main goal of the NOAO Data Lab is to provide users with a suite of tools to work close to this data, the catalogs derived from them, as well as externally provided datasets, and thus optimize the scientific productivity of the astronomy community. These tools and services include databases, query tools, virtual storage space, workflows through our Jupyter Notebook server, and scripted analysis. We currently host datasets from NOAO facilities such as the Dark Energy Survey (DES), the DESI imaging Legacy Surveys (LS), the Dark Energy Camera Plane Survey (DECaPS), and the nearly all-sky NOAO Source Catalog (NSC). We are further preparing for large spectroscopy datasets such as DESI. After a brief overview of the Science Archive, the Data Lab and datasets, I will briefly showcase scientific applications showing use of our data holdings. Lastly, I will describe our vision for future developments as we tackle the next technical and scientific challenges.

  4. Using a Science Centre as a School Lab ? a Case Story

    DEFF Research Database (Denmark)

    Sørensen, Helene

    2004-01-01

    responsibility for their own learning committed themselves to learn the scientific language. The study shows that in school science there has to be scaffolding around a project to insure that all students gain experience with science as a learning process in an environment with self-motivated, self......The study has the overall goal of finding suggestions for improving school visits to Science Centres and similar places. One such centre (Experimentarium) has established a partnership with a nearby school to investigate possibilities for cooperation. This case story tells about a project where...... tenth graders were trained to become museum ?explainers? as part of their science education. The objectives were to investigate if it was possible to obtain a quality out-of?school experience using the Experimentarium as a science lab. The intention of the study was to look at science learning...

  5. Sulphur-bearing Compounds Detected by MSL SAM Evolved Gas Analysis of Materials from Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, A. C.; Franz, H. B.; Archer, P. D. Jr.; Sutter, B.; Eigenbrode, J. L.; Freissinet, C.; Atreya, S. K.; Bish, D. L.; Blake, D. F.; Brunner, A.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of sample fines (bearing phases present below the CheMin detection limit or difficult to characterize with XRD (e.g., X-ray amorphous phases). Here, we focus on potential constraints on phases that evolved SO2, H2S, OCS, and CS2 during thermal analysis.

  6. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    Science.gov (United States)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  7. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  8. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  9. A Further Characterization of Empirical Research Related to Learning Outcome Achievement in Remote and Virtual Science Labs

    Science.gov (United States)

    Brinson, James R.

    2017-10-01

    This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.

  10. Virtual Reality Lab Assistant

    Science.gov (United States)

    Saha, Hrishikesh; Palmer, Timothy A.

    1996-01-01

    Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.

  11. Awakening interest in the natural sciences - BASF's Kids' Labs.

    Science.gov (United States)

    Lang, Cinthia

    2012-01-01

    At BASF's Ludwigshafen headquarters, kids and young adults in grades 1-13 can learn about chemistry in the Kids' Labs. Different programs exist for different levels of knowledge. In the two 'Hands-on Lab H(2)O & Co.' Kids' Labs, students from grades 1-6 explore the secrets of chemistry. BASF Kids' Labs have now been set up in over 30 countries. In Switzerland alone, almost 2,000 students have taken part in the 'Water Loves Chemistry' Kids' Lab since it was started in 2011. In Alsace, 600 students have participated to date. In the Teens' Lab 'Xplore Middle School', middle school students explore five different programs with the themes 'substance labyrinth', 'nutrition', 'coffee, caffeine & co.', 'cosmetics' and 'energy'. Biotechnological methods are the focus of the Teens' Lab 'Xplore Biotech' for students taking basic and advanced biology courses. In the 'Xplore High School' Teens' Lab, chemistry teachers present their own experimental lab instruction for students in basic and advanced chemistry courses. The Virtual Lab has been expanding the offerings of the BASF Kids' Labs since 2011. The online lab was developed by the company for the International Year Of Chemistry and gives kids and young adults the opportunity to do interactive experiments outside of the lab.

  12. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    Science.gov (United States)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  13. Report from the banding lab

    Science.gov (United States)

    Tautin, J.

    1995-01-01

    Mr. Tautin reported on the seemingly everchanging structure of biological science units within the Interior Department. Current Congressional proposals would either change the name of the Bird Banding Lab's parent agency or make it part of the Geological Survey. The current Congress has not looked favorably on science budgets within the Interior Department, and the Banding Lab's budget is being squeezed ever tighter.

  14. Implementing planetary protection measures on the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  15. Non-Stop Lab Week: A Real Laboratory Experience for Life Sciences Postgraduate Courses

    Science.gov (United States)

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-01-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular…

  16. Neue Aufgaben für wissenschaftliche Bibliotheken: Das Beispiel Open Science Lab

    Directory of Open Access Journals (Sweden)

    Lambert Heller

    2015-10-01

    Full Text Available Vor dem Hintergrund des Aufkommens vieler neuer digitaler Werkzeuge und Methoden zur Unterstützung des wissenschaftlichen Arbeitens wird seit etwa fünf Jahren unter wissenschaftlichen Bibliothekaren in Deutschland immer häufiger über Innovationsmanagement diskutiert. Wie lassen sich relevante Trends und Herausforderungen rechtzeitig erkennen und mit den begrenzten Ressourcen einer Einrichtung des öffentlichen Dienstes adäquat aufgreifen, bis hin zu einer Veränderung der Bibliotheksstrategie? Der Beitrag behandelt das Modell des an der Technischen Informationsbibliothek Hannover (TIB 2013 ins Leben gerufenen Open Science Lab. Unter Leitung des Autors werden Trends beobachtet und aufgegriffen, um in enger Zusammenarbeit mit Wissenschaftlern und Wissenschaftlerinnen neue digitale Werkzeuge und Methoden zu erproben, eine neue Informationspraxis zu kultivieren und daraus Innovationen für das Dienste-Spektrum der Bibliothek abzuleiten. Dies wird beispielhaft anhand der beiden Schwerpunktthemen kollaboratives Schreiben sowie linked-data-basierte Forschungsinformationssysteme (FIS geschildert und diskutiert. Given the rise of many new digital tools and methods for supporting scientific work, the last five years have seen a lot of discussion amongst German academic librarians about innovation management. How can we discover relevant trends and challenges in time and respond to them adequately up to the point of changing whole library strategies, despite the limited resources of a public sector institution? The paper presents the model of the Open Science Lab which was set up at the German National Library of Science and Technology (TIB Hannover in 2013. Under the direction of the author and in close collaboration with scientific communities, the lab group keeps track of trends and selects some of them in order to try out new tools and methods. The ultimate aim is to cultivate new information practices and develop new, innovative

  17. In-Situ Mosaic Production at JPL/MIPL

    Science.gov (United States)

    Deen, Bob

    2012-01-01

    Multimission Image Processing Lab (MIPL) at JPL is responsible for (among other things) the ground-based operational image processing of all the recent in-situ Mars missions: (1) Mars Pathfinder (2) Mars Polar Lander (3) Mars Exploration Rovers (MER) (4) Phoenix (5) Mars Science Lab (MSL) Mosaics are probably the most visible products from MIPL (1) Generated for virtually every rover position at which a panorama is taken (2) Provide better environmental context than single images (3) Valuable to operations and science personnel (4) Arguably the signature products for public engagement

  18. The Martian surface radiation environment – a comparison of models and MSL/RAD measurements

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2016-01-01

    Full Text Available Context: The Radiation Assessment Detector (RAD on the Mars Science Laboratory (MSL has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle

  19. Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: a literature review

    NARCIS (Netherlands)

    Zacharia, Zacharias C.; Manoli, Constantinos; Xenofontos, Nikoletta; de Jong, Anthonius J.M.; Pedaste, Margus; van Riesen, Siswa; Kamp, E.T.; Kamp, Ellen T.; Mäeots, Mario; Siiman, Leo; Tsourlidaki, Eleftheria

    2015-01-01

    The aim of this review is to identify specific types of guidance for supporting student use of online labs, that is, virtual and remote labs, in an inquiry context. To do so, we reviewed the literature on providing guidance within computer supported inquiry learning (CoSIL) environments in science

  20. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  1. Towards a Metadata Schema for Characterizing Lesson Plans Supported by Virtual and Remote Labs in School Science Education

    Science.gov (United States)

    Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.

    2015-01-01

    Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…

  2. Terrain Safety Assessment in Support of the Mars Science Laboratory Mission

    Science.gov (United States)

    Kipp, Devin

    2012-01-01

    In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.

  3. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  4. Using Evernote as an electronic lab notebook in a translational science laboratory.

    Science.gov (United States)

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  5. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  6. Pressure and Humidity Measurements at the MSL Landing Site Supported by Modeling of the Atmospheric Conditions

    Science.gov (United States)

    Harri, A.; Savijarvi, H. I.; Schmidt, W.; Genzer, M.; Paton, M.; Kauhanen, J.; Atlaskin, E.; Polkko, J.; Kahanpaa, H.; Kemppinen, O.; Haukka, H.

    2012-12-01

    The Mars Science Laboratory (MSL) called Curiosity Rover landed safely on the Martian surface at the Gale crater on 6th August 2012. Among the MSL scientific objectives are investigations of the Martian environment that will be addressed by the Rover Environmental Monitoring Station (REMS) instrument. It will investigate habitability conditions at the Martian surface by performing a versatile set of environmental measurements including accurate observations of pressure and humidity of the Martian atmosphere. This paper describes the instrumental implementation of the MSL pressure and humidity measurement devices and briefly analyzes the atmospheric conditions at the Gale crater by modeling efforts using an atmospheric modeling tools. MSL humidity and pressure devices are based on proprietary technology of Vaisala, Inc. Humidity observations make use of Vaisala Humicap® relative humidity sensor heads and Vaisala Barocap® sensor heads are used for pressure observations. Vaisala Thermocap® temperature sensors heads are mounted in a close proximity of Humicap® and Barocap® sensor heads to enable accurate temperature measurements needed for interpretation of Humicap® and Barocap® readings. The sensor heads are capacitive. The pressure and humidity devices are lightweight and are based on a low-power transducer controlled by a dedicated ASIC. The transducer is designed to measure small capacitances in order of a few pF with resolution in order of 0.1fF (femtoFarad). The transducer design has a good spaceflight heritage, as it has been used in several previous missions, for example Mars mission Phoenix as well as the Cassini Huygens mission. The humidity device has overall dimensions of 40 x 25 x 55 mm. It weighs18 g, and consumes 15 mW of power. It includes 3 Humicap® sensor heads and 1 Thermocap®. The transducer electronics and the sensor heads are placed on a single multi-layer PCB protected by a metallic Faraday cage. The Humidity device has measurement range

  7. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  8. Mars Science Laboratory Flight Software Internal Testing

    Science.gov (United States)

    Jones, Justin D.; Lam, Danny

    2011-01-01

    The Mars Science Laboratory (MSL) team is sending the rover, Curiosity, to Mars, and therefore is physically and technically complex. During my stay, I have assisted the MSL Flight Software (FSW) team in implementing functional test scripts to ensure that the FSW performs to the best of its abilities. There are a large number of FSW requirements that have been written up for implementation; however I have only been assigned a few sections of these requirements. There are many stages within testing; one of the early stages is FSW Internal Testing (FIT). The FIT team can accomplish this with simulation software and the MSL Test Automation Kit (MTAK). MTAK has the ability to integrate with the Software Simulation Equipment (SSE) and the Mission Processing and Control System (MPCS) software which makes it a powerful tool within the MSL FSW development process. The MSL team must ensure that the rover accomplishes all stages of the mission successfully. Due to the natural complexity of this project there is a strong emphasis on testing, as failure is not an option. The entire mission could be jeopardized if something is overlooked.

  9. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  10. Innovative Educational Practice: Using Virtual Labs in the Secondary Classroom

    Directory of Open Access Journals (Sweden)

    Marcel Satsky Kerr, PhD

    2004-07-01

    Full Text Available Two studies investigated the effectiveness of teaching science labs online to secondary students. Study 1 compared achievement among students instructed using hands-on Chemistry labs versus those instructed using virtual Chemistry labs (eLabs. Study 2 compared the same groups of students again while both teachers instructed using hands-on Chemistry labs to determine whether teacher or student characteristics may have affected Study 1’s findings. Participants were high school Chemistry students from a Central Texas Independent School District. Results indicated that: students learn science effectively online, schools may experience cost savings from delivering labs online, and students gain valuable technology skills needed later in college and in the workplace.

  11. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    Science.gov (United States)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  12. Determining the Local Abundance of Martian Methane and its 13-C/l2-C and D/H Isotopic Ratios for Comparison with Related Gas and Soil Analysis on the 2011 Mars Science Laboratory (MSL) Mission

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.

    2011-01-01

    Understanding the origin of Martian methane will require numerous complementary measurements from both in situ and remote sensing investigations and laboratory work to correlate planetary surface geophysics with atmospheric dynamics and chemistry. Three instruments (Quadrupole Mass Spectrometer (QMS), Gas Chromatograph (GC) and Tunable Laser Spectrometer (TLS)) with sophisticated sample handling and processing capability make up the Sample Analysis at Mars (SAM) analytical chemistry suite on NASA s 2011 Mars Science Laboratory (MSL) Mission. Leveraging off the SAM sample and gas processing capability that includes methane enrichment, TLS has unprecedented sensitivity for measuring absolute methane (parts-per-trillion), water, and carbon dioxide abundances in both the Martian atmosphere and evolved from heated soil samples. In concert with a wide variety of associated trace gases (e.g. SO2, H2S, NH3, higher hydrocarbons, organics, etc.) and other isotope ratios measured by SAM, TLS will focus on determining the absolute abundances of methane, water and carbon dioxide, and their isotope ratios: 13C/12C and D/H in methane; 13C/12C and 18O/17O/16O in carbon dioxide; and 18O/17O/16O and D/H in water. Measurements near the MSL landing site will be correlated with satellite (Mars Express, Mars 2016) and ground-based observations.

  13. 13 scientists aced their science communication test at the FameLab final

    CERN Document Server

    Antonella Del Rosso

    2015-01-01

    On 8 May, the joint CERN and Swiss FameLab final took place in CERN’s Restaurant 1, which was transformed into a cosy setting for the special occasion. The jury selected Oskari Vinko, a Master’s student in synthetic biology at ETH Zurich, as the winner of the Swiss final while Lillian Smestad, a physicist in the Aegis collaboration, will be the first CERN finalist to go to the international final at the Cheltenham Science Festival. In addition, CMS physicist Christos Lazaridis was awarded the audience prize.   

  14. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    Science.gov (United States)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  15. Bringing Science out of the Lab into the Classroom

    Science.gov (United States)

    2006-03-01

    activities," says Bill Stirling, Director General of the European Synchrotron Radiation Facility (ESRF), representing EIROforum at the launch event. "Scientists across Europe, including those in EIROforum labs, are continually making discoveries that they would be willing and able to explain to young people, but there's no central mechanism to help do so - we think that this new journal can help fulfil that function." "Motivating more young people to take an interest in understanding and learning science at school is important not only because science careers are exciting and rewarding, but also because young people need to know about how science and technology is changing our world - their world!," says Stephen Parker, Head of Education and Science of the European Commission. "Science in School is just one of the initiatives being supported by the Commission to take this forward." EIROforum sustains many other education activities including the Science on Stage festival, a sort of European teaching Olympics where teachers present their most inventive methods. The best projects from last year's Science on Stage festival will be featured in Science in School.

  16. The Design:Lab as platform in participatory design research

    DEFF Research Database (Denmark)

    Binder, Thomas; Brandt, Eva

    2008-01-01

    The notion of laboratory or simply 'lab' has become popular in recent years in areas outside science and technology development. Learning Labs, Innovation Labs, Usability Labs, Media and Communication Labs and even Art Labs designate institutions or fora dedicated to change and experimentation...... as others have frequently used other metaphors like workshop, studio or atelier in design research. In this article we will argue that the laboratory metaphor is particularly suitable and useful for the design:lab, and we will give examples of how we have worked with the design:lab as a platform...

  17. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  18. Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Science.gov (United States)

    Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan

    2018-04-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.

  19. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI due to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  20. A Case Study of a High School Fab Lab

    Science.gov (United States)

    Lacy, Jennifer E.

    This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.

  1. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  2. First Materials Science Research Facility Rack Capabilities and Design Features

    Science.gov (United States)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  3. A Big Bang Lab

    Science.gov (United States)

    Scheider, Walter

    2005-01-01

    The February 2005 issue of The Science Teacher (TST) reminded everyone that by learning how scientists study stars, students gain an understanding of how science measures things that can not be set up in lab, either because they are too big, too far away, or happened in a very distant past. The authors of "How Far are the Stars?" show how the…

  4. UniSchooLabs Toolkit: Tools and Methodologies to Support the Adoption of Universities’ Remote and Virtual Labs in Schools

    Directory of Open Access Journals (Sweden)

    Augusto Chioccariello

    2012-11-01

    Full Text Available The UniSchooLabs project aims at creating an infrastructure supporting web access to remote/virtual labs and associated educational resources to engage learners with hands-on and minds-on activities in science, technology and math in schools. The UniSchooLabs tool-kit supports the teacher in selecting a remote or virtual lab and developing a lab activity based on an inquiry model template. While working with the toolkit the teacher has access to three main features: a a catalogue of available online laboratories; b an archive of activities created by other users; c a tool for creating new activities or reusing existing ones.

  5. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  6. Library-Labs-for-Science Literacy Courses.

    Science.gov (United States)

    Pestel, Beverly C.; Engeldinger, Eugene A.

    1992-01-01

    Describes two library-lab exercises the authors have incorporated into their college chemistry course. The first exercise introduces students to scientific information and familiarizes them with the tools for accessing it. The second provides a framework for evaluating the reliability of that information and addresses the criteria that should be…

  7. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  8. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  9. First Materials Science Research Rack Capabilities and Design Features

    Science.gov (United States)

    Schaefer, D.; King, R.; Cobb, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first Materials Science Research Rack (MSRR-1) will accommodate dual Experiment Modules (EM's) and provide simultaneous on-orbit processing operations capability. The first international Materials Science Experiment Module for the MSRR-1 is an international cooperative research activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center. (ESTEC). This International Standard Payload Rack (ISPR) will contain the Materials Science Laboratory (MSL) developed by ESA as an Experiment Module. The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts. Module Inserts currently planned are a Quench Module Insert, Low Gradient Furnace, Solidification with Quench Furnace, and Diffusion Module Insert. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Department (SPD). It includes capabilities for vapor transport processes and liquid metal sintering. This Experiment Module will be replaced on-orbit with other NASA Materials Science EMs.

  10. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  11. The Unparalleled Systems Engineering of MSL's Backup Entry, Descent, and Landing System: Second Chance

    Science.gov (United States)

    Roumeliotis, Chris; Grinblat, Jonathan; Reeves, Glenn

    2013-01-01

    Second Chance (SECC) was a bare bones version of Mars Science Laboratory's (MSL) Entry Descent & Landing (EDL) flight software that ran on Curiosity's backup computer, which could have taken over swiftly in the event of a reset of Curiosity's prime computer, in order to land her safely on Mars. Without SECC, a reset of Curiosity's prime computer would have lead to catastrophic mission failure. Even though a reset of the prime computer never occurred, SECC had the important responsibility as EDL's guardian angel, and this responsibility would not have seen such success without unparalleled systems engineering. This paper will focus on the systems engineering behind SECC: Covering a brief overview of SECC's design, the intense schedule to use SECC as a backup system, the verification and validation of the system's "Do No Harm" mandate, the system's overall functional performance, and finally, its use on the fateful day of August 5th, 2012.

  12. Interannual and Diurnal Variability in Water Ice Clouds Observed from MSL Over Two Martian Years

    Science.gov (United States)

    Kloos, J. L.; Moores, J. E.; Whiteway, J. A.; Aggarwal, M.

    2018-01-01

    We update the results of cloud imaging sequences from the Mars Science Laboratory (MSL) rover Curiosity to complete two Mars years of observations (LS=160° of Mars year (MY) 31 to LS=160° of MY 33). Relatively good seasonal coverage is achieved within the study period, with just over 500 observations obtained, averaging one observation every 2-3 sols. Cloud opacity measurements are made using differential photometry and a simplified radiative transfer method. These opacity measurements are used to assess the interannual variability of the aphelion cloud belt (ACB) for MY 32 and 33. Upon accounting for a statistical bias in the data set, the variation is found to be year. Although a gap in data around local noon prevents a complete assessment, we find that cloud opacity is moderately increased in the morning hours (07:00-09:00) compared to the late afternoon (15:00-17:00).

  13. Giant Ants and Walking Plants: Using Science Fiction to Teach a Writing-Intensive, Lab-Based Biology Class for Nonmajors

    Science.gov (United States)

    Firooznia, Fardad

    2006-01-01

    This writing-intensive, lab-based, nonmajor biology course explores scientific inquiry and biological concepts through specific topics illustrated or inaccurately depicted in works of science fiction. The laboratory emphasizes the scientific method and introduces several techniques used in biological research related to the works we study.…

  14. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barnett, J. Matthew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-05

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office has oversight and stewardship duties associated with the Pacific Northwest National Laboratory Marine Sciences Laboratory located on Battelle Land – Sequim. This report is prepared to document compliance with the 40 CFR Part 61, Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code . The EDE to the MSL MEI due to routine operations in 2015 was 1.1E-04 mrem (1.1E-06 mSv). No non-routine emissions occurred in 2015. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  15. Surface-atmospheric water cycle at Gale crater through multi-year MSL/REMS observations

    Science.gov (United States)

    Harri, A. M.; Genzer, M.; McConnochie, T. H.; Savijarvi, H. I.; Smith, M. D.; Martinez, G.; de la Torre Juarez, M.; Haberle, R. M.; Polkko, J.; Gomez-Elvira, J.; Renno, N. O.; Kemppinen, O.; Paton, M.; Richardson, M. I.; Newman, C. E.; Siili, T. T.; Mäkinen, T.

    2017-12-01

    The Mars Science laboratory (MSL) has been successfully operating for almost three Martian years. That includes an unprecedented long time series of atmospheric observations by the REMS instrument performing measurements of atmospheric pressure, relative humidity (REMS-H), temperature of the air, ground temperature, UV and wind speed and direction. The REMS-H relative humidity device is based on polymeric capacitive humidity sensors developed by Vaisala Inc. and it makes use of three (3) humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The REMS-H humidity instrument has created an unprecedented data record of more than two full Martian. REMS-H measured the relative humidity and temperature at 1.6 m height for a period of 5 minutes every hour as part of the MSL/REMS instrument package. We focus on describing the annual in situ water cycle with the REMS-H instrument data for the period of almost three Martian years. The results will be constrained through comparison with independent indirect observations and through modeling efforts. We inferred the hourly atmospheric VMR from the REMS-H observations and compared these VMR measurements with predictions of VMR from our 1D column Martian atmospheric model and regolith to investigate the local water cycle, exchange processes and the local climate in Gale Crater. The strong diurnal variation suggests there are surface-atmosphere exchange processes at Gale Crater during all seasons, which depletes moisture to the ground in the evening and nighttime and release the moisture back to the atmosphere during the daytime. On the other hand, these processes do not seem to result in significant water deposition on the ground. Hence, our modelling results presumably indicate that adsorption processes take place during the nighttime and desorption during the daytime. Other processes, e.g. convective

  16. Characterization of hampin/MSL1 as a node in the nuclear interactome

    International Nuclear Information System (INIS)

    Dmitriev, Ruslan I.; Korneenko, Tatyana V.; Bessonov, Alexander A.; Shakhparonov, Mikhail I.; Modyanov, Nikolai N.; Pestov, Nikolay B.

