WorldWideScience

Sample records for science knowledge science

  1. Communicating knowledge in science, science journalism and art

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    Richter. The specialized knowledge about the image is communicated in three very different contexts with three very different outcomes. The paper uses Niklas Luhmann's system theory to describe science, science journalism, and art as autonomous social subsystems of communication. Also, Luhmann's notions...... of irritation and interference are employed to frame an interpretation of the complex relations between communicating knowledge about the image in science, science journalism, and art. Even though the functional differentiation between the communication systems of science, science journalism, and art remains...... that Richter's Erster Blick ends up questioning the epistemological and ontological grounds for communication of knowledge in science and in science journalism....

  2. Science knowledge and biblical literalism.

    Science.gov (United States)

    Zigerell, L J

    2012-04-01

    Biblical literalists are often described as scientific illiterates, but little if any empirical research has tested this claim. Analysis of a sixteen-item battery from the 2008 US General Social Survey revealed that literalists possess less science knowledge than those with other views of Scripture, but that much of this deficit can be attributed to demographic factors and unequal educational attainment. The marginal direct effect of biblical belief suggests that literalism is not incompatible with knowledge of science and, therefore, the best avenue for increasing science knowledge among literalists may be to foster interest in science and design science courses to attenuate any perceived conflict between science and religion.

  3. Cognitive knowledge, attitude toward science, and skill development in virtual science laboratories

    Science.gov (United States)

    Babaie, Mahya

    The purpose of this quantitative, descriptive, single group, pretest posttest design study was to explore the influence of a Virtual Science Laboratory (VSL) on middle school students' cognitive knowledge, skill development, and attitudes toward science. This study involved 2 eighth grade Physical Science classrooms at a large urban charter middle school located in Southern California. The Buoyancy and Density Test (BDT), a computer generated test, assessed students' scientific knowledge in areas of Buoyancy and Density. The Attitude Toward Science Inventory (ATSI), a multidimensional survey assessment, measured students' attitudes toward science in the areas of value of science in society, motivation in science, enjoyment of science, self-concept regarding science, and anxiety toward science. A Virtual Laboratory Packet (VLP), generated by the researcher, captured students' mathematical and scientific skills. Data collection was conducted over a period of five days. BDT and ATSI assessments were administered twice: once before the Buoyancy and Density VSL to serve as baseline data (pre) and also after the VSL (post). The findings of this study revealed that students' cognitive knowledge and attitudes toward science were positively changed as expected, however, the results from paired sample t-tests found no statistical significance. Analyses indicated that VSLs were effective in supporting students' scientific knowledge and attitude toward science. The attitudes most changed were value of science in society and enjoyment of science with mean differences of 1.71 and 0.88, respectively. Researchers and educational practitioners are urged to further examine VSLs, covering a variety of topics, with more middle school students to assess their learning outcomes. Additionally, it is recommended that publishers in charge of designing the VSLs communicate with science instructors and research practitioners to further improve the design and analytic components of these

  4. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  5. The Use of Clinical Interviews to Develop Inservice Secondary Science Teachers' Nature of Science Knowledge and Assessment of Student Nature of Science Knowledge

    Science.gov (United States)

    Peters-Burton, Erin E.

    2013-01-01

    To fully incorporate nature of science knowledge into classrooms, teachers must be both proficient in their own nature of science knowledge, but also skillful in translating their knowledge into a learning environment which assesses student knowledge. Twenty-eight inservice teachers enrolled in a graduate course which in part required a clinical…

  6. Amateur knowledge: public art and citizen science.

    Science.gov (United States)

    Rogers, Hannah

    2011-01-01

    The science studies literatures on amateurs and citizen science have remained largely unconnected despite similarities between the two categories. The essay connects amateur knowledge and citizen science through examples from public art. Through an analysis of the use of the term "amateur" by contemporary artists working to engage the public in critiques of science, connections in the ideals of democratic knowledge making by amateurs and citizen scientists are further explored.

  7. Team Science, Justice, and the Co-Production of Knowledge.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2018-06-08

    Science increasingly consists of interdisciplinary team-based research to address complex social, biomedical, public health, and global challenges through a practice known as team science. In this article, I discuss the added value of team science, including participatory team science, for generating scientific knowledge. Participatory team science involves the inclusion of public stakeholders on science teams as co-producers of knowledge. I also discuss how constructivism offers a common philosophical foundation for both community psychology and team science, and how this foundation aligns well with contemporary developments in science that emphasize the co-production of knowledge. I conclude with a discussion of how the co-production of knowledge in team science can promote justice. © Society for Community Research and Action 2018.

  8. Science.Gov - A single gateway to the deep web knowledge of U.S. science agencies

    International Nuclear Information System (INIS)

    Hitson, B.A.

    2004-01-01

    The impact of science and technology on our daily lives is easily demonstrated. From new drug discoveries, to new and more efficient energy sources, to the incorporation of new technologies into business and industry, the productive applications of R and D are innumerable. The possibility of creating such applications depends most heavily on the availability of one resource: knowledge. Knowledge must be shared for scientific progress to occur. In the past, the ability to share knowledge electronically has been limited by the 'deep Web' nature of scientific databases and the lack of technology to simultaneously search disparate and decentralized information collections. U.S. science agencies invest billions of dollars each year on basic and applied research and development projects. To make the collective knowledge from this R and D more easily accessible and searchable, 12 science agencies collaborated to develop Science.gov - a single, searchable gateway to the deep Web knowledge of U.S. science agencies. This paper will describe Science.gov and its contribution to nuclear knowledge management. (author)

  9. Elementary Students' Retention of Environmental Science Knowledge: Connected Science Instruction versus Direct Instruction

    Science.gov (United States)

    Upadhyay, Bhaskar; DeFranco, Cristina

    2008-01-01

    This study compares 3rd-grade elementary students' gain and retention of science vocabulary over time in two different classes--"connected science instruction" versus "direct instruction." Data analysis yielded that students who received connected science instruction showed less gain in science knowledge in the short term compared to students who…

  10. Indigenous Elementary Students' Science Instruction in Taiwan: Indigenous Knowledge and Western Science

    Science.gov (United States)

    Lee, Huei; Yen, Chiung-Fen; Aikenhead, Glen S.

    2012-12-01

    This preliminary ethnographic investigation focused on how Indigenous traditional wisdom can be incorporated into school science and what students learned as a result. Participants included community elders and knowledge keepers, as well as 4th grade (10-year-old) students, all of Amis ancestry, an Indigenous tribe in Taiwan. The students' non-Indigenous teacher played a central role in developing a science module `Measuring Time' that combined Amis knowledge and Western science knowledge. The study identified two cultural worldview perspectives on time; for example, the place-based cyclical time held by the Amis, and the universal rectilinear time presupposed by scientists. Students' pre-instructional fragmented concepts from both knowledge systems became more informed and refined through their engagement in `Measuring Time'. Students' increased interest and pride in their Amis culture were noted.

  11. Knowledge of Knowledge: Problematic of Epistemology of Library and Information Science

    Directory of Open Access Journals (Sweden)

    Hasan Keseroğlu

    2010-12-01

    philosophy, taken off from all the implementations, is only based on concepts and language. It is upper disciplinary. The focus of this study is to argue the Library and Information Science theory problematic in Turkey and an attempt to describe knowledge of this field. The theory of knowledge of any discipline can solely be established and enhanced onto the unique knowledge of that discipline. Mentioning of theory of Library and Information Science knowledge, is possible due to the distinctive knowledge detached from other disciplines. This distinctive knowledge, is the knowledge of library institution, that has come unchanged since its first models, and when removed from the field (LIS, becomes ordinary and moves out of originality of the library and information science. “The theory of knowledge of the field of Library and information science” need to be examined from three perspectives: Library and information science field knowledge; knowledge of organization of recorded information as object of the library (all processes from selection to use and knowledge of the user.

  12. Mode-2 social science knowledge production?

    DEFF Research Database (Denmark)

    Kropp, Kristoffer; Blok, Anders

    2011-01-01

    The notion of mode-2 knowledge production points to far-reaching transformations in science-society relations, but few attempts have been made to investigate what growing economic and political demands on research may entail for the social sciences. This case study of new patterns of social science...... knowledge production outlines some major institutional and cognitive changes in Danish academic sociology during 'mode-2' times, from the 1980s onwards. Empirically, we rely on documentary sources and qualitative interviews with Danish sociologists, aiming to reconstruct institutional trajectories...... show how a particular cognitive modality of sociology — 'welfare reflexivity' — has become a dominant form of Danish sociological knowledge production. Welfare reflexivity has proven a viable response to volatile mode-2 policy conditions....

  13. Metaphor and knowledge the challenges of writing science

    CERN Document Server

    Baake, Ken

    2003-01-01

    Analyzing the power of metaphor in the rhetoric of science, this book examines the use of words to express complex scientific concepts. Metaphor and Knowledge offers a sweeping history of rhetoric and metaphor in science, delving into questions about how language constitutes knowledge. Weaving together insights from a group of scientists at the Santa Fe Institute as they shape the new interdisciplinary field of complexity science, Ken Baake shows the difficulty of writing science when word meanings are unsettled, and he analyzes the power of metaphor in science.

  14. New infrastructures for knowledge production understanding e-science

    CERN Document Server

    Hine, Christine

    2006-01-01

    New Infrastructures for Knowledge Production: Understanding E-Science offers a distinctive understanding of new infrastructures for knowledge production based in science and technology studies. This field offers a unique potential to assess systematically the prospects for new modes of science enabled by information and communication technologies. The authors use varied methodological approaches, reviewing the origins of initiatives to develop e-science infrastructures, exploring the diversity of the various solutions and the scientific cultures which use them, and assessing the prospects for wholesale change in scientific structures and practices. New Infrastructures for Knowledge Production: Understanding E-Science contains practical advice for the design of appropriate technological solutions, and long range assessments of the prospects for change useful both to policy makers and those implementing institutional infrastructures. Readers interested in understanding contemporary science will gain a rich pict...

  15. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    Science.gov (United States)

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  16. Knowing Patients: Turning Patient Knowledge into Science

    NARCIS (Netherlands)

    Pols, Jeannette

    2014-01-01

    Science and technology studies concerned with the study of lay influence on the sciences usually analyze either the political or the normative epistemological consequences of lay interference. Here I frame the relation between patients, knowledge, and the sciences by opening up the question: How can

  17. The usefulness of science knowledge for parents of hearing-impaired children.

    Science.gov (United States)

    Shauli, Sophie; Baram-Tsabari, Ayelet

    2018-04-01

    Hearing-impaired children's chances of integrating into hearing society largely depend on their parents, who need to learn vast amounts of science knowledge in the field of hearing. This study characterized the role played by science knowledge in the lives of nonscientists faced with science-related decisions by examining the interactions between general science knowledge, contextual science knowledge in the field of hearing, and parents' advocacy knowledge and attitudes. Based on six semi-structured interviews and 115 questionnaires completed by parents of hearing-impaired children, contextual science knowledge emerged as the only predictor for having slightly better advocacy attitudes and knowledge (5.5% explained variance). Although general science knowledge was the best predictor of contextual knowledge (14% of explained variance), it was not a direct predictor of advocacy knowledge and attitudes. Science knowledge plays some role in the lives of hearing-impaired families, even if they do not list it as a resource for successful rehabilitation.

  18. Assessing the Science Knowledge of University Students: Perils, Pitfalls and Possibilities

    Science.gov (United States)

    Jones, Susan M.

    2014-01-01

    Science content knowledge is internationally regarded as a fundamentally important learning outcome for graduates of bachelor level science degrees: the Science Threshold Learning Outcomes (TLOs) recently adopted in Australia as a nationally agreed framework include "Science Knowledge" as TLO 2. Science knowledge is commonly assessed…

  19. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  20. Examining Science Teachers' Development of Interdisciplinary Science Inquiry Pedagogical Knowledge and Practices

    Science.gov (United States)

    Chowdhary, Bhawna; Liu, Xiufeng; Yerrick, Randy; Smith, Erica; Grant, Brooke

    2014-12-01

    The current literature relates to how teachers develop knowledge and practice of science inquiry, but little has been reported on how teachers develop interdisciplinary science inquiry (ISI) knowledge and practice. This study examines the effect of university research experiences, ongoing professional development, and in-school support on teachers' development of ISI pedagogical knowledge and practices. It centers on documenting diverse teachers' journeys of experiencing ISI as well as developing knowledge of ISI. It was found that there was variation in ISI understanding and practice among the teachers as a result of the combination of teachers' experiences, beliefs, and participation. Thus, in order to help teachers develop ISI knowledge and pedagogy, barriers to ISI knowledge development and implementation must also be addressed. Professional developers must articulate clear program goals to all stakeholders including an explicit definition of ISI and the ability to recognize ISI attributes during research experiences as well as during classroom implementation. Teachers must also be held accountable for participation and reflection in all aspects of professional development. Program developers must also take into consideration teachers' needs, attitudes, and beliefs toward their students when expecting changes in teachers' cognition and behavior to teach inquiry-rich challenging science.

  1. Incorporating Indonesian Students' "Funds of Knowledge" into Teaching Science to Sustain Their Interest in Science

    Directory of Open Access Journals (Sweden)

    A.N. Md Zain

    2011-12-01

    Full Text Available The purpose of this study was to examine the effect of incorporating students’ funds of knowledge in the teaching of science in sustaining Indonesian students’ interest in science. The researchers employed mixed method approach in this study. This study took place within two suburban secondary schools in Indonesia. Two teachers and a total of 173 students (94 males and 79 females participated in this study. The findings revealed that initially, most students expected that the teaching process would mainly include science experiments or other hands-on activities. Their preferences revealed a critical problem related to science learning: a lack of meaningful science-related activities in the classroom. The findings showed that incorporating students’ funds of knowledge into science learning processes -and thus establishing students’ culture as an important and valued aspect of science learning was effective in not only sustaining but also improving students’ attitudes and increasing their interest in science.

  2. van Eijck and Roth's utilitarian science education: why the recalibration of science and traditional ecological knowledge invokes multiple perspectives to protect science education from being exclusive

    Science.gov (United States)

    Mueller, Michael P.; Tippins, Deborah J.

    2010-12-01

    This article is a philosophical analysis of van Eijck and Roth's (2007) claim that science and traditional ecological knowledge (TEK) should be recalibrated because they are incommensurate, particular to the local contexts in which they are practical. In this view, science maintains an incommensurate status as if it is a "fundamental" basis for the relative comparison of other cultural knowledges, which reduces traditional knowledge to a status of in relation to the prioritized (higher)-status of natural sciences. van Eijck and Roth reject epistemological Truth as a way of thinking about sciences in science education. Rather they adopt a utilitarian perspective of cultural-historical activity theory to demonstrate when traditional knowledge is considered science and when it is not considered science, for the purposes of evaluating what should be included in U.S. science education curricula. There are several challenges for evaluating what should be included in science education when traditional knowledges and sciences are considered in light of a utilitarian analysis. Science as diverse, either practically local or theoretically abstract, is highly uncertain, which provides opportunities for multiple perspectives to enlarge and protect the natural sciences from exclusivity. In this response to van Eijck and Roth, we make the case for considering dialectical relationships between science and TEK in order to ensure cultural diversity in science education, as a paradigm. We also emphasize the need to (re)dissolve the hierarchies and dualisms that may emerge when science is elevated in status in comparison with other knowledges. We conclude with a modification to van Eijck and Roth's perspective by recommending a guiding principle of cultural diversity in science education as a way to make curriculum choices. We envision this principle can be applied when evaluating science curricula worldwide.

  3. Integrating social science knowledge into natural resource management public involvement practice

    DEFF Research Database (Denmark)

    Stummann, Cathy Brown

    This PhD study explores the long-recognized challenge of integrating social science knowledge into NRM public involvement practice theoretically and empirically. Theoretically, the study draws on research from adult learning, continuing rofessional education and professional knowledge development...... to better understand how social science knowledge can benefit NRM public involvement practice. Empirically, the study explores the potential of NRM continuing professional education as a means for introducing social science knowledge to public NRM professionals. The study finds social science knowledge can...... be of value to NRM public involvement prospectively and retrospectively; and that continuing professional education can be an effective means to introducing social science knowledge to public NRM professionals. In the design of NRM continuing professional education focused on social science knowledge...

  4. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  5. Fundamental care and knowledge interests: Implications for nursing science.