    2007-01-01

    Hampin, homolog of Drosophila MSL1, is a partner of histone acetyltransferase MYST1/MOF. Functions of these proteins remain poorly understood beyond their participation in chromatin remodeling complex MSL. In order to identify new proteins interacting with hampin, we screened a mouse cDNA library in yeast two-hybrid system with mouse hampin as bait and found five high-confidence interactors: MYST1, TPR proteins TTC4 and KIAA0103, NOP17 (homolog of a yeast nucleolar protein), and transcription factor GC BP. Subsequently, all these proteins were used as baits in library screenings and more new interactions were found: tumor suppressor RASSF1C and spliceosome component PRP3 for KIAA0103, ring finger RNF10 for RASSF1C, and RNA polymerase II regulator NELF-C for MYST1. The majority of the observed interactions was confirmed in vitro by pull-down of bacterially expressed proteins. Reconstruction of a fragment of mammalian interactome suggests that hampin may be linked to diverse regulatory processes in the nucleus

  17. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  18. GeneLab: A Systems Biology Platform for Spaceflight Omics Data

    Science.gov (United States)

    Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph

    2015-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and

  19. Tele-Lab IT-Security: an Architecture for an online virtual IT Security Lab

    Directory of Open Access Journals (Sweden)

    Christoph Meinel

    2008-05-01

    Full Text Available Recently, Awareness Creation in terms of IT security has become a big thing – not only for enterprises. Campaigns for pupils try to highlight the importance of IT security even in the user’s early years. Common practices in security education – as seen in computer science courses at universities – mainly consist of literature and lecturing. In the best case, the teaching facility offers practical courses in a dedicated isolated computer lab. Additionally, there are some more or less interactive e-learning applications around. Most existing offers can do nothing more than impart theoretical knowledge or basic information. They all lack of possibilities to provide practical experience with security software or even hacker tools in a realistic environment. The only exceptions are the expensive and hard-to-maintain dedicated computer security labs. Those can only be provided by very few organizations. Tele-Lab IT-Security was designed to offer hands-on experience exercises in IT security without the need of additional hardware or maintenance expenses. The existing implementation of Tele-Lab even provides access to the learning environment over the Internet – and thus can be used anytime and anywhere. The present paper describes the extended architecture on which the current version of the Tele-Lab server is built.

  20. Role of the ATPase/helicase maleless (MLE in the assembly, targeting, spreading and function of the male-specific lethal (MSL complex of Drosophila

    Directory of Open Access Journals (Sweden)

    Morra Rosa

    2011-04-01

    Full Text Available Abstract Background The male-specific lethal (MSL complex of Drosophila remodels the chromatin of the X chromosome in males to enhance the level of transcription of most X-linked genes, and thereby achieve dosage compensation. The core complex consists of five proteins and one of two non-coding RNAs. One of the proteins, MOF (males absent on the first, is a histone acetyltransferase that specifically acetylates histone H4 at lysine 16. Another protein, maleless (MLE, is an ATP-dependent helicase with the ability to unwind DNA/RNA or RNA/RNA substrates in vitro. Recently, we showed that the ATPase activity of MLE is sufficient for the hypertranscription of genes adjacent to a high-affinity site by MSL complexes located at that site. The helicase activity is required for the spreading of the complex to the hundreds of positions along the X chromosome, where it is normally found. In this study, to further understand the role of MLE in the function of the MSL complex, we analyzed its relationship to the other complex components by creating a series of deletions or mutations in its putative functional domains, and testing their effect on the distribution and function of the complex in vivo. Results The presence of the RB2 RNA-binding domain is necessary for the association of the MSL3 protein with the other complex subunits. In its absence, the activity of the MOF subunit was compromised, and the complex failed to acetylate histone H4 at lysine 16. Deletion of the RB1 RNA-binding domain resulted in complexes that maintained substantial acetylation activity but failed to spread beyond the high-affinity sites. Flies bearing this mutation exhibited low levels of roX RNAs, indicating that these RNAs failed to associate with the proteins of the complex and were degraded, or that MLE contributes to their synthesis. Deletion of the glycine-rich C-terminal region, which contains a nuclear localization sequence, caused a substantial level of retention of the

  1. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  2. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Science.gov (United States)

    DeFraine, William C; Williams, Wendy M; Ceci, Stephen J

    2014-01-01

    The demand for employees trained in science, technology, engineering, and mathematics (STEM) fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49) and desire to participate in (d = 1.33) the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these findings for STEM

  3. Folding Inquiry into Cookbook Lab Activities

    Science.gov (United States)

    Gooding, Julia; Metz, Bill

    2012-01-01

    Cookbook labs have been a part of science programs for years, even though they serve little purpose other than to verify phenomena that have been previously presented by means other than through investigations. Cookbook science activities follow a linear path to a known outcome, telling students what procedures to follow, which materials to use,…

  4. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  5. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  6. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  7. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  8. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  9. Teaching and Learning Coastal Processes through Research in a Non-Lab Science Course and Having Fun at the Same Time

    Science.gov (United States)

    Thissen, J.

    2014-12-01

    At Nassau Community College students are required to take one lab science and one non-lab science. These two science courses will probably be the only sciences courses they'll take in their college career. What are they looking for in a science course? "Is it easy?" "Will we have fun?" I can try for "fun" but "easy" and "science" seem to be oxymorons. I've found that they don't notice the difficulty when they're having fun. With this is mind I set out to create a course that would fulfill this requirement but also challenge them to learn science through hands-on, real-life, placed based activities and projects. Beaches and Coasts is essentially a coastal processes course that requires a full term research project along with other hands-on activities. We live on an island (Long Island, NY). The state of our shoreline impacts all of us - something we saw during Superstorm Sandy. Long Island's shorelines vary tremendously. Our north shore is glacially controlled and irregular with many harbors and bays; our south shore is an Atlantic Ocean coastline with many barrier islands and lagoons that contain many inlets and marshes. Many municipalities have small natural beaches along this coastline. For their project students choose a shoreline, with input from the instructor, and take "ownership" of it for at least one moon cycle. They collect data on tides, currents, waves, offshore sediment transport and anthropogenic structures and then study the impact of these factors on their section of shoreline. They also collect sediment from their beach to analyze later in the lab. They are given a rubric with the specific requirements and then make a PowerPoint presentation that includes all their data, charts and graphs as well as their photos that they took while doing their research. Students love doing this project. They can't believe they get credits for going to the beach - something they do anyway (the "fun" factor). They all say that they'll never go to the beach the same

  10. Attracting STEM talent: do STEM students prefer traditional or work/life-interaction labs?

    Directory of Open Access Journals (Sweden)

    William C DeFraine

    Full Text Available The demand for employees trained in science, technology, engineering, and mathematics (STEM fields continues to increase, yet the number of Millennial students pursuing STEM is not keeping pace. We evaluated whether this shortfall is associated with Millennials' preference for flexibility and work/life-interaction in their careers-a preference that may be inconsistent with the traditional idea of a science career endorsed by many lab directors. Two contrasting approaches to running STEM labs and training students were explored, and we created a lab recruitment video depicting each. The work-focused video emphasized the traditional notions of a science lab, characterized by long work hours and a focus on individual achievement and conducting research above all else. In contrast, the work/life-interaction-focused video emphasized a more progressive view - lack of demarcation between work and non-work lives, flexible hours, and group achievement. In Study 1, 40 professors rated the videos, and the results confirmed that the two lab types reflected meaningful real-world differences in training approaches. In Study 2, we recruited 53 current and prospective graduate students in STEM fields who displayed high math-identification and a commitment to science careers. In a between-subjects design, they watched one of the two lab-recruitment videos, and then reported their anticipated sense of belonging to and desire to participate in the lab depicted in the video. Very large effects were observed on both primary measures: Participants who watched the work/life-interaction-focused video reported a greater sense of belonging to (d = 1.49 and desire to participate in (d = 1.33 the lab, relative to participants who watched the work-focused video. These results suggest Millennials possess a strong desire for work/life-interaction, which runs counter to the traditional lab-training model endorsed by many lab directors. We discuss implications of these

  11. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    Science.gov (United States)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  12. Investigation of Science Inquiry Items for Use on an Alternate Assessment Based on Modified Achievement Standards Using Cognitive Lab Methodology

    Science.gov (United States)

    Dickenson, Tammiee S.; Gilmore, Joanna A.; Price, Karen J.; Bennett, Heather L.

    2013-01-01

    This study evaluated the benefits of item enhancements applied to science-inquiry items for incorporation into an alternate assessment based on modified achievement standards for high school students. Six items were included in the cognitive lab sessions involving both students with and without disabilities. The enhancements (e.g., use of visuals,…

  13. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    Science.gov (United States)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  14. User recruitment, training, and support at NOAO Data Lab

    Science.gov (United States)

    Nikutta, Robert; Fitzpatrick, Michael J.; NOAO Data Lab

    2018-06-01

    The NOAO Data Lab (datalab.noao.edu) is a fully-fledged science data & analysis platform. However, simply building a science platform is notenough to declare it a success. Like any such system built for users, it needs actual users who see enough value in it to be willing toovercome the inertia of registering an account, studying the documentation, working through examples, and ultimately attempting tosolve their own science problems using the platform. The NOAO Data Lab has been open to users since June 2016. In this past year we haveregistered hundreds of users and improved the system, not least through the interaction with and feedback from our users. The posterwill delineate our efforts to recruit new users through conference presentations, platform demos and user workshops, and what we do toassure that users experience their first steps and their learning process with Data Lab as easy, competent, and inspiring. It will alsopresent our efforts in user retention and user support, from a human-staffed helpdesk, to one-on-one sessions, to regular"bring-your-own-problem (BYOP)" in-house sessions with interested users.

  15. PDS MSL Analyst's Notebook: Supporting Active Rover Missions and Adding Value to Planetary Data Archives

    Science.gov (United States)

    Stein, Thomas

    Planetary data archives of surface missions contain data from numerous hosted instruments. Because of the nondeterministic nature of surface missions, it is not possible to assess the data without understanding the context in which they were collected. The PDS Analyst’s Notebook (http://an.rsl.wustl.edu) provides access to Mars Science Laboratory (MSL) data archives by integrating sequence information, engineering and science data, observation planning and targeting, and documentation into web-accessible pages to facilitate “mission replay.” In addition, Mars Exploration Rover (MER), Mars Phoenix Lander, Lunar Apollo surface mission, and LCROSS mission data are available in the Analyst’s Notebook concept, and a Notebook is planned for the Insight mission. The MSL Analyst’s Notebook contains data, documentation, and support files for the Curiosity rovers. The inputs are incorporated on a daily basis into a science team version of the Notebook. The public version of the Analyst’s Notebook is comprised of peer-reviewed, released data and is updated coincident with PDS data releases as defined in mission archive plans. The data are provided by the instrument teams and are supported by documentation describing data format, content, and calibration. Both operations and science data products are included. The operations versions are generated to support mission planning and operations on a daily basis. They are geared toward researchers working on machine vision and engineering operations. Science versions of observations from some instruments are provided for those interested in radiometric and photometric analyses. Both data set documentation and sol (i.e., Mars day) documents are included in the Notebook. The sol documents are the mission manager and documentarian reports that provide a view into science operations—insight into why and how particular observations were made. Data set documents contain detailed information regarding the mission, spacecraft

  16. Mars Science Laboratory Differential Restraint: The Devil is in the Details

    Science.gov (United States)

    Jordan, Elizabeth

    2012-01-01

    The Differential Restraint, a mechanism used on the Mars Science Laboratory (MSL) rover to maintain symmetry of the mobility system during the launch, cruise, and entry descent and landing phases of the MSL mission, completed nearly three full design cycles before a finalized successful design was achieved. This paper address the lessons learned through these design cycles, including three major design elements that can easily be overlooked during the design process, including, tolerance stack contribution to load path, the possibility of Martian dirt as a failure mode, and the effects of material properties at temperature extremes.

  17. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    Science.gov (United States)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  18. The Multisensory Sound Lab: Sounds You Can See and Feel.

    Science.gov (United States)

    Lederman, Norman; Hendricks, Paula

    1994-01-01

    A multisensory sound lab has been developed at the Model Secondary School for the Deaf (District of Columbia). A special floor allows vibrations to be felt, and a spectrum analyzer displays frequencies and harmonics visually. The lab is used for science education, auditory training, speech therapy, music and dance instruction, and relaxation…

  19. Beyond Classroom, Lab, Studio and Field

    Science.gov (United States)

    Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.

    2017-12-01

    When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.

  20. Pengaruh Laju Alir Inlet Reaktor MSL terhadap Reduksi BOD, COD, TSS, dan Minyak/Lemak Limbah Cair Industri Minyak Goreng

    Directory of Open Access Journals (Sweden)

    Salmariza Sy

    2017-06-01

    Full Text Available This research was conducted by treating edible oil industry wastewater used Multi Soil Layering (MSL method. The MSL reactor was built from a 200x120x200 cm concrete basin. Andisol soil was mixed with sawdust and fine charcoal at each ratio 5:1:1 based on dry weight as an impermeable layer. The flow rate variations were 250, 500, 1000, and 1500 L/m2.day. The observed pollutant parameters were BOD, COD, TSS, oil/fat, and pH. The results showed that MSL reactor was effective to decrease the pollutant content of edible oil industry wastewater. The reactor could reduce concentration of effluent parameters below standard except for oil/fat parameters at high flow rates. In the effluent was found BOD 0.66-14.22 mg/L, COD 5-69 mg/L, TSS 9-26 mg/L, and oil/fat 2-9 mg/L. The flow rate had an effect on reduction efficiency of BOD, COD, TSS, and oil/fat but did not effect pH as all flow rate could raise pH 6.37-6.95 became pH 6.99-7.24. The lower the flow rate the higher the reduction efficiency. The reduction efficiency at flow rates 250 and 1500 L/m2 days for BOD were 99% and 86%, COD were 96% and 71%, TSS were 88% and 77%, and oil/fat were 80% and 60%.ABSTRAK  Penelitian ini dilakukan dengan mengolah air limbah industri minyak goreng menggunakan metoda Multi Soil Layering (MSL. Reaktor MSL dibuat dari beton berbentuk bak ukuran 200x120x200 cm. Tanah andisol dicampur dengan serbuk gergaji dan arang halus pada rasio masing-masing 5:1:1 berdasarkan berat kering sebagai penyusun lapisan impermeable. Variasi laju alir yaitu 250, 500, 1000, dan 1500 L/m2.hari. Parameter pencemar yang dianalisis meliputi BOD, COD, TSS, minyak/lemak, dan pH. Hasil penelitian menunjukkan bahwa reaktor MSL sangat efektif untuk menurunkan kandungan zat pencemar limbah cair industri minyak goreng. Reaktor dapat mereduksi konsentrasi parameter outlet sampai dibawah baku mutu yang distandarkan kecuali untuk parameter miyak/lemak pada perlakuan laju alir tinggi. Pada effluen

  1. The Senior Living Lab: an example of nursing leadership

    Directory of Open Access Journals (Sweden)

    Riva-Mossman S

    2016-02-01

    Full Text Available Susie Riva-Mossman, Thomas Kampel, Christine Cohen, Henk Verloo School of Nursing Sciences, La Source, University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland Abstract: The Senior Living Lab (SLL is dedicated to the care of older adults and exemplifies how nursing leadership can influence clinical practice by designing research models capable of configuring interdisciplinary partnerships with the potential of generating innovative practices and better older patient outcomes. Demographic change resulting in growing numbers of older adults requires a societal approach, uniting stakeholders in social innovation processes. The LL approach is an innovative research method that values user perceptions and participation in the cocreation of new products and services. The SLL is crafting a platform responsive to change. It is a learning organization facilitating community-based participatory research methods in the field. Advanced nurse practitioners are well positioned to lead the way forward, fostering interdisciplinary academic collaborations dedicated to healthy aging at home. The SLL demonstrates how nursing science is taking the lead in the field of social innovation. Keywords: community-based participatory approach, Living Lab, nursing leadership, nursing practice, Senior Living Lab, social innovation

  2. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  3. RoboLab and virtual environments

    Science.gov (United States)

    Giarratano, Joseph C.

    1994-01-01

    A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.

  4. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  5. Promoting 21st-Century Skills in the Science Classroom by Adapting Cookbook Lab Activities: The Case of DNA Extraction of Wheat Germ

    Science.gov (United States)

    Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.

    2012-01-01

    How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…

  6. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  7. Congress moves to reorganize Department of Energy labs

    International Nuclear Information System (INIS)

    Hanson, D.J.

    1993-01-01

    Two bills that would transform the missions and practices of the Department of Energy's research laboratories are moving forward in both branches of Congress. Each of the two is crafted to improve cooperative research between DOE and private industry, but the House bill goes further by making fundamental changes in lab administration. H.R. 1432 provides a clear statement of purpose for the labs. The eight missions outlined in the bill are as follows: Enhance the nation's understanding of energy production and use, with a goal of reducing reliance on imported sources of fuels; Advance nuclear science and technology for national security purposes; Assist with dismantlement of nuclear weapons and work to curb nuclear arms proliferation; Conduct fundamental research in energy-related science and technology; Assist in development of technologies for disposal of hazardous wastes, particularly nuclear waste; Work with private industry to develop generic green technologies; Conduct technology-transfer activities; and Work to improve the quality of science, math, and engineering education in the U.S

  8. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequim MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  9. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  10. Beyond the lab: observations on the process by which science successfully informs management and policy decisions

    Science.gov (United States)

    Flores, S.

    2012-12-01

    Scientific findings inform management decisions and policy products through various ways, these include: synthesis reports, white papers, in-person and web-based seminars (webinars), communication from specialized staff, and seminal peer-reviewed journal articles. Scientists are often told that if they want their science to inform management decisions and policy products that they must: clearly and simply articulate discreet pieces of scientific information and avoid attaching advocacy messages to the science; however, solely relying on these tenants does not ensure that scientific products will infuse the realms of management and policy. The process by which science successfully informs management decisions and policy products rarely begins at the time the results come out of the lab, but rather, before the research is carried out. Having an understanding of the political climate, management needs, agency research agendas, and funding limitations, as well as developing a working relationship with the intended managers and policy makers are key elements to developing the kind of science results and products that often make an impact in the management and policy world. In my presentation I will provide case-studies from California (USA) to highlight the type of coastal, ocean and climate science that has been successful in informing management decisions and policy documents, as well as provide a state-level agency perspective on the process by which this occurs.

  11. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Science.gov (United States)

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  12. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    Science.gov (United States)

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  13. KNMI DataLab experiences in serving data-driven innovations

    Science.gov (United States)

    Noteboom, Jan Willem; Sluiter, Raymond

    2016-04-01

    Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.

  14. Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign

    Science.gov (United States)

    Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.

    2012-01-01

    The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.

  15. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    Science.gov (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  16. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  17. Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives

    Science.gov (United States)

    Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni

    2018-03-01

    This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.

  18. FameLab - Swiss Semi Finals

    CERN Multimedia

    Corinne Pralavorio

    2012-01-01

    Twenty-two young scientists participated in the FameLab semi-final at CERN's Globe of Science and Innovation on 4 February, supported by a large audience and by more than 100 fans following via webcast. A panel of judges chose Lemmer and four other candidates to join five other semi-finalists at the national finals in Zurich on 30 March.

  19. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  20. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    OpenAIRE

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discoura...

  1. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.

    Science.gov (United States)

    Ahmed, Zeeshan; Dandekar, Thomas

    2015-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.

  2. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    Directory of Open Access Journals (Sweden)

    Michael Roach

    Full Text Available This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  3. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    Science.gov (United States)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  4. An investigation of communication patterns and strategies between international teaching assistants and undergraduate students in university-level science labs

    Science.gov (United States)

    Gourlay, Barbara Elas

    This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to

  5. Fermentation art and science at the Nordic Food Lab

    DEFF Research Database (Denmark)

    Reade, Benedict; de Valicourt, Justine; Evans, Joshua David

    2015-01-01

    The Nordic Food Lab (NFL) is a self-governed foundation based in Copenhagen, Denmark. The aim of NFL is to investigate food diversity and deliciousness and to share the results in an open-source format. We combine scientific and cultural approaches with culinary techniques from around the world...

  6. Incorporating inquiry and the process of science into introductory astronomy labs at the George Washington University

    Science.gov (United States)

    Cobb, Bethany E.

    2018-01-01

    Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the

  7. Lab-on-a-Chip: Frontier Science in the Classroom

    Science.gov (United States)

    Wietsma, Jan Jaap; van der Veen, Jan T.; Buesink, Wilfred; van den Berg, Albert; Odijk, Mathieu

    2018-01-01

    Lab-on-a-chip technology is brought into the classroom through development of a lesson series with hands-on practicals. Students can discover the principles of microfluidics with different practicals covering laminar flow, micromixing, and droplet generation, as well as trapping and counting beads. A quite affordable novel production technique…

  8. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    Science.gov (United States)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  9. Capabilities: Science Pillars

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  10. Faces of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  11. Bradbury Science Museum

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  12. Office of Science

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  13. Safety and shielding management for pulse power lab at IPR

    International Nuclear Information System (INIS)

    Upadhyay, Shweta; Faldu, Akash; Koshti, Rahul; Kumar, Rajesh

    2016-01-01

    Experiments in pulsed power lab works with very high voltage and high current regime for the nanosecond to microsecond time scale. This produces lot of electromagnetic noise, which can cause interference or malfunctioning of equipment. Laboratory Safety and protection are a very important aspect of science and engineering. Without it, practical performance could result in very serious injury, if not death. To reduce its effect electromagnetic shielding and grounding has to be enforced effectively. Pulse power lab deals with many safety issues like Radiation safety (shielding), High voltage safety, electrical and mechanical safety, etc. In this paper radiation all the safety aspects in pulse power lab is described. (author)

  14. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  15. FameLab Switzerland: a CERN PhD student triumphs

    CERN Multimedia

    Alexander Brown

    2013-01-01

    Would you be able to explain your work to a non-specialist in just three minutes? On Friday 24 May, the Swiss national final of FameLab saw six young researchers from CERN attempt just that. FameLab is an international competition in the style of a TV talent show, seeking out the next generation of talent in science communication.   Participants in the Swiss national final of FameLab alongside Deni Subasic, presenter of the event (far left), on Friday 24 May. Having qualified from the Geneva heat held in the Globe in March, the six CERN representatives took to the stage in Moods bar in Zurich. As well as particle physics, from the fundamental building blocks (literally) of the Standard Model to medical applications, the line-up featured immunology, neurology and genetics. Although slideshows are strictly banned from FameLab, other visual props are strongly encouraged. For instance, Piotr Traczyk (CMS) represented the apparent chaos of particle collisions by throwing together two decks of ca...

  16. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  17. The lab of fame

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    For a third time, CERN is organising the Swiss heat of Famelab, the world’s leading science communication competition that has already gathered over 5,000 young and talented scientists and engineers from all across the planet.   Besides their degrees, the scientists who participate in Famelab have another thing in common: their passion for communicating science. Coming from a variety of scientific fields, from medicine to particle physics and microbiology, the contestants have three minutes to present a science, technology, mathematics or engineering-based talk using only the props he or she can carry onto the stage; PowerPoint presentations are not permitted. The contestants are then judged by a panel of three judges who evaluate the content, clarity and charisma of their talks. What's unique about FameLab is the fact that content is an important aspect of the performance. At the end of their presentation, contestants are often questioned about the scientific relevance of...

  18. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd; Köhler, Jan; Appel, Jan K.; Böhm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Lohf, Henning; Martin, Cesar [Institute of Experimental and Applied Physics, Christian-Albrechts-University, Kiel (Germany); Zeitlin, Cary [Southwest Research Institute, Earth, Oceans and Space Department, Durham, NH (United States); Rafkin, Scot; Hassler, Donald M.; Ehresmann, Bent [Southwest Research Institute, Space Science and Engineering Division, Boulder, CO (United States); Posner, Arik [NASA Headquarters, Science Mission Directorate, Washington, DC (United States); Brinza, David E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kahanpää, H. [Finnish Meteorological Institute, Helsinki (Finland); Reitz, Günther, E-mail: guo@physik.uni-kiel.de [Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt, Köln (Germany)

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activity and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.

  19. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  20. Germany plans 60m euro physics and medicine lab

    Science.gov (United States)

    Stafford, Ned

    2017-09-01

    A new €60m medical-physics research lab is to be built in Erlangen, Germany, by the Max Planck Institute for the Science of Light (MPL) together with the Friedrich Alexander University Erlangen-Nürnberg and the University Hospital Erlangen.

  1. Ocean Filmmaking Camp @ Duke Marine Lab: Building Community with Ocean Science for a Better World

    Science.gov (United States)

    De Oca, M.; Noll, S.

    2016-02-01

    A democratic society requires that its citizens are informed of everyday's global issues. Out of all issues those related to ocean conservation can be hard to grasp for the general public and especially so for disadvantaged racial and ethnic groups. Opportunity-scarce communities generally have more limited access to the ocean and to science literacy programs. The Ocean Filmmaking Camp @ Duke Marine Lab (OFC@DUML) is an effort to address this gap at the level of high school students in a small coastal town. We designed a six-week summer program to nurture the talents of high school students from under-represented communities in North Carolina with training in filmmaking, marine science and conservation. Our science curriculum is especially designed to present the science in a locally and globally-relevant context. Class discussions, field trips and site visits develop the students' cognitive abilities while they learn the value of the natural environment they live in. Through filmmaking students develop their voice and their media literacy, while connecting with their local community, crossing class and racial barriers. By the end of the summer this program succeeds in encouraging students to engage in the democratic process on ocean conservation, climate change and other everyday affairs affecting their local communities. This presentation will cover the guiding principles followed in the design of the program, and how this high impact-low cost program is implemented. In its first year the program was co-directed by a graduate student and a local high school teacher, who managed more than 20 volunteers with a total budget of $1,500. The program's success was featured in the local newspaper and Duke University's Environment Magazine. This program is an example of how ocean science can play a part in building a better world, knitting diverse communities into the fabric of the larger society with engaged and science-literate citizens living rewarding lives.

  2. Behind the scenes at FameLab, the international competition for young scientists

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    FameLab is an international science communication competition for young researchers and science teachers aged 18 to 35. At CERN, preparations are under way to recruit participants, advertise the event to the public and organise the regional semi-finals for Suisse Romande, which will take place on Saturday, 4 February 2012 in the Globe of Science and Innovation. The Bulletin looks ahead to the forthcoming event…   As you might have read in the 5 December 2011 issue of the Bulletin, Switzerland is one of the 20 countries participating in the FameLab 2012 competition, and the regional finals for French-speaking Switzerland will take place at CERN in the Globe of Science and Innovation on Saturday, 4 February 2012. “At the moment we’re still recruiting participants through various channels (registration is open till 31 January) and organising the one-day programme of events in the Globe,” says project coordinator Paola Catapano of the CERN Communication ...

  3. Applying living lab methodology to enhance skills in innovation

    CSIR Research Space (South Africa)

    Herselman, M

    2010-07-01

    Full Text Available and which is also inline with the South African medium term strategic framework and the millennium goals of the Department of Science and Technology. Evidence of how the living lab methodology can enhance innovation skills was made clear during various...

  4. Science at the interface

    International Nuclear Information System (INIS)

    Knorr Cetina, K.

    2004-01-01

    Laboratories have advantages One of these is that a laboratory science does not have to put up with its objects of investigation as they occur in nature. First, it does not need to accommodate a natural object where it is, anchored in a natural environment; laboratory sciences bring objects inside and manipulate them on their own terms in the lab. Second, a laboratory science need not accommodate an event when it happens; it can dispense with natural cycles of occurrence and make events happen frequently enough for continuous study. Third, a laboratory science does not have to put up with an object as it is; it can substitute transformed and partial versions. Dissociating natural objects from their environment and re-configuring them in the lab is not simple, but it has epistemic advantages when it can be accomplished. For example, the objects of interest tend to become miniaturized (cell cultures rather than whole plants, image measurements rather than cosmological objects), they tend to become continually available in laboratories world-wide for inquiry, and planetary and stellar time scales are replaced by the time scales of the social order. Laboratories also impose conditions, for example sharp boundaries between the internal and the external world. Most laboratories in the natural sciences have procedures (and walls) to fend off unwanted transgressions of objects from the natural and human environment which they see as potential contaminants. A wild-type mouse in a molecular biology lab is not, for example, an animal caught in the wild. It is a special mouse strain inbred over many generations in breeding labs to serve as a control in relevant experiments. Animals that live in the wild (or in the buildings where labs are located) are strictly prohibited from entering a lab facility as potential disease carriers and pollutants. Laboratories, then, are not only specialized places, they are places that set up barriers against the environment and attempt to raise

  5. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  6. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  7. A Simple Inquiry-Based Lab for Teaching Osmosis

    Science.gov (United States)

    Taylor, John R.

    2014-01-01

    This simple inquiry-based lab was designed to teach the principle of osmosis while also providing an experience for students to use the skills and practices commonly found in science. Students first design their own experiment using very basic equipment and supplies, which generally results in mixed, but mostly poor, outcomes. Classroom "talk…

  8. A Festival of Contemporary Science for Science Teachers

    Science.gov (United States)

    Harrison, Tim; Berry, Bryan; Shallcross, Dudley

    2010-01-01

    In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…

  9. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  10. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, H.; Augustson; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel,m spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the U. S./Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC ampersand A) program, VNIINM is providing evaluation, certification, and implementation of measurement methods for such materials. In 1966, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and heir storage facility. This paper describes the status of this work and anticipated progress in 1996

  11. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    Science.gov (United States)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of 860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  12. The 4th Generation Light Source at Jefferson Lab

    International Nuclear Information System (INIS)

    Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

    2007-01-01

    A number of 'Grand Challenges' in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources

  13. ASTRO 101 Labs and the Invasion of the Cognitive Scientists

    Science.gov (United States)

    Slater, Stephanie J.

    2015-04-01

    Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.

  14. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Vision Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Vision Lab personnel perform research, development, testing and evaluation of eye protection and vision performance. The lab maintains and continues to develop...

  16. Lab-on-a-chip devices and micro-total analysis systems a practical guide

    CERN Document Server

    Svendsen, Winnie

    2015-01-01

    This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Transparent conducting amorphous p-type CuFeO 2 (CFO) thin film was ... Key Lab of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China ...

  18. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    Science.gov (United States)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  19. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    conjugation using genetically encoded aldehyde tags. Nature Protocols 7, 1052 (2012). abstract » J. Y. Shu, R . Onoe, R. A. Mathies and M. B. Francis. Direct Attachment of Microbial Organisms to Material Surfaces -modified proteins to their binding partners. Proceedings of the National Academy of Sciences 109, 4834

  20. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  1. DOSAR/CalLab Operations Manual

    International Nuclear Information System (INIS)

    Bogard, J.S.

    2000-01-01

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Dosimetry Applications Research (DOSAR) Program Calibration Laboratory (CalLab), referred to formerly as the Radiation Calibration Laboratory. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments

  2. From e-manufacturing to Internet Product Process Development (IPPD) through remote – labs

    International Nuclear Information System (INIS)

    Nieto, Ernesto Córdoba; Parra, Paulo Andres Cifuentes; Díaz, Juan Camilo Parra

    2014-01-01

    This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as L aboratorio Fabrica Experimental ) . This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A

  3. Science and Innovation at Los Alamos

    Science.gov (United States)

    Alamos National Laboratory Delivering science and technology to protect our nation and promote world stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations

  4. Science from the inside

    Science.gov (United States)

    Toumey, Chris

    2009-09-01

    Most scientists think of science as completely objective, but lab studies by social scientists - including several carried out in nanotechnology labs - suggest that it is more subjective than many scientists realize. Chris Toumey looks at the results of these studies.

  5. Innovations in STEM education: the Go-Lab federation of online labs

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.; Sotiriou, Sofoklis; Gillet, Dennis

    2014-01-01

    The Go-Lab federation of online labs opens up virtual laboratories (simulation), remote laboratories (real equipment accessible at distance) and data sets from physical laboratory experiments (together called “online labs”) for large-scale use in education. In this way, Go-Lab enables inquiry-based

  6. Guidelines for Affective Signal Processing (ASP): From lab to life

    NARCIS (Netherlands)

    van den Broek, Egon; Janssen, Joris H.; Westerink, Joyce H.D.M.; Cohn, J.; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    This article presents the rationale behind ACII2009’s special session: Guidelines for Affective Signal Processing (ASP): From lab to life. Although affect is embraced by both science and engineering, its recognition has not reached a satisfying level. Through a concise overview of ASP and the

  7. The community FabLab platform: applications and implications in biomedical engineering.

    Science.gov (United States)

    Stephenson, Makeda K; Dow, Douglas E

    2014-01-01

    Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.

  8. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  9. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016.

    Science.gov (United States)

    Ehresmann, Bent; Zeitlin, Cary J; Hassler, Donald M; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on

  10. California State University, Bakersfield Fab Lab: "Making" a Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    2017-01-01

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on…

  11. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  12. Using Infiniscope Exploratory Activities in an Online Astronomy Lab Course for Non-Science Majors

    Science.gov (United States)

    Knierman, Karen; Anbar, Ariel; Tamer, A. Joseph; Hunsley, Diana; Young, Patrick A.; Center for Education Through eXploration

    2018-01-01

    With the growth of online astronomy courses, it has become necessary to design different strategies for students to engage meaningfully with astronomy content. In contrast to some of the previously designed “cookbook”-style lab exercises, the strategy of these Infiniscope activities is to provide an experience where the students explore and discover the content for themselves. The Infiniscope project was created by ASU’s School of Earth and Space Exploration and NASA’s Science Mission Directorate as part of the NASA Exploration Connection project. As part of this project, online activities on topics such as asteroids and Kuiper Belt objects, eclipses, and Kepler’s Laws were designed and created for middle school (grades 6-8) and informal education settings. This poster discusses adapting these activities to the undergraduate non-science major setting. In fall 2017, the Infiniscope activities, such as Small Worlds and Kepler’s Laws, will be incorporated into an Arizona State University online astronomy course, AST 113, which is the laboratory component for the Introduction to Solar System Astronomy course sequence. This course typically enrolls about 800-900 students per semester with a combination of students who are online only as well as those who also take in person classes. In this type of class, we cannot have any in-person required sessions and all content must be delivered online asynchronously. The use of the Infiniscope exploratory exercises will provide students with the ability to use NASA data in a hands-on manner to discover the solar system for themselves.

  13. Causes of The occurrence of Obstacles in The Implementation of “Normal Labor Attendance” Skills Lab for Midwifery Students at Institute of Health Science "Surya Mitra Husada Kediri"

    Directory of Open Access Journals (Sweden)

    Retno Palupi Yonni Siwi

    2017-11-01

    Full Text Available This study aimed to analyze the factors that influence the occurrence of obstacles in the skills lab about Normal Labor Attendance for the students in midwifery school of Institute of Health Sciences "Surya Mitra Husada" Kediri, with cross sectional design. The subjects were 37 students of Semester IV, selected using total sampling technique. Factors studied were mentor roles, interest in learning, and tool limitations. Data were collected through questionnaires and observation sheets, then analyzed using ordinal regression test. The p-value of the ordinal regression test was 0.000; so it was concluded that the mentor roles, interest in learning and tool limitations affected the occurrence of obstacles in the skills lab.

  14. Faraday's Principle and Air Travel in the Introductory Labs

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty

    2017-01-01

    We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…

  15. Overview of the Fire Lab at Missoula Experiments (FLAME)

    Science.gov (United States)

    S. M. Kreidenweis; J. L. Collett; H. Moosmuller; W. P. Arnott; WeiMin Hao; W. C. Malm

    2010-01-01

    The Fire Lab at Missoula Experiments (FLAME) used a series of open biomass burns, conducted in 2006 and 2007 at the Forest Service Fire Science Laboratory in Missoula, MT, to characterize the physical, chemical and optical properties of biomass combustion emissions. Fuels were selected primarily based on their projected importance for emissions from prescribed and wild...

  16. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  17. First results on GlioLab/GlioSat Precursors Missions

    Science.gov (United States)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  18. PD Lab

    NARCIS (Netherlands)

    Bilow, Marcel; Entrop, Alexis Gerardus; Lichtenberg, Jos; Stoutjesdijk, Pieter

    2015-01-01

    PD Lab explores the applications of building sector related product development. PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory

  19. Lab-on-a-Robot Platform for in-situ Planetary Compositional Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. and the University of Texas at San Antonio propose a joint venture to demonstrate the feasibility of a mobile "lab-on-a-robot"...

  20. Secular Climate Change on Mars: An Update Using One Mars Year of MSL Pressure Data

    Science.gov (United States)

    Haberle, R. M.; Gomez-Elvira, J.; de la Torre Juarez, M.; Harri, A-M.; Hollingsworth, J. L.; Kahanpaa, H.; Kahre, M. A.; Lemmon, M.; Martin-Torres, F. J.; Mischna, M.; hide

    2014-01-01

    The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approximately 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat within the SPRC led to suggestions that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, an estimate based on some modeling (Haberle and Kahre, 2010), and that the loss is monotonic, the global annual mean surface pressure should have increased between approximately 1-20 Pa since the Viking mission (approximately 20 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2.5 Mars years ago were found to be consistent with these loss rates. Last year at this meeting we compared surface pressure data from the MSL mission through sol 360 with that from Viking Lander 2 (VL-2) for the same period to determine if the trend continues. The results were ambiguous. This year we have a full Mars year of MSL data to work with. Using the Ames GCM to compensate for dynamics and environmental differences, our analysis suggests that the mean annual pressure has decreased by approximately 8 Pa since Viking. This result implies that the SPRC has gained (not lost) mass since Viking. However, the estimated uncertainties in our analysis are easily at the 10 Pa level and possibly higher. Chief among these are the hydrostatic adjustment of surface pressure from grid point elevations to actual elevations and the simulated regional environmental conditions at the lander sites. For these reasons, the most reasonable conclusion is that there is no significant difference in the size of the atmosphere between now and Viking. This implies, but does not demand, that the mass of the SPRC has not changed since Viking. Of course, year-to-year variations are possible as implied by the Phoenix data

  1. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data

    Science.gov (United States)

    Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín

    2018-01-01

    The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The

  2. Kinematic Labs with Mobile Devices

    Science.gov (United States)

    Kinser, Jason M.

    2015-07-01

    This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.

  3. In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.

    2011-01-01

    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated minerals

  4. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  5. Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument

    Science.gov (United States)

    Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.; hide

    2011-01-01

    The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing

  6. Single cells as experimentation units in lab-on-a-chip devices

    NARCIS (Netherlands)

    le Gac, Severine; van den Berg, Albert

    'Lab-on-a-chip' technology (LOC) has now reached a mature state and is employed commonly in research in the life sciences. LOC devices make novel experimentation possible while providing a sophisticated environment for cellular investigation. As a next step, we introduce here the concept of a

  7. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management......, thus making Open-Lab Framework more attractive for laboratories that seek to increase productivity through electronic data management....

  8. Alternative careers in science leaving the ivory tower

    CERN Document Server

    2006-01-01

    Many science students find themselves in the midst of graduate school or sitting at a lab bench, and realize that they hate lab work! Even worse is realizing that they may love science, but science (at least academic science) is not providing many job opportunities these days. What's a poor researcher to do !? This book gives first-hand descriptions of the evolution of a band of hardy scientists out of the lab and into just about every career you can imagine. Researchers from every branch of science found their way into finance, public relations, consulting, business development, journalism, and more - and thrived there! Each author tells their personal story, including descriptions of their career path, a typical day, where to find information on their job, opportunities to career growth, and more. This is a must-read for every science major, and everyone who is looking for a way to break out of their career rut.

  9. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns.

    Science.gov (United States)

    Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M

    2015-12-01

    Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.

  10. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  11. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  12. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  13. FOREWORD: Jefferson Lab: A Long Decade of Physics

    Science.gov (United States)

    Montgomery, Hugh

    2011-04-01

    scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature

  14. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    Science.gov (United States)

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  15. Personalised learning spaces and federated online labs for STEM Education at School

    NARCIS (Netherlands)

    Gillet, Dennis; de Jong, Anthonius J.M.; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning

  16. Jefferson Lab: A Long Decade of Physics

    International Nuclear Information System (INIS)

    Montgomery, Hugh

    2011-01-01

    , associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics.

  17. Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs

    Science.gov (United States)

    Hake, Richard

    2012-01-01

    Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…

  18. Probing the Underground Science beyond the Standard Model with Ultra-Low Background Experiments at Sanford Lab/DUSEL

    International Nuclear Information System (INIS)

    Mei, D.-M.

    2010-01-01

    We show that an improved sensitivity on effective neutrino mass to the atmospheric neutrino mass scale with the next generation germanium-based double-beta decay experiment together with results from cosmology survey, θ 13 measurements and neutrino oscillation experiments may be able to determine the absolute mass scale of the neutrino, and answer the question of the neutrino nature. To achieve such a sensitivity of 45 meV, the next generation germanium experiment must reduce background by a factor of 440 comparing to the existing results. The planned germanium experiment at the Deep Underground Science and Engineering Laboratory (DUSEL) in western South Dakota aims at achieving such a sensitivity. Sanford Lab supported by the state of South Dakota and a private donor, Mr. T. Denny Sanford, will be up and running within the next year to pave the way for the creation of DUSEL in five years.

  19. Efektivitas virtual lab berbasis STEM dalam meningkatkan literasi sains siswa dengan perbedaan gender

    Directory of Open Access Journals (Sweden)

    Ismail Ismail

    2016-10-01

    This study aimed to know theeffectiveness of STEM-based virtual lab in improving the scientific literacy of students by gender differences.The design of this research one group pretest-posttest consisting of class 7B by the number of students 29 women and 7D class by the number of students 30 men.The data Ade collected through questionnaires, observations, and tests. The effectiveness of STEM-based virtual lab was analyzed through Independent-samples t test then calculated the value of effect size. the results showed that there are differences the resulting increase inscientific literacy class students women (7B of 0.46 and a class of men (7D of 0.29 with both of them in the medium category.The value of effect size using STEM-based virtual lab on the science content domain and competencies of 0.39 with the moderate category and attitude domain of 0.75 to a high category. Keywords: virtual lab, STEM, Scientific literacy, gender

  20. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    Science.gov (United States)

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  1. National Labs Host Classroom Ready Energy Educational Materials

    Science.gov (United States)

    Howell, C. D.

    2009-12-01

    The Department of Energy (DOE) has a clear goal of joining all climate and energy agencies in the task of taking climate and energy research and development to communities across the nation and throughout the world. Only as information on climate and energy education is shared with the nation and world do research labs begin to understand the massive outreach work yet to be accomplished. The work at hand is to encourage and ensure the climate and energy literacy of our society. The national labs have defined the K-20 population as a major outreach focus, with the intent of helping them see their future through the global energy usage crisis and ensure them that they have choices and a chance to redirect their future. Students embrace climate and energy knowledge and do see an opportunity to change our energy future in a positive way. Students are so engaged that energy clubs are springing up in highschools across the nation. Because of such global clubs university campuses are being connected throughout the world (Energy Crossroads www.energycrossroads.org) etc. There is a need and an interest, but what do teachers need in order to faciliate this learning? It is simple, they need financial support for classroom resources; standards based classroom ready lessons and materials; and, training. The National Renewable Energy Laboratory (NREL), a Department of Energy Lab, provides standards based education materials to schools across the nation. With a focus on renewable energy and energy efficiency education, NREL helps educators to prompt students to analyze and then question their energy choices and evaluate their carbon footprint. Classrooms can then discover the effects of those choices on greenhouse gas emmissions and climate change. The DOE Office of Science has found a way to contribute to teachers professional development through the Department of Energy Academics Creating Teacher Scientists (DOE ACTS) Program. This program affords teachers an opportunity to

  2. U.S./Russian lab-to-lab materials protection, control and accounting program efforts at the Institute of Inorganic Materials. Revision 1

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Kositsyn, V.; Rudenko, V.; Siskind, B.; Bieber, A.; Hoida, Hiroshi; Augustson, R.; Ehinger, M.; Smith, B.W.

    1996-01-01

    The All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) performs research in nuclear power reactor fuel, spent fuel reprocessing and waste management, materials science of fissionable and reactor structural materials, metallurgy, superconducting materials, and analytical sciences. VNIINM supports the Ministry of Atomic Energy of the Russian Federation (MINATOM) in technologies for fabrication and processing of nuclear fuel. As a participant in the US/Russian Lab-to-Lab nuclear materials protection, control and accounting (MPC and A) program, VNIINM is providing support for measurements of nuclear materials in bulk forms by developing specifications, test and evaluation, certification, and implementation of measurement methods for such materials. In 1996, VNIINM will be working with Brookhaven staff in developing and documenting material control and accounting requirements for nuclear materials in bulk form, Livermore and Los Alamos staff in testing and evaluating gamma-ray spectrometry methods for bulk materials, Los Alamos staff in test and evaluation of neutron-coincidence counting techniques, Oak Ridge staff in accounting of bulk materials with process instrumentation, and Pacific Northwest staff on automating VNIINM's coulometric titration system. In addition, VNIINM will develop a computerized accounting system for nuclear material within VNIINM and their storage facility. The paper will describe the status of this work and anticipated progress in 1996

  3. Tales from the Mars Science Laboratory Thermal Protection System Development (or, Try Not to Panic When Your Heatshield Material Disappears)

    Science.gov (United States)

    Hwang, Helen H.

    2018-01-01

    In 2012, the entry vehicle for the Mars Science Laboratory (MSL) mission was the largest and heaviest vehicle flown to another planet, designed to be able to withstand the largest heat fluxes in the Martian atmosphere ever attempted. The heatshield material that had been successfully used for all previous Mars missions had been baselined in the design, but during the development and qualification testing demonstrated catastrophic and unexplained failures. With only 10 months remaining before the original launch date, the TPS team led by NASA Ames designed and implemented a first-ever tiled, ablative heatshield. Highlights from MSL of the testing difficulties and innovations required to execute a new heatshield design will be presented, along with a sneak peak of the Mars 2020 mission.

  4. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  5. Assessing the Impact of a Virtual Lab in an Allied Health Program.

    Science.gov (United States)

    Kay, Robin; Goulding, Helene; Li, Jia

    2018-01-01

    Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.