    Science.gov (United States)

    Granero-Molina, José; Fernández-Sola, Cayetano; Mateo-Aguilar, Ester; Aranda-Torres, Cayetano; Román-López, Pablo; Hernández-Padilla, José Manuel

    2017-11-09

    To characterise the intratheoretical interests of knowledge in nursing science as an epistemological framework for fundamental care. For Jürgen Habermas, theory does not separate knowledge interests from life. All knowledge, understanding and human research is always interested. Habermas formulated the knowledge interests in empirical-analytical, historical-hermeneutic and critical social sciences; but said nothing about health sciences and nursing science. Discursive paper. The article is organised into five sections that develop our argument about the implications of the Habermasian intratheoretical interests in nursing science and fundamental care: the persistence of a technical interest, the predominance of a practical interest, the importance of an emancipatory interest, "being there" to understand individuals' experience and an "existential crisis" that uncovers the individual's subjectivity. The nursing discipline can take on practical and emancipatory interests (together with a technical interest) as its fundamental knowledge interests. Nurses' privileged position in the delivery of fundamental care gives them the opportunity to gain a deep understanding of the patient's experience and illness process through physical contact and empathic communication. In clinical, academic and research environments, nurses should highlight the importance of fundamental care, showcasing the value of practical and emancipatory knowledge. This process could help to improve nursing science's leadership, social visibility and idiosyncrasy. © 2017 John Wiley & Sons Ltd.

  6. Science parks as knowledge organizations

    DEFF Research Database (Denmark)

    Hansson, Finn

    gained agrowing importance in the new economy. If we shift focus to organizationtheory discussions on new knowledge and innovation has specialized in relationto the process of creation, managing, organizing, sharing, transferring etc. ofknowledge. The evaluation of science parks has to relate......Recent studies of the impact of science parks have questioned traditionalassumption about the effect of the parks on innovation and economic growth.Most studies tend to measure the effect by rather traditional measures, revenue,survival of new firms, without taking into account, that knowledge has...... to the changed role ofknowledge in the creation of economic growth. With the help of the concept ofthe ba from Nonanka, the article discuss if or how traditional organized scienceparks can become central actors in the new knowledge production or has to beviewed as an outdated institution from the industrial...

  7. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    Science.gov (United States)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  8. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  9. Knowledge about Science in Science Education Research from the Perspective of Ludwik Fleck's Epistemology

    Science.gov (United States)

    Martins, André Ferrer Pinto

    2016-01-01

    The importance of knowledge about science is well established, and it has a long history in the area of science education. More recently, the specialized literature has highlighted the search for consensus in relation to what should be taught in this regard, that is, what should compose the science curricula of elementary and high school levels.…

  10. Science Literacy and Prior Knowledge of Astronomy MOOC Students

    Science.gov (United States)

    Impey, Chris David; Buxner, Sanlyn; Wenger, Matthew; Formanek, Martin

    2018-01-01

    Many of science classes offered on Coursera fall into fall into the category of general education or general interest classes for lifelong learners, including our own, Astronomy: Exploring Time and Space. Very little is known about the backgrounds and prior knowledge of these students. In this talk we present the results of a survey of our Astronomy MOOC students. We also compare these results to our previous work on undergraduate students in introductory astronomy courses. Survey questions examined student demographics and motivations as well as their science and information literacy (including basic science knowledge, interest, attitudes and beliefs, and where they get their information about science). We found that our MOOC students are different than the undergraduate students in more ways than demographics. Many MOOC students demonstrated high levels of science and information literacy. With a more comprehensive understanding of our students’ motivations and prior knowledge about science and how they get their information about science, we will be able to develop more tailored learning experiences for these lifelong learners.

  11. Knowledge acquisition process as an issue in information sciences

    Directory of Open Access Journals (Sweden)

    Boris Bosančić

    2016-07-01

    Full Text Available The paper presents an overview of some problems of information science which are explicitly portrayed in literature. It covers the following issues: information explosion, information flood and data deluge, information retrieval and relevance of information, and finally, the problem of scientific communication. The purpose of this paper is to explain why knowledge acquisition, can be considered as an issue in information sciences. The existing theoretical foundation within the information sciences, i.e. the DIKW hierarchy and its key concepts - data, information, knowledge and wisdom, is recognized as a symbolic representation as well as the theoretical foundation of the knowledge acquisition process. Moreover, it seems that the relationship between the DIKW hierarchy and the knowledge acquisition process is essential for a stronger foundation of information sciences in the 'body' of the overall human knowledge. In addition, the history of both the human and machine knowledge acquisition has been considered, as well as a proposal that the DIKW hierarchy take place as a symbol of general knowledge acquisition process, which could equally relate to both human and machine knowledge acquisition. To achieve this goal, it is necessary to modify the existing concept of the DIKW hierarchy. The appropriate modification of the DIKW hierarchy (one of which is presented in this paper could result in a much more solid theoretical foundation of the knowledge acquisition process and information sciences as a whole. The theoretical assumptions on which the knowledge acquisition process may be established as a problem of information science are presented at the end of the paper. The knowledge acquisition process does not necessarily have to be the subject of epistemology. It may establish a stronger link between the concepts of data and knowledge; furthermore, it can be used in the context of scientific research, but on the more primitive level than conducting

  12. Reading for meaning: The foundational knowledge every teacher of science should have

    Science.gov (United States)

    Patterson, Alexis; Roman, Diego; Friend, Michelle; Osborne, Jonathan; Donovan, Brian

    2018-02-01

    Reading is fundamental to science and not an adjunct to its practice. In other words, understanding the meaning of the various forms of written discourse employed in the creation, discussion, and communication of scientific knowledge is inherent to how science works. The language used in science, however, sets up a barrier, that in order to be overcome requires all students to have a clear understanding of the features of the multimodal informational texts employed in science and the strategies they can use to decode the scientific concepts communicated in informational texts. We argue that all teachers of science must develop a functional understanding of reading comprehension as part of their professional knowledge and skill. After describing our rationale for including knowledge about reading as a professional knowledge base every teacher of science should have, we outline the knowledge about language teachers must develop, the knowledge about the challenges that reading comprehension of science texts poses for students, and the knowledge about instructional strategies science teachers should know to support their students' reading comprehension of science texts. Implications regarding the essential role that knowledge about reading should play in the preparation of science teachers are also discussed here.

  13. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  14. Self-Directed Learning to Improve Science Content Knowledge for Teachers

    Science.gov (United States)

    van Garderen, Delinda; Hanuscin, Deborah; Thomas, Cathy Newman; Stormont, Melissa; Lee, Eun J.

    2017-01-01

    Students with disabilities often struggle in science and underperform in this important content area when compared to their typical peers. Unfortunately, many special educators have had little preparation to develop science content knowledge or skills in methods for teaching science. Despite their lack of content knowledge, special educators are…

  15. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    Science.gov (United States)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  16. Science knowledge and cognitive strategy use among culturally and linguistically diverse students

    Science.gov (United States)

    Lee, Okhee; Fradd, Sandra H.; Sutman, Frank X.

    Science performance is determined, to a large extent, by what students already know about science (i.e., science knowledge) and what techniques or methods students use in performing science tasks (i.e., cognitive strategies). This study describes and compares science knowledge, science vocabulary, and cognitive strategy use among four diverse groups of elementary students: (a) monolingual English Caucasian, (b) African-American, (c) bilingual Spanish, and (d) bilingual Haitian Creole. To facilitate science performance in culturally and linguistically congruent settings, the study included student dyads and teachers of the same language, culture, and gender. Science performance was observed using three science tasks: weather phenomena, simple machines, and buoyancy. Data analysis involved a range of qualitative methods focusing on major themes and patterns, and quantitative methods using coding systems to summarize frequencies and total scores. The findings reveal distinct patterns of science knowledge, science vocabulary, and cognitive strategy use among the four language and culture groups. The findings also indicate relationships among science knowledge, science vocabulary, and cognitive strategy use. These findings raise important issues about science instruction for culturally and linguistically diverse groups of students.Received: 3 January 1995;

  17. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  18. ACCOUNTING AS BRANCH OF KNOWLEDGE: SCIENCE, TECHNOLOGY AND PRACTICE

    OpenAIRE

    Farias, Manoel Raimundo Santana; Martins, Gilberto de Andrade

    2015-01-01

    The aim of this study was to characterize the accounting as branch of knowledge in three different fields: science, technology and practice. Through theoretical essay, we was argued that, although distinct, these fields interact, in that, as epistemology that justified the analysis here undertaken, the practical activities may be technology subject matter and that to be effective if based on one or more sciences. The difference between science and technology is given by the nature of knowledg...

  19. Habermasian knowledge interests: epistemological implications for health sciences.

    Science.gov (United States)

    Granero-Molina, José; Fernández-Sola, Cayetano; Muñoz Terrón, José María; Aranda Torres, Cayetano

    2015-04-01

    The Habermasian concept of 'interest' has had a profound effect on the characterization of scientific disciplines. Going beyond issues unrelated to the theory itself, intra-theoretical interest characterizes the specific ways of approaching any science-related discipline, defining research topics and methodologies. This approach was developed by Jürgen Habermas in relation to empirical-analytical sciences, historical-hermeneutics sciences, and critical sciences; however, he did not make any specific references to health sciences. This article aims to contribute to shaping a general epistemological framework for health sciences, as well as its specific implications for the medical and nursing areas, via an analysis of the basic knowledge interests developed by Habermas. © 2015 John Wiley & Sons Ltd.

  20. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  1. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  2. Achieving conservation science that bridges the knowledge-action boundary.

    Science.gov (United States)

    Cook, Carly N; Mascia, Michael B; Schwartz, Mark W; Possingham, Hugh P; Fuller, Richard A

    2013-08-01

    There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management-relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence-based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research-focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary-spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge-action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which

  3. Developing pre-service science teachers' pedagogical content knowledge by using training program

    Science.gov (United States)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  4. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  5. An Expert System toward Buiding An Earth Science Knowledge Graph

    Science.gov (United States)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  6. Opinions and knowledge about climate change science in high school students.

    Science.gov (United States)

    Harker-Schuch, Inez; Bugge-Henriksen, Christian

    2013-10-01

    This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.

  7. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    Science.gov (United States)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related

  8. Prospective Science Teachers' Subject-Matter Knowledge about Overflow Container

    Science.gov (United States)

    Ültay, Eser

    2016-01-01

    The purpose of this study was to determine prospective science teachers' subject-matter knowledge (SMK) about overflow container. This study was carried out in the form of a case study in spring term of the academic year of 2013-2014 with seven sophomore prospective science teachers who were studying at Elementary Science Teaching Department in…

  9. Is Information Science an Anomalous State of Knowledge

    DEFF Research Database (Denmark)

    Hollnagel, E.

    1980-01-01

    it is not necessary for sciences which concern themselves with behavioral phenomena which have a prior description in natural language. It is further argued that information science should be more interested in uncertainty than in information, and it is shown how the Anomalous State of Knowledge (ASK) paradigm may......This paper looks at some of the problems in information science from the experience with similar problems in psycho logy. The apparent need for a set of rigorous definitions of the basic concepts is discussed, and it is argued that although this is necessary for the natural sciences...... be used to describe itself, hence also informa tion science. It is finally concluded that by turning to problems of uncertainty and lack of information, rather than information, information science may avoid many of the mistakes made by psychology....

  10. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  11. Toward Knowledge Systems for Sustainability Science

    Science.gov (United States)

    Zaks, D. P.; Jahn, M.

    2011-12-01

    Managing ecosystems for the outcomes of agricultural productivity and resilience will require fundamentally different knowledge management systems. In the industrial paradigm of the 20th century, land was considered an open, unconstrained system managed for maximum yield. While dramatic increases in yield occurred in some crops and locations, unintended but often foreseeable consequences emerged. While productivity remains a key objective, we must develop analytic systems that can identify better management options for the full range of monetized and non-monetized inputs, outputs and outcomes that are captured in the following framing question: How much valued service (e.g. food, materials, energy) can we draw from a landscape while maintaining adequate levels of other valued or necessary services (e.g. biodiversity, water, climate regulation, cultural services) including the long-term productivity of the land? This question is placed within our contemporary framing of valued services, but structured to illuminate the shifts required to achieve long-term sufficiency and planetary resilience. This framing also highlights the need for fundamentally new knowledge systems including information management infrastructures, which effectively support decision-making on landscapes. The purpose of this initiative by authors from diverse fields across government and academic science is to call attention to the need for a vision and investment in sustainability science for landscape management. Substantially enhanced capabilities are needed to compare and integrate information from diverse sources, collected over time that link choices made to meet our needs from landscapes to both short and long term consequences. To further the goal of an information infrastructure for sustainability science, three distinct but interlocking domains are best distinguished: 1) a domain of data, information and knowledge assets; 2) a domain that houses relevant models and tools in a curated

  12. Use of Sports Science Knowledge by Turkish Coaches

    Science.gov (United States)

    KILIC, KORAY; INCE, MUSTAFA LEVENT

    2015-01-01

    The purpose of this study is to examine the following research questions in Turkish coaching context: a) What are coaches’ perceptions on the application of sport science research to their coaching methods? b) What sources do coaches utilize to obtain the knowledge they need? c) What barriers do coaches encounter when trying to access and apply the knowledge they need for their sport? In addition, differences in research questions responses were examined based on gender, years of coaching experience, academic educational level, coaching certificate level, coaching team or individual sports, and being paid or unpaid for coaching. The participants were 321 coaches (255 men, 66 women) from diverse sports and coaching levels working in Ankara. The questionnaire “New Ideas for Coaches” by Reade, Rodgers and Hall (2008) was translated, adapted into Turkish, and validated for the current study. According to our findings among Turkish coaches, there is a high prevalence of beliefs that sport science contributes to sport (79.8%);however, there are gaps between what coaches are looking for and the research that is being conducted. Coaches are most likely to attend seminars or consult other coaches to get new information. Scientific publications were ranked very low by the coaches in getting current information. The barriers to coaches’ access to sport science research are finding out the sources of information, being able to implement the sport science knowledge into the field of coaching, lack of monetary support in acquiring knowledge, and language barriers. Also, differences in perceptions and preferences for obtaining new information were identified based on coaches’ gender, coaching contexts (i.e., professional-amateur), coaching settings (i.e., team/individual), and their other demographic characteristics (i.e., coaching experience, coaching educational level, and coaching certificate level). Future coach education programs should emphasize the development of

  13. Use of Sports Science Knowledge by Turkish Coaches.

    Science.gov (United States)

    Kilic, Koray; Ince, Mustafa Levent

    The purpose of this study is to examine the following research questions in Turkish coaching context: a) What are coaches' perceptions on the application of sport science research to their coaching methods? b) What sources do coaches utilize to obtain the knowledge they need? c) What barriers do coaches encounter when trying to access and apply the knowledge they need for their sport? In addition, differences in research questions responses were examined based on gender, years of coaching experience, academic educational level, coaching certificate level, coaching team or individual sports, and being paid or unpaid for coaching. The participants were 321 coaches (255 men, 66 women) from diverse sports and coaching levels working in Ankara. The questionnaire "New Ideas for Coaches" by Reade, Rodgers and Hall (2008) was translated, adapted into Turkish, and validated for the current study. According to our findings among Turkish coaches, there is a high prevalence of beliefs that sport science contributes to sport (79.8%);however, there are gaps between what coaches are looking for and the research that is being conducted. Coaches are most likely to attend seminars or consult other coaches to get new information. Scientific publications were ranked very low by the coaches in getting current information. The barriers to coaches' access to sport science research are finding out the sources of information, being able to implement the sport science knowledge into the field of coaching, lack of monetary support in acquiring knowledge, and language barriers. Also, differences in perceptions and preferences for obtaining new information were identified based on coaches' gender, coaching contexts (i.e., professional-amateur), coaching settings (i.e., team/individual), and their other demographic characteristics (i.e., coaching experience, coaching educational level, and coaching certificate level). Future coach education programs should emphasize the development of coaches

  14. Public understanding of science and the perception of nanotechnology: the roles of interest in science, methodological knowledge, epistemological beliefs, and beliefs about science

    International Nuclear Information System (INIS)

    Retzbach, Andrea; Marschall, Joachim; Rahnke, Marion; Otto, Lukas; Maier, Michaela

    2011-01-01

    In this article, we report data from an online questionnaire study with 587 respondents, representative for the adult U.S. population in terms of age, gender, and level of education. The aim of this study was to assess how interest in science and knowledge as well as beliefs about science are associated with risk and benefit perceptions of nanotechnology. The findings suggest that the U.S. public is still rather unfamiliar with nanotechnology. Those who have some knowledge mainly have gotten it from TV and the Internet. The content of current media reports is perceived as fairly positive. Knowledge of scientific methods is unrelated to benefit and risk perceptions, at least when other predictors are controlled. In contrast, positive beliefs about science (e.g., its impact on economy or health) and more sophisticated epistemological beliefs about the nature of scientific knowledge are moderately linked to more positive perceptions of nanotechnology. The only exception is the perception of scientific uncertainty: This is associated with less positive evaluations. Finally, higher engagement with science is associated with higher risk perceptions. These findings show that laypersons who are engaged with science and who are aware of the inherent uncertainty of scientific evidence might perceive nanotechnology in a somewhat more differentiated way, contrary to how it is portrayed in the media today.