  6. LabVIEW 8 student edition

    CERN Document Server

    Bishop, Robert H

    2007-01-01

    For courses in Measurement and Instrumentation, Electrical Engineering lab, and Physics and Chemistry lab. This revised printing has been updated to include new LabVIEW 8.2 Student Edition. National Instruments' LabVIEW is the defacto industry standard for test, measurement, and automation software solutions. With the Student Edition of LabVIEW, students can design graphical programming solutions to their classroom problems and laboratory experiments with software that delivers the graphical programming capabilites of the LabVIEW professional version. . The Student Edition is also compatible with all National Instruments data acquisition and instrument control hardware. Note: The LabVIEW Student Edition is available to students, faculty, and staff for personal educational use only. It is not intended for research, institutional, or commercial use. For more information about these licensing options, please visit the National Instruments website at (http:www.ni.com/academic/)

  7. Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory

    Science.gov (United States)

    Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia

    2014-01-01

    Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.

  8. Public Lab: Community-Based Approaches to Urban and Environmental Health and Justice.

    Science.gov (United States)

    Rey-Mazón, Pablo; Keysar, Hagit; Dosemagen, Shannon; D'Ignazio, Catherine; Blair, Don

    2018-05-03

    This paper explores three cases of Do-It-Yourself, open-source technologies developed within the diverse array of topics and themes in the communities around the Public Laboratory for Open Technology and Science (Public Lab). These cases focus on aerial mapping, water quality monitoring and civic science practices. The techniques discussed have in common the use of accessible, community-built technologies for acquiring data. They are also concerned with embedding collaborative and open source principles into the objects, tools, social formations and data sharing practices that emerge from these inquiries. The focus is on developing processes of collaborative design and experimentation through material engagement with technology and issues of concern. Problem-solving, here, is a tactic, while the strategy is an ongoing engagement with the problem of participation in its technological, social and political dimensions especially considering the increasing centralization and specialization of scientific and technological expertise. The authors also discuss and reflect on the Public Lab's approach to civic science in light of ideas and practices of citizen/civic veillance, or "sousveillance", by emphasizing people before data, and by investigating the new ways of seeing and doing that this shift in perspective might provide.

  9. CaTs Lab (CHAOS and Thermal Sciences Laboratory)

    Science.gov (United States)

    Teate, Anthony A.

    2002-01-01

    The CHAOS and Thermal Sciences Laboratory (CaTs) at James Madison University evolved into a noteworthy effort to increase minority representation in the sciences and mathematics. Serving ten students and faculty directly, and nearly 50 students indirectly, CaTs, through recruitment efforts, workshops, mentoring programs, tutorial services and research and computational laboratories, fulfilled its intent to initiate an academically enriched research program aimed at strengthening the academic and self-actualization skills of undergraduate students with potential to pursue doctoral study in the sciences. The stated goal of the program was to increase by 5% the number of enrolled mathematics and science students into the program. Success far exceeded the program goals by producing 100% graduation rate of all supported recipients during its tenure, with 30% of the students subsequently in pursuit of graduate degrees. Student retention in the program exceeded 90% and faculty participation exceeded the three members involved in mentoring and tutoring, gaining multi-disciplinary support. Aggressive marketing of the program resulted in several paid summer internships and commitments from NASA and an ongoing relationship with CHROME, a nationally recognized organization which focuses on developing minority students in the sciences and mathematics. Success of the program was only limited by the limited fiscal resources at NASA which resulted in phasing out of the program.

  10. RiskLab - a joint Teaching Lab on Hazard and Risk Management

    Science.gov (United States)

    Baruffini, Mi.; Baruffini, Mo.; Thuering, M.

    2009-04-01

    In the future natural disasters are expected to increase due to climatic changes that strongly affect environmental, social and economical systems. For this reason and because of the limited resources, governments require analytical risk analysis for a better mitigation planning. Risk analysis is a process to determine the nature and extent of risk by estimating potential hazards and evaluating existing conditions of vulnerability that could pose a potential threat or harm to people, property, livelihoods and environment. This process has become a generally accepted approach for the assessment of cost-benefit scenarios; originating from technical risks it is being applied to natural hazards for several years now in Switzerland. Starting from these premises "Risk Lab", a joint collaboration between the Institute of Earth Sciences of the University of Applied Sciences of Southern Switzerland and the Institute for Economic Research of the University of Lugano, has been started in 2006, aiming to become a competence centre about Risk Analysis and Evaluation. The main issue studied by the lab concerns the topic "What security at what price?" and the activities follow the philosophy of the integral risk management as proposed by PLANAT, that defines the process as a cycle that contains different and interrelated phases. The final aim is to change the population and technician idea about risk from "defending against danger" to "being aware of risks" through a proper academic course specially addressed to young people. In fact the most important activity of the laboratory consists in a degree course, offered both to Engineering and Architecture students of the University of Applied Sciences of Southern Switzerland and Economy Students of the University of Lugano. The course is structured in two main parts: an introductive, theoretical part, composed by class lessons, where the main aspects of natural hazards, risk perception and evaluation and risk management are presented

  11. Lab at Home: Hardware Kits for a Digital Design Lab

    Science.gov (United States)

    Oliver, J. P.; Haim, F.

    2009-01-01

    An innovative laboratory methodology for an introductory digital design course is presented. Instead of having traditional lab experiences, where students have to come to school classrooms, a "lab at home" concept is proposed. Students perform real experiments in their own homes, using hardware kits specially developed for this purpose. They…

  12. 7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

  13. Towards an Online Lab Portal for Inquiry-Based STEM Learning at School

    NARCIS (Netherlands)

    Govaerts, Sten; Cao, Yiwei; Vozniuk, Andrii; Holzer, Adrian; Zutin, Danilo Garbi; San Cristobal Ruiz, Elio; Bollen, Lars; Manske, Sven; Faltin, Nils; Salzmann, Christophe; Wang, Jhing-Fa; Rynson, Lau

    2013-01-01

    Nowadays, the knowledge economy is growing rapidly. To sustain future growth, more well educated people in STEM (science, technology, engineering and mathematics) are needed. In the Go-Lab project we aim to motivate and orient students from an early age on to study STEM fields in their future

  14. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  15. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    International Nuclear Information System (INIS)

    Swift, Neil; Nield, Kathryn; Hamlin, John; Hülsen, Gregor; Gröbner, Julian

    2013-01-01

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagree significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.

  16. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Neil; Nield, Kathryn; Hamlin, John [Measurement Standards Laboratory of New Zealand, Industrial Research Ltd, Lower Hutt (New Zealand); Huelsen, Gregor; Groebner, Julian [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Centre, Davos Dorf (Switzerland)

    2013-05-10

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagree significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.

  17. PD Lab

    Directory of Open Access Journals (Sweden)

    Marcel Bilow

    2015-08-01

    Full Text Available PD Lab explores the applications of building sector related product development.  PD lab investigates and tests digital production technologies like CNC milled wood connections. It will also act as a platform in its wider meaning to investigate the effects and influences of file to factory production, to explore the potential in the field of sustainability, material use, logistics and the interaction of stakeholders within the chain of the building process.

  18. MatLab Script and Functional Programming

    Science.gov (United States)

    Shaykhian, Gholam Ali

    2007-01-01

    MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.

  19. Exploring linear algebra labs and projects with Mathematica

    CERN Document Server

    Arangala, Crista

    2014-01-01

    Matrix Operations Lab 0: An Introduction to Mathematica Lab 1: Matrix Basics and Operations Lab 2: A Matrix Representation of Linear Systems Lab 3: Powers, Inverses, and Special Matrices Lab 4: Graph Theory and Adjacency Matrices Lab 5: Permutations and Determinants Lab 6: 4 x 4 Determinants and Beyond Project Set 1 Invertibility Lab 7: Singular or Nonsingular? Why Singularity Matters Lab 8: Mod It Out, Matrices with Entries in ZpLab 9: It's a Complex World Lab 10: Declaring Independence: Is It Linear? Project Set 2 Vector Spaces Lab 11: Vector Spaces and SubspacesLab 12: Basing It All on Just a Few Vectors Lab 13: Linear Transformations Lab 14: Eigenvalues and Eigenspaces Lab 15: Markov Chains, An Application of Eigenvalues Project Set 3 Orthogonality Lab 16: Inner Product Spaces Lab 17: The Geometry of Vector and Inner Product SpacesLab 18: Orthogonal Matrices, QR Decomposition, and Least Squares Regression Lab 19: Symmetric Matrices and Quadratic Forms Project Set 4 Matrix Decomposition with Applications L...

  20. Impact of Fab Lab Tulsa on Student Self-Efficacy toward STEM Education

    Science.gov (United States)

    Dubriwny, Nicholas; Pritchett, Nathan; Hardesty, Michelle; Hellman, Chan M.

    2016-01-01

    Student self-confidence is important to any attempt to increase interest and achievement in Science, Technology, Engineering, and Math (STEM) education. This study presents a longitudinal examination of Fab Lab Tulsa's impact on attitude and self-efficacy toward STEM education among middle-school aged students. Paired samples t-test showed a…

  1. Real Science: MIT Reality Show Tracks Experiences, Frustrations of Chemistry Lab Students

    Science.gov (United States)

    Cooper, Kenneth J.

    2012-01-01

    A reality show about a college course--a chemistry class no less? That's what "ChemLab Boot Camp" is. The 14-part series of short videos is being released one episode at a time on the online learning site of the Massachusetts Institute of Technology. The novel show follows a diverse group of 14 freshmen as they struggle to master the…

  2. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Science.gov (United States)

    Bayer, Chris N; Luberda, Michael

    2016-01-01

    Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  3. NASA's GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  4. NASAs GeneLab Phase II: Federated Search and Data Discovery

    Science.gov (United States)

    Berrios, Daniel C.; Costes, Sylvain; Tran, Peter

    2017-01-01

    GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.

  5. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F. [iThemba LABS, P.O. Box 722, Somerset West 7130 (South Africa); Kuechler, D.; Toivanen, V. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  6. Cloud ecosystem for supporting inquiry learning with online labs : Creation, personalization, and exploitation

    NARCIS (Netherlands)

    Gillet, Denis; Rodríguez-Triana, María Jesús; De Jong, Ton; Bollen, Lars; Dikke, Diana

    2017-01-01

    To effectively and efficiently implement blended science and technology education, teachers should be able to find educational resources that suit their need, fit with their curricula, and that can be easily exploited in their classroom. The European Union has supported the FP7 Go-Lab Integrated

  7. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    Energy Technology Data Exchange (ETDEWEB)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M. [iThemba LABS, P.O Box 722, Somerset West 7130 (South Africa); Hitz, D. [CEA/DRFMC, 17 Av. Des Martyrs, 38054, Grenoble Cedex 9 (France); Kuechler, D. [CERN, BE/ABP/HSL, 1211 Geneva 23 (Switzerland)

    2012-02-15

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  8. First commissioning results with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    International Nuclear Information System (INIS)

    Thomae, R.; Conradie, J.; Delsink, H.; Du Plessis, H.; Fourie, D.; Klopp, M.; Kohler, I.; Lussi, C.; McAlister, R.; Ntshangase, S.; Sakildien, M.; Hitz, D.; Kuechler, D.

    2012-01-01

    iThemba Laboratory for Accelerator Based Science (iThemba LABS) is a multi-disciplinary accelerator facility. One of its main activities is the operation of a separated-sector cyclotron with a K-value of 200, which provides beams of various ion species. These beams are used for fundamental nuclear physics research in the intermediate energy region, radioisotope production, and medical physics applications. Due to the requirements of nuclear physics for new ion species and higher energies, the decision was made to install a copy of the so-called Grenoble test source (GTS) at iThemba LABS. In this paper, we will report on the experimental setup and the first results obtained with the GTS2 at iThemba LABS.

  9. Reforming Cookbook Labs

    Science.gov (United States)

    Peters, Erin

    2005-01-01

    Deconstructing cookbook labs to require the students to be more thoughtful could break down perceived teacher barriers to inquiry learning. Simple steps that remove or disrupt the direct transfer of step-by-step procedures in cookbook labs make students think more critically about their process. Through trials in the author's middle school…

  10. The Portuguese Contribution for lab2go - pt.lab2go

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2013-01-01

    Full Text Available Online experimentation provides innovative and valuable tools for use in academy, in high schools, in industry and in medical areas. It has also become a precious tool for educational and training purposes in any of those areas. Looking at online experimentation as a pure distance learning tool it represents a very efficient way of sharing hands-on capabilities, for example with developing countries. In Portugal a new consortium of online experimentation was created for fostering the national potential, using the Portuguese version of lab2go web platform, pt.lab2go. The authors pretend to demonstrate some of capabilities of the consortium in sharing online labs.

  11. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  12. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife

  13. LabVIEW Support at CERN

    CERN Multimedia

    HR Department

    2010-01-01

    Since the beginning of 2009, due to the CERN restructuring, LabVIEW support moved from the IT to the EN department, joining the Industrial Controls and Electronics Group (ICE). LabVIEW support has been merged with the Measurement, Test and Analysis (MTA) section which, using LabVIEW, has developed most of the measurement systems to qualify the LHC magnets and components over the past 10 years. The post mortem analysis for the LHC hardware commissioning has also been fully implemented using LabVIEW, customised into a framework, called RADE, for CERN needs. The MTA section has started with a proactive approach sharing its tools and experience with the CERN LabVIEW community. Its framework (RADE) for CERN integrated application development has been made available to the users. Courses on RADE have been integrated into the standard National Instruments training program at CERN. RADE and LabVIEW support were merged together in 2010 on a single email address:labview.support@cern.ch For more information please...

  14. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  15. TXESS Revolution: Utilizing TERC's EarthLabs Cryosphere Module to Support Professional Development of Texas Teachers

    Science.gov (United States)

    Odell, M.; Ellins, K. K.; Polito, E. J.; Castillo Comer, C. A.; Stocks, E.; Manganella, K.; Ledley, T. S.

    2010-12-01

    TERC’s EarthLabs project provides rigorous and engaging Earth and environmental science labs. Four existing modules illustrate sequences for learning science concepts through data analysis activities and hands-on experiments. A fifth module, developed with NSF, comprises a series of linked inquiry based activities focused on the cryosphere to help students understand concepts around change over time on multiple and embedded time scales. Teachers recruited from the NSF-OEDG-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program conducted a pedagogical review of the Cryosphere EarthLabs module and provided feedback on how well the materials matched high school needs in Texas and were aligned with state and national standards. Five TXESS Revolution teachers field tested the materials in their classrooms and then trained other TXESS Revolution teachers on their implementation during spring and summer 2010. Here we report on the results of PD delivery during the summer 2010 TXESS Revolution summer institute as determined by (1) a set of evaluation instruments that included a pre-post concept map activity to assess changes in workshop teachers’ understanding of the concepts presented, a pre-post test content knowledge test, and a pre-post survey of teachers’ comfort in teaching the Texas Earth and Space Science standards addressed by the module; (2) teacher reflections; and (3) focus group responses. The findings reveal that the teachers liked the module activities and felt they could use them to teach Environmental and Earth Science. They appreciated that the sequence of activities contributed to a deeper understanding and observed that the variety of methods used to present the information accommodates different learning styles. Information about the cryosphere was new to all the teachers. The content knowledge tests reveal that although teachers made appreciable gains, their understanding of cryosphere, how it changes

  16. How can we make Science Education and Careers more attractive for Young People?

    Science.gov (United States)

    Knickmeier, K.; Kruse, K.

    2016-02-01

    The Kiel Science Factory (Kieler Forschungswerkstatt) is a school and teaching laboratory, which breaches the gap between school education and university research. Since opening in October 2012, 3.430 pupils worked at the Kiel Science Factory, and joined the different programs (ocean:lab, nano:lab, geo:lab), the numbers of visitors are increasing. The combination of experts in research and experts in education is very effective to attract young peoplés interest for a scientific career, to communicate science and to increase interest of teachers in current science. The biggest lab is the ocean:lab, it is jointly offered by Kiel University, Cluster of Excellence "Future Ocean" and Leibniz Institute for Science and Mathematics Education at Kiel University (IPN). The ocean:lab is addressing to school classes from grade 3 to 13, and it is strongly involved in pre-service teacher education. Appropriate to their respective level of study, pupils and students get fascinating insights into marine sciences and the working methods of real scientists. Furthermore teacher trainings and summer schools are producing an enthusiasm, which affects as well teachers as their students. The visiting pupils are mainly from Northern Germany, but also from e.g. Austria, Poland and Japan. Topics are the ocean as an ecosystem and how it is affected by anthropogenic impacts. The program offers an integrated investigation of the ecosystem "ocean" (from Plankton to marine mammals) with an interdisciplinary focus on biological aspects and abiotic factors of the habitat. In addition to pollution of the ocean through plastic waste and noise, the effects of climate change and eutrophication plays a role in discussions and tasks. New formats (e.g. an international Citizen Science Project and Expeditionary Learning) are carried out. The developed material is part of expedition boxes, which can be borrowed for project work in schools and science centers. http://www.forschungs-werkstatt.de/

  17. Demise of Texas collider has made Europe's lab a magnet for scientists

    CERN Multimedia

    Siegfried, Tom

    2004-01-01

    Had U.S. politics and science meshed more favorably, physicists from around the world would now be flocking to Waxahachie. The defunct Superconducting Super Collider (SSC) should by now have been smashing atoms, but now Europe's top nuclear research lab offers a more picturesque world capital of physics that the prairie south of Dallas

  18. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Wang Juan1 Li Yajiang1 Wu Huiqiang1 Ren Jiangwei1. Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P.R. China ...

  20. Measure, Then Show: Grasping Human Evolution Through an Inquiry-Based, Data-driven Hominin Skulls Lab.

    Directory of Open Access Journals (Sweden)

    Chris N Bayer

    Full Text Available Incomprehension and denial of the theory of evolution among high school students has been observed to also occur when teachers are not equipped to deliver a compelling case also for human evolution based on fossil evidence. This paper assesses the outcomes of a novel inquiry-based paleoanthropology lab teaching human evolution to high-school students. The inquiry-based Be a Paleoanthropologist for a Day lab placed a dozen hominin skulls into the hands of high-school students. Upon measuring three variables of human evolution, students explain what they have observed and discuss findings. In the 2013/14 school year, 11 biology classes in 7 schools in the Greater New Orleans area participated in this lab. The interviewed teacher cohort unanimously agreed that the lab featuring hominin skull replicas and stimulating student inquiry was a pedagogically excellent method of delivering the subject of human evolution. First, the lab's learning path of transforming facts to data, information to knowledge, and knowledge to acceptance empowered students to themselves execute part of the science that underpins our understanding of deep time hominin evolution. Second, although challenging, the hands-on format of the lab was accessible to high-school students, most of whom were readily able to engage the lab's scientific process. Third, the lab's exciting and compelling pedagogy unlocked higher order thinking skills, effectively activating the cognitive, psychomotor and affected learning domains as defined in Bloom's taxonomy. Lastly, the lab afforded students a formative experience with a high degree of retention and epistemic depth. Further study is warranted to gauge the degree of these effects.

  1. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  2. How Big Science Came to Long Island: the Birth of Brookhaven Lab (429th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Crease, Robert P.

    2007-01-01

    Robert P. Crease, historian for the U.S. Department of Energy's Brookhaven National Laboratory and Chair of the Philosophy Department at Stony Brook University, will give two talks on the Laboratory's history on October 31 and December 12. Crease's October 31 talk, titled 'How Big Science Came to Long Island: The Birth of Brookhaven Lab,' will cover the founding of the Laboratory soon after World War II as a peacetime facility to construct and maintain basic research facilities, such as nuclear reactors and particle accelerators, that were too large for single institutions to build and operate. He will discuss the key figures involved in starting the Laboratory, including Nobel laureates I.I. Rabi and Norman Ramsey, as well as Donald Dexter Van Slyke, one of the most renowned medical researchers in American history. Crease also will focus on the many problems that had to be overcome in creating the Laboratory and designing its first big machines, as well as the evolving relations of the Laboratory with the surrounding Long Island community and news media. Throughout his talk, Crease will tell fascinating stories about Brookhaven's scientists and their research.

  3. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  4. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  5. Research Microcultures as Socialization Contexts for Underrepresented Science Students.

    Science.gov (United States)

    Thoman, Dustin B; Muragishi, Gregg A; Smith, Jessi L

    2017-06-01

    How much does scientific research potentially help people? We tested whether prosocial-affordance beliefs (PABs) about science spread among group members and contribute to individual students' motivation for science. We tested this question within the context of research experience for undergraduates working in faculty-led laboratories, focusing on students who belong to underrepresented minority (URM) groups. Longitudinal survey data were collected from 522 research assistants in 41 labs at six institutions. We used multilevel modeling, and results supported a socialization effect for URM students: The aggregate PABs of their lab mates predicted the students' own initial PABs, as well as their subsequent experiences of interest and their motivation to pursue a career in science, even after controlling for individual-level PABs. Results demonstrate that research labs serve as microcultures of information about the science norms and values that influence motivation. URM students are particularly sensitive to this information. Efforts to broaden participation should be informed by an understanding of the group processes that convey such prosocial values.

  6. Implementation and use of cloud-based electronic lab notebook in a bioprocess engineering teaching laboratory.

    Science.gov (United States)

    Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur

    2017-01-01

    Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.

  7. New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim

    Directory of Open Access Journals (Sweden)

    Andrew Katumba

    2010-11-01

    Full Text Available Over the years, conventional Laboratories in African Universities have been hampered by inadequate resources in terms of the required hardware, space and skilled personnel to administer them. This paper describes a multi-dimensional approach to experimentation, developed by the Makerere University iLabs Project Team, hereafter referred to as iLABS@MAK. The two dimensional approach involves both Virtual Labs and Online Laboratories designed to address laboratory deficiencies in Digital Electronics, encompassing five courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programs. A digital Online Laboratory, the Makerere University Digital iLab (MDEi supporting experiments in the fields of combinational logic circuits and asynchronous sequential logic circuits has been developed. The laboratory utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II™ platform, the Laboratory Virtual Instrument Engineering Workbench (LabVIEW graphical programming environment and NI Multisim. Typical experiment setups supported by the MDEi are presented

  8. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    Science.gov (United States)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  9. BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

    Directory of Open Access Journals (Sweden)

    Yuxin Liu

    2011-01-01

    Full Text Available With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS and microfluidic-based lab-on-a-chip (LOC technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEMS, microfluidic and LOC science and technology. A course entitled BioMEMS and Lab-on-a-Chip was taught recently at the senior undergraduate and graduate levels in the Department of Computer Science and Electrical Engineering at West Virginia University (WVU. The course focused on the basic principles and applications of BioMEMS and LOC technology to the areas of biomedicine, biology, and biotechnology. The course was well received and the enrolled students had diverse backgrounds in electrical engineering, material science, biology, mechanical engineering, and chemistry. Student feedback and a review of the course evaluations indicated that the course was effective in achieving its objectives. Student presentations at the end of the course were a highlight and a valuable experience for all involved. The course proved successful and will continue to be offered regularly. This paper provides an overview of the course as well as some development and future improvements.

  10. Payments to the Lab

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management the Lab Make payments for event registrations, sponsorships, insurance, travel, other fees. Contact Treasury Team (505) 667-4090 Email If you need to make a payment to the Lab for an event registration

  11. ScalaLab and GroovyLab: Comparing Scala and Groovy for Scientific Computing

    Directory of Open Access Journals (Sweden)

    Stergios Papadimitriou

    2015-01-01

    Full Text Available ScalaLab and GroovyLab are both MATLAB-like environments for the Java Virtual Machine. ScalaLab is based on the Scala programming language and GroovyLab is based on the Groovy programming language. They present similar user interfaces and functionality to the user. They also share the same set of Java scientific libraries and of native code libraries. From the programmer's point of view though, they have significant differences. This paper compares some aspects of the two environments and highlights some of the strengths and weaknesses of Scala versus Groovy for scientific computing. The discussion also examines some aspects of the dilemma of using dynamic typing versus static typing for scientific programming. The performance of the Java platform is continuously improved at a fast pace. Today Java can effectively support demanding high-performance computing and scales well on multicore platforms. Thus, both systems can challenge the performance of the traditional C/C++/Fortran scientific code with an easier to use and more productive programming environment.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Key Lab for Green Processing and Functionalization of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P.R. China; State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China; Zhuxi ...

  13. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    Science.gov (United States)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  14. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.

  15. The StratusLab cloud distribution: Use-cases and support for scientific applications

    Science.gov (United States)

    Floros, E.

    2012-04-01

    The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take

  16. Guidelines for Urban Labs

    DEFF Research Database (Denmark)

    Scholl, Christian; Agger Eriksen, Mette; Baerten, Nik

    2017-01-01

    urban lab initiatives from five different European cities: Antwerp (B), Graz and Leoben (A), Maastricht (NL) and Malmö (S). We do not pretend that these guidelines touch upon all possible challenges an urban lab may be confronted with, but we have incorporated all those we encountered in our...

  17. Reviews Book: Marie Curie: A Biography Book: Fast Car Physics Book: Beautiful Invisible Equipment: Fun Fly Stick Science Kit Book: Quantum Theory Cannot Hurt You Book: Chaos: The Science of Predictable Random Motion Book: Seven Wonders of the Universe Book: Special Relativity Equipment: LabVIEWTM 2009 Education Edition Places to Visit: Edison and Ford Winter Estates Places to Visit: The Computer History Museum Web Watch

    Science.gov (United States)

    2011-07-01

    WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons

  18. Now You're Cooking! Heat Transfer Labs: From Basic Recipes to Full Inquiry

    Science.gov (United States)

    Hazzard, Edmund

    2012-01-01

    A recipe is a great way to learn about the procedure and the variables (or "ingredients") involved. Cookbooks are comforting and valuable: They're easy to follow, and people know what they'll get. The problem is that cookbook labs end just when things get interesting. The excitement of science is in understanding the discovery and pursuing the…

  19. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  20. Measurements of the neutral particle spectra on Mars by MSL/RAD from 2015-11-15 to 2016-01-15

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert; Hassler, Donald M.; Köhler, Jan; Ehresmann, Bent; Böttcher, Stephan; Böhm, Eckart; Brinza, David E.

    2017-08-01

    The Radiation Assessment Detector (RAD), onboard the Mars Science Laboratory (MSL) rover Curiosity, has been measuring the energetic charged and neutral particles and the radiation dose rate on the surface of Mars since the landing of the rover in August 2012. In contrast to charged particles, neutral particles (neutrons and γ-rays) are measured indirectly: the energy deposition spectra produced by neutral particles are complex convolutions of the incident particle spectra with the detector response functions. An inversion technique has been developed and applied to jointly unfold the deposited energy spectra measured in two scintillators of different types (CsI for high γ detection efficiency, and plastic for neutrons) to obtain the neutron and γ-ray spectra. This result is important for determining the biological impact of the Martian surface radiation contributed by neutrons, which interact with materials differently from the charged particles. These first in-situ measurements on Mars provide (1) an important reference for assessing the radiation-associated health risks for future manned missions to the red planet and (2) an experimental input for validating the particle transport codes used to model the radiation environments within spacecraft or on the surface of planets. Here we present neutral particle spectra as well as the corresponding dose and dose equivalent rates derived from RAD measurement during a period (November 15, 2015 to January 15, 2016) for which the surface particle spectra have been simulated via different transport models.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  2. Filter Strategies for Mars Science Laboratory Orbit Determination

    Science.gov (United States)

    Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.

    2013-01-01

    The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.

  3. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  4. Discovery of the Collaborative Nature of Science with Undergraduate Science Majors and Non-Science Majors through the Identification of Microorganisms Enriched in Winogradsky Columns

    Directory of Open Access Journals (Sweden)

    Jasmine Ramirez

    2015-08-01

    Full Text Available Today’s science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors’ and majors’ answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory

  5. Discovering Science through Art-Based Activities

    Science.gov (United States)

    Alberts, Rebecca

    2010-01-01

    Art and science are intrinsically linked; the essence of art and science is discovery. Both artists and scientists work in a systematic but creative way--knowledge and understanding are built up through pieces of art or a series of labs. In the classroom, integrating science and visual art can provide students with the latitude to think, discover,…

  6. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development

    Directory of Open Access Journals (Sweden)

    Ellen B. Van Oosten

    2017-12-01

    Full Text Available Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women’s leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  7. The Leadership Lab for Women: Advancing and Retaining Women in STEM through Professional Development.

    Science.gov (United States)

    Van Oosten, Ellen B; Buse, Kathleen; Bilimoria, Diana

    2017-01-01

    Innovative professional development approaches are needed to address the ongoing lack of women leaders in science, technology, engineering, and math (STEM) careers. Developed from the research on women who persist in engineering and computing professions and essential elements of women's leadership development, the Leadership Lab for Women in STEM Program was launched in 2014. The Leadership Lab was created as a research-based leadership development program, offering 360-degree feedback, coaching, and practical strategies aimed at increasing the advancement and retention of women in the STEM professions. The goal is to provide women with knowledge, tools and a supportive learning environment to help them navigate, achieve, flourish, and catalyze organizational change in male-dominated and technology-driven organizations. This article describes the importance of creating unique development experiences for women in STEM fields, the genesis of the Leadership Lab, the design and content of the program, and the outcomes for the participants.

  8. Ntal/Lab/Lat2

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Jensen, Bettina M; Gilfillan, Alasdair M

    2007-01-01

    T cells. As demonstrated in monocytes and B cells, phosphorylated NTAL/LAB/LAT2 recruits signaling molecules such as Grb2, Gab1 and c-Cbl into receptor-signaling complexes. Although gene knock out and knock down studies have indicated that NTAL/LAB/LAT2 may function as both a positive and negative...

  9. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  10. OpenLabNotes--An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-10-06

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open-LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  11. OpenLabNotes - An Electronic Laboratory Notebook Extension for OpenLabFramework.

    Science.gov (United States)

    List, Markus; Franz, Michael; Tan, Qihua; Mollenhauer, Jan; Baumbach, Jan

    2015-09-01

    Electronic laboratory notebooks (ELNs) are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  12. The watershed years of 1958-1962 in the Harvard Pigeon Lab.

    OpenAIRE

    Catania, A Charles

    2002-01-01

    During the years 1958-1962, the final years of support by the National Science Foundation for B. F. Skinner's Pigeon Lab in Memorial Hall at Harvard University, 20 or so pigeon experiments (plus some with other organisms) ran concurrently 7 days a week. The research style emphasized experimental analyses, exploratory procedures, and the parametric exploration of variables. This reminiscence describes some features of the laboratory, the context within which it operated, and the activities of ...

  13. Altitude Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Altitude Lab evaluates the performance of complete oxygen systems operated in individually controlled hypobaric chambers, which duplicate pressures that would be...

  14. GitLab repository management

    CERN Document Server

    Hethey, Jonathan

    2013-01-01

    A simple, easy to understand tutorial guide on how to build teams and efficiently use version control, using GitLab.If you are a system administrator in a company that writes software or are in charge of an infrastructure, this book will show you the most important features of GitLab, including how to speed up the overall process

  15. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  16. Designing Viable Business Models for Living Labs

    Directory of Open Access Journals (Sweden)

    Bernhard R. Katzy

    2012-09-01

    Full Text Available Over 300 regions have integrated the concept of living labs into their economic development strategy since 2006, when the former Finnish Prime Minister Esko Aho launched the living lab innovation policy initiative during his term of European presidency. Despite motivating initial results, however, success cases of turning research into usable new products and services remain few and uncertainty remains on what living labs actually do and contribute. This practitioner-oriented article presents a business excellence model that shows processes of idea creation and team mobilization, new product development, user involvement, and entrepreneurship through which living labs deliver high-potential investment opportunities. Customers of living labs are identified as investors such as venture capitalists or industrial firms because living labs can generate revenue from them to create their own sustainable business model. The article concludes that living labs provide extensive support “lab” infrastructure and that it remains a formidable challenge to finance it, which calls for a more intensive debate.

  17. Effects of gender and role selection in cooperative learning groups on science inquiry achievement

    Science.gov (United States)

    Affhalter, Maria Geralyn

    An action research project using science inquiry labs and cooperative learning groups examined the effects of same-gender and co-educational classrooms on science achievement and teacher-assigned or self-selected group roles on students' role preferences. Fifty-nine seventh grade students from a small rural school district participated in two inquiry labs in co-educational classrooms or in an all-female classroom, as determined by parents at the beginning of the academic year. Students were assigned to the same cooperative groups for the duration of the study. Pretests and posttests were administered for each inquiry-based science lab. Posttest assessments included questions for student reflection on role assignment and role preference. Instruction did not vary and a female science teacher taught all class sections. The same-gender classroom and co-ed classrooms produced similar science achievement scores on posttests. Students' cooperative group roles, whether teacher-assigned or self-selected, produced similar science achievement scores on posttests. Male and female students shared equally in favorable and unfavorable reactions to their group roles during the science inquiry labs. Reflections on the selection of the leader role revealed a need for females in co-ed groups to be "in charge". When reflecting on her favorite role of leader, one female student in a co-ed group stated, "I like to have people actually listen to me".

  18. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  19. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  20. Nanotechnology and the Developing World: Lab-on-Chip Technology for Health and Environmental Applications

    Science.gov (United States)

    Mehta, Michael D.

    2008-01-01

    This article argues that advances in nanotechnology in general, and lab-on-chip technology in particular, have the potential to benefit the developing world in its quest to control risks to human health and the environment. Based on the "risk society" thesis of Ulrich Beck, it is argued that the developed world must realign its science and…

  1. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  2. CDC Lab Values

    Centers for Disease Control (CDC) Podcasts

    2015-02-02

    More than fifteen hundred scientists fill the lab benches at CDC, logging more than four million hours each year. CDC’s laboratories play a critical role in the agency’s ability to find, stop, and prevent disease outbreaks. This podcast provides a brief overview of what goes on inside CDC’s labs, and why this work makes a difference in American’s health.  Created: 2/2/2015 by Office of the Associate Director for Communication (OADC).   Date Released: 2/2/2015.

  3. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    Science.gov (United States)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  4. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  5. FameLab: A Communication Skills-Building Program Disguised as an International Competition

    Science.gov (United States)

    Scalice, D.

    2015-12-01

    One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.

  6. A new LabVIEW interface for MDSplus

    International Nuclear Information System (INIS)

    Manduchi, G.; De Marchi, E.; Mandelli, A.

    2013-01-01

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface

  7. A new LabVIEW interface for MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); De Marchi, E. [Department of Information Engineering, Padova University (Italy); Mandelli, A. [National Instruments (Italy)

    2013-10-15

    Highlights: ► Integration object oriented data access layer in LabVIEW. ► A new component of the MDSplus data acquisition package. ► A new approach in the graphical presentation of data acquisition systems. -- Abstract: The paper presents a new interface providing full integration of MDSplus in LabVIEW, based on the recent features of MDSplus, in particular, data streaming, multithreading and Object Oriented interface. Data streaming support fits into the data driven concept of LabVIEW and multithreading is a native concept in LabVIEW. The object oriented interface of MDSplus defines a set of classes which map specific functionality, such as Tree and TreeNode to represent pulse files and data items, respectively, and fits naturally into the LabVIEW Object Oriented programming interface (LVOOP) introduced in version 8.2. MDSplus objects have been mapped onto LabVIEW objects, which act as wrappers to the underlying MDSplus object instance. This approach allows exporting the full MDSplus functionality into LabVIEW retaining the language-independent system view provided by the MDSplus object oriented interface.

  8. THE STORY OF THE BC FAMILY JUSTICE INNOVATION LAB

    Directory of Open Access Journals (Sweden)

    Jane Morley

    2017-12-01

    Full Text Available Many in the justice system know that fundamental change is needed but few know the best way to do it.  Previous attempts using strategic planning approaches have not achieved meaningful change.  Something different is needed.  The BC Family Justice Innovation Lab (the Lab is experimenting with a different approach drawing on complexity science, the experience of other jurisdictions and disciplines and incorporating human-centred design as a way of focusing on the well-being of families going through the transition of separation and divorce.  This article is the story of the first few years of the Lab’s life.  It has been a fascinating and challenging path so far, and it remains to be seen whether it will ultimately succeed. The story is offered so that others with similar ambitions can learn from the Lab’s experience – its successes and its failures.  It is the nature and strength of stories that the reader will take from them what they will. For the authors, one overriding theme that emerges from this story is that transforming a complex social system, such as the family justice system in British Columbia, requires embracing the complexity of paradox and refusing to be defeated by the tension of opposites and a multitude of wicked, unanswerable questions.    Bon nombre d’intervenants du système de justice savent qu’un changement fondamental s’impose, mais peu connaissent la meilleure façon de le réaliser. Dans le passé, l’utilisation d’approches de planification stratégique n’a pas donné les résultats escomptés. Une approche différente est nécessaire. S’inspirant de l’expérience vécue dans d’autres ressorts et d’autres disciplines, le BC Family Justice Innovation Lab (le Lab expérimente actuellement une approche différente fondée sur la science de la complexité, et s’efforce d’intégrer une conception axée sur la personne afin de mettre de l’avant le bien-être des familles

  9. Effect of the Level of Inquiry of Lab Experiments on General Chemistry Students' Written Reflections

    Science.gov (United States)

    Xu, Haozhi; Talanquer, Vincente

    2013-01-01

    The central goal of this exploratory study was to characterize the effects of experiments involving different levels of inquiry on the nature of college students' written reflections about laboratory work. Data were collected in the form of individual lab reports written using a science writing heuristic template by a subset of the students…

  10. Students Dig Deep in the Mystery Soil Lab: A Playful, Inquiry-Based Soil Laboratory Project

    Science.gov (United States)

    Thiet, Rachel K.

    2014-01-01

    The Mystery Soil Lab, a playful, inquiry-based laboratory project, is designed to develop students' skills of inquiry, soil analysis, and synthesis of foundational concepts in soil science and soil ecology. Student groups are given the charge to explore and identify a "Mystery Soil" collected from a unique landscape within a 10-mile…

  11. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  12. LabVIEW Real-Time

    CERN Multimedia

    CERN. Geneva; Flockhart, Ronald Bruce; Seppey, P

    2003-01-01

    With LabVIEW Real-Time, you can choose from a variety of RT Series hardware. Add a real-time data acquisition component into a larger measurement and automation system or create a single stand-alone real-time solution with data acquisition, signal conditioning, motion control, RS-232, GPIB instrumentation, and Ethernet connectivity. With the various hardware options, you can create a system to meet your precise needs today, while the modularity of the system means you can add to the solution as your system requirements grow. If you are interested in Reliable and Deterministic systems for Measurement and Automation, you will profit from this seminar. Agenda: Real-Time Overview LabVIEW RT Hardware Platforms - Linux on PXI Programming with LabVIEW RT Real-Time Operating Systems concepts Timing Applications Data Transfer

  13. Incorporating lab experience into computer security courses

    NARCIS (Netherlands)

    Ben Othmane, L.; Bhuse, V.; Lilien, L.T.

    2013-01-01

    We describe our experience with teaching computer security labs at two different universities. We report on the hardware and software lab setups, summarize lab assignments, present the challenges encountered, and discuss the lessons learned. We agree with and emphasize the viewpoint that security

  14. French environmental labs may get 'big science' funds

    CERN Multimedia

    2000-01-01

    France is considering expanding its network of enviromental laboratories to study the long term impacts of environmental change. It has been suggested that this could be funded using the 'big science' budget usually used for facilities such as particle accelerators (2 para).

  15. Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    Science.gov (United States)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Bristow, T.; Steele, A.; Amundsen, H. E. F.

    2012-01-01

    The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy.

  16. Connecting Lab-Based Attosecond Science with FEL research

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is perfo...

  17. mQoL smart lab

    DEFF Research Database (Denmark)

    De Masi, Alexandre; Ciman, Matteo; Gustarini, Mattia

    2016-01-01

    serve quality research in all of them. In this paper, we present own "mQoL Smart Lab" for interdisciplinary research efforts on individuals' "Quality of Life" improvement. We present an evolution of our current in-house living lab platform enabling continuous, pervasive data collection from individuals...

  18. Ontology: A Support Structure for a V-Labs Network: Euronet-Lab

    Directory of Open Access Journals (Sweden)

    Raul Cordeiro Correia

    2012-11-01

    Full Text Available Our propose is to build a network of virtual laboratories, based in a Virtual Closet that will contain all the elements and parts that are needed to build the various experiences available in a v-labs network (that we call Euronet-Lab. To build this complex network we need to find a system that supports effectively this structure. This probably will be a enormous database of v-labs and independent elements, where will be possible sometimes to “recycle” some of the elements. This means “re-use” the same element several times in many experiences. To do this is necessary to have a structure that allows us to have several instances of the same element. It’s important that in our structure and virtual environment we can create several “images” of the same reality and this images can be used simultaneously in different circuits/experiments. This means that we can create several instances of the same element, to be used in different experiences and exercises.

  19. Future{at}Labs.Prosperity Game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Beck, D.F.; Boyack, K.W.; Berman, M. [Sandia National Labs., Albuquerque, NM (United States). Innovative Alliances Dept.

    1996-10-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, the national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.

  20. Virtual Labs (Science Gateways) as platforms for Free and Open Source Science

    Science.gov (United States)

    Lescinsky, David; Car, Nicholas; Fraser, Ryan; Friedrich, Carsten; Kemp, Carina; Squire, Geoffrey

    2016-04-01

    The Free and Open Source Software (FOSS) movement promotes community engagement in software development, as well as provides access to a range of sophisticated technologies that would be prohibitively expensive if obtained commercially. However, as geoinformatics and eResearch tools and services become more dispersed, it becomes more complicated to identify and interface between the many required components. Virtual Laboratories (VLs, also known as Science Gateways) simplify the management and coordination of these components by providing a platform linking many, if not all, of the steps in particular scientific processes. These enable scientists to focus on their science, rather than the underlying supporting technologies. We describe a modular, open source, VL infrastructure that can be reconfigured to create VLs for a wide range of disciplines. Development of this infrastructure has been led by CSIRO in collaboration with Geoscience Australia and the National Computational Infrastructure (NCI) with support from the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS). Initially, the infrastructure was developed to support the Virtual Geophysical Laboratory (VGL), and has subsequently been repurposed to create the Virtual Hazards Impact and Risk Laboratory (VHIRL) and the reconfigured Australian National Virtual Geophysics Laboratory (ANVGL). During each step of development, new capabilities and services have been added and/or enhanced. We plan on continuing to follow this model using a shared, community code base. The VL platform facilitates transparent and reproducible science by providing access to both the data and methodologies used during scientific investigations. This is further enhanced by the ability to set up and run investigations using computational resources accessed through the VL. Data is accessed using registries pointing to catalogues within public data repositories (notably including the

  1. GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data

    Science.gov (United States)

    Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.; hide

    2016-01-01

    The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system

  2. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  3. Programming Arduino with LabVIEW

    CERN Document Server

    Schwartz, Marco

    2015-01-01

    If you already have some experience with LabVIEW and want to apply your skills to control physical objects and make measurements using the Arduino sensor, this book is for you. Prior knowledge of Arduino and LabVIEW is essential to fully understand the projects detailed in this book.

  4. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    Science.gov (United States)

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  5. An overview of the user program for the Jefferson Lab free electron laser

    International Nuclear Information System (INIS)

    Dylla, H.F.

    1999-01-01

    Jefferson Lab is commissioning a high-average-power IR FEL during 1998. When driven with its superconducting linac operating in a recirculated mode, the IR Demo FEL is capable of producing kilowatt-level average power in the mid-infrared (2-7 mu m) range. With operational experience and hardware changes involving primarily change-out of the optical cavity mirrors, the FEL is capable of covering a wide range of the infrared (1-16 mu m) at power levels exceeding 100 W. This tuning range combined with a unique pulse structure makes the Jefferson Lab FEL a versatile research and development tool for a wide variety of laser applications. A core group of industrial partners has been involved in planning applications using the FEL since 1991. This initial user group was augmented with university partners in 1993 and with participants from several national laboratories in 1996-1997. With the initiation of construction of the FEL and the associated 600 m 2 user facility laboratory in 1996, a number of topical user groups were formed to plan and implement the first series of user experiments. The industrial partners have formed user groups planning applications in polymer surface processing, metal surface processing, microfabrication, and electronic materials. University partners have submitted proposals on basic science topics which complement and planned applied research topics, in addition to proposing experiments in atomic physics, chemical physics and materials science which take advantage of one or more of the unique characteristics of the FEL. A synopsis of the proposed user experiments for the first phase of operation of the Jefferson Lab FEL will be presented

  6. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  7. Online labs and the MARVEL experience

    Directory of Open Access Journals (Sweden)

    Dieter Mueller

    2005-06-01

    Full Text Available MARVEL is a Leonardo da Vinci project that provides a framework to analyse the pedagogic effectiveness of online labs in various heterogeneous areas that include solar energy, robotics, electronics and electro-pneumatics. It is also used as a test bench to compare the implementation of purely remote labs, where all devices are real, versus mixed-reality environments, where real devices work together with simulation models. This paper describes the basic concepts underlying the implementation of such online labs and presents two case studies (which are openly available to the public. A final section discusses the main pedagogical implications of online labs and presents the research directions that are being considered as a follow-up from this project.

  8. OpenLabNotes – An Electronic Laboratory Notebook Extension for OpenLabFramework

    Directory of Open Access Journals (Sweden)

    List Markus

    2015-09-01

    Full Text Available Electronic laboratory notebooks (ELNs are more accessible and reliable than their paper based alternatives and thus find widespread adoption. While a large number of commercial products is available, small- to mid-sized laboratories can often not afford the costs or are concerned about the longevity of the providers. Turning towards free alternatives, however, raises questions about data protection, which are not sufficiently addressed by available solutions. To serve as legal documents, ELNs must prevent scientific fraud through technical means such as digital signatures. It would also be advantageous if an ELN was integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to OpenLabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively closes the gap between research documentation and sample management, thus making Open- LabFramework more attractive for laboratories that seek to increase productivity through electronic data management.

  9. Virtual Simulations as Preparation for Lab Exercises: Assessing Learning of Key Laboratory Skills in Microbiology and Improvement of Essential Non-Cognitive Skills.

    Directory of Open Access Journals (Sweden)

    Guido Makransky

    Full Text Available To investigate if a virtual laboratory simulation (vLAB could be used to replace a face to face tutorial (demonstration to prepare students for a laboratory exercise in microbiology.A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment.The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology.Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.