  15. The Influence of Disciplines on the Knowledge of Science: A Study of the Nature of Science

    Directory of Open Access Journals (Sweden)

    B. Akarsu

    2010-06-01

    Full Text Available At least four factors affect pupils’ understanding of the nature of science: teachers’ specialization in different science areas (physics, chemistry, and biology, gender issues, teaching experience in elementary school environments, and the perspectives of acquiring necessary knowledge. This study is the introduction part of a research project which will be initiated soon. Four elementary science teachers participated in the study. The results reveal that participants’ views of the aspects of nature of science are not solely diverged, based on their major disciplines, but there exist significant distinctions according to gender differences.

  16. Opinions and Knowledge About Climate Change Science in High School Students

    DEFF Research Database (Denmark)

    Harker-Schuch, Inez; Henriksen, Christian Bugge

    2013-01-01

    in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans......This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students...... are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage...

  17. Open Science as a Knowledge Transfer strategy

    Science.gov (United States)

    Grigorov, Ivo; Dalmeier-Thiessen, Suenje

    2015-04-01

    Beyond providing basic understanding of how our Blue Planet functions, flows and breathes, the collection of Earth & Marine Research disciplines are of major service to most of today's Societal Challenges: from Food Security and Sustainable Resource Management, to Renewable Energies, Climate Mitigation & Ecosystem Services and Hazards. Natural Resources are a key commodity in the long-term strategy of the EU Innovation Union(1), and better understanding of the natural process governing them, as well as science-based management are seen as a key area for stimulating future economic growth. Such potential places responsibility on research project managers to devise innovative methods to ensure effective transfer of new research to public and private sector users, and society at large. Open Science is about removing all barriers to full sphere basic research knowledge and outputs, not just the publishable part of research but also the data, the software code, and failed experiments. The concept is central to EU's Responsible Research and Innovation philosophy(2), and removing barriers to basic research measurably contributes to the EU's Blue Growth Agenda(3). Despite the potential of the internet age to deliver on that promise, only 50% of today's basic research is freely available(4). The talk will demonstrate how and why Open Science can be a first, passive but effective strategy for any research project to transfer knowledge to society by allowing access and dicoverability to the full sphere of new knowledge, not just the published outputs. Apart from contributing to economic growth, Open Science can also optimize collaboration, within academia, assist with better engagement of citizen scientists into the research process and co-creation of solutions to societal challenges, as well as providing a solid ground for more sophisticated communication strategies and Ocean/Earth Literacy initiatives targeting policy makers and the public at large. (1)EC Digital Agenda

  18. Knowledge machines digital transformations of the sciences and humanities

    CERN Document Server

    Meyer, Eric T

    2015-01-01

    In Knowledge Machines, Eric Meyer and Ralph Schroeder argue that digital technologies have fundamentally changed research practices in the sciences, social sciences, and humanities. Meyer and Schroeder show that digital tools and data, used collectively and in distributed mode -- which they term e-research -- have transformed not just the consumption of knowledge but also the production of knowledge. Digital technologies for research are reshaping how knowledge advances in disciplines that range from physics to literary analysis. Meyer and Schroeder map the rise of digital research and offer case studies from many fields, including biomedicine, social science uses of the Web, astronomy, and large-scale textual analysis in the humanities. They consider such topics as the challenges of sharing research data and of big data approaches, disciplinary differences and new forms of interdisciplinary collaboration, the shifting boundaries between researchers and their publics, and the ways that digital tools promote o...

  19. Gaps in Science Content Knowledge Encountered during Teaching Practice: A Study of Early-Career Middle-School Science Teachers

    Science.gov (United States)

    Kinghorn, Brian Edward

    2013-01-01

    Subject-specific content knowledge is crucial for effective science teaching, yet many teachers are entering the field not fully equipped with all the science content knowledge they need to effectively teach the subject. Learning from practice is one approach to bridging the gap between what practicing teachers know and what they need to know.…

  20. Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components

    Science.gov (United States)

    Demirdögen, Betül

    2016-01-01

    The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…

  1. Analyzing Subject Disciplines of Knowledge Originality and Knowledge Generality for Library & Information Science

    Directory of Open Access Journals (Sweden)

    Mu-Hsuan Huang

    2007-12-01

    Full Text Available This study used bibliometric methods to analyze subject disciplines of knowledge originality and knowledge generality for Library and Information Science (LIS by using citing and cited documents from 1997 to 2006. We found that the major subject disciplines of knowledge originality and generality are still LIS, and computer science and LIS interact and influence each other closely. It is evident that number of subject disciplines of knowledge originality is higher than that of knowledge generality. The interdisciplinary characteristics of LIS are illustrated by variety areas of knowledge originality and knowledge generality. Because the number of received subject disciplines is higher than that of given subject disciplines, it suggests that LIS is an application-oriented research area. [Article content in Chinese

  2. Doing Science: A Theoretical Exposition of a Dualized Knowledge ...

    African Journals Online (AJOL)

    Doing Science: A Theoretical Exposition of a Dualized Knowledge Platform and the New University Entrant. ... International Journal of Development and Management Review ... And for core students of Science and Technology, the problematic of grasping the idea of the “other science” has been a daunting task.

  3. Enhancing Life Sciences Teachers' Biodiversity Knowledge

    African Journals Online (AJOL)

    This paper provides insights into how Life Sciences teachers in the Eastern Cape ..... Even simulations, in most cases they are quite artificial in the sense that the ... explain the concept of human impacts on biodiversity; and field activities were .... integrated and applied knowledge required for quality teaching (disciplinary, ...

  4. Thinking on the development of nuclear science and technology information in knowledge economy time

    International Nuclear Information System (INIS)

    Zhang Yue

    2010-01-01

    The arrival of knowledge-based economy has brought the opportunities and challenges for the development of nuclear science and technology information. In the knowledge economy environment, knowledge becomes the new driving force for economic development, and people's demand for nuclear science and technology expertise will significantly increase. So the role of nuclear science and technology intelligence services will become even more and more prominent. Meanwhile, with the rapid development of modem information technology, the informatization of human society is towards the development of digital and intelligent. This also will raise new demands for nuclear science and technology information work. Discusses the status of nuclear science and technology information work of own units under the knowledge-based economy condition, and puts forward some thought and suggestions on development of nuclear science and technology information work under the knowledge economy environment. (author)

  5. A critical narrative review of transfer of basic science knowledge in health professions education.

    Science.gov (United States)

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-02-08

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that

  6. Knowledge systems and the colonial legacies in African science education

    Science.gov (United States)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  7. Visualizing the nuclear science and technology knowledge domain

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Bruno Mattos Souza de Souza; Honaiser, Eduardo H.R. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)]. E-mails: brunomelo@ieee.org; ehonaiser@yahoo.com.br

    2007-07-01

    In this paper, a knowledge domain visualization approach is applied to the nuclear science and technology fields. A so-called concept density map based on the abstracts of the papers presented at the ICONE 14 is constructed. The concept map provides an overview of the nuclear science and technology fields by visualizing the associations between their main concepts. To analyze recent developments the concept map is compared with a concept map based on abstracts of earlier ICONE meetings. The analysis presented in the paper provides insight into the structure of the nuclear science and technology fields and into the most significant developments carried out during the last few years. (author)

  8. Multicultural chemistry and the nature of science: but what about knowledge?

    Science.gov (United States)

    Tan, Michael

    2012-09-01

    In response to Goff, Boesdorfer, and Hunter's article on the use of a multicultural approach to teaching chemistry and the nature of science, I forward this critical reflective essay to discuss more general curriculum aspects of the relationship between the nature of science and science education in school contexts. Taking a social realist perspective, I argue for a more nuanced understanding of the role of epistemology and ontology in science classrooms, and for a reconsideration of the role of knowledge in science classrooms.

  9. An Examination of Science Teachers' Knowledge Structures towards Technology

    Science.gov (United States)

    Bilici, Sedef Canbazoglu

    2016-01-01

    The purpose of the study was to examine science teachers' knowledge structures on technology, who participated in a TPACK-based Professional Development (PD) program. The PD program was executed in the summer of 2015-2016 academic year with 24 science teachers. Data was collected with the Word Association Test (WAT). A holistic case study approach…

  10. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  11. Transforming participatory science into socioecological praxis: valuing marginalized environmental knowledges in the face of the neoliberalization of nature and science

    Science.gov (United States)

    Brian J. Burke; Nik Heynen

    2014-01-01

    Citizen science and sustainability science promise the more just and democratic production of environmental knowledge and politics. In this review, we evaluate these participatory traditions within the context of (a) our theorization of how the valuation and devaluation of nature, knowledge, and people help to produce socio-ecological hierarchies, the uneven...

  12. Public's Knowledge of Science and Technology

    Science.gov (United States)

    Pew Research Center, 2013

    2013-01-01

    The public's knowledge of science and technology varies widely across a range of questions on current topics and basic scientific concepts, according to a new quiz by the Pew Research Center and "Smithsonian" magazine. About eight-in-ten Americans (83%) identify ultraviolet as the type of radiation that sunscreen protects against. Nearly…

  13. Knowledge about Sport and Exercise Science

    Science.gov (United States)

    Leal, Acácia Gonçalves Ferreira; Vancini, Rodrigo Luiz; Gentil, Paulo; Benedito-Silva, Ana Amélia; da Silva, Antonio Carlos; Campos, Mário Hebling; Andrade, Marilia Santos; de Lira, Claudio Andre Barbosa

    2018-01-01

    Purpose: The purpose of this paper was to assess the knowledge on sport and exercise science held by a sample of Brazilian physiotherapists, nutritionists and physical educators. Design/methodology/approach: A cross-sectional research design was used. The answers given by 1,147 professionals (300 physiotherapists, 705 physical educators and 142…

  14. Knowledge Translation: Moving Proteomics Science to Innovation in Society.

    Science.gov (United States)

    Holmes, Christina; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-06-01

    Proteomics is one of the pivotal next-generation biotechnologies in the current "postgenomics" era. Little is known about the ways in which innovative proteomics science is navigating the complex socio-political space between laboratory and society. It cannot be assumed that the trajectory between proteomics laboratory and society is linear and unidirectional. Concerned about public accountability and hopes for knowledge-based innovations, funding agencies and citizens increasingly expect that emerging science and technologies, such as proteomics, are effectively translated and disseminated as innovation in society. Here, we describe translation strategies promoted in the knowledge translation (KT) and science communication literatures and examine the use of these strategies within the field of proteomics. Drawing on data generated from qualitative interviews with proteomics scientists and ethnographic observation of international proteomics conferences over a 5-year period, we found that proteomics science incorporates a variety of KT strategies to reach knowledge users outside the field. To attain the full benefit of KT, however, proteomics scientists must challenge their own normative assumptions and approaches to innovation dissemination-beyond the current paradigm relying primarily on publication for one's scientific peers within one's field-and embrace the value of broader (interdisciplinary) KT strategies in promoting the uptake of their research. Notably, the Human Proteome Organization (HUPO) is paying increasing attention to a broader range of KT strategies, including targeted dissemination, integrated KT, and public outreach. We suggest that increasing the variety of KT strategies employed by proteomics scientists is timely and would serve well the omics system sciences community.

  15. Evaluating social science and humanities knowledge production: An exploratory analysis of dynamics in science systems

    NARCIS (Netherlands)

    van Hemert, P.P.; Nijkamp, P.; Verbraak, J.

    2009-01-01

    Knowledge is gaining increasing importance in modern-day society as a factor of production and, ultimately, growth. This article explores the dynamics in university knowledge production and its effect on the state of university-industry-policy exchange in the Netherlands. Science systems are said to

  16. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    Science.gov (United States)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was

  17. Parents' Metacognitive Knowledge: Influences on Parent-Child Interactions in a Science Museum Setting

    Science.gov (United States)

    Thomas, Gregory P.; Anderson, David

    2013-06-01

    Despite science learning in settings such as science museums being recognized as important and given increasing attention in science education circles, the investigation of parents' and their children's metacognition in such settings is still in its infancy. This is despite an individual's metacognition being acknowledged as an important influence on their learning within and across contexts. This research investigated parents' metacognitive procedural and conditional knowledge, a key element of their metacognition, related to (a) what they knew about how they and their children thought and learned, and (b) whether this metacognitive knowledge influenced their interactions with their children during their interaction with a moderately complex simulation in a science museum. Parents reported metacognitive procedural and conditional knowledge regarding their own and their children's thinking and learning processes. Further, parents were aware that this metacognitive knowledge influenced their interactions with their children, seeing this as appropriate pedagogical action for them within the context of the particular exhibit and its task requirements at the science museum, and for the child involved. These findings have implications for exhibit and activity development within science museum settings.

  18. Different People in Different Places - Secondary School Students' Knowledge About History of Science

    Science.gov (United States)

    Gandolfi, Haira Emanuela

    2018-05-01

    This article presents the results of an exploratory study of students' knowledge about scientists and countries' contributions to science, aiming at answering two research questions: "In which ways are students aware of the history of scientific development carried out by different people in different places of the world? What can be influencing and shaping their awareness?" Thus, this study aimed at depicting students' knowledge about History of Science (HOS), focusing on what they know about science being done by people and communities from different parts of the world and on how this knowledge is constructed through their engagement with school science. An exploratory research was carried out at two multicultural state secondary schools in London, UK, involving 200 students aged 12-15 (58.5% girls, 41.5% boys) and five science teachers. The method involved an initial exploration of students' knowledge about HOS through an open-ended survey, followed by classroom-based observations and semi-structured interviews with the participants. Results showed a disconnection between remembering scientists and knowing about their work and background, hinting at an emphasis on illustrative and decontextualised approaches towards HOS. Additionally, there was a lack of diversity in these students' answers in terms of gender and ethnicity when talking about scientists and countries in science. These findings were further analysed in relation to their implications for school science and for the fields of HOS, science education and public perception of science.

  19. Local knowledge, science, and institutional change: the case of desertification control in Northern China.

    Science.gov (United States)

    Yang, Lihua

    2015-03-01

    This article studies the influence of local knowledge on the impact of science on institutional change in ecological and environmental management. Based on an empirical study on desertification control in 12 counties in north China, the study found the following major results: (1) although there was a cubic relationship between the extent and effect of local knowledge, local knowledge significantly influenced the impact of science on institutional change; (2) local knowledge took effect mainly through affecting formal laws and regulations, major actors, and methods of desertification control in institutional change but had no significant impact on the types of property rights; and (3) local knowledge enhanced the impact of science on the results of desertification control through affecting the impact of science on institutional change. These findings provide a reference for researchers, policy makers, and practitioners, both in China and in other regions of the world, to further explore the influence of local knowledge on the impact of science on institutional change and the roles of local knowledge or knowledge in institutional change and governance.

  20. Traditional Knowledge of Western Herbal Medicine and Complex Systems Science.

    Science.gov (United States)

    Niemeyer, Kathryn; Bell, Iris R; Koithan, Mary

    2013-09-01

    Traditional knowledge of Western herbal medicine (WHM) supports experiential approaches to healing that have evolved over time. This is evident in the use of polyherb formulations comprised of crude plant parts, individually tailored to treat the cause of dysfunction and imbalance by addressing the whole person holistically. The challenge for WHM is to integrate science with traditional knowledge that is a foundation of the practice of WHM. The purpose of this paper is to provide a plausible theoretical hypothesis by applying complex systems science to WHM, illustrating how medicinal plants are complex, adaptive, environmentally interactive systems exhibiting synergy and nonlinear healing causality. This paper explores the conceptual congruence between medicinal plants and humans as complex systems coherently coupled through recurrent interaction. Complex systems science provides the theoretical tenets that explain traditional knowledge of medicinal plants while supporting clinical practice and expanding research and documentation of WHM.

  1. The Ways to Promote Pre-service Science Teachers’ Pedagogical Content Knowledge for Inquiry in Learning Management in Science Course

    Directory of Open Access Journals (Sweden)

    Siriphan Satthaphon

    2017-09-01

    Full Text Available This classroom action research aimed to study the ways to promote pre-service science teachers’ pedagogical content knowledge for inquiry (PCK for inquiry. The participants were 37 students who enrolled in Learning Management in Science course in academic year 2014. Multiple data sources including students’ lesson plans, reflective journals, teacher’s logs, and worksheets were collected. The inductive approach was used to analyze data. The findings revealed the ways to promote pre-service science teachers’ PCK for inquiry consisted of being teacher’s explicit role model ; providing students to reflect their practices that link between their knowledge and understandings ; reflection from video case ; collaboration between students and teacher in learning activities planning, and allowing students to practice in actual situation could be better influence students not only reflect their understandings but also design, and teach science through inquiry.

  2. Knowledge as a Cultural Product: From the Sociology of Scientific Knowledge to the Cultural Studies of Science

    Directory of Open Access Journals (Sweden)

    Ali Rabbani

    2014-03-01

    Full Text Available The main characteristic (feature of the sociology of knowledge and science is its emphasis on the culture and cultural analysis within the scientific and technological research. This study concerns with the study of two research fields in which new sociologists of science and technology have presented their cultural analysis. These two fields include: sociology of scientific knowledge and cultural studies of science.Sociology of scientific knowledge is the first school of thought which makes the content of scientific knowledge inclined to and compliant with the cultural and sociological analysis. In SSK, the main presupposition is that “the scientific knowledge is totally arbitrary.” Accordingly, the design and evaluation of scientific theories and claims are the consequence of social interests and cultural inclinations (trends, in a way that the scientific theories become a tool for the justification, legitimating, encouragement and contentment.At the early 1990s, with the rise of crisis (chaos within the explanations of sociology of scientific knowledge and a flood of criticism against it, the whole subjectivity of the field came to a standstill (reached an impasse and the initiatives in scientific research were replaced by different theoretical orientations like cultural studies. In contrast to the sociology of scientific knowledge, the cultural studies of science concerns with the rejection of “explanation” and, instead, focuses on the “meaning” and “understanding”. In other words, it has come back to an old dispute between explanatory and hermeneutic approaches and those  which pursue the regulative (legalistic comprehensiveness along the more positivistic lines.This emerging field emphasizes the issue that the uncertainty, instability, ambiguity (vagueness and difference must be given a more important role in sciences. Cultural studies of science gave rise to a change from the sociology of scientific knowledge to a new

  3. Knowledge Levels of Pre-Service Science Teachers on Radioactivity

    Directory of Open Access Journals (Sweden)

    Zehra Molu

    2016-09-01

    Full Text Available This study aims to determine the knowledge levels of pre-service science teachers about radioactivity. A knowledge test was administered to 56 pre-service science teachers participated in the General Chemistry I course in the fall semester of 2014-15 academic year. Papers derived from the pre-service science teachers were read and evaluated, and the responses were classified as “accurate", "misconception", "wrong" and "empty" categories for open-ended questions and the responses to the multiple-choice questions were classified as "right" and "wrong". The pre-service science teachers’ correct response rates were between 9 % (definition of “nuclear radiation” concept, question 15 and 86 % (radioactivity uses, question 14 in open-ended questions whereas in multiple choice questions the ratio of correct answers ranged from 5 % (concept definition and nuclear reactions, questions 21, 23 and 33 to 98 % (sample of concept, question 20. Students hold misconceptions on the radioactivity, warning picture, nuclear power plant (questions 1, 13, and 16; isotopes (question 4; natural and artificial nucleus reaction (question 6; age of the rocks (question 8; atomic bomb (question 10; hydrogen bomb (question 11 and core irradiation (question 15.

  4. Science teachers' knowledge development in the context of educational innovation

    NARCIS (Netherlands)

    Henze-Rietveld, Francina Adriana

    2006-01-01

    The research reported in this thesis is concerned with the knowledge development of a small sample of experienced science teachers in the context of a broad innovation in Dutch secondary education, including the introduction of a new syllabus on Public Understanding of Science. The aim of the study

  5. Perspectives of the Sociology of Scientific Knowledge and Science Education: a study of Education Journals

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Meglhioratti

    2018-04-01

    Full Text Available Despite the fact that Science Teaching emphasizes the importance of researches in Epistemology and History of Science and also covers social aspects of the scientific construction, there are still relatively very few studies which are systematically based on perspectives from the Sociology of Science or from the Sociology of Scientific Knowledge. In this article, it has been outlined a brief history of the sociological perspectives of scientific knowledge, characterizing them as differentiationist, antidifferentiationist and tranversalist. Then, a bibliographical study was developed in journals Qualis A1 and A2 in the area of “Teaching” of CAPES, with emphasis in Science Teaching, from 2007 to 2016, aiming to understand how the sociological perspectives are present in science education. The search for articles which articulate sociological aspects and Science Education was done through use of search engines emerging from the accomplished historic, among them: Sociology of Science, Sociology of Scientific Knowledge, Ethnography, Laboratory Studies, Strong Program, Scientific Fields, Scientific Ethos, Actor-Network Theory, Social and Technical Networks, Latour, Bloor, Merton and Bourdieu. Through this research, we have identified 46 articles which have approaches with the subject. The articles were investigated by Content Analysis and were organized in the units of analysis: 1 Foundations of the sociology of knowledge; 2 Scientific Ethos; 3 Science Working System; 4 Sociogenesis of knowledge; 5 Strong Program of Sociology of Knowledge; 6 Laboratory studies and scientific practice; 7 Actor-Network Theory; 8 Bourdieusian Rationale; 9 Non-Bourdieusian tranversalist approaches; 10 Notes regarding the Sociology of Science. The units of analysis with the greatest number of articles were "Laboratory Studies and Scientific Practice" and "Actor-Network Theory", both closer to an antidifferentiationist perspective of the sociology of science, in which

  6. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  7. Social justice pedagogies and scientific knowledge: Remaking citizenship in the non-science classroom

    Science.gov (United States)

    Lehr, Jane L.

    This dissertation contributes to efforts to rethink the meanings of democracy, scientific literacy, and non-scientist citizenship in the United States. Beginning with questions that emerged from action research and exploring the socio-political forces that shape educational practices, it shows why non-science educators who teach for social justice must first recognize formal science education as a primary site of training for (future) non-scientist citizens and then prepare to intervene in the dominant model of scientifically literate citizenship offered by formal science education. This model of citizenship defines (and limits) appropriate behavior for non-scientist citizens as acquiescing to the authority of science and the state by actively demarcating science from non-science, experts from non-experts, and the rational from the irrational. To question scientific authority is to be scientifically illiterate. This vision of 'acquiescent democracy' seeks to end challenges to the authority of science and the state by ensuring that scientific knowledge is privileged in all personal and public decision-making practices, producing a situation in which it becomes natural for non-scientist citizens to enroll scientific knowledge to naturalize oppression within our schools and society. It suggests that feminist and equity-oriented science educators, by themselves, are unable or unwilling to challenge certain assumptions in the dominant model of scientifically literate citizenship. Therefore, it is the responsibility of non-science educators who teach for social justice to articulate oppositional models of non-scientist citizenship and democracy in their classrooms and to challenge the naturalized authority of scientific knowledge in all aspects of our lives. It demonstrates how research in the field of Science & Technology Studies can serve as one resource in our efforts to intervene in the dominant model of scientifically literate citizenship and to support a model of

  8. An Ongoing Investigation of Science Literacy: Results of a 22-Year Study Probing Students' Knowledge and Attitude Towards Science

    Science.gov (United States)

    Impey, C.; Buxner, S.; Antonellis, J.; CATS

    2013-04-01

    This talk presents findings related to our ongoing work investigating students' knowledge and attitudes towards science and technology. We present an overview of research studies and findings including a comparison of the science literacy measures of University of Arizona students compared to national studies, conceptions related to astrology, views of radiation, and students' pseudoscience and religious beliefs. We discuss implications for instructors and researchers interested in improving students' science literacy scores and diagnosing alternative beliefs.

  9. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  10. Science, technique, technology: passages between matter and knowledge in imperial Chinese agriculture.

    Science.gov (United States)

    Bray, Francesca

    2008-09-01

    Many historians today prefer to speak of knowledge and practice rather than science and technology. Here I argue for the value of reinstating the terms science, techniques and technology as tools for a more precise analysis of governmentality and the workings of power. My tactic is to use these three categories and their articulations to highlight flows between matter and ideas in the production and reproduction of knowledge. In any society, agriculture offers a wonderfully rich case of how ideas, material goods and social relations interweave. In China agronomy was a science of state, the basis of legitimate rule. I compare different genres of agronomic treatise to highlight what officials, landowners and peasants respectively contributed to, and expected from, this charged natural knowledge. I ask how new forms of textual and graphic inscription for encoding agronomic knowledge facilitated its dissemination and ask how successful this knowledge proved when rematerialized and tested as concrete artefacts or techniques. I highlight forms of innovation in response to crisis, and outline the overlapping interpretative frameworks within which the material applications of Chinese agricultural science confirmed and extended its truth across space and time.

  11. No easy answers science and the pursuit of knowledge

    CERN Document Server

    Franklin, Allan

    2005-01-01

    In No Easy Answers, Allan Franklin offers an accurate picture of science to both a general reader and to scholars in the humanities and social sciences who may not have any background in physics. Through the examination of nontechnical case studies, he illustrates the various roles that experiment plays in science. He uses examples of unquestioned success, such as the discoveries of the electron and of three types of neutrino, as well as studies that were dead ends, wrong turns, or just plain mistakes, such as the “fifth force,” a proposed modification of Newton's law of gravity. Franklin argues that science is a reasonable enterprise that provides us with knowledge of the natural world based on valid experimental evidence and reasoned and critical discussion, and he makes clear that it behooves all of us to understand how it works.

  12. Quality knowledge of science through virtual laboratory as an element of visualization

    Science.gov (United States)

    Rizman Herga, Natasa

    Doctoral dissertation discusses the use of virtual laboratory for learning and teaching chemical concepts at science classes in the seventh grade of primary school. The dissertation has got a two-part structure. In the first theoretical part presents a general platform of teaching science in elementary school, teaching forms and methods of teaching and among modern approaches we highlight experimental work. Particular emphasis was placed on the use of new technologies in education and virtual laboratories. Scientific findings on the importance of visualization of science concepts and their triple nature of their understanding are presented. These findings represent a fundamental foundation of empirical research presented in the second part of the doctoral dissertation, whose basic purpose was to examine the effectiveness of using virtual laboratory for teaching and learning chemical contents at science from students' point of view on knowledge and interest. We designed a didactic experiment in which 225 pupils participated. The work was conducted in the experimental and control group. Prior to its execution, the existing school practice among science and chemistry teachers was analysed in terms of: (1) inclusion of experimental work as a fundamental method of active learning chemical contents, (2) the use of visualization methods in the classroom and (3) the use of a virtual laboratory. The main findings of the empirical research, carried out in the school year 2012/2013, in which 48 science and chemistry participated, are that teachers often include experimental work when teaching chemical contents. Interviewed science teachers use a variety of visualization methods when presenting science concepts, in particular computer animation and simulation. Using virtual laboratory as a new strategy for teaching and learning chemical contents is not common because teachers lack special-didactic skills, enabling them to use virtual reality technology. Based on the didactic

  13. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  14. Elementary teachers' knowledge and practices in teaching science to English language learners

    Science.gov (United States)

    Santau, Alexandra O.

    Efforts to improve education---more concretely science education---by creating fundamental shifts in standards for students and teachers have been launched by educators and policy makers in recent years. The new standards for science instruction address improvements in student learning, program development, assessment, and professional development for teachers, with the goal to prepare US students for the academic demands of the 21st century. The study examined teachers' knowledge and practices in science instruction with English language learning (ELL) students. It also examined relationships among key domains of science instruction with ELL students, as well as profiles of teaching practices. The four domains included: (1) teachers' knowledge of science content, (2) teaching practices to promote scientific understanding, (3) teaching practices to promote scientific inquiry, and (4) teaching practices to support English language development during science instruction. The study was part of a larger 5-year research and development intervention aimed at promoting science and literacy achievement of ELL students in urban elementary schools. The study involved 32 third grade, 21 fourth grade, and 17 fifth grade teachers participating in the first-year implementation of the intervention. Based on teachers' questionnaire responses, classroom observation ratings, and post-observation interviews, results indicated that (1) teachers' knowledge and practices were within the bounds of the intervention, but short of reform-oriented practices and (2) relationships among the four domains existed, especially at grade 5. These findings can provide insights for professional development and future research, along with accountability policies.

  15. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  16. Earth Science Data Analytics: Preparing for Extracting Knowledge from Information

    Science.gov (United States)

    Kempler, Steven; Barbieri, Lindsay

    2016-01-01

    Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to

  17. TEACHERS’ EXPERIENCES IN INCORPORATING STUDENTS’ FUNDS OF KNOWLEDGE TO PROMOTE THE LEARNING OF SCIENCE

    Directory of Open Access Journals (Sweden)

    Rohandi Rohandi

    2014-10-01

    Full Text Available Abstrak: Salah satu bidang kajian menarik bagi pendidik bidang sains di negara berkembang dan dalam budaya timur (non-Western adalah hakikat interaksi antara praktik tradisi dan keyakinan yang ada di masyarakat tempat siswa tinggal dan sains yang diajarkan di sekolah. Penelitian ini bertujuan untuk mempertimbangkan isu-isu budaya dalam konteks pembelajaran sains di Indonesia. Keterkaitan antara budaya siswa, pengalaman siswa di rumah, dan pengalaman pengetahuan siswa yang diidentifikasi sebagai funds of knowledge, telah diintegrasikan ke dalam pembelajaran sains. Penelitian ini berlangsung di dua SMP di Indonesia. Dua guru dan 173 siswa (94 laki-laki dan 79 perempuan berpartisipasi dalam penelitian ini. Hasil penelitian ini menunjukan bahwa kecocokan antara pengalaman hidup siswa, tingkat pengetahuan, dan konsep ilmu pengetahuan dapat menjadi faktor utama dalam menjaga keberlanjutan pembelajaran ilmiah pada kelas sains. Hal ini penting untuk mengembangkan pengajaran dan pembelajaran sains yang menekankan pada penggabungan pengetahuan siswa, terutama dalam menyajikan ilmu yang relevan dengan siswa kehidupan sehari-hari. Kata Kunci: funds of knowledge, sekolah menengah, pembelajaran sains PENGALAMAN GURU DALAM MENGINTEGRASIKAN PENGALAMAN BUDAYA SISWA UNTUK MENINGKATKAN BELAJAR SAIN Abstract: One area of interest for science educators in developing countries and in non-Western settings is the nature of interaction between traditional practices and beliefs existing in the communities in which students live and the science taught in schools. The purpose of this study is to consider cultural issues in the context of the teaching of science in Indonesia. The connection between students’ culture, home experiences and experiential knowledge of students which is identified as funds of knowledge have been incorporated into learning science. This study took place within two sub-urban Junior High Schools in Indonesia. Two teachers and 173 students (94

  18. Science and democracy: making knowledge and making power in the biosciences and beyond

    NARCIS (Netherlands)

    Hilgartner, S.; Miller, C.; Hagendijk, R.

    2015-01-01

    In the life sciences and beyond, new developments in science and technology and the creation of new social orders go hand in hand. In short, science and society are simultaneously and reciprocally coproduced and changed. Scientific research not only produces new knowledge and technological systems

  19. The Effects of a STEM Intervention on Elementary Students' Science Knowledge and Skills

    Science.gov (United States)

    Cotabish, Alicia; Dailey, Debbie; Robinson, Ann; Hughes, Gail

    2013-01-01

    The purpose of the study was to assess elementary students' science process skills, content knowledge, and concept knowledge after one year of participation in an elementary Science, Technology, Engineering, and Mathematics (STEM) program. This study documented the effects of the combination of intensive professional development and the use of…

  20. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    Science.gov (United States)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  2. Action-research and the elaboration of teaching knowledge in sciences

    Directory of Open Access Journals (Sweden)

    Maria Nizete de Azevedo

    Full Text Available In this paper we analyze the way in which a training process, in which the methodological option approaches an action-research in teacher education, contributes with the elaboration of teaching knowledge in sciences by a group of teachers of the initial school years. In colaborative situations of teaching knowledge, those teachers elect education problems, for which they seek for solutions through planned, developed and reflected actions. We explored data obtained from a wide research, realized in a public school which took as basis this formative process. The results analysed under a qualitative approach show that the action-research contributes with the elaboration of the teaching knowledge, creating situations of learning necessary to the organization and development of education. We identified important knowledge related to indicating elements of learning about teaching, such as self-organization and formation, the disposition to study and to research, a way to teach sciences through investigative activities, the construction of cooperative practice at school, the articulation of science teaching with the alphabetization process in the native language, the consideration of the school's social and cultural context in its teaching plans, among others. Those results take us to reinforce the potential of action-research on teacher’s formation and on the improvement of the practiced teaching.