  10. Coping with Science

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    2003-01-01

    Life of Science, edited by Lykke Margot Ricard and Robin Engelhardt. Learning Lab Denmark, Copenhagen, pages 39-45. 2003 Short description: What makes children think about scientific inventions? In this case it was watching the news and listing to parents conversation that made a 12-year old...... schoolboy write an essay on the theme: ?The world would be a better place to live in if?!? Abstract: Science has a long tradition for emphasizing objectivity, but it is the emotional impact of science that makes children interested. Metaphors and personal experiences of the scientist can be a useful...

  11. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  12. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  13. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  14. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  15. Putting teachers-to-be in the field and the lab: Hands-on research at the American Museum of Natural History

    Science.gov (United States)

    Nadeau, P. A.; Ebel, D. S.; Harlow, G. E.; Landman, N. H.; Pagnotta, A.; Sessa, J.; Shara, M.; Ustunisik, G. K.; Webster, J. D.; Blair, D.; Shumer, M.

    2013-12-01

    The American Museum of Natural History (AMNH) is halfway through a pilot program designed to prepare Earth Science teachers for grades 7-12 in high-needs schools in New York. The program was implemented to address a critical shortage of qualified Earth Science teachers throughout the state as well as to reach student populations that traditionally have limited science exposure and hands-on learning opportunities. This Master of Arts in Teaching is unique amongst teacher preparation programs, not only in that it is housed at a world-class research museum and places the teacher candidates in a year-long teaching residency, but also in that it accepts only students with a strong background in Earth Science via a degree in geology, meteorology, oceanography, astronomy, or a related discipline. Following a year of graduate courses in science and pedagogy, as well as teaching residencies, and only months before embarking on teaching career, candidates begin a seven-week science practicum. This exercise combines field and lab work under the tutelage of AMNH science curators and postdoctoral research fellows to provide experience with the scientific process, from field work and data collection to interpretation and public presentation of results. In the science practicum, teaching candidates begin by selecting one of four topics on which to focus their research: astrophysics, experimental petrology, mineralogy, or paleontology. An introduction to lab materials, techniques, and instrumentation is followed by two weeks in the field, both upstate and in New York City, where rocks of all types are encountered and discussed. Nights are devoted to astronomical observing and data collection to supplement the geology-oriented daytime sessions. Following the trips, candidates are back at AMNH analyzing data and samples in preparation for a short, scientific-style manuscript and presentation of results in an AGU-style talk. Three research groups have already discovered potentially

  16. EMERGE - ESnet/MREN Regional Science Grid Experimental NGI Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Mambretti, Joe; DeFanti, Tom; Brown, Maxine

    2001-07-31

    This document is the final report on the EMERGE Science Grid testbed research project from the perspective of the International Center for Advanced Internet Research (iCAIR) at Northwestern University, which was a subcontractor to this UIC project. This report is a compilation of information gathered from a variety of materials related to this project produced by multiple EMERGE participants, especially those at Electronic Visualization Lab (EVL) at the University of Illinois at Chicago (UIC), Argonne National Lab and iCAIR. The EMERGE Science Grid project was managed by Tom DeFanti, PI from EVL at UIC.

  17. The Telecom Lab is moving

    CERN Multimedia

    IT Department

    2009-01-01

    As of 2nd March 2009, the Telecom Lab will move to Building 58 R-017. The Telecom Lab is the central point for all support questions regarding CERN mobile phone services (provision of SIM cards, requests for modifications of subscriptions, diagnostics for mobile phone problems, etc.). The opening hours as well as the contact details for the Telecom Lab remain unchanged: New location: Building 58 R-017 Opening hours: Every week day, from 11 a.m. to 12 a.m. Phone number: 72480 Email address: labo.telecom@cern.ch This change has no impact on support requests for mobile services. Users can still submit their requests concerning mobile phone subscriptions using the usual EDH form (https://edh.cern.ch/Document/GSM). The automatic message sent to inform users of their SIM card availability will be updated to indicate the new Telecom Lab location. You can find all information related to CERN mobile phone services at the following link: http://cern.ch/gsm CS Section - IT/CS group

  18. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  19. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Period: 1983–1986. Mehra, Prof. N K . Date of birth: 4 November 1949. Specialization: Clinical Immunology Address during Associateship: Officer-in-charge, Histocompati-, bility Lab., Dept. of Anotomy, All India Institute of Medical, Sciences, Ansari ...

  20. California State University, Bakersfield Fab Lab: "Making" A Difference in Middle School Students' STEM Attitudes

    Science.gov (United States)

    Medina, Andrea Lee

    The digital fabrication lab, or Fab Lab, at California State University, Bakersfield provided a 1-week, half-day summer program for local area middle school students. The purpose of this study was to examine the effect this summer program had on their attitudes towards math and science. The theoretical framework used for this study was based on Papert’s (1980) theory of constructionism and Bandura’s (1977) self-efficacy theory. Papert’s interest in how learners engaged in discussions with the items they made, and how these interactions increased self-guided learning, promoted the development of new knowledge. Self-efficacy, or one’s belief in his or her ability to perform behaviors necessary to produce specific achievements, increases as a result of the self-guided learning. These beliefs are proposed to influence future aspirations and the commitment to them. Results of the paired t-tests show a marked difference between 2016 participants (n= 49) and 2017 participants (n=31). Of the 2016 participants, no overall significance was found on attitudes towards math or science, but male attitudes within the math subset did show significance. The results of the 2017 program do show statistical significance in the area of science for females. It is hypothesized that the difference in results were due to the delivery of the program between the 2 years. Further research is necessary to confirm this hypothesis.

  1. Towards a Manifesto for Living Lab Co-creation

    Science.gov (United States)

    Følstad, Asbjørn; Brandtzæg, Petter Bae; Gulliksen, Jan; Börjeson, Mikael; Näkki, Pirjo

    There is a growing interest in Living Labs for innovation and development in the field of information and communication technology. In particular there seem to be a tendency that current Living Labs aim to involve users for co-creative purposes. However, the current literature on Living Lab co-creation is severely limited. Therefore an Interact workshop is arranged as a first step towards a manifesto for Living Lab co-creation.

  2. The Advanced Labs Website: resources for upper-level laboratories

    Science.gov (United States)

    Torres-Isea, Ramon

    2012-03-01

    The Advanced Labs web resource collection is an effort to create a central, comprehensive information base for college/university faculty who teach upper-level undergraduate laboratories. The website is produced by the American Association of Physics Teachers (AAPT). It is a part of ComPADRE, the online collection of resources in physics and astronomy education, which itself is a part of the National Science Foundation-funded National Science Digital Library (NSDL). After a brief review of its history, we will discuss the current status of the website while describing the various types of resources available at the site and presenting examples of each. We will detail a step-by-step procedure for submitting resources to the website. The resource collection is designed to be a community effort and thus welcomes input and contributions from its users. We will also present plans, and will seek audience feedback, for additional website services and features. The constraints, roadblocks, and rewards of this project will also be addressed.

  3. LabVIEW A Developer's Guide to Real World Integration

    CERN Document Server

    Fairweather, Ian

    2011-01-01

    LabVIEW(t) has become one of the preeminent platforms for the development of data acquisition and data analysis programs. LabVIEW(t): A Developer's Guide to Real World Integration explains how to integrate LabVIEW into real-life applications. Written by experienced LabVIEW developers and engineers, the book describes how LabVIEW has been pivotal in solving real-world challenges. Each chapter is self-contained and demonstrates the power and simplicity of LabVIEW in various applications, from image processing to solar tracking systems. Many of the chapters explore how exciting new technologies c

  4. Successes and Challenges in Transitioning to Large Enrollment NEXUS/Physics IPLS Labs

    Science.gov (United States)

    Moore, Kimberly

    2017-01-01

    UMd-PERG's NEXUS/Physics for Life Sciences laboratory curriculum, piloted in 2012-2013 in small test classes, has been implemented in large-enrollment environments at UMD from 2013-present. These labs address physical issues at biological scales using microscopy, image and video analysis, electrophoresis, and spectroscopy in an open, non-protocol-driven environment. We have collected a wealth of data (surveys, video analysis, etc.) that enables us to get a sense of the students' responses to this curriculum in a large-enrollment environment and with teaching assistants both `new to' and `experienced in' the labs. In this talk, we will provide a brief overview of what we have learned, including the challenges of transitioning to large N, student perception then and now, and comparisons of our large-enrollment results to the results from our pilot study. We will close with a discussion of the acculturation of teaching assistants to this novel environment and suggestions for sustainability.

  5. Diversity, Equity, & Inclusion at Berkeley Lab

    Science.gov (United States)

    Berkeley Lab A-Z Index Directory Search Diversity, Equity, & Inclusion at Berkeley Lab Home Diversity & Inclusion Council Women Scientists & Engineers Council Employee Resource Groups -and culture of inclusion are key to attracting and engaging the brightest minds and furthering our

  6. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  7. Magnetic Media Lab

    Data.gov (United States)

    Federal Laboratory Consortium — This lab specializes in tape certification and performance characterization of high density digital tape and isprepared to support the certification of standard size...

  8. Crystallization Formulation Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Crystallization Formulation Lab fills a critical need in the process development and optimization of current and new explosives and energetic formulations. The...

  9. Women, race, and science: The academic experiences of twenty women of color with a passion for science

    Science.gov (United States)

    Johnson, Angela C.

    Women of color drop out of science at higher rates than other students. This study is an ethnographic examination of why this occurs and how women of color can be supported in studying science. Through participant observation in science classes, labs, and a program supporting high-achieving students of color, as well as interviews with minority women science students, the student identities celebrated by science departments, as well as those embraced by my informants, were uncovered. Cultural norms of science classes often differed from those of the women in the study. Only one identity---apprentice research scientist---was celebrated in science settings, although others were tolerated. The women tended to either embrace the apprentice research scientist identity, form an alternative science-oriented identity, or never form a satisfying science student identity. Women who were more racially marked were more likely to fall into the second and third groups. This study uncovered difficulties which women students of color faced more than other science students. In addition, it uncovered several seemingly neutral institutional features of science lectures and labs which actually served to discourage or marginalize women students of color. It revealed values held in common by the women in the study and how those characteristics (especially altruism and pride and pleasure in academic challenge) led them to study science. It also revealed strategies used by the most successful women science students, as well as by professors and programs most successful at supporting women of color in the study of science. Based on this study, increasing the participation of women of color in science holds the possibility of altering the basic values of science; however, institutional features and personal interactions within science departments tend to resist those changes, primarily by encouraging women of color to abandon their study of science.

  10. Gender Writ Small: Gender Enactments and Gendered Narratives about Lab Organization and Knowledge Transmission in a Biomedical Engineering Research Setting

    Science.gov (United States)

    Malone, Kareen Ror; Nersessian, Nancy J.; Newstetter, Wendy

    This article presents qualitative data and offers some innovative theoretical approaches to frame the analysis of gender in science, technology, engineering, and mathematics (STEM) settings. It begins with a theoretical discussion of a discursive approach to gender that captures how gender is lived "on the ground." The authors argue for a less individualistic approach to gender. Data for this research project was gathered from intensive interviews with lab members and ethnographic observations in a biomedical engineering lab. Data analysis relied on a mixed methodology involving qualitative approaches and dialogues with findings from other research traditions. Three themes are highlighted: lab dynamics in relation to issues of critical mass, the division of labor, and knowledge transmission. The data illustrate how gender is created in interactions and is inflected through forms of social organization.

  11. The Udall Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Udall lab is interested in genome evolution and cotton genomics.The cotton genus ( Gossypium) is an extraordinarily diverse group with approximately 50 species...

  12. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  13. Making the Case for Jefferson Lab

    International Nuclear Information System (INIS)

    Gross, Franz

    2011-01-01

    This chapter is a personal account of the initial planning and competition for a new laboratory, which eventually became known as the Thomas Jefferson National Accelerator Facility, with the official nickname 'Jefferson Lab'. The period covered starts as far back as 1964, with the introduction of quarks, and extends up to the late 1980s after the initial team was assembled, the superconducting design was in place, and construction was well underway. I describe some of the major experiments that were proposed to justify the laboratory, reflect on the present status of those initially proposed experiments, and very briefly outline some of the new ideas that emerged after the laboratory was constructed. The science is presented in a simple manner intended for a lay audience, with some of the ideas illustrated by cartoons that were often used in popular lectures given during this period.

  14. Replacing textbook problems with lab experiences

    Science.gov (United States)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  15. LAB building a home for scientists

    CERN Document Server

    Fishman, Mark C

    2017-01-01

    Laboratories are both monasteries and space stations, redolent of the great ideas of generations past and of technologies to propel the future. Yet standard lab design has changed only little over recent years. Here Mark Fishman describes how to build labs as homes for scientists, to accommodate not just their fancy tools, but also their personalities. This richly illustrated book explores the roles of labs through history, from the alchemists of the Middle Ages to the chemists of the 19th and 20th centuries, and to the geneticists and structural biologists of today, and then turns to the special features of the laboratories Fishman helped to design in Cambridge, Shanghai, and Basel. Anyone who works in, or plans to build a lab, will enjoy this book, which will encourage them to think about how this special environment drives or impedes their important work.

  16. Virtual labs in Leonardo da Vinci

    Directory of Open Access Journals (Sweden)

    Stanislaw Nagy

    2006-10-01

    Full Text Available This paper discusses the problem of virtual lab capabilities in the e-learning. Using combination of web conferencing and "virtual labs" capabilities, a new quality distance learning teaching is now in preparation and will be included in the course teaching to produce interactive, online simulations for the natural gas engineering studies. The activities are designed to enhance the existing curriculum and to include online assessments. A special care is devoted to the security problem between a server and a client computer. Several examples of the virtual labs related to the PVT thermodynamics, fluid flow, the natural gas well-testing, and thev gas network flow are prepared and tested. A major challenge for the 'CELGAS' system is in managing the delicate balance between the student collaboration and the isolation. Students may be encouraged to collaborate and work with each other, simulating their exploration of the lab material.

  17. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  18. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  19. Innovation - A view from the Lab

    Science.gov (United States)

    The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...

  20. Linking THEMIS Orbital Data to MSL GTS Measurements: The Thermophysical Properties of the Bagnold Dunes, Mars

    Science.gov (United States)

    Edwards, C. S.; Piqueux, S.; Hamilton, V. E.; Fergason, R. L.; Herkenhoff, K. E.; Vasavada, A. R.; Sacks, L. E.; Lewis, K. W.; Smith, M. D.

    2017-12-01

    The surface of Mars has been characterized using orbital thermal infrared observations from the time of the Mariner 9 and Viking missions. More recent observations from missions such as the Thermal Emission Spectrometer onboard the Mars Global Surveyor and the Thermal Emission Imaging System (THEMIS) instrument onboard the 2001 Mars Odyssey orbiter have continued to expand global coverage at progressively higher resolution. THEMIS has been producing 100 m/pixel thermal infrared data with nearly global coverage of the surface for >15 years and has enabled new investigations that successfully link outcrop-scale information to physical properties of the surface. However, significant discrepancies between morphologies and interpreted surface properties derived from orbital thermal measurements remain, requiring a robust link to direct surface measurements. Here, we compare the thermophysical properties and particle sizes derived from the Mars Science Laboratory (MSL) rover's Ground Temperature Sensor (GTS), to those derived orbitally from THEMIS, ultimately linking these measurements to ground truth particle sizes determined from Mars Hand Lens Imager (MAHLI) images. We focus on the relatively homogenous Bagnold dunes, specifically Namib dune, and in general find that all three datasets report consistent particle sizes for the Bagnold dunes ( 110-350 µm, and are within measurement and model uncertainties), indicating that particles sizes of homogeneous materials determined from thermal measurements are reliable. In addition, we assess several potentially significant effects that could influence the derived particle sizes, including: 1) fine-scale (cm-m scale) ripples, and 2) thin (mm-cm) layering of indurated/armored materials. To first order, we find that small scale ripples and thin layers do not significantly affect the determination of bulk thermal inertia determined from orbit. However, a layer of coarser/indurated material and/or fine-scale layering does change

  1. Environment monitoring using LabVIEW

    International Nuclear Information System (INIS)

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    15° 21′N, 73° 51′E, 58.5m MSL) (13–18 July, 2002) with prevailing southwesterly surface winds are analyzed to study the characteristics of internal boundary layer at a short fetch using an instrumented tower (9 m). The spectral and ...

  3. Experimental investigation of new manufacturing process chains to create micro-metal structures on polymer substrates for lab-on-chip sensors

    DEFF Research Database (Denmark)

    Calaon, Matteo; Islam, Aminul; Hansen, Hans Nørgaard

    2012-01-01

    Over the last two decades, lab-on-a-chip devices have emerged as a leading technology for life sciences, drug development, medical diagnostics, food safety, agricultural and environmental monitoring. The conventional methods used nowadays to manufacture these micro- and nano-functional surface...

  4. Experiential Learning of Digital Communication Using LabVIEW

    Science.gov (United States)

    Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.

    2014-01-01

    This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…

  5. Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory

    Science.gov (United States)

    Abilleira, Fernando; Shidner, Jeremy D.

    2012-01-01

    The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power

  6. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  7. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  8. Constructing Artificial Rock Outcrops as Tools for Fostering Earth and Environmental Science Thinking

    Science.gov (United States)

    Totten, I. M.; Hall, F.; Buxton, C.

    2004-12-01

    The Earth and Environmental Science Education Group at the University of New Orleans has created an innovative visualization teaching tool. Through funding made available by the National Science Foundation a 12'x10'x5' artificial rock outcrop was fabricated at the University of New Orleans. An accompanying curriculum, which includes a series of artificial rock outcrop labs, was also created for the outcrop. The labs incorporated fundamental concepts from the geosciences and the field of science education. The overarching philosophy behind the unity of the content knowledge and the pedagogy was to develop a more inclusive and deliberate teaching approach that utilized strategies known to enhance student learning in the sciences. The artificial outcrop lab series emphasized the following geoscience topics: relative dating, rock movement, and depositional environments. The series also integrated pedagogical ideas such as inquiry-based learning, conceptual mapping, constructivist teaching, pattern recognition, and contextualized knowledge development. Each component of the curriculum was purposefully designed to address what the body of research in science education reveals as critical to science teaching and learning. After developing the artificial rock outcrop curriculum a pilot study was done with 40 pre-service elementary education undergraduates. In the pilot study students completed the following assessments: three outcrop labs, journal reflections for each lab, pre/post attitude surveys, group video-recordings, and preconception and final interviews. Data from these assessments were analyzed using qualitative and quantitative methodologies. The following conclusions were revealed from the data: student's attitudes towards learning earth science increased after working with the artificial rock outcrop, students conceptual understanding of the concepts were clearer after working with the outcrop, students were able to answer multifaceted, higher order questions

  9. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  10. Using Grand Challenges to Teach Science: A Biology-Geology Collaboration

    Science.gov (United States)

    Lyford, M.; Myers, J. D.

    2012-12-01

    Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge

  11. Living Lab voor Informatiemanagement in Agri-Food

    NARCIS (Netherlands)

    Wolfert, J.

    2010-01-01

    Het Living Lab is een specifieke open innovatie aanpak waarbij in feite het laboratorium naar de praktijk wordt gebracht. het Agri-Food Living lab is een informatiemanagementsysteem specifiek voor de agri-food sector.

  12. GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues

    Science.gov (United States)

    Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid; hide

    2016-01-01

    NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.

  13. Hydrogel Beads: The New Slime Lab?

    Science.gov (United States)

    Brockway, Debra; Libera, Matthew; Welner, Heidi

    2011-01-01

    Creating slime fascinates students. Unfortunately, though intrigue is at its peak, the educational aspect of this activity is often minimal. This article describes a chemistry lab that closely relates to the slime lab and allows high school students to explore the concepts of chemical bonding, properties, and replacement reactions. It involves the…

  14. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) LabVIEW Basics 2 (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO, and apply electronically via EDH from the cour...

  15. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  16. Writing and Science Literacy

    Science.gov (United States)

    Weiss-Magasic, Coleen

    2012-01-01

    Writing activities are a sure way to assess and enhance students' science literacy. Sometimes the author's students use technical writing to communicate their lab experiences, just as practicing scientists do. Other times, they use creative writing to make connections to the topics they're learning. This article describes both types of writing…

  17. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  18. Automatic creation of LabVIEW network shared variables

    International Nuclear Information System (INIS)

    Kluge, T.; Schroeder, H.

    2012-01-01

    We are in the process of preparing the LabVIEW controlled system components of our Solid State Direct Drive experiments for the integration into a Supervisory Control And Data Acquisition (SCADA) or distributed control system. The predetermined route to this is the generation of LabVIEW network shared variables that can easily be exported by LabVIEW to the SCADA system using OLE for Process Control (OPC) or other means. Many repetitive tasks are associated with the creation of the shared variables and the required code. We are introducing an efficient and inexpensive procedure that automatically creates shared variable libraries and sets default values for the shared variables. Furthermore, LabVIEW controls are created that are used for managing the connection to the shared variable inside the LabVIEW code operating on the shared variables. The procedure takes as input an XML spread-sheet defining the required input. The procedure utilizes XSLT and LabVIEW scripting. In a later state of the project the code generation can be expanded to also create code and configuration files that will become necessary in order to access the shared variables from the SCADA system of choice. (authors)

  19. Keep calm and share science!

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    FameLab is the exciting competition for young researchers that is conquering the world of science communication. CERN, which was already a partner in the Swiss and French competitions, is now launching its own event. Enter the competition now!   FameLab is not just another talent show for scientists: its magic formula truly helps real scientists show off their communication skills. Successful candidates will have to impress the judges by giving an original and entertaining 3-minute talk.  In the words of one of the participants in the Swiss competition: “I enjoyed the fact that it wasn't only a competition, and there were also plenty of opportunities to network with other young researchers and to get valuable feedback on our public speaking and science communication skills.” The contestants are judged on the content, clarity and charisma of their talks. The result is an amazing collection of speeches that are inspiring, educational and accurate, despite their ...

  20. Science stand-up at CERN

    CERN Multimedia

    Stephanie McClellan

    2013-01-01

    Supported by host Helen Keen from BBC4’s "It is Rocket Science", six amateur performers from CERN (Sam Gregson, Alex Brown, Benjamin Frisch, Claire Lee, Hugo Day and Clara Nellist) were joined on stage by geek-pop sensation Jonny Berliner and comedians Pierre Novellie and Lieven Scheire for a night of science stand-up comedy.   Host Helen Keen starts off the comedy event. (Image: Piotr Traczyk). Like the genesis of most great things, the LHComedy event began as an idea. Sam Gregson, a PhD student at CERN, had been a regular at the Cambridge Bright Club. This public engagement event promotes scientists’ research through stand-up comedy. Sam thought, “If people came to watch Bright Club at Cambridge and enjoyed the research, why can’t we do it at the biggest scientific experiment in the world?” Sam’s idea gained momentum after being introduced to FameLab participants at CERN. Similar to Bright Club, FameLab is a com...

  1. Microstructural characterization of LaB6-ZrB2 eutectic composites

    International Nuclear Information System (INIS)

    Wang Shengchang; Wei, W.J.; Zhang Litong

    2003-01-01

    Detail microstructure of LaB 6 -ZrB 2 composites has been characterized by TEM and HRTEM. The directionally solidified ZrB 2 fibers in LaB 6 matrix near LaB 6 -ZrB 2 eutectics present at least three growing relationship systems. In addition to previous report of [001]LaB 6 / [0001]ZrB 2 relationship, [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . were identified. Different with [001]LaB 6 / [0001]ZrB 2 system, the interfaces of [0 anti 11]LaB 6 / [0001]ZrB 2 and [1 anti 20]LaB 6 / [0001]ZrB 2 . show non-coherent and clean interfaces. There is neither glassy phase nor reaction products found at the interfaces (orig.)