  3. The use of social science knowledge in implementing the Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1989-01-01

    This study investigates the use of social science knowledge by the Office of Civilian Radioactive Waste Management (OCRWM), a division of the U.S. Department of Energy (DOE), in implementing the Nuclear Waste Policy Act of 1982. The use of social science is examined both generally and in relation to a body of knowledge most relevant to the program, the social science risk literature. The study is restricted to the use by headquarters staff in relation to the largest repository and Monitored Retrievable Storage (MRS) projects. The literature on knowledge utilization and the Sabatier framework on knowledge use and policy learning provide the theoretical framework for the study. The research adopts a multistrategy approach, collecting data from two sources: (1) program documents, policy guidance, and meeting records; and (2) interviews with OCRWM officials. The constructs knowledge and use are conceptualized in different ways, each of which forms the basis for a different analytic approach. The research findings showed a very limited use of social science, more especially by the first repository program. Two reasons are advanced. First, the agency has viewed social science knowledge through technical lens and has applied an approach suited to technical problems to its structuring of waste management policy problems. Second, the degree of societal conflict over nuclear power and nuclear waste has prevented a constructive dialogue among the parties and thus reduced the possibility of policy learning

  4. Valid and Reliable Science Content Assessments for Science Teachers

    Science.gov (United States)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-01-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…

  5. Very long-term retention of basic science knowledge in doctors after graduation.

    Science.gov (United States)

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  6. The gap in scientific knowledge and role of science communication in South Korea.

    Science.gov (United States)

    Chang, Jeong-Heon; Kim, Sei-Hill; Kang, Myung-Hyun; Shim, Jae Chul; Ma, Dong Hoon

    2017-01-01

    Using data from a national survey of South Koreans, this study explores the role of science communication in enhancing three different forms of scientific knowledge ( factual, procedural, and subjective). We first assess learning effects, looking at the extent to which citizens learn science from different channels of communication (interpersonal discussions, traditional newspapers, television, online newspapers, and social media). We then look into the knowledge gap hypothesis, investigating how different communication channels can either widen or narrow the gap in knowledge between social classes. Television was found to function as a "knowledge leveler," narrowing the gap between highly and less educated South Koreans. The role of online newspapers in science learning is pronounced in our research. Reading newspapers online indicated a positive relationship to all three measures of knowledge. Contrary to the knowledge-leveling effect of television viewing, reading online newspapers was found to increase, rather than decrease, the gap in knowledge. Implications of our findings are discussed in detail.

  7. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  8. The neglected heart of science policy (revisited): Balancing knowledge and action in an age of science and technology

    Science.gov (United States)

    Parris, A. S.; Ferguson, D. B.

    2016-12-01

    In the U.S., the need for effective scientist-decision maker engagement is explicitly endorsed at the highest levels of national science policy-making, including the annual research and development priorities memo of the Executive Office for fiscal year 2017. The call from the Executive Office formalizes a long-standing recognition, among a minority of scientists and practitioners, that the public value of research activities may be enhanced through engagement between scientists and decision makers. However, engagement is often embedded in research efforts, despite the fact that the ability to foster relationships and improve knowledge exchange has progressed primarily through boundary spanning efforts. Consequently, sound practice for engagement is not adequately considered in the design of new institutions, programs, and career development tracks. This gap illustrates a lack of formal learning in science policy and is critical because engagement and, specifically, co-production of knowledge are proving effective in adapting to global change. We examined over 10 different case studies spanning urban planning, natural resource management, and water management. In each case, deliberate strategies were employed to encourage decision maker-scientist engagement, including the formation of new organizations, innovative design of research projects, and training and education for professionals to participate in engagement efforts. Individual cases reveal several outcomes, including but not limited to: increased awareness of risk; information that enabled adaptation or resilience choices; exchange between decision makers from different sectors leading to more coordinated responses to natural resource impacts; and mediation for responsible use of science. Collectively, the body of evidence suggests that engagement may be most important not necessarily in reconciling supply and demand for science, but rebalancing knowledge and action in an age of science and technology.

  9. Knowledge of Webloging among Library Science Students: The ...

    African Journals Online (AJOL)

    The study focused on investigating the knowledge of weblogging among library science students in Federal Polytechnic, Nekede. The study used descriptive survey research design. A purposive sampling technique was used to select 115 students among the final year students. A structured questionnaire was developed ...

  10. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  11. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  12. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Science.gov (United States)

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  13. Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution)

    Science.gov (United States)

    Taber, Keith S.

    2017-03-01

    Lisa Borgerding's work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.

  14. Assessing Bilingual Knowledge Organization in Secondary Science Classrooms =

    Science.gov (United States)

    Wu, Jason S.

    Improving outcomes for English language learners (ELLs) in secondary science remains an area of high need. The purpose of this study is to investigate bilingual knowledge organization in secondary science classrooms. This study involved thirty-nine bilingual students in three biology classes at a public high school in The Bronx, New York City. Methods included an in-class survey on language use, a science content and English proficiency exam, and bilingual free-recalls. Fourteen students participated in bilingual free-recalls which involved a semi-structured process of oral recall of information learned in science class. Free-recall was conducted in both English and Spanish and analyzed using flow-map methods. Novel methods were developed to quantify and visualize the elaboration and mobilization of ideas shared across languages. It was found that bilingual narratives displayed similar levels of organizational complexity across languages, though English recalls tended to be longer. English proficiency was correlated with narrative complexity in English. There was a high degree of elaboration on concepts shared across languages. Finally, higher Spanish proficiency correlated well with greater overlapping elaboration across languages. These findings are discussed in light of current cognitive theory before presenting the study's limitations and future directions of research.

  15. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    Science.gov (United States)

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  16. [Construction of inheritance way of acupuncture and moxibustion science based on tacit knowledge].

    Science.gov (United States)

    Shen, Mei-Hong; Dong, Qin

    2013-03-01

    The conception and characteristics of tacit knowledge and the tacit knowledge in the science of acupuncture-moxibustion are analyzed in this paper. It is proposed that the attention should be paid to digging the tacit knowledge in the science of acupuncture-moxibustion and constructing the corresponding inheritance way, which could effectively improve the students' cultivation quality and reach the aim of talent cultivation centered on the clinical thinking ability, acupuncture operation skill and clinical innovation ability.

  17. Formative science and indicial science: epistemological proposal for information science

    Directory of Open Access Journals (Sweden)

    Eliany Alvarenga de Araújo

    2006-07-01

    Full Text Available Epistemological reflections on the Information Science as scientific field that if structure in the context of modern science, in theoretical and methodological terms and technologies of the information in applied terms. Such configuration made possible the sprouting of this science; however we consider that the same one will not guarantee to this science the full development as field of consistent and modern knowledge. Modern Science, while scientific practical vision and meets depleted and the information technologies are only auto-regulated mechanisms that function according to principles of automatisms. To leave of these considerations we propols the concept of Formative Science (Bachelard, 1996 and the Indiciario Paradigm (1991 with epistemological basis for the Information Science. The concept of formative science if a base on the principles of tree states of the scientific spirit and the psychological condition of the scientific progress and the indiciario paradigm it considers the intuição (empirical and rational as methodological base to make it scientific.

  18. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  19. States of knowledge the co-production of science and the social order

    CERN Document Server

    2004-01-01

    In the past twenty years, the field of science and technology studies (S&TS) has made considerable progress toward illuminating the relationship between scientific knowledge and political power. These insights are now ready to be synthesized and presented in forms that systematically highlight the connections between S&TS and other social sciences. This timely collection of essays by leading scholars in the field meets this challenge. The book develops the theme of 'co-production', showing how scientific knowledge both embeds and is embedded in social identities, institutions, representations and discourses. Accordingly, the authors argue, ways of knowing the world are inseparably linked to the ways in which people seek to organize and control it. Through studies of emerging knowledges, research practices and political institutions, the authors demonstrate that the idiom of co-production importantly extends the vocabulary of the traditional social sciences, offering fresh analytic perspectives on the...

  20. Development and Nature of Preservice Chemistry Teachers' Pedagogical Content Knowledge for Nature of Science

    Science.gov (United States)

    Demirdöğen, Betül; Hanuscin, Deborah L.; Uzuntiryaki-Kondakci, Esen; Köseoğlu, Fitnat

    2016-08-01

    The purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for teaching nature of science (NOS). Thirty preservice chemistry teachers enrolled in a Research in Science Education course participated in the study. Qualitative data sources included responses to an open-ended instrument, interviews, observations, and artifacts such as lesson plans and reflection papers. Through the in-depth analysis of explicit PCK and constant comparative method of analysis, we identified the influence of the intervention on participants' PCK for NOS. Analysis of data revealed four major themes related to the nature of preservice chemistry teachers' NOS teaching practices and their PCK for NOS: (1) prerequisite knowledge and beliefs are necessary to teach NOS, (2) there is a developmental progression of PCK for NOS from knowledge to application level, (3) teachers need some comfort in their NOS understanding to teach NOS, and (4) the higher integration of PCK components leads to successful NOS teaching practices. Implications for science teacher education and research are discussed.

  1. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  2. Review of Cold war social science: Knowledge production, liberal democracy, and human nature, and Working knowledge: Making the human sciences from Parsons to Kuhn.

    Science.gov (United States)

    Erickson, Paul

    2013-11-01

    Reviews the books, Cold War Social Science: Knowledge Production, Liberal Democracy, and Human Nature by Mark Solovey and Hamilton Cravens (2012) and Working Knowledge: Making the Human Sciences From Parsons to Kuhn by Joel Isaac (see record 2012-13212-000). Taken together, these two important books make intriguing statements about the way to write the histories of fields like psychology, sociology, anthropology, and economics in the Anglo American world during the 20th century. To date, histories of these fields have drawn on a number of fairly well-established punctuation marks to assist in periodization: the shift from interwar institutionalism in economics to postwar neoclassicism, with its physics-like emphasis on mathematical theory-building; the transition from the regnant prewar behaviorism through a postwar "cognitive revolution" in American psychology; and the move in fields like sociology and anthropology away from positivism and the pursuit of what has sometimes been called "grand theory" in the early postwar era toward a period defined by intellectual and political fragmentation, the reemergence of interpretive approaches and a reaction to the scientistic pretensions of the earlier period. These books, by contrast, provide perspectives orthogonal to such existing narrative frameworks by adopting cross-cutting lenses like the "Cold War" and the working practices of researchers in the social and behavioral sciences. As a result, they do much to indicate the value of casting a historiographical net beyond individual disciplines, or even beyond the "social sciences" or the "human sciences" sensu stricto, in the search for deeper patterns of historical development in these fields. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  4. Undergraduate honors students' images of science: Nature of scientific work and scientific knowledge

    Science.gov (United States)

    Wallace, Michael L.

    This exploratory study assessed the influence of an implicit, inquiry-oriented nature of science (NOS) instructional approach undertaken in an interdisciplinary college science course on undergraduate honor students' (UHS) understanding of the aspects of NOS for scientific work and scientific knowledge. In this study, the nature of scientific work concentrated upon the delineation of science from pseudoscience and the value scientists place on reproducibility. The nature of scientific knowledge concentrated upon how UHS view scientific theories and how they believe scientists utilize scientific theories in their research. The 39 UHS who participated in the study were non-science majors enrolled in a Honors College sponsored interdisciplinary science course where the instructors took an implicit NOS instructional approach. An open-ended assessment instrument, the UFO Scenario, was designed for the course and used to assess UHS' images of science at the beginning and end of the semester. The mixed-design study employed both qualitative and quantitative techniques to analyze the open-ended responses. The qualitative techniques of open and axial coding were utilized to find recurring themes within UHS' responses. McNemar's chi-square test for two dependent samples was used to identify whether any statistically significant changes occurred within responses from the beginning to the end of the semester. At the start of the study, the majority of UHS held mixed NOS views, but were able to accurately define what a scientific theory is and explicate how scientists utilize theories within scientific research. Postinstruction assessment indicated that UHS did not make significant gains in their understanding of the nature of scientific work or scientific knowledge and their overall images of science remained static. The results of the present study found implicit NOS instruction even with an extensive inquiry-oriented component was an ineffective approach for modifying UHS

  5. Can citizen science enhance public understanding of science?

    Science.gov (United States)

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  6. Scientific knowledge and environmental policy. Why science needs values. Environmental essay

    Energy Technology Data Exchange (ETDEWEB)

    Carolan, M.S. [Department of Sociology, Colorado State University, Fort Collins (United States)

    2006-12-15

    While the term 'science' is evoked with immense frequency in the political arena, it continues to be misunderstood. Perhaps the most repeated example of this - particularly when dealing with environmental policy and regulatory issues - is when science is called upon to provide the unattainable: namely, proof. What is scientific knowledge and, more importantly, what is it capable of providing us? These questions must be answered - by policymakers, politicians, the public, and scientists themselves - if we hope to ever resolve today's environmental controversies in a just and equitable way. This paper begins by critically examining the concepts of uncertainty and proof as they apply to science. Discussion then turns to the issue of values in science. This is to speak of the normative decisions that are made routinely in the environmental sciences (but often without them being recognized as such). To conclude, insights are gleaned from the preceding sections to help us understand how science should be utilized and conducted, particularly as it applies to environmental policy.

  7. Pluralism in Search of Sustainability: Ethics, Knowledge and Methdology in Sustainability Science

    Directory of Open Access Journals (Sweden)

    Ellinor Isgren

    2017-02-01

    Full Text Available Sustainability Science is an emerging, transdisciplinary academic field that aims to help build a sustainable global society by drawing on and integrating research from the humanities and the social, natural, medical and engineering sciences. Academic knowledge is combined with that from relevant actors from outside academia, such as policy-makers, businesses, social organizations and citizens. The field is focused on examining the interactions between human, environmental, and engineered systems to understand and contribute to solutions for complex challenges that threaten the future of humanity and the integrity of the life support systems of the planet, such as climate change, biodiversity loss, pollution, and land and water degradation. Since its inception in around the year 2000, and as expressed by a range of proponents in the field, sustainability science has become an established international platform for interdisciplinary research on complex social problems [1]. This has been done by exploring ways to promote ‘greater integration and cooperation in fulfilling the sustainability science mandate’ [2]. Sustainability science has thereby become an extremely diverse academic field, yet one with an explicit normative mission. After nearly two decades of sustainability research, it is important to reflect on a major question: what critical knowledge can we gain from sustainability science research on persistent socio-ecological problems and new sustainability challenges?

  8. Contribution for the teaching of natural sciences: Mapuche and school knowledge

    Directory of Open Access Journals (Sweden)

    Segundo Quintriqueo M.

    2014-12-01

    Full Text Available Within the context of Mapuche families and communities, this paper focuses on the relationship between knowledge and educational methods in teaching the natural sciences. It aims to identify educational methods that have been forged and re-forged in connection with the social, cultural, political, economical and spiritual development experienced by Mapuche communities. Our educational research methodology is based on a qualitative approach in order to unveil the subjective and inter-subjective dimensions that characterize the subjects' educational knowledge in their life context. Our fieldwork has been carried out from a sample of interviews conducted with Mapuche wise men (sabios living in the Araucanía. The results of the study are divided in four categories: 1 Relationship towards the natural environment; 2 Knowledge regarding living beings; 3 Küyen cycle (phases of the Moon; and finally, 4 Healthy lifestyle. The collected data have allowed us to link different contents (conceptual, practical and attitudinal underlying the proper Mapuche educational methods to underline their rationalities with reference to core knowledge. Thus, we want to make a case for an epistemological basis substantiating the teaching of natural sciences in relation to Mapuche knowledge. This will allow us to contextualize natural science teaching within the framework of an intercultural educational approach. By doing so, we aim to establish an intellectual dialogue in a context of interethnic and intercultural relationships.

  9. Scientific and Cultural Knowledge in Intercultural Science Education: Student Perceptions of Common Ground

    Science.gov (United States)

    Gondwe, Mzamose; Longnecker, Nancy

    2015-02-01

    There is no consensus in the science education research community on the meanings and representations of western science and indigenous knowledge or the relationships between them. How students interpret these relationships and their perceptions of any connections has rarely been studied. This study reports student perceptions of the meaning and relationship between scientific and cultural knowledge. Personal meaning maps adapted for small groups were conducted in seven culturally diverse schools, school years 7-9 (with students aged 12-15 years) ( n = 190), with six schools in Western Australia and one school in Malawi, Africa. Of the six Australian school groups, two comprised Australian Aboriginal students in an after-school homework programme and the other four schools had a multicultural mix of students. Students in this study identified connections between scientific and cultural knowledge and constructed connections from particular thematic areas—mainly factual content knowledge as opposed to ideas related to values, attitudes, beliefs and identity. Australian Aboriginal students made fewer connections between the two knowledge domains than Malawian students whose previous science teacher had made explicit connections in her science class. Examples from Aboriginal culture were the most dominant illustrations of cultural knowledge in Australian schools, even in school groups with students from other cultures. In light of our findings, we discuss the construction of common ground between scientific knowledge and cultural knowledge and the role of teachers as cultural brokers and travel agents. We conclude with recommendations on creating learning environments that embrace different cultural knowledges and that promote explicit and enquiring discussions of values, attitudes, beliefs and identity associated with both knowledge domains.

  10. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  11. Science and democracy making knowledge and making power in the biosciences and beyond

    CERN Document Server

    Miller, Clark A; Hagendijk, Rob

    2015-01-01

    In the life sciences and beyond, new developments in science and technology and the creation of new social orders go hand in hand. In short, science and society are simultaneously and reciprocally coproduced and changed. Scientific research not only produces new knowledge and technological systems but also constitutes new forms of expertise and contributes to the emergence of new modes of living and new forms of exchange.

  12. Eliciting and utilizing rural students' funds of knowledge in the service of science learning: An action research study

    Science.gov (United States)

    Lloyd, Ellen M.

    Several researchers have pointed out the failures of current schooling to adequately prepare students in science and called for radical reform in science education to address the problem. One dominant critique of science education is that several groups of students are not well served by current school science practices and discourses. Rural students represent one of these underserved populations. Yet, there is little in the literature that speaks specifically to reforming the science education of rural students. Utilizing action research as a methodology, this study was designed to learn more about the unique knowledge and life experiences of rural students, and how these unique knowledge, skills and interests could suggest new ways to improve science education in rural schools. Informed by this ultimate goal, I created an after school science club where the participating high school students engaged in solving a local watershed problem, while explicitly bringing to bear their unique backgrounds, local knowledge and life experiences from living in a rural area of Upstate New York. Using Funds of Knowledge as the theoretical framework, this after-school club served as the context to investigate the following research questions: (1) What science-related funds of knowledge do rural high school students have? (2) How were these funds of knowledge capitalized on to support science learning in an after-school setting?

  13. Developing Content Knowledge in Students Through Explicit Teaching of the Nature of Science: Influences of Goal Setting and Self-Monitoring

    Science.gov (United States)

    Peters, Erin E.

    2012-06-01

    Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to determine if both nature of science knowledge and content knowledge could be increased with an explicit, reflective nature of science intervention utilizing self-regulation over an implicit group. Results showed that the explicit group significantly outperformed the implicit group on both nature of science and content knowledge assessments. Students in the explicit group also demonstrated a greater use of detail in their inquiry work and reported a higher respect for evidence in making conclusions than the implicit group. Implications suggest that science educators could enhance nature of science instruction using goal setting and self-monitoring of student work during inquiry lessons.

  14. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  15. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  16. Knowledge gain and behavioral change in citizen-science programs.

    Science.gov (United States)

    Jordan, Rebecca C; Gray, Steven A; Howe, David V; Brooks, Wesley R; Ehrenfeld, Joan G

    2011-12-01

    Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. ©2011 Society for Conservation Biology.

  17. Editorial. The 'Beauty Fallacy' Religion, science and the aesthetics of knowledge

    Directory of Open Access Journals (Sweden)

    Arianna Borrelli

    2017-11-01

    Full Text Available The relationship between science and religion has been, and still is, the subject of much discussion, both among scholars of religion and among historians and philosophers of science. Despite the cultural and historical complexity of the issue, since the nineteenth century the question of the interaction between science and religion has been constantly framed in the rather simple terms of their mutual ‘compatibility’ or ‘exclusion’. The historical roots of such discussions are entwined with the emergence both of modern science as a practice and an ideal, and of the field of the cultural study of religion. It was in the modern period that the assertion of the existence of a ‘conflict’ between science and religion emerged and a series of binary oppositions were constructed, such as those between ‘rational’ scientific knowledge and ‘irrational’ religious belief, or between an ‘objective’ scientific representation of reality and the poetic imagination allegedly characteristic of religious traditions and mythology.

  18. The Impact of a Short-Term Pharmacology Enrichment Program on Knowledge and Science Attitudes in Precollege Students

    Directory of Open Access Journals (Sweden)

    Molly N Downing

    2016-06-01

    Full Text Available As our nation and the global economy place an increased demand for science, technology, engineering, and mathematics (STEM jobs, science educators must implement innovative approaches to pique precollege student’s interests in these careers. Pharmacology remains a relevant and engaging platform to teach biology and chemistry concepts, and this strategy applied over several months in the formal classroom increases science literacy in high school students. In order to improve the affordability and accessibility of this educational approach, we developed and assessed the impact of a short-term pharmacology day camp, ‘Pills, Potions, and Poisons’ (PPP, on high school students’ science knowledge and attitudes toward science careers. The PPP program was offered annually from 2009 through 2012, and participants spent 6 days learning about pharmacology and careers in the biomedical sciences. All PPP student participants (n=134 completed surveys assessing their basic science knowledge and science attitudes before and after the program. Students achieved significant gains in their science knowledge by the end (Day 6 of the PPP program (from 41% mean test score to 65%; p<0.001. In addition, the majority of participants agreed or strongly agreed that the PPP program positively impacted their attitudes toward science (p<0.001. This study provides evidence that a short-term pharmacology-centered science enrichment program can achieve significant gains in participant’s science knowledge as well as motivation and confidence towards science careers. Moreover, we report benefits experienced by the undergraduate, graduate, and professional pharmacy student teaching assistants (TAs, n=10 who reported improved communication skills and an increased interest in future educational work.   Type: Original Research

  19. The Knowledge Capsules: Very Short Films on Earth Science for Mainstream Audiences

    Science.gov (United States)

    Kerlow, Isaac

    2015-04-01

    The Knowledge Capsules are outreach and communication videos that present practical science research to mainstream audiences and take viewers on a journey into different aspects of Earth science and natural hazards. The innovative shorts are the result of an interdisciplinary development and production process. They include a combination of interviews, visualizations of scientific research, and documentation of fieldwork. They encapsulate research insights about volcanoes, tsunamis, and climate change in Southeast Asia. These short films were actively distributed free-of-charge during 2012-2014 and all of them are available online. The paper provides an overview of the motivations, process and accomplished results. Our approach for producing the Knowledge Capsules includes: an engaging mix of information and a fresh delivery style, a style suitable for a primary audience of non-scientists, a simple but experientially rich production style, Diagrams and animations based on the scientists' visuals, and a running time between five and twenty minutes. The completed Knowledge Capsules include: "Coastal Science" on Coastal Hazards, "The Ratu River Expedition" on Structural Geology, "Forensic Volcano Petrology by Fidel Costa, Volcano Petrology, "A Tale of Two Tsunamis" on Tsunami Stratigraphy, "Unlocking Climate Secrets" on Marine Geochemistry, and "Earth Girl 2: A Casual Strategy Game to Prepare for the Tsunami" on Natural Hazards and Science Outreach.

  20. Science as Knowledge, Practice, and Map Making: The Challenge of Defining Metrics for Evaluating and Improving DOE-Funded Basic Experimental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1993-03-01

    Industrial R&D laboratories have been surprisingly successful in developing performance objectives and metrics that convincingly show that planning, management, and improvement techniques can be value-added to the actual output of R&D organizations. In this paper, I will discuss the more difficult case of developing analogous constructs for DOE-funded non-nuclear, non-weapons basic research, or as I will refer to it - basic experimental science. Unlike most industrial R&D or the bulk of applied science performed at the National Renewable Energy Laboratory (NREL), the purpose of basic experimental science is producing new knowledge (usually published in professional journals) that has no immediate application to the first link (the R) of a planned R&D chain. Consequently, performance objectives and metrics are far more difficult to define. My claim is that if one can successfully define metrics for evaluating and improving DOE-funded basic experimental science (which is the most difficult case), then defining such constructs for DOE-funded applied science should be much less problematic. With the publication of the DOE Standard - Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92) and the development of a conceptual framework for integrating all the DOE orders, we need to move aggressively toward the threefold next phase: (1) focusing the management elements found in DOE-ER-STD-6001-92 on the main output of national laboratories - the experimental science itself; (2) developing clearer definitions of basic experimental science as practice not just knowledge; and (3) understanding the relationship between the metrics that scientists use for evaluating the performance of DOE-funded basic experimental science, the management elements of DOE-ER-STD-6001-92, and the notion of continuous improvement.

  1. Knowledge, language and subjectivities in a discourse community: Ideas we can learn from elementary children about science

    Science.gov (United States)

    Kurth, Lori Ann

    2000-10-01

    In light of continuing poor performance by American students in school science, feminists and sociocultural researchers have demonstrated that we need to look beyond content to address the science needs of all school children. In this study I examined issues of discourse norms, knowledge, language and subjectivities (meaning personal and social observations and characteristics) in elementary science. Over a two-year period, I used an interpretive methodological approach to investigate science experiences in two first-second and second grade classrooms. I first established some of the norms and characteristics of the discourse communities through case studies of new students attempting to gain entry to whole class conversations. I then examined knowledge, a central focus of science education addressed by a variety of theoretical approaches. In these classrooms students co-constructed and built knowledge in their whole class science conversations sometimes following convergent (similar knowledge) and, at other times, divergent (differing knowledge) paths allowing for broader discourse. In both paths, there was gendered construction of knowledge in which same gender students elaborated the reasoning of previous speakers. In conjunction with these analyses, I examined what knowledge sources the students used in their science conversations. Students drew on a variety of informal and formal knowledge sources including personal experiences, other students, abstract logic and thought experiments, all of which were considered valid. In using sources from both in and out of school, students' knowledge bases were broader than traditional scientific content giving greater access and richness to their conversations. The next analysis focused on students' use of narrative and paradigmatic language forms in the whole class science conversations. Traditionally, only paradigmatic language forms have been used in science classrooms. The students in this study used both narrative and

  2. SCIENCE AND KNOWLEDGE IN TERMS OF QUALITY AND QUALITY IN TERMS OF DEVELOPMENT OF KNOWLEDGE AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Milan Perovic

    2007-12-01

    Full Text Available The paper starts with a dilemma whether the quality, as a circular logic of the process model, is a scientific discipline or just an art of achieving and satisfaction of requests and wishes of the customer. Beginning from that dilemma, a relationship between science, knowledge and the quality management system has been elaborated. That relationship has been articulated in this paper using examples of improvement as a key principle of QMS. Elaboration of the improvement system is based on QMS principles and requests of international ISO 9000 standards. Connection of requests for improvement and teamwork is a key for understanding of this process. It is associated by one more factor during the operation, also a key for its understanding. It is a training and knowledge, which are foundation of the philosophy of success. This work indicates that it is impossible to achieve improvements without training and new acknowledgements and teamwork. Paper especially refers to the issue of relation between improvements and application of scientific methods and creation of virtual teams structured by the "owner" of the process and scientist from institutes and universities. Improvement, training, science - improvement make a spiral of the success which when initialized generated new cycles of the improvement. If quality is based on continual improvements and dynamic process of acknowledgement and if it founded on scientific prevention, scientific design, scientific recognition and scientific application, does that make it a scientific discipline.

  3. Developing Practical Knowledge of the Next Generation Science Standards in Elementary Science Teacher Education

    Science.gov (United States)

    Hanuscin, Deborah L.; Zangori, Laura

    2016-12-01

    Just as the Next Generation Science Standards (NGSSs) call for change in what students learn and how they are taught, teacher education programs must reconsider courses and curriculum in order to prepare teacher candidates to understand and implement new standards. In this study, we examine the development of prospective elementary teachers' practical knowledge of the NGSS in the context of a science methods course and innovative field experience. We present three themes related to how prospective teachers viewed and utilized the standards: (a) as a useful guide for planning and designing instruction, (b) as a benchmark for student and self-evaluation, and (c) as an achievable vision for teaching and learning. Our findings emphasize the importance of collaborative opportunities for repeated teaching of the same lessons, but question what is achievable in the context of a semester-long experience.

  4. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  5. The Acquisition of Scientific Knowledge via Critical Thinking: A Philosophical Approach to Science Education

    Science.gov (United States)

    Talavera, Isidoro

    2016-01-01

    There is a gap between the facts learned in a science course and the higher-cognitive skills of analysis and evaluation necessary for students to secure scientific knowledge and scientific habits of mind. Teaching science is not just about how we do science (i.e., focusing on just "accumulating undigested facts and scientific definitions and…

  6. Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development

    Directory of Open Access Journals (Sweden)

    Wouter eBuytaert

    2014-10-01

    Full Text Available The participation of the general public in the research design, data collection and interpretation process together with scientists is often referred to as citizen science. While citizen science itself has existed since the start of scientific practice, developments in sensing technology, data processing and visualisation, and communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. This paper reviews the state of citizen science in a hydrological context and explores the potential of citizen science to complement more traditional ways of scientific data collection and knowledge generation for hydrological sciences and water resources management. Although hydrological data collection often involves advanced technology, the advent of robust, cheap and low-maintenance sensing equipment provides unprecedented opportunities for data collection in a citizen science context. These data have a significant potential to create new hydrological knowledge, especially in relation to the characterisation of process heterogeneity, remote regions, and human impacts on the water cycle. However, the nature and quality of data collected in citizen science experiments is potentially very different from those of traditional monitoring networks. This poses challenges in terms of their processing, interpretation, and use, especially with regard to assimilation of traditional knowledge, the quantification of uncertainties, and their role in decision support. It also requires care in designing citizen science projects such that the generated data complement optimally other available knowledge. Lastly, we reflect on the challenges and opportunities in the integration of hydrologically-oriented citizen science in water resources management, the role of scientific knowledge in the decision-making process, and the potential contestation to established community institutions posed by co-generation of

  7. Do Subject Matter Knowledge, and Pedagogical Content Knowledge Constitute the Ideal Gas Law of Science Teaching?

    Science.gov (United States)

    Lederman, Norman G.; Gess-Newsome, Julie

    1992-01-01

    Describes Pedagogical Content Knowledge and focuses on the empirical research directly concerned with the relationship between science teachers' subject matter knowledge or structures and actual classroom practice. Concludes there is little evidence that a relationship exists. (PR)

  8. The Relationship between Teachers' Knowledge and Beliefs about Science and Inquiry and Their Classroom Practices

    Science.gov (United States)

    Saad, Rayana; BouJaoude, Saouma

    2012-01-01

    The purpose of this study was to investigate relationships between teachers' attitudes toward science, knowledge and beliefs about inquiry, and science classroom teaching practices. Specifically, the study addressed three questions: What are teachers' beliefs and knowledge about inquiry? What are teachers' teaching related classroom practices? Do…

  9. Computer Support for Knowledge Communication in Science Exhibitions: Novel Perspectives from Research on Collaborative Learning

    Science.gov (United States)

    Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.

    2009-01-01

    In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…

  10. Journalism and science: how to erode the idea of knowledge.

    Science.gov (United States)

    Meyer, Gitte

    2006-01-01

    This paper discusses aspects of the relationship between the scientific community and the public at large. Inspired by the European public debate on genetically modified crops and food, ethical challenges to the scientific community are highlighted. This is done by a discussion of changes that are likely to occur to journalistic attitudes--mirroring changing attitudes in the wider society--towards science and scientific researchers. Two journalistic conventions--those of science transmission and of investigative journalism--are presented and discussed in relation to the present drive towards commercialization within the world of science: how are journalists from these different schools of thought likely to respond to the trend of commercialization? Likely journalistic reactions could, while maintaining the authority of the scientific method, be expected to undermine public trust in scientists. In the long term, this may lead to an erosion of the idea of knowledge as something that cannot simply be reduced to the outcome of negotiation between stakeholders. It is argued that science is likely to be depicted as a fallen angel. This may be countered, it is posited, by science turning human, by recognizing its membership of society, and by recognizing that such membership entails more than just commercial relations. To rethink its relationship with the public at large--and, in particular, to rethink the ideal of disinterested science--is an ethical challenge facing the scientific community.