  2. Performance report of the U.S. Department of Energy's Jefferson Lab

    International Nuclear Information System (INIS)

    Jefferson Lab

    1999-01-01

    Jefferson Lab, the newest of the US Department of Energy's 16 national laboratories, has been functioning effectively since its inception in 1984, first during construction and later during operations. As shown in this report, JLab aligns itself directly with DOE's strategic planning, both in terms of laboratory visions and plans and in terms of actual laboratory performance. Most importantly, JLab contributes significantly to DOE's Science and Technology mission in the area of nuclear physics, under the Office of Science. The laboratory practices continuous improvement and has made a number of important effectiveness and efficiency enhancements in recent years. Laboratory performance has been demonstrated by completion of the construction phase on cost and schedule, by exceeding technical specifications when coming on-line for physics research, and then - during operations in the mid- and late- 1990's - by the application of the performance measures in the laboratory's performance-based contract with DOE

  3. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  4. The Dynamics and Facilitation of a Living Lab Construct

    DEFF Research Database (Denmark)

    Brønnum, Louise; Nielsen, Louise Møller

    2013-01-01

    During the last decade Living Labs have established itself as an attractive innovation approach. Living Labs are an interesting construction because it offers a collaboration platform for dynamic interaction with users in all the project phases. Living Labs frame knowledge about actors in their o...

  5. Assessing Usage and Maximizing Finance Lab Impact: A Case Exploration

    Science.gov (United States)

    Noguera, Magdy; Budden, Michael Craig; Silva, Alberto

    2011-01-01

    This paper reports the results of a survey conducted to assess students' usage and perceptions of a finance lab. Finance labs differ from simple computer labs as they typically contain data boards, streaming market quotes, terminals and software that allow for real-time financial analyses. Despite the fact that such labs represent significant and…

  6. Exploring the Impact of TeachME™ Lab Virtual Classroom Teaching Simulation on Early Childhood Education Majors' Self-Efficacy Beliefs

    Science.gov (United States)

    Bautista, Nazan Uludag; Boone, William J.

    2015-01-01

    The purpose of this study was to investigate the impact of a mixed-reality teaching environment, called TeachME™ Lab (TML), on early childhood education majors' science teaching self-efficacy beliefs. Sixty-two preservice early childhood teachers participated in the study. Analysis of the quantitative (STEBI-b) and qualitative (journal entries)…

  7. In Defense of the National Labs and Big-Budget Science

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, J R

    2008-07-29

    The purpose of this paper is to present the unofficial and unsanctioned opinions of a Visiting Scientist at Lawrence Livermore National Laboratory on the values of LLNL and the other National Labs. The basic founding value and goal of the National Labs is big-budget scientific research, along with smaller-budget scientific research that cannot easily be done elsewhere. The most important example in the latter category is classified defense-related research. The historical guiding light here is the Manhattan Project. This endeavor was unique in human history, and might remain so. The scientific expertise and wealth of an entire nation was tapped in a project that was huge beyond reckoning, with no advance guarantee of success. It was in many respects a clash of scientific titans, with a large supporting cast, collaborating toward a single well-defined goal. Never had scientists received so much respect, so much money, and so much intellectual freedom to pursue scientific progress. And never was the gap between theory and implementation so rapidly narrowed, with results that changed the world, completely. Enormous resources are spent at the national or international level on large-scale scientific projects. LLNL has the most powerful computer in the world, Blue Gene/L. (Oops, Los Alamos just seized the title with Roadrunner; such titles regularly change hands.) LLNL also has the largest laser in the world, the National Ignition Facility (NIF). Lawrence Berkeley National Lab (LBNL) has the most powerful microscope in the world. Not only is it beyond the resources of most large corporations to make such expenditures, but the risk exceeds the possible rewards for those corporations that could. Nor can most small countries afford to finance large scientific projects, and not even the richest can afford largess, especially if Congress is under major budget pressure. Some big-budget research efforts are funded by international consortiums, such as the Large Hadron Collider

  8. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  9. Using lab notebooks to examine students' engagement in modeling in an upper-division electronics lab course

    Science.gov (United States)

    Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.

    2017-12-01

    We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on a lab course that has been transformed to engage students in this modeling process during lab activities. The design of the lab activities was guided by a framework that captures the different components of model-based reasoning, called the Modeling Framework for Experimental Physics. We demonstrate how this framework can be used to assess students' written work and to identify how students' model-based reasoning differed from activity to activity. Broadly speaking, we were able to identify the different steps of students' model-based reasoning and assess the completeness of their reasoning. Varying degrees of scaffolding present across the activities had an impact on how thoroughly students would engage in the full modeling process, with more scaffolded activities resulting in more thorough engagement with the process. Finally, we identified that the step in the process with which students had the most difficulty was the comparison between their interpreted data and their model prediction. Students did not use sufficiently sophisticated criteria in evaluating such comparisons, which had the effect of halting the modeling process. This may indicate that in order to engage students further in using model-based reasoning during lab activities, the instructor needs to provide further scaffolding for how students make these types of experimental comparisons. This is an important design consideration for other such courses attempting to incorporate modeling as a learning goal.

  10. Cassandra - WP400 - final report of living lab 2

    NARCIS (Netherlands)

    Engler, M.; Klievink, A.J.

    2014-01-01

    This CASSANDRA LL2 final deliverable contains all information regarding the CASSANDRA Living Lab Europe – USA via Bremerhaven including information from two intermediate reports (CASSANDRA D4.21 and D4.22) about the very same Living Lab handed in during runtime of the Living Lab. CASSANDRA Living

  11. Comunicación USB entre aplicaciones desarrolladas en LabVIEW y microcontroladores de Silicon Labs

    Directory of Open Access Journals (Sweden)

    Julio César Herrera Benítez

    2013-06-01

    Full Text Available El presente artículo trata sobre la utilización de LabVIEW para establecer comunicación USB con microcontroladores de la familia 8051 de Silicon Laboratories, utilizando un driver desarrollado por dicha compañía. En el documento se incluye una descripción de este driver, así como de las funciones principales que permiten el manejo del mismo, las cuales se encuentran en una biblioteca de enlace dinámico. El artículo contiene además una metodología básica para el uso de estas funciones y una explicación detallada a través de un ejemplo, donde se ilustra como cargar y configurar las mismas con el ambiente de desarrollo LabVIEW. Finalmente se muestran dos ejemplos de la utilización del driver a partir de una biblioteca de funciones USB creada en LabVIEW para la comunicación con un microcontrolador.

  12. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  13. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  14. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Partial sequence analysis and expression patterns of some of these random cDNA ... Department of Microbiology and Cell Biology, Indian Institute of Science, ... BC V6T124, Canada; USDA Vegetable Lab, Building 010A, ARS/PSI/BARC- ...

  15. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis ... M Sundrarajan1. Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India ...

  16. Digital Design with KP-Lab

    Directory of Open Access Journals (Sweden)

    D. Ponta

    2007-08-01

    Full Text Available KP-Lab is an EU Integrated Project envisioning a learning system that facilitates innovative practices of sharing, creating and working with knowledge in education and workplaces. The project exploits a novel pedagogical view, the knowledge-creation metaphor of learning. According to such “trialogical” approach, cognition arises through collaborative work in systematically developing shared “knowledge artefacts”, such as concepts, plans, material products, or social practices. The paper presents the plan of a pilot course to test the KP-Lab methodologies and tools in the field of Digital Design.

  17. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  18. LabVIEW Library to EPICS Channel Access

    CERN Document Server

    Liyu, Andrei; Thompson, Dave H

    2005-01-01

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The accelerator complex consists of a 1 GeV linear accelerator, an accumulator ring and associated transport lines. The SNS diagnostics platform is PC-based and will run Windows for its OS and LabVIEW as its programming language. Data acquisition hardware will be based on PCI cards. There will be about 300 rack-mounted computers. The Channel Access (CA) protocol of the Experimental Physics and Industrial Control System (EPICS) is the SNS control system communication standard. This paper describes the approaches, implementation, and features of LabVIEW library to CA for Windows, Linux, and Mac OS X. We also discuss how the library implements the asynchronous CA monitor routine using LabVIEW's occurrence mechanism instead of a callback function (which is not available in LabVIEW). The library is used to acquire accelerator data and applications have been ...

  19. Clothing Systems Design Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Clothing Systems Design Lab houses facilities for the design and rapid prototyping of military protective apparel.Other focuses include: creation of patterns and...

  20. From big data analysis in the cloud to robotic pot drumming: tales from the Met Office Informatics Lab

    Science.gov (United States)

    Robinson, Niall; Tomlinson, Jacob; Prudden, Rachel; Hilson, Alex; Arribas, Alberto

    2017-04-01

    The Met Office Informatics Lab is a small multidisciplinary team which sits between science, technology and design. Our mission is simply "to make Met Office data useful" - a deliberately broad objective. Our prototypes often trial cutting edge technologies, and so far have included projects such as virtual reality data visualisation in the web browser, bots and natural language interfaces, and artificially intelligent weather warnings. In this talk we focus on our latest project, Jade, a big data analysis platform in the cloud. It is a powerful, flexible and simple to use implementation which makes extensive use of technologies such as Jupyter, Dask, containerisation, Infrastructure as Code, and auto-scaling. Crucially, Jade is flexible enough to be used for a diverse set of applications: it can present weather forecast information to meteorologists and allow climate scientists to analyse big data sets, but it is also effective for analysing non-geospatial data. As well as making data useful, the Informatics Lab also trials new working practises. In this presentation, we will talk about our experience of making a group like the Lab successful.

  1. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  2. German lab wins linear collider contest

    CERN Multimedia

    Cartlidge, Edwin

    2004-01-01

    Particle physicists have chosen to base the proposed International Linear Collider on superconducting technology developed by an international collaboration centred on the DESY lab in Germany. The superconducting approach was chosen by an internatinal panel ahead of a rival technology developed at Stanford in the US and the KEK lab in Japan. The eagerly-awaited decision was announced at the International Conference on High Energy Physics in Beijing today (½ page)

  3. Fifteen years experience: Egyptian metabolic lab

    Directory of Open Access Journals (Sweden)

    Ekram M. Fateen

    2014-10-01

    Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder screening by using simple diagnostic techniques like thin layer chromatography and colored tests in urine which by time updated and upgraded the methods to diagnose a wide range of disorders. This study shows the most common diagnosed inherited inborn errors of metabolism among the Egyptian population.

  4. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  5. CERN Technical Training 2006: LabVIEW Course Sessions (September-December 2006)

    CERN Multimedia

    2006-01-01

    The following LabVIEW course sessions are currently scheduled in the framework of the CERN Technical Training Programme 2006, and in collaboration with National Instruments (CH): LabVIEW Basics 1 (course in English): 11-13.9.2006 (3 days, only 3 places available) (course in English): 14-15.9.2006 (2 days) LabVIEW: Working efficiently with LabVIEW 8 (course in English): 18.9.2006 (1 day) **NEW COURSE** LabVIEW Application Development (course in English): 13-15.11.2006 (3 days. Pre-requisite: LabVIEW Basics I ans II, or equivalent experience) LabVIEW Advanced Programming (course in English): 16-17.11.2006 (2 days. Pre-requisite: LabVIEW Application Development, or equivalent experience) LabVIEW Base 1 (course in French): 4-6.12.2006 (3 days, only 1 place available) LabVIEW Base 2 (course in French): 7-8.12.2006 (2 days) If you are interested in attending any of the above course sessions, please discuss with your supervisor and/or your DTO,...

  6. Seeing the Light (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, Axel; Segalman, Rachel; Westphal, Andrew

    2011-09-12

    Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger: Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source

  7. LabKey Server NAb: A tool for analyzing, visualizing and sharing results from neutralizing antibody assays

    Directory of Open Access Journals (Sweden)

    Gao Hongmei

    2011-05-01

    Key Server NAb tool without installing the software by using the Atlas Science Portal (https://atlas.scharp.org. Atlas is an installation of LabKey Server.

  8. Reference-based pricing: an evidence-based solution for lab services shopping.

    Science.gov (United States)

    Melton, L Doug; Bradley, Kent; Fu, Patricia Lin; Armata, Raegan; Parr, James B

    2014-01-01

    To determine the effect of reference-based pricing (RBP) on the percentage of lab services utilized by members that were at or below the reference price. Retrospective, quasi-experimental, matched, case-control pilot evaluation of an RBP benefit for lab services. The study group included employees of a multinational grocery chain covered by a national health insurance carrier and subject to RBP for lab services; it had access to an online lab shopping tool and was informed about the RBP benefit through employer communications. The reference group was covered by the same insurance carrier but not subject to RBP. The primary end point was lab compliance, defined as the percentage of lab claims with total charges at or below the reference price. Difference-in-difference regression estimation evaluated changes in lab compliance between the 2 groups. Higher compliance per lab claim was evident for the study group compared with the reference group (69% vs 57%; Ponline shopping tool was used by 7% of the matched-adjusted study group prior to obtaining lab services. Lab compliance was 76% for study group members using the online tool compared with 68% among nonusers who were subject to RBP (P<.01). RBP can promote cost-conscious selection of lab services. Access to facilities that offer services below the reference price and education about RBP improve compliance. Evaluation of the effect of RBP on higher-cost medical services, including radiology, outpatient specialty, and elective inpatient procedures, is needed.

  9. A Well-Maintained Lab Is a Safer Lab. Safety Spotlight

    Science.gov (United States)

    Walls, William H.; Strimel, Greg J.

    2018-01-01

    Administration and funding can cause Engineering/Technology Education (ETE) programs to thrive or die. To administrators, the production/prototyping equipment and laboratory setting are often viewed as the features that set ETE apart from other school subjects. A lab is a unique gift as well as a responsibility. If an administrator can see that…

  10. MatLab Programming for Engineers Having No Formal Programming Knowledge

    Science.gov (United States)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    MatLab is one of the most widely used very high level programming languages for Scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. Also, stated are the current limitations of the MatLab, which possibly can be taken care of by Mathworks Inc. in a future version to make MatLab more versatile.

  11. eComLab: remote laboratory platform

    Science.gov (United States)

    Pontual, Murillo; Melkonyan, Arsen; Gampe, Andreas; Huang, Grant; Akopian, David

    2011-06-01

    Hands-on experiments with electronic devices have been recognized as an important element in the field of engineering to help students get familiar with theoretical concepts and practical tasks. The continuing increase the student number, costly laboratory equipment, and laboratory maintenance slow down the physical lab efficiency. As information technology continues to evolve, the Internet has become a common media in modern education. Internetbased remote laboratory can solve a lot of restrictions, providing hands-on training as they can be flexible in time and the same equipment can be shared between different students. This article describes an on-going remote hands-on experimental radio modulation, network and mobile applications lab project "eComLab". Its main component is a remote laboratory infrastructure and server management system featuring various online media familiar with modern students, such as chat rooms and video streaming.

  12. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  13. Discourse in science communities: Issues of language, authority, and gender in a life sciences laboratory

    Science.gov (United States)

    Conefrey, Theresa Catherine

    Government-sponsored and private research initiatives continue to document the underrepresentation of women in the sciences. Despite policy initiatives, women's attrition rates each stage of their scientific careers remain higher than those of their male colleagues. In order to improve retention rates more information is needed about why many drop out or do not succeed as well as they could. While broad sociological studies and statistical surveys offer a valuable overview of institutional practices, in-depth qualitative analyses are needed to complement these large-scale studies. This present study goes behind statistical generalizations about the situation of women in science to explore the actual experience of scientific socialization and professionalization. Beginning with one reason often cited by women who have dropped out of science: "a bad lab experience," I explore through detailed observation in a naturalistic setting what this phrase might actually mean. Using ethnographic and discourse analytic methods, I present a detailed analysis of the discourse patterns in a life sciences laboratory group at a large research university. I show how language accomplishes the work of indexing and constituting social constraints, of maintaining or undermining the hierarchical power dynamics of the laboratory, of shaping members' presentation of self, and of modeling social and professional skills required to "do science." Despite the widespread conviction among scientists that "the mind has no sex," my study details how gender marks many routine interactions in the lab, including an emphasis on competition, a reinforcement of sex-role stereotypes, and a conversational style that is in several respects more compatible with men's than women's forms of talk.

  14. FameLab provides competition and coaching on science communication

    Science.gov (United States)

    Scalice, Daniella; Weiss, Peter

    2012-10-01

    In today's media-intensive environment, the ability to convey science can reshape the face of scientific exploration and discovery. Many early-career scientists could benefit from training on how to communicate their work effectively to all stakeholders along their career paths, from deans and political representatives to neighbors and students, and perhaps even to public audiences through the lens of a camera or the voice of a blog.

  15. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    OpenAIRE

    Jaime Irurzun; Olga Dziabenko; Pablo Orduña; Diego Lopez-de-Ipiña; Ignacio Angulo; Javier García-Zubia; Unai Hernandez-Jayo

    2010-01-01

    Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  16. Reducing unnecessary lab testing in the ICU with artificial intelligence.

    Science.gov (United States)

    Cismondi, F; Celi, L A; Fialho, A S; Vieira, S M; Reti, S R; Sousa, J M C; Finkelstein, S N

    2013-05-01

    To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1-3]. Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the likely information to be gained from proposed future

  17. Reducing unnecessary lab testing in the ICU with artificial intelligence

    Science.gov (United States)

    Cismondi, F.; Celi, L.A.; Fialho, A.S.; Vieira, S.M.; Reti, S.R.; Sousa, J.M.C.; Finkelstein, S.N.

    2017-01-01

    Objectives To reduce unnecessary lab testing by predicting when a proposed future lab test is likely to contribute information gain and thereby influence clinical management in patients with gastrointestinal bleeding. Recent studies have demonstrated that frequent laboratory testing does not necessarily relate to better outcomes. Design Data preprocessing, feature selection, and classification were performed and an artificial intelligence tool, fuzzy modeling, was used to identify lab tests that do not contribute an information gain. There were 11 input variables in total. Ten of these were derived from bedside monitor trends heart rate, oxygen saturation, respiratory rate, temperature, blood pressure, and urine collections, as well as infusion products and transfusions. The final input variable was a previous value from one of the eight lab tests being predicted: calcium, PTT, hematocrit, fibrinogen, lactate, platelets, INR and hemoglobin. The outcome for each test was a binary framework defining whether a test result contributed information gain or not. Patients Predictive modeling was applied to recognize unnecessary lab tests in a real world ICU database extract comprising 746 patients with gastrointestinal bleeding. Main results Classification accuracy of necessary and unnecessary lab tests of greater than 80% was achieved for all eight lab tests. Sensitivity and specificity were satisfactory for all the outcomes. An average reduction of 50% of the lab tests was obtained. This is an improvement from previously reported similar studies with average performance 37% by [1–3]. Conclusions Reducing frequent lab testing and the potential clinical and financial implications are an important issue in intensive care. In this work we present an artificial intelligence method to predict the benefit of proposed future laboratory tests. Using ICU data from 746 patients with gastrointestinal bleeding, and eleven measurements, we demonstrate high accuracy in predicting the

  18. Overview of RepLab 2012: Evaluating Online Reputation Management Systems

    NARCIS (Netherlands)

    Amigó, E.; Corujo, A.; Gonzalo, J.; Meij, E.; de Rijke, M.

    2012-01-01

    This paper summarizes the goals, organization and results of the first RepLab competitive evaluation campaign for Online Reputation Management Systems (RepLab 2012). RepLab focused on the reputation of companies, and asked participant systems to annotate different types of information on tweets

  19. Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan, final report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Weidian

    2013-09-27

    This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complex to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.

  20. LXI Technologies for Remote Labs: An Extension of the VISIR Project

    Directory of Open Access Journals (Sweden)

    Jaime Irurzun

    2010-09-01

    Full Text Available Several remote labs to support analog circuits are presented in this work. They are analyzed from the software and the hardware point of view. VISIR remote lab is one of these labs. After this analysis, a new VISIR remote lab approach is presented. This extension of the VISIR project is based on LXI technologies with the aim of becoming it in a remote lab easily interchangeable with other instruments. The addition of new components and experiments is also easier and cheaper.

  1. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  2. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    Science.gov (United States)

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  3. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  4. Group dynamic and its effect on classroom climate, achievement, and time in lab in the organic chemistry laboratory classroom

    Science.gov (United States)

    Hall, Rachael S.

    Despite the many studies on the benefits of cooperative learning, there is surprising little research into how the classroom as a whole changes when these cooperative groups are reassigned. In one section of CHEM 3011 in Fall 2013, students were allowed to pick their partner and kept the same partner all semester. In another section during the same semester, students were assigned a different partner for every wet lab and were allowed to pick their partners during the computer simulation labs. The students in both sections were given the "preferred" version of the Science Laboratory Environment Inventory (SLEI) at the beginning of the semester to elicit student preferences for the class environment, and the "actual" version of the SLEI and the Class Life Instrument at the end of the semester to determine what actually occurred during the semester. The students' interactions were recorded using an observational instrument developed specifically for this project. The students' responses to surveys, interactions, grades, and time in lab were analyzed for differences between the two sections. The results of this study will be discussed.

  5. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  6. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. Vinod Shanker Dubey1 Ritu Bhalla2 Rajesh Luthra3. Neurobiotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA; Plant Microbes Interaction Lab, Department of Biological Sciences, National University of Singapore, Singapore 117604; CSIR Complex, Dr K S Krishnan Marg, Pusa ...

  7. The experiment editor: supporting inquiry-based learning with virtual labs

    Science.gov (United States)

    Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.

    2017-05-01

    Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.

  8. Hydroscoop - Bulletin of the small-scale hydraulic laboratory MHyLab; Hydroscoop - Bulletin d'information MHyLab laboratoire de petite hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Denis, V.

    2009-07-01

    This is issue Nr. 5 of the news bulletin of MHyLab, the small-scale hydraulic laboratory in Montcherand, Switzerland. The history of MHyLab development is recalled. The objective of the laboratory is given: the laboratory development of efficient and reliable turbines for the entire small-scale hydraulic range (power: 10 to 2000 kW, flow rate: 0.01 to 10 m{sup 3}/s, hydraulic head: 1 m up to more than 700 m). The first period (1997-2001) was devoted to Pelton turbines for high heads (60 to 70 m) and the second (2001-2009) to Kaplan turbines for low and very low heads (1 to 30 m). In the third period (beginning 2008) diagonal turbines for medium heads (25 to 100 m) are being developed. MHyLab designed, modelled and tested all these different types. The small-scale hydraulic market developed unexpectedly quickly. The potential of small-scale hydraulics in the Canton of Vaud, western Switzerland is presented. Three implemented projects are reported on as examples for MHyLab activities on the market place. The MHyLab staff is presented.

  9. Application of LabVIEW on Ionization Chamber to Measurement Radiation

    International Nuclear Information System (INIS)

    Kerdchockchai, P.; Soodprasert, T.; Hoonnivathana, E.; Naemchnthara, P.; Limsuwan, P.; Naemchanthara, K.

    2014-01-01

    The purpose of this research was to apply LabVIEW program to control an ionization chamber. LabVIEW was used to compose a block diagram and front panel. The block diagram was programmed to be controlled by the front panel. Radiation dose of Cs -137 at 1.00, 1.50, 2.00, 2.50, 3.00 and 4.00 meter were compared from LabViEW and manual system. The results show that the different percentages of Pb filter of thickness 0, 20 and 39 mm are 0.68, 0.68 and 0.48, respectively. This experiment results indicated that the LabVIEW can be used in assisting radiation measurement. Furthermore, by controlling the ionization chamber by LabVIEW, the radiation dose received by operator is reduced.