  11. Identifying Relevant Anti-Science Perceptions to Improve Science-Based Communication: The Negative Perceptions of Science Scale

    Directory of Open Access Journals (Sweden)

    Melanie Morgan

    2018-04-01

    Full Text Available Science communicators and scholars have struggled to understand what appears to be increasingly frequent endorsement of a wide range of anti-science beliefs and a corresponding reduction of trust in science. A common explanation for this issue is a lack of science literacy/knowledge among the general public (Funk et al. 2015. However, other possible explanations have been advanced, including conflict with alternative belief systems and other contextual factors, and even cultural factors (Gauchat 2008; Kahan 2015 that are not necessarily due to knowledge deficits. One of the challenges is that there are limited tools available to measure a range of possible underlying negative perceptions of science that could provide a more nuanced framework within which to improve communication around important scientific topics. This project describes two studies detailing the development and validation of the Negative Perceptions of Science Scale (NPSS, a multi-dimensional instrument that taps into several distinct sets of negative science perceptions: Science as Corrupt, Science as Complex, Science as Heretical, and Science as Limited. Evidence for the reliability and validity of the NPSS is described. The sub-dimensions of the NPSS are associated with a range of specific anti-science beliefs across a broad set of topic areas above and beyond that explained by demographics (including education, sex, age, and income, political, and religious ideology. Implications for these findings for improving science communication and science-related message tailoring are discussed.

  12. Science in the public sphere a history of lay knowledge and expertise

    CERN Document Server

    Nieto-Galan, Agusti

    2016-01-01

    Science in the Public Sphere presents a broad yet detailed picture of the history of science popularization from the Renaissance to the twenty-first century. Global in focus, it provides an original theoretical framework for analysing the political load of science as an instrument of cultural hegemony and giving a voice to expert and lay protagonists throughout history. Organised into a series of thematic chapters spanning diverse periods and places, this book covers subjects such as the representations of science in print, the media, classrooms and museums, orthodox and heterodox practices, the intersection of the history of science with the history of technology, and the ways in which public opinion and scientific expertise have influenced and shaped one another across the centuries. It concludes by introducing the "participatory turn" of the twenty-first century, a new paradigm of science popularization and a new way of understanding the construction of knowledge. Highly illustrated throughout and coveri...

  13. Bonding Ideas About Inquiry: Exploring Knowledge and Practices of Metacognition in Beginning Secondary Science Teachers

    Science.gov (United States)

    Rivero Arias, Ana Margarita

    Metacognition, identified generally as "thinking about thinking", plays a fundamental role in science education. It enhances the understanding of science as a way to generate new knowledge using scientific concepts and practices. Moreover, metacognition supports the development of students' life-long problem solving, collaboration, and critical thinking skills. When teachers use metacognition with intention, it can promote students' agency and responsibility for their own learning. However, despite all of its benefits, metacognition is rarely seen in secondary science classrooms. Thus, it is important to understand what beginning teachers know and how they use metacognition during their first years in order to find ways to prepare and support them in incorporating metacognitive practices into their science teaching. The purpose of this multimethod study was to describe the metacognitive knowledge and experiences of beginning science teachers. For the quantitative research strand, I surveyed 36 secondary science teachers about their awareness of metacognition and used classroom observations coded from a larger research study to identify how often teachers were using metacognition to teach science. For the qualitative strand, I interviewed 15 participants about their knowledge and experiences of metacognition (including reflective practices) and spent two weeks observing two of the teachers who described exemplary metacognitive teaching practices. I found that participants had a solid awareness of metacognition, but considered the term complicated to enact, difficult for students, and less important to focus on during their first years of teaching than other elements such as content. Additionally, teaching experience seemed to have an effect on teachers' knowledge and experiences of metacognition. However, participants who were using metacognitive practices had recognized their importance since the beginning of their teaching. Reflective practices can help improve

  14. Science and Mathematics Teacher Candidates' Environmental Knowledge, Awareness, Behavior and Attitudes

    Science.gov (United States)

    Yumusak, Ahmet; Sargin, Seyid Ahmet; Baltaci, Furkan; Kelani, Raphael R.

    2016-01-01

    The purpose of this study was to measure science and mathematics teacher candidates' environmental knowledge level, awareness, behavior and environmental attitudes. Four instruments comprising Environmental Sensitivity Scale, environmental Behavior Scale, Environmental Attitudes Scale and Environmental Knowledge Test were administered to a total…

  15. Knowledge transfer within EU-funded marine science research - a viewpoint

    Science.gov (United States)

    Bayliss-Brown, Georgia; Cheallachaín, Cliona Ní

    2016-04-01

    Knowledge transfer, in its most inherent form, can be tracked back to the earliest phase of the Neolithic Revolution, 10,000 years ago, at a time when innovators shared their thoughts on crop cultivation and livestock farming (Bellwood, 2004). Not to be mistaken for science transfer - the export of modern science to non-scientific audiences - it was in the 1960s, that modern knowledge transfer was initiated, when reporting research achievements shifted towards having institutional and political agendas (Lipphardt & Ludwig, 2011). Albeit that the economic contribution of scientific research has been scrutinised for decades; today, there is a pronounced need for the evaluation of its social, cultural and ecological impact. To have impact, it is essential that scientific knowledge is clear and accessible, as well as robust and credible, so that it can be successfully transferred and applied by those identifying solutions for today's societal and environmental challenges. This phenomenon is receiving growing academic interest, where publications including "knowledge transfer" in the title have increased near exponentially for 60 years. Furthermore, we are seeing a definite shift towards embedding a mission of knowledge transfer in Public Research Organisations. This new approach is rewarding researchers whom deliver on all three institutional missions: teaching, research and knowledge transfer. In addition, the European Commission (2008) recommends that "knowledge transfer between universities and industry is made a permanent political and operational priority" and that "sufficient resources and incentives [be] available to public research organisations and their staff to engage in knowledge transfer activities". It is also anticipated that funding agencies will soon make pathways-to-impact statements, also known as knowledge transfer plans, a mandatory requirement of all project proposals. AquaTT is a leader in scientific knowledge management, including knowledge

  16. Comparisons Between Science Knowledge, Interest, and Information Literacy of Learners in Introductory Astronomy Courses

    Science.gov (United States)

    Buxner, Sanlyn; Impey, Chris David; Formanek, Martin; Wenger, Matthew

    2018-01-01

    Introductory astronomy courses are exciting opportunities to engage non-major students in scientific issues, new discoveries, and scientific thinking. Many undergraduate students take these courses to complete their general education requirements. Many free-choice learners also take these courses, but for their own interest. We report on a study comparing the basic science knowledge, interest in science, and information literacy of undergraduate students and free choice learners enrolled in introductory astronomy courses run by the University of Arizona. Undergraduate students take both in-person and online courses for college credit. Free choice learners enroll in massive open online courses (MOOCs), through commercial platforms, that can earn them a certificate (although most do not take advantage of that opportunity). In general, we find that undergraduate students outperform the general public on basic science knowledge and that learners in our astronomy MOOCs outperform the undergraduate students in the study. Learners in the MOOC have higher interest in science in general. Overall, learners in both groups report getting information about science from online sources. Additionally, learners’ judgement of the reliability of different sources of information is weakly related to their basic science knowledge and more strongly related to how they describe what it means to study something scientifically. We discuss the implications of our findings for both undergraduate students and free-choice learners as well as instructors of these types of courses.

  17. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  18. Conceptual and Procedural Knowledge Community College Students Use when Solving Science Problems

    Science.gov (United States)

    Eibensteiner, Janice L.

    2012-01-01

    Successful science students have mastered their field of study by being able to apply their learned knowledge and problem solving skills on tests. Problem solving skills must be used to figure out the answer to many classes of questions. What this study is trying to determine is how students solve complex science problems in an academic setting in…

  19. Community Science: creating equitable partnerships for the advancement of scientific knowledge for action.

    Science.gov (United States)

    Lewis, E. S.; Gehrke, G. E.

    2017-12-01

    In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.

  20. Scientific reasoning during adolescence: The influence of instruction in science knowledge and reasoning strategies

    Science.gov (United States)

    Linn, M. C.; Clement, C.; Pulos, S.; Sullivan, P.

    The mechanism linking instruction in scientific topics and instruction in logical reasoning strategies is not well understood. This study assesses the role of science topic instruction combined with logical reasoning strategy instruction in teaching adolescent students about blood pressure problems. Logical reasoning instruction for this study emphasizes the controlling-variables strategy. Science topic instruction emphasizes variables affecting blood pressure. Subjects receiving logical reasoning instruction link their knowledge of blood pressure variables to their knowledge of controlling variables more effectively than those receiving science topic instruction alone - their specific responses show how they attempt to integrate their understanding.Received: 15 April 1988

  1. Studying Students' Science Literacy: Non-Scientific Beliefs and Science Literacy Measures

    Science.gov (United States)

    Impey, C.; Buxner, S.

    2015-11-01

    We have been conducting a study of university students' science literacy for the past 24 years. Based on the work of the National Science Board's ongoing national survey of the US public, we have administered the same survey to undergraduate science students at the University of Arizona almost every year since 1989. Results have shown relatively little change in students' overall science literacy, descriptions of science, and knowledge of basic science topics for almost a quarter of a century despite an increase in education interventions, the rise of the internet, and increased access to knowledge. Several trends do exist in students' science literacy and descriptions of science. Students who exhibit beliefs in non-scientific phenomenon (e.g., lucky numbers, creationism) consistently have lower science literacy scores and less correct descriptions of scientific phenomenon. Although not surprising, our results support ongoing efforts to help students generate evidence based thinking.

  2. Solar heating. Vol. 1. Basic knowledge of thermal science

    Energy Technology Data Exchange (ETDEWEB)

    Jauffret, C.

    1982-01-01

    This document deals with general basic knowledge of thermal sciences: basics of thermodynamics, heat transfer, studies of thermal exchanges in the building industry including ventilation and the effects of the wind, basics and techniques of central heating and refrigeration (technologies, calculations, thermodynamic cycles and refrigerating machines).

  3. Science, religion, and the quest for knowledge and truth: an Islamic perspective

    Science.gov (United States)

    Guessoum, Nidhal

    2010-03-01

    This article consists of two parts. The first one is to a large extent a commentary on John R. Staver's "Skepticism, truth as coherence, and constructivist epistemology: grounds for resolving the discord between science and religion?" The second part is a related overview of Islam's philosophy of knowledge and, to a certain degree, science. In responding to Staver's thesis, I rely strongly on my scientific education and habit of mind; I also partly found my views on my Islamic background, though I enlarge my scope to consider western philosophical perspectives as well. I differ with Staver in his definition of the nature, scope, and goals of religion (concisely, "explaining the world and how it works"), and I think this is the crux of the matter in attempting to resolve the perceived "discord" between science and religion. The heart of the problem is in the definition of the domains of action of science and religion, and I address this issue at some length, both generically and using Islamic principles, which are found to be very widely applicable. The concept of "reality," so important to Staver's thesis, is also critically reviewed. The philosophy of knowledge (and of science) in Islam is briefly reviewed in the aim of showing the great potential for harmony between the two "institutions" (religion and science), on the basis of the following philosophy: science describes nature, whereas religion gives us not only a philosophy of existence but also an interpretative cloak for the discoveries of science and for the meaning of the cosmos and nature. I conclude by insisting that though science and religion can be considered as two worldviews that propose to describe "reality" and to explain our existence and that of the world; they may come to compete for humans' minds and appear to enter into a conflicting position, but only if and when we confuse their domains and modes of action. [InlineMediaObject not available: see fulltext.][InlineMediaObject not available: see

  4. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  5. Social and natural sciences differ in their research strategies, adapted to work for different knowledge landscapes.

    Science.gov (United States)

    Jaffe, Klaus

    2014-01-01

    Do different fields of knowledge require different research strategies? A numerical model exploring different virtual knowledge landscapes, revealed two diverging optimal search strategies. Trend following is maximized when the popularity of new discoveries determine the number of individuals researching it. This strategy works best when many researchers explore few large areas of knowledge. In contrast, individuals or small groups of researchers are better in discovering small bits of information in dispersed knowledge landscapes. Bibliometric data of scientific publications showed a continuous bipolar distribution of these strategies, ranging from natural sciences, with highly cited publications in journals containing a large number of articles, to the social sciences, with rarely cited publications in many journals containing a small number of articles. The natural sciences seem to adapt their research strategies to landscapes with large concentrated knowledge clusters, whereas social sciences seem to have adapted to search in landscapes with many small isolated knowledge clusters. Similar bipolar distributions were obtained when comparing levels of insularity estimated by indicators of international collaboration and levels of country-self citations: researchers in academic areas with many journals such as social sciences, arts and humanities, were the most isolated, and that was true in different regions of the world. The work shows that quantitative measures estimating differences between academic disciplines improve our understanding of different research strategies, eventually helping interdisciplinary research and may be also help improve science policies worldwide.

  6. Knowledge flows, patent citations and the impact of science on technology

    NARCIS (Netherlands)

    Nomaler, Z.O.; Verspagen, B.

    2008-01-01

    Technological innovation depends on knowledge developed by scientific research. The number of citations made in patents to the scientific literature has been suggested as an indicator of this process of transfer of knowledge from science to technology. We provide an intersectoral insight into this

  7. Knowledge and Technology Transfer in Materials Science and Engineering in Europe

    OpenAIRE

    Bressler, Patrick; Dürig, Urs; González-Elipe, Agustin; Quandt, Eckhard; Ritschkoff, Anne-Christine; Vahlas, Constantin

    2015-01-01

    Advanced Materials is one of the Key Enabling 3 Technologies identified by the European Commission1. Together with Advanced Manufacturing it underpins almost all other Key Enabling and Industrial Technologies. The basic science and engineering research that results in the development of Advanced Materials lies within the field of Materials Science and Engineering (MSE). The transfer of knowledge from basic research into final products and applications in the field of MSE involves certain MSE-...

  8. From established science to class room science, or how to take into account didactic activity in the history of science

    Directory of Open Access Journals (Sweden)

    Bruno Belhoste

    2012-02-01

    Full Text Available This paper deals with the relationship between science and education in historiography, questioning the separation between the two activities, and highlighting the role of education to scientific activity. First, it distinguishes the largely accepted needs of historical contextualization from the epistemological problem, related to the place of history education in the history of science. It defends that the history of science education is not foreign to the history of science. It criticizes Chevallard’s notion of didactic transposition for reinforcing the gap between scientific knowledge and teaching knowledge. Finally, it argues that the sciences are in permanent reconstruction and that scientific knowledge is not tied to socio-cultural contexts from which it emerged.

  9. Where civics meets science: building science for the public good through Civic Science.

    Science.gov (United States)

    Garlick, J A; Levine, P

    2017-09-01

    Public understanding of science and civic engagement on science issues that impact contemporary life matter more today than ever. From the Planned Parenthood controversy, to the Flint water crisis and the fluoridation debate, societal polarization about science issues has reached dramatic levels that present significant obstacles to public discussion and problem solving. This is happening, in part, because systems built to support science do not often reward open-minded thinking, inclusive dialogue, and moral responsibility regarding science issues. As a result, public faith in science continues to erode. This review explores how the field of Civic Science can impact public work on science issues by building new understanding of the practices, influences, and cultures of science. Civic Science is defined as a discipline that considers science practice and knowledge as resources for civic engagement, democratic action, and political change. This review considers how Civic Science informs the roles that key participants-scientists, public citizens and institutions of higher education-play in our national science dialogue. Civic Science aspires to teach civic capacities, to inform the responsibilities of scientists engaged in public science issues and to inspire an open-minded, inclusive dialogue where all voices are heard and shared commitments are acknowledged. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Knowledge flows, patent citations and the impact of science on technology

    NARCIS (Netherlands)

    Nomaler, Z.O.; Verspagen, B.

    2007-01-01

    Technological innovation depends on knowledge developed by scientific research. The num-ber of citations made in patents to the scientific literature has been suggested as an indicator of this process of transfer of knowledge from science to technology. We provide an intersec-toral insight into this

  11. The CoRe of the Matter: Developing Primary Teachers' Professional Knowledge in Science

    Science.gov (United States)

    Hume, Anne

    2016-01-01

    In an educational landscape of primary teachers' underdeveloped professional knowledge and low feelings of self-efficacy around science teaching, the prospects for science losing status in the primary school curriculum seems grim. This paper reports positive findings from a New Zealand research project designed to support and enhance primary…

  12. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    Science.gov (United States)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS

  13. Science teachers' knowledge about teaching models and modelling in the context of a new syllabus on Public Understanding of Science

    NARCIS (Netherlands)

    Henze, I.; van Driel, J.H.; Verloop, N.

    2007-01-01

    As teachers' knowledge determines to a large extent how they respond to educational innovation, it is necessary for innovators to take this knowledge into account when implementing educational changes. This study aimed at identifying patterns in the content and the structure of science teachers'

  14. Organization of knowledge and the complex identity of history of science.

    Science.gov (United States)

    Alfonso-Goldfarb, Ana M; Waisse, Silvia; Ferraz, Márcia H M

    2013-09-01

    History of science as a formal and autonomous field of research crosses over disciplinary boundaries. For this reason, both its production and its working materials are difficult to classify and catalog according to discipline-based systems of organization of knowledge. Three main problems might be pointed out in this regard: the disciplines themselves are subject to a historical process of transformation; some objects of scientific inquiry resist constraint within rigid disciplinary grids but, rather, extend across several disciplinary boundaries; and the so-called digital revolution has replaced spatial with temporal display sequences and shifted the traditional emphasis on knowledge to user-oriented approaches. The first part of this essay is devoted to a conceptual analysis of the various approaches to the organization of knowledge formulated over time, whereas the second considers the new possibilities afforded by a faceted model of knowledge organization compatible with user-oriented relational databases to the research materials and production of history of science.

  15. Local Ecological Knowledge and Biological Conservation: Post-normal Science as an Intercultural Field

    Directory of Open Access Journals (Sweden)

    Jorje Ignacio Zalles

    2017-09-01

    Full Text Available From a natural sciences perspective, efforts directed at the conservation of biodiversity are based upon what is known as conservation biology. Given its epistemological assumptions, conservation biology faces obstacles in the incorporation of wisdom originating in local ecological knowledge, that which a local population has gained about the local environment which it is surrounded by and due to its direct contact with this local environment, instead of the result of a product of a positivist scientific inquiry. Post-normal science has emerged in recent decades as an alternative for public management that aims to complement the search for knowledge by means of empirical approaches through the inclusion of understandings based on the everyday experiences and the subjective interpretation of natural phenomena, transcending the compartmentalization associated with scientific traditions born out of modernity. This article discusses the integration of local ecological knowledge and conservation biology from the perspective of post normal science, illustrating different forms of intercultural communication that would make the requisite dialogue of knowledges possible.

  16. The drive to innovation: The privileging of science and technology knowledge production in Canada

    Science.gov (United States)

    Cauchi, Laura

    This dissertation project explored the privileging of knowledge production in science and technology as a Canadian national economic, political and social strategy. The project incorporated the relationship between nation-state knowledge production and how that knowledge is then systematically evaluated, prioritized and validated by systems of health technology assessment (HTA). The entry point into the analysis and this dissertation project was the Scientific Research and Experimental Design (SR&ED) federal tax incentive program as the cornerstone of science and technology knowledge production in Canada. The method of inquiry and analysis examined the submission documents submitted by key stakeholders across the country, representing public, private and academic standpoints, during the public consultation process conducted from 2007 to 2008 and how each of these standpoints is hooked into the public policy interests and institutional structures that produce knowledge in science and technology. Key public meetings, including the public information sessions facilitated by the Canada Revenue Agency and private industry conferences, provided context and guidance regarding the current pervasive public and policy interests that direct and drive the policy debates. Finally, the "Innovation Canada: A Call to Action Review of Federal Support to Research and Development: Expert Panel Report," commonly referred to as "The Jenkins Report" (Jenkins et al., 2011), was critically evaluated as the expected predictor of future public policy changes associated with the SR&ED program and the future implications for the production of knowledge in science and technology. The method of inquiry and analytical lens was a materialist approach that drew on the inspiring frameworks of such scholars as Dorothy Smith, Michel Foucault, Kaushik Sunder Rajan, Melinda Cooper, and, Gilles Deleuze. Ultimately, I strove to illuminate the normalizing force and power of knowledge production in science

  17. Pedagogical Content Knowledge (PCK): Exploring its Usefulness for Science Lecturers in Higher Education

    Science.gov (United States)

    Fraser, Sharon P.

    2016-02-01

    In the past 30 years, pedagogical content knowledge (PCK) frameworks have become important constructs in educational research undertaken in the school education system and a focus for research for curriculum and teacher education researchers. As regards science, PCK research has been plentiful, but thus far, the concept of PCK (significantly enhanced since its proposal) has only been validated in the school context (Kindergarten to Grade 12). Within this environment, however, it has proven to be a very useful construct for understanding teacher practice and contributing to the improvement of teacher education courses. Knowledge about whether PCK is useful as a conceptual framework for science lecturers (teachers) working in higher education is as yet unknown and represents a gap in the research literature; the research outlined here is a first step in exploring its usefulness in this context. This paper provides an analysis of data obtained from semi-structured interviews conducted with nine Australian science university lecturers from various disciplines and levels of seniority and experience of tertiary teaching, as well as an academic developer skilled in facilitating science academics' understanding of pedagogy in higher education. The research aimed to investigate the extent to which one version of a school-based science PCK framework resonated with the pedagogical thinking of university science lecturers and the ways in which it could influence their teaching practice.

  18. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    Science.gov (United States)

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  19. Community science, philosophy of science, and the practice of research.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2005-06-01

    Embedded in community science are implicit theories on the nature of reality (ontology), the justification of knowledge claims (epistemology), and how knowledge is constructed (methodology). These implicit theories influence the conceptualization and practice of research, and open up or constrain its possibilities. The purpose of this paper is to make some of these theories explicit, trace their intellectual history, and propose a shift in the way research in the social and behavioral sciences, and community science in particular, is conceptualized and practiced. After describing the influence and decline of logical empiricism, the underlying philosophical framework for science for the past century, I summarize contemporary views in the philosophy of science that are alternatives to logical empiricism. These include contextualism, normative naturalism, and scientific realism, and propose that a modified version of contextualism, known as perspectivism, affords the philosophical framework for an emerging community science. I then discuss the implications of perspectivism for community science in the form of four propositions to guide the practice of research.

  20. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  1. Beyond Learning Management Systems: Designing for Interprofessional Knowledge Building in the Health Sciences

    Directory of Open Access Journals (Sweden)

    Leila Lax

    2010-12-01

    Full Text Available This paper examines theoretical, pedagogical, and technological differences between two technologies that have been used in undergraduate interprofessional health sciences at the University of Toronto. One, a learning management system, WebCT 2.0, supports online coursework. The other, a Knowledge Building environment, Knowledge Forum 2.0, supports the collaborative work of knowledge-creating communities. Seventy students from six health science programs (Dentistry, Medicine, Nursing, Occupational Therapy, Pharmacy and Physical Therapy participated online in a 5-day initiative to advance understanding of core principles and professional roles in pain assessment and management. Knowledge Forum functioned well as a learning management system but to preserve comparability between the two technologies its full resources were not brought into play. In this paper we examine three distinctive affordances of Knowledge Forum that have implications for health sciences education: (1 supports for Knowledge Building discourse as distinct from standard threaded discourse; (2 integration of sociocognitive functions as distinct from an assortment of separate tools; and (3 resources for multidimensional social and cognitive assessment that go beyond common participation indicators and instructor-designed quizzes and analyses. We argue that these design characteristics have the potential to open educational pathways that traditional learning management systems leave closed.

  2. College Students Constructing Collective Knowledge of Natural Science History in a Collaborative Knowledge Building Community

    Science.gov (United States)

    Hong, Huang-Yao; Chai, Ching Sing; Tsai, Chin-Chung

    2015-01-01

    This study investigates whether engaging college students (n = 42) in a knowledge building environment would help them work as a community to construct their collective knowledge of history of science and, accordingly, develop a more informed scientific view. The study adopted mixed-method analyses and data mainly came from surveys and student…

  3. Visual representation of knowledge in the field of Library and Information Science of IRAN

    Directory of Open Access Journals (Sweden)

    Afsoon Sabetpour

    2015-05-01

    Full Text Available Purpose: The present research has been done to visual representation of knowledge and determination vacuum and density points of scientific trends of faculty members of state universities of IRAN in Library & Information Science field. Method: Curriculum Vitae of each faculty member with census method were collected and its content analyzed. Then using a checklist, the rate scientific tendencies were extracted. NodeXL software was deployed to map out the levels. Results: The results showed that the trends are concentrated in Scientometrics, Research method in Library & Information Science, information organization, information resources, psychology, Education, Management, the Web, Knowledge management, Academic Libraries, Information services, Information Theories and collection management. Apparently, the Library & Information Science community of experts pays little or no attention to the Library & Information Science applications in the fields of chemistry, Cartography, museum, law, art, school libraries as well as to independent subject clusters such as minorities in library, information architecture, mentoring in library science, library automation, preservation, oral history, cybernetics, copyright, information marketing and information economy. Lack of efforts on these areas is remarkable.

  4. Impact of Secondary Students' Content Knowledge on Their Communication Skills in Science

    Science.gov (United States)

    Kulgemeyer, Christoph

    2018-01-01

    The "expert blind spot" (EBS) hypothesis implies that even some experts with a high content knowledge might have problems in science communication because they are using the structure of the content rather than their addressee's prerequisites as an orientation. But is that also true for students? Explaining science to peers is a crucial…

  5. Knowledge and Regulation of Cognition in College Science Students

    Science.gov (United States)

    Roshanaei, Mehrnaz

    2014-01-01

    The research focused on three issues in college science students: whether there was empirical support for the two factor (knowledge of cognition and regulation of cognition) view of metacognition, whether the two factors were related to each other, and whether either of the factors was related to empirical measures of cognitive and metacognitive…

  6. Developing Content Knowledge in Students through Explicit Teaching of the Nature of Science: Influences of Goal Setting and Self-Monitoring

    Science.gov (United States)

    Peters, Erin E.

    2012-01-01

    Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to…

  7. Knowledge of childhood: materiality, text, and the history of science - an interdisciplinary round table discussion.

    Science.gov (United States)

    Rietmann, Felix; Schildmann, Mareike; Arni, Caroline; Cook, Daniel Thomas; Giuriato, Davide; Göhlsdorf, Novina; Muigai, Wangui

    2017-03-01

    This round table discussion takes the diversity of discourse and practice shaping modern knowledge about childhood as an opportunity to engage with recent historiographical approaches in the history of science. It draws attention to symmetries and references among scientific, material, literary and artistic cultures and their respective forms of knowledge. The five participating scholars come from various fields in the humanities and social sciences and allude to historiographical and methodological questions through a range of examples. Topics include the emergence of children's rooms in US consumer magazines, research on the unborn in nineteenth-century sciences of development, the framing of autism in nascent child psychiatry, German literary discourses about the child's initiation into writing, and the sociopolitics of racial identity in the photographic depiction of African American infant corpses in the early twentieth century. Throughout the course of the paper, childhood emerges as a topic particularly amenable to interdisciplinary perspectives that take the history of science as part of a broader history of knowledge.

  8. Science, Practitioners and Faith Communities: using TEK and Faith Knowledge to address climate issues.

    Science.gov (United States)

    Peterson, K.

    2017-12-01

    Worldview, Lifeway and Science - Communities that are tied to the land or water for their livelihood, and for whom subsistence guides their cultural lifeway, have knowledges that inform their interactions with the environment. These frameworks, sometimes called Traditional Ecological Knowledges (TEK), are based on generations of observations made and shared within lived life-environmental systems, and are tied to practitioners' broader worldviews. Subsistence communities, including Native American tribes, are well aware of the crises caused by climate change impacts. These communities are working on ways to integrate knowledge from their ancient ways with current observations and methods from Western science to implement appropriate adaptation and resilience measures. In the delta region of south Louisiana, the communities hold worldviews that blend TEK, climate science and faith-derived concepts. It is not incongruent for the communities to intertwine conversations from complex and diverse sources, including the academy, to inform their adaptation measures and their imagined solutions. Drawing on over twenty years of work with local communities, science organizations and faith institutions of the lower bayou region of Louisiana, the presenter will address the complexity of traditional communities' work with diverse sources of knowledge to guide local decision-making and to assist outside partners to more effectively address challenges associated with climate change.

  9. Continuous Enhancement of Science Teachers' Knowledge and Skills through Scientific Lecturing.

    Science.gov (United States)

    Azevedo, Maria-Manuel; Duarte, Sofia

    2018-01-01

    Due to their importance in transmitting knowledge, teachers can play a crucial role in students' scientific literacy acquisition and motivation to respond to ongoing and future economic and societal challenges. However, to conduct this task effectively, teachers need to continuously improve their knowledge, and for that, a periodic update is mandatory for actualization of scientific knowledge and skills. This work is based on the outcomes of an educational study implemented with science teachers from Portuguese Basic and Secondary schools. We evaluated the effectiveness of a training activity consisting of lectures covering environmental and health sciences conducted by scientists/academic teachers. The outcomes of this educational study were evaluated using a survey with several questions about environmental and health scientific topics. Responses to the survey were analyzed before and after the implementation of the scientific lectures. Our results showed that Basic and Secondary schools teachers' knowledge was greatly improved after the lectures. The teachers under training felt that these scientific lectures have positively impacted their current knowledge and awareness on several up-to-date scientific topics, as well as their teaching methods. This study emphasizes the importance of continuing teacher education concerning knowledge and awareness about health and environmental education.

  10. Nursing Knowledge: Big Data Science-Implications for Nurse Leaders.

    Science.gov (United States)

    Westra, Bonnie L; Clancy, Thomas R; Sensmeier, Joyce; Warren, Judith J; Weaver, Charlotte; Delaney, Connie W

    2015-01-01

    The integration of Big Data from electronic health records and other information systems within and across health care enterprises provides an opportunity to develop actionable predictive models that can increase the confidence of nursing leaders' decisions to improve patient outcomes and safety and control costs. As health care shifts to the community, mobile health applications add to the Big Data available. There is an evolving national action plan that includes nursing data in Big Data science, spearheaded by the University of Minnesota School of Nursing. For the past 3 years, diverse stakeholders from practice, industry, education, research, and professional organizations have collaborated through the "Nursing Knowledge: Big Data Science" conferences to create and act on recommendations for inclusion of nursing data, integrated with patient-generated, interprofessional, and contextual data. It is critical for nursing leaders to understand the value of Big Data science and the ways to standardize data and workflow processes to take advantage of newer cutting edge analytics to support analytic methods to control costs and improve patient quality and safety.

  11. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  12. Knowledge Engineering: The Interplay between Information and Historical Sciences in the Study of Change.

    Science.gov (United States)

    McCrank, Lawrence J.

    1992-01-01

    Discusses trends in the fields of knowledge engineering and historical sciences to speculate about possibilities of converging interests and applications. Topics addressed include artificial intelligence and expert systems; the history of information science; history as a related field; historians as information scientists; multidisciplinary…

  13. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  14. Enhancing fire science exchange: The Northern Rockies Fire Science Network [poster

    Science.gov (United States)

    Vita Wright

    2011-01-01

    The Joint Fire Science Program is developing a national network of knowledge exchange consortia comprised of interested management and science stakeholders working together to tailor and actively demonstrate existing fire science information to benefit management.

  15. Information Science Roles in the Emerging Field of Data Science

    Directory of Open Access Journals (Sweden)

    Gary Marchionini

    2016-06-01

    Full Text Available The article discusses how data science emerges from information science,statistics, computer science, and knowledge domain. Schools of information stand as meaningful and substantive entities that are critical to the education of scholars and practitioners who work across a wide range of enterprises. Data science is but one emerging field that will benefit from information school engagement.

  16. eScience and archiving for space science

    Directory of Open Access Journals (Sweden)

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  17. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  18. Examining science teachers' pedagogical content knowledge in the context of a professional development program

    NARCIS (Netherlands)

    Wongsopawiro, Dirk Soenario

    2012-01-01

    This dissertation reports on the pedagogical content knowledge (PCK) of science teachers during a professional development program. This research intended to help us understand why and how teachers make their classroom decisions as they teach science. The main questions in this study were: What is

  19. Extended cognition in science communication.

    Science.gov (United States)

    Ludwig, David

    2014-11-01

    The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.

  20. The Nature and Influence of Teacher Beliefs and Knowledge on the Science Teaching Practice of Three Generalist New Zealand Primary Teachers

    Science.gov (United States)

    Anderson, Dayle

    2015-06-01

    Students' negative experiences of science in the primary sector have commonly been blamed on poor teacher content knowledge. Yet, teacher beliefs have long been identified as strong influences on classroom practice. Understanding the nature of teacher beliefs and their influence on primary science teaching practice could usefully inform teacher development initiatives. In science education, teacher beliefs about teaching and learning have been proposed as key influences in the development of pedagogical content knowledge for science teaching. This paper uses a multiple qualitative case study design to examine the nature and influence of beliefs on the practice and knowledge development of three generalist primary teachers during the implementation of a unit of work in science. Data for each case study included observations and transcripts of recordings of the lessons