  10. A Low-Cost Remote Lab for Internet Services Distance Education

    Directory of Open Access Journals (Sweden)

    James Sissom

    2006-08-01

    Full Text Available Academic departments seeking to reach students via distance education course offerings find that some on-line curricula require a traditional hands-on lab model for student evaluation and assessment. The authors solve the problem of providing distance education curriculum and supporting instruction lab components by using a low-cost remote lab. The remote lab is used to evaluate student performance in managing web services and website development, solving security problems, patch management, scripting and web server management. In addition, the authors discuss assessment and evaluation techniques that will be used to determine instructional quality and student performance. Discussed are the remote lab architecture, use of disk images and utilization of Windows 2003 Internet Information Service, and Linux Red Hat 9.0 platforms.

  11. Time Trials--An AP Physics Challenge Lab

    Science.gov (United States)

    Jones, David

    2009-01-01

    I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…

  12. Results from Testing of Two Rotary Percussive Drilling Systems

    Science.gov (United States)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  13. European labs brace for German cuts: international collaboration

    CERN Multimedia

    Clery, D

    1996-01-01

    Germany, the largest contributor to international European research labs, announced plans to reduce its contributions an average of 8% in the nation's latest budget. CERN and other labs are worried that the cuts will endanger ongoing projects and that other countries may follow Germany's lead.

  14. Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?

    Science.gov (United States)

    Ryker, Katherine; McConnell, David

    2014-01-01

    This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…

  15. Constructing the Components of a Lab Report Using Peer Review

    Science.gov (United States)

    Berry, David E.; Fawkes, Kelli L.

    2010-01-01

    A protocol that emphasizes lab report writing using a piecemeal approach coupled with peer review is described. As the lab course progresses, the focus of the report writing changes sequentially through the abstract and introduction, the discussion, and the procedure. Two styles of lab programs are presented. One style rotates the students through…

  16. Increasing Students’ Interest by Encouraging them to Create Original Lab Projects

    Directory of Open Access Journals (Sweden)

    Petre Lucian Ogrutan

    2017-11-01

    Full Text Available Sometimes traditional lab projects based on standard kits and modules fail to stimulate students’ interest and creativity. This paper presents a novel laboratory concept which allows students to develop their own lab projects using open-source resources. The lab experiment includes competition aspects allowing every student to come up with ideas of which the best are selected. The lab projects include both hard and software components using Arduino-compatible systems and interfaces. Before starting the practical activities as well as after the completion of the lab session, the students were asked to fill in an anonymous questionnaire.

  17. Open web system of Virtual labs for nuclear and applied physics

    International Nuclear Information System (INIS)

    Saldikov, I S; Afanasyev, V V; Petrov, V I; Ternovykh, M Yu

    2017-01-01

    An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented. (paper)

  18. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  19. Using FlowLab, an educational computational fluid dynamics tool, to perform a comparative study of turbulence models

    International Nuclear Information System (INIS)

    Parihar, A.; Kulkarni, A.; Stern, F.; Xing, T.; Moeykens, S.

    2005-01-01

    Flow over an Ahmed body is a key benchmark case for validating the complex turbulent flow field around vehicles. In spite of the simple geometry, the flow field around an Ahmed body retains critical features of real, external vehicular flow. The present study is an attempt to implement such a real life example into the course curriculum for undergraduate engineers. FlowLab, which is a Computational Fluid Dynamics (CFD) tool developed by Fluent Inc. for use in engineering education, allows students to conduct interactive application studies. This paper presents a synopsis of FlowLab, a description of one FlowLab exercise, and an overview of the educational experience gained by students through using FlowLab, which is understood through student surveys and examinations. FlowLab-based CFD exercises were implemented into 57:020 Mechanics of Fluids and Transport Processes and 58:160 Intermediate Mechanics of Fluids courses at the University of Iowa in the fall of 2004, although this report focuses only on experiences with the Ahmed body exercise, which was used only in the intermediate-level fluids class, 58:160. This exercise was developed under National Science Foundation funding by the authors of this paper. The focus of this study does not include validating the various turbulence models used for the Ahmed body simulation, because a two-dimensional simplification was applied. With the two-dimensional simplification, students may setup, run, and post process this model in a 50 minute class period using a single-CPU PC, as required for the 58:160 class at the University of Iowa. It is educational for students to understand the implication of a two- dimensional approximation for essentially a three-dimensional flow field, along with the consequent variation in both qualitative and quantitative results. Additionally, through this exercise, students may realize that the choice of the respective turbulence model will affect simulation prediction. (author)

  20. New microfluidic platform for life sciences in South Africa

    CSIR Research Space (South Africa)

    Hugo, S

    2012-10-01

    Full Text Available is also offered as numerous devices can be implemented on one disc. A variety of components from sample preparation through to detection can be implemented simply and effectively into an integrated microfluidic solution for life sciences. The lab... in the field of centrifugal microfluidics. New microfluidic platform for life sciences in South Africa S. HUGO, K. LAND CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidic...

  1. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  2. A LabVIEWTM-based detector testing system

    International Nuclear Information System (INIS)

    Yang Haori; Li Yuanjing; Wang Yi; Li Yulan; Li Jin

    2003-01-01

    The construction of a LabVIEW-based detector testing system is described in this paper. In this system, the signal of detector is magnified and digitized, so amplitude or time spectrum can be obtained. The Analog-to-Digital Converter is a peak-sensitive ADC based on VME bus. The virtual instrument constructed by LabVIEW can be used to acquire data, draw spectrum and save testing results

  3. Guerilla Science: Outreach at music and art festival

    Science.gov (United States)

    Rosin, Mark

    2012-10-01

    Guerilla Science a non-profit science education organization that, since 2007, has brought live events to unconventional venues for science, such as music festivals, art galleries, banquets, department stores and theaters. Guerilla Science sets science free by taking it out of the lab and into the traditional domains of the arts. By producing events that mix science with art, music and play, they create unique opportunities for adult audiences to experience science in unorthodox ways, such as interactive events, games, live experiments, demonstrations and performances by academics, artists, musicians, actors, and professional science communicators. Much of Guerilla Science's work has focused on astrophysical and terrestrial plasmas, and this presentation will provide an overview of Guerilla Science's work in this area. Guerilla Science has produced over twenty events, receiving international media coverage, and directly reached over fifteen thousand members of the public.

  4. Reviews Equipment: Data logger Book: Imagined Worlds Equipment: Mini data loggers Equipment: PICAXE-18M2 data logger Books: Engineering: A Very Short Introduction and To Engineer Is Human Book: Soap, Science, & Flat-Screen TVs Equipment: uLog and SensorLab Web Watch

    Science.gov (United States)

    2012-07-01

    WE RECOMMEND Data logger Fourier NOVA LINK: data logging and analysis To Engineer is Human Engineering: essays and insights Soap, Science, & Flat-Screen TVs People, politics, business and science overlap uLog sensors and sensor adapter A new addition to the LogIT range offers simplicity and ease of use WORTH A LOOK Imagined Worlds Socio-scientific predictions for the future Mini light data logger and mini temperature data logger Small-scale equipment for schools SensorLab Plus LogIT's supporting software, with extra features HANDLE WITH CARE CAXE110P PICAXE-18M2 data logger Data logger 'on view' but disappoints Engineering: A Very Short Introduction A broad-brush treatment fails to satisfy WEB WATCH Two very different websites for students: advanced physics questions answered and a more general BBC science resource

  5. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    Science.gov (United States)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  6. Physics lab in spin

    CERN Multimedia

    Hawkes, N

    1999-01-01

    RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).

  7. Practical Clinical Training in Skills Labs: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Bugaj, T. J.

    2016-08-01

    Full Text Available Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills.In this selective literature review, the first section is devoted to (I the development and dissemination of the skills lab concept. There follows (II an outline of the underlying idea and (III an analysis of key efficacy factors. Thereafter, (IV the training method’s effectiveness and transference are illuminated, before (V the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training.

  8. LabVIEW Interface for PCI-SpaceWire Interface Card

    Science.gov (United States)

    Lux, James; Loya, Frank; Bachmann, Alex

    2005-01-01

    This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.

  9. Aircraft Lighting and Transparency Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Lighting and Transparencies with Night Combat Lab performs radiometric and photometric measurements of cockpit lighting and displays. Evaluates the day,...

  10. Colliding worlds how cutting-edge science is redefining contemporary art

    CERN Document Server

    Miller, Arthur I

    2014-01-01

    In recent decades, an exciting new art movement has emerged in which artists illuminate the latest advances in science. Some of their provocative creations - a live rabbit implanted with the fluorescent gene of a jellyfish, a gigantic glass-and-chrome sculpture of the Big Bang itself - can be seen in traditional art museums and magazines, while others are being made by leading designers at Pixar, Google's Creative Lab and the MIT Media Lab. Arthur I. Miller takes readers on a wild journey to explore this new frontier. From the movement's origins a century ago - when Einstein shaped Cubism and X-rays affected fine photography - to the latest discoveries of biotechnology, cosmology and quantum physics, Miller shows how today's artists and designers are producing work at the cutting edge of science.

  11. Living Labs als een Vehikel voor (Onderwijs)innovatie

    NARCIS (Netherlands)

    Ellen Sjoer

    2014-01-01

    Wereldwijd schieten ze als paddenstoelen uit de grond: living labs. Deze ‘levende laboratoria’ zijn er in alle soorten en maten. Meestal wordt het lab gezien als een onderzoeks- en ontwikkelomgeving om een probleem met verschillende partijen op een innovatieve manier op te lossen. De thema’s van de

  12. Fifteen years experience: Egyptian metabolic lab | Fateen | Egyptian ...

    African Journals Online (AJOL)

    Those patients were classified as: 722 patients (69.4%) with lysosomal storage disorders, 302 patients (29%) with amino acid disorders and 17 patients (1.6%) with galactosemia. Conclusion: This study illustrates the experience of the reference metabolic lab in Egypt over 15 years. The lab began metabolic disorder ...

  13. ERLN Technical Support for Labs

    Science.gov (United States)

    The Environmental Response Laboratory Network provides policies and guidance on lab and data requirements, Standardized Analytical Methods, and technical support for water and radiological sampling and analysis

  14. Respecifying lab ethnography an ethnomethodological study of experimental physics

    CERN Document Server

    Sormani, Philippe

    2014-01-01

    Respecifying Lab Ethnography delivers the first ethnomethodological study of current experimental physics in action, describing the disciplinary orientation of lab work and exploring the discipline in its social order, formal stringency and skilful performance - in situ and in vivo. In bringing together two major strands of ethnomethodological inquiry, reflexive ethnography and video analysis, which have hitherto existed in parallel, Respecifying Lab Ethnography introduces a practice-based video analysis. In doing so, the book recasts conventional distinctions to shed fresh light on methodolog

  15. A mobile design lab for user-driven innovation

    DEFF Research Database (Denmark)

    Christiansen, Ellen; Kanstrup, Anne Marie

    2007-01-01

    The paper presents the history and conceptual foundation for the Mobile Design Lab, ment to support both designers and users in the acts of user-driven innovation. The Mobile Design Lab is based on Vygotsky's theory of tool- and language-mediation, and was created in 2004 to support research...... and teaching of user driven innovation. Being itself an example of user-driven innovation it has taken shape of HCI design research projekcts, in which we have been involved since 2004. The first challenge was to get 'out of the lab', the next to get 'out of the head', and finally we are currently working...

  16. Introduction to Computing: Lab Manual. Faculty Guide [and] Student Guide.

    Science.gov (United States)

    Frasca, Joseph W.

    This lab manual is designed to accompany a college course introducing students to computing. The exercises are designed to be completed by the average student in a supervised 2-hour block of time at a computer lab over 15 weeks. The intent of each lab session is to introduce a topic and have the student feel comfortable with the use of the machine…

  17. Preservation of martian organic and environmental records: final report of the Mars biosignature working group.

    Science.gov (United States)

    Summons, Roger E; Amend, Jan P; Bish, David; Buick, Roger; Cody, George D; Des Marais, David J; Dromart, Gilles; Eigenbrode, Jennifer L; Knoll, Andrew H; Sumner, Dawn Y

    2011-03-01

    The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are

  18. Rust Contamination from Water Leaks in the Cosmic Dust Lab and Lunar and Meteorite Thin Sections Labs at Johnson Space Center

    Science.gov (United States)

    Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.

    2017-01-01

    On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.

  19. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  20. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    International Nuclear Information System (INIS)

    Li Xiaobo; Xiao Hualin; Cao Jun; Li Jin; Heng Yuekun; Ruan Xichao

    2011-01-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power. (authors)

  1. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  2. A Moodle extension to book online labs

    Directory of Open Access Journals (Sweden)

    Antonio C. Cardoso

    2005-11-01

    Full Text Available The social constructivist philosophy of Moodle makes it an excellent choice to deliver e-learning contents that require collaborative activities, such as those that are associated with online labs. In the case of online labs that enable web access to real devices (remote workbenches, access time should be reserved beforehand. A booking tool will avoid access conflicts and at the same time will help the students to organise their time and activities. This paper presents a Moodle extension that was developed within the Leonardo da Vinci MARVEL project, with the objective of meeting this requirement. The booking tool presented enables resource sharing in general and may be used to organise access to any type of scarce resources, such as to online labs and to the videoconferencing rooms that are needed to support collaborative activities.

  3. MSL Progress Report 1981-85

    International Nuclear Information System (INIS)

    Yalsakumar, M.C.; Ananthakrishna, G.; Sahoo, D.; Gopinathan, K.P.

    1987-01-01

    This is the third progress report since the inception of the Materials Science Laboratory in 1974 and covers the period 1981-85. In view of the long period covered by the report, the individual contributions have been kept brief so that the total length of the report is reasonable; however care has been taken to see that brevity has not obscured clarity. Significant contributions include studies of radiation damage and related defect, solid state physics, behaviour of materials under extremely low temperatures on the one hand and under high pressure and high temperatures on the other and light scattering by materials. The Laboratory has played a key role in the indigeneous development and characterisation of superconducting materials. Theoretical studies have concentrated on stochastic processes, nonlinear phenomena and the newly discovered and fascinating quasicrystals. (author)

  4. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  5. Polyphony: A Workflow Orchestration Framework for Cloud Computing

    Science.gov (United States)

    Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom

    2010-01-01

    Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.

  6. Towards Third-Generation Living Lab Networks in Cities

    Directory of Open Access Journals (Sweden)

    Seppo Leminen

    2017-11-01

    Full Text Available Many cities engage in diverse experimentation, innovation, and development activities with a broad variety of environments and stakeholders to the benefit of citizens, companies, municipalities, and other organizations. Hence, this article discusses such engagement in terms of next-generation living lab networks in the city context. In so doing, the study contributes to the discussion on living labs by introducing a framework of collaborative innovation networks in cities and suggesting a typology of third-generation living labs. Our framework is characterized by diverse platforms and participation approaches, resulting in four distinctive modes of collaborative innovation networks where the city is: i a provider, ii a neighbourhood participator, iii a catalyst, or iv a rapid experimenter. The typology is based on an analysis of 118 interviews with participants in six Finnish cities and reveals various ways to organize innovation activities in the city context. In particular, cities can benefit from innovation networks by simultaneously exploiting multiple platforms such as living labs for innovation. We conclude by discussing implications to theory and practice, and suggesting directions for future research.

  7. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  8. Reaction of LaB6 with MoSi2

    International Nuclear Information System (INIS)

    Ordan'yan, S.S.; Gardagina, E.N.; Barabanova, S.N.

    1989-01-01

    Investigation results of interaction in LaB 6 -MoSi 2 system within wide concentration and temperature ranges are presented. LaB 6 and MoSi 2 powders were preliminary squeezed out in vacuum at 1470 K. Presence of LaB 6 and MoSi 2 initial phases only is determined using X-ray pahse analysis of sintered and melted specimens of all compositions. Traces of MoB (probably, due to quick crystallization after melting and partial evaporation of silicon from the melt) are detected in some alloys exposed to melting

  9. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    Science.gov (United States)

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  10. Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program

    Science.gov (United States)

    Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.

  11. New Developments At The Science Archives Of The NASA Exoplanet Science Institute

    Science.gov (United States)

    Berriman, G. Bruce

    2018-06-01

    The NASA Exoplanet Science Institute (NExScI) at Caltech/IPAC is the science center for NASA's Exoplanet Exploration Program and as such, NExScI operates three scientific archives: the NASA Exoplanet Archive (NEA) and Exoplanet Follow-up Observation Program Website (ExoFOP), and the Keck Observatory Archive (KOA).The NASA Exoplanet Archive supports research and mission planning by the exoplanet community by operating a service that provides confirmed and candidate planets, numerous project and contributed data sets and integrated analysis tools. The ExoFOP provides an environment for exoplanet observers to share and exchange data, observing notes, and information regarding the Kepler, K2, and TESS candidates. KOA serves all raw science and calibration observations acquired by all active and decommissioned instruments at the W. M. Keck Observatory, as well as reduced data sets contributed by Keck observers.In the coming years, the NExScI archives will support a series of major endeavours allowing flexible, interactive analysis of the data available at the archives. These endeavours exploit a common infrastructure based upon modern interfaces such as JuypterLab and Python. The first service will enable reduction and analysis of precision radial velocity data from the HIRES Keck instrument. The Exoplanet Archive is developing a JuypterLab environment based on the HIRES PRV interactive environment. Additionally, KOA is supporting an Observatory initiative to develop modern, Python based pipelines, and as part of this work, it has delivered a NIRSPEC reduction pipeline. The ensemble of pipelines will be accessible through the same environments.

  12. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University.

    Science.gov (United States)

    Caruso, Joseph P; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J; Saunders, Mary Jane

    2016-03-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested "The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery" to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014-15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  13. Study Labs Kortlægningsrapport UCSJ

    DEFF Research Database (Denmark)

    Jørnø, Rasmus Leth Vergmann; Hestbech, Astrid Margrethe; Gynther, Karsten

    2015-01-01

    Rapporten er en delleverance i det regionale forprojekt S​tudy Labs,​der udføres som et samarbejde mellem Holbæk, Odsherred og Kalundborg kommune og University College Sjælland (UCSJ). Samarbejdet er delvist medfinansieret af Region Sjælland. Rapporten behandler projektets etableringsfase...... for at nå de kommunale målsætninger. De potentielle målgrupper er blevet kortlagt. Samtidig er undersøgelser i brugergrupperne blevet gjort håndgribelige i form af Personaer. Kommunerne har, faciliteret af Educationlab, gennemført designworkshops og er fremkommet med designs for Study Labs, der som...

  14. What Is LAB and Why Was It Renormed?

    Science.gov (United States)

    Abbott, Muriel

    A report on the Language Assessment Battery (LAB) explains, in question-and-answer form, the causes and results of some changes made in the test norms. The LAB is a test of communicative language competence, written in English and Spanish versions and used for student placement in the New York City Public Schools. The report describes the test…

  15. Love science? Tell us about it and win!

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    FameLab is the exciting competition for young researchers that is conquering the world of science communication. Last year, the CERN winner, Lillian Smestad, finished in second place at the international festival. Will you do better?   FameLab is not just another talent show for scientists: its magic formula truly helps real scientists show off their communication skills. Successful candidates will have to impress the judges by giving an original and entertaining three-minute talk. In the words of one of the participants in the Swiss competition: “I enjoyed the fact that it wasn't only a competition, there were also plenty of opportunities to network with other young researchers and to get valuable feedback on our public speaking and science communication skills.” The contestants are judged on the content, clarity and charisma of their talks. The result is an amazing collection of speeches that are inspiring, educational and accurate, despite t...

  16. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    Science.gov (United States)

    Diaconu, Dana Viorica; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-01-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one…

  17. Presentations for the 2nd Muon science experimental facility advisory committee meeting

    International Nuclear Information System (INIS)

    2004-06-01

    This booklet is reporting a committee-report and materials presented at the Second J-PARC Muon-Science-Experimental-Facility Advisory Committee (MuSAC) held at KEK on February 19 and 20, 2004. Distinguished examples of deep considerations and discussions are the following three directions: 1) as for the facility construction, new high-radiation effect on graphite-production target was pointed out; 2) towards the first-beam experiment, more detailed instrumentations were proposed; 3) regarding financial and muon-power arrangements for the future facility operation, the concept of 'core-user' was introduced. The content included executive summary, introduction, response to recommendations from the 1st MuSAC meeting, review of J-PARC MSL construction plan, core funding issues, access to muon beams for Japanese physicists, conclusions and recommendations and appendices. (S.Y.)

  18. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    Science.gov (United States)

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  19. Science self-efficacy of African American middle school students: Relationship to motivation self-beliefs, achievement, gender, and gender orientation

    Science.gov (United States)

    Britner, Shari Lynn

    Motivation researchers have established that students' self-efficacy beliefs, the confidence they have in their academic capabilities, are related to academic outcomes. Self-efficacy has been amply researched in mathematics and language arts and nearly exclusively with White students. African American students and the area of science have each received scant attention. Typically, gender differences favor boys in mathematics and girls in language arts. Researchers have also found that these differences may be a function of gender orientation beliefs. The purpose of this study was to extend findings in science self-efficacy and to African American middle school students. I sought to determine whether self-efficacy assessed at differing levels of specificity (lab skills versus science grades) would each predict science achievement assessed at corresponding levels, to discover whether mean scores in academic motivation and achievement would differ by gender, and to determine whether these differences are a function of gender orientation (N = 268). Science grade self-efficacy was positively associated with the grades obtained by boys and by girls. For girls, grades were also associated positively with science self-concept and negatively with value of science. For reasons resulting from problematic instructional practices, lab skills self-efficacy was not associated with lab grades. Girls reported stronger science self-efficacy and received higher grades in science class. Gender orientation beliefs did not account for these differences, but masculinity and femininity were each associated with science grade self-efficacy, suggesting that androgyny is an adaptive orientation for the science self-efficacy beliefs of African American students. Findings are interpreted within the framework of A. Bandura's (1986) social cognitive theory.

  20. Federal Labs and Research Centers Benefiting California: 2017 Impact Report for State Leaders.

    Energy Technology Data Exchange (ETDEWEB)

    Koning, Patricia Brady [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-12-01

    Sandia National Laboratories is the largest of the Department of Energy national laboratories with more than 13,000 staff spread across its two main campuses in New Mexico and California. For more than 60 years, the Sandia National Laboratories campus in Livermore, California has delivered cutting-edge science and technology solutions to resolve the nation’s most challenging and complex problems. As a multidisciplinary laboratory, Sandia draws from virtually every science and engineering discipline to address challenges in energy, homeland security, cybersecurity, climate, and biosecurity. Today, collaboration is vital to ensuring that the Lab stays at the forefront of science and technology innovation. Partnerships with industry, state, and local governments, and California universities help drive innovation and economic growth in the region. Sandia contributed to California’s regional and statewide economy with more than $145 million in contracts to California companies, $92 million of which goes to California small businesses. In addition, Sandia engages the community directly by running robust STEM education programs for local schools and administering community giving programs. Meanwhile, investments like the Livermore Valley Open Campus (LVOC), an innovation hub supported by LLNL and Sandia, help catalyze the local economy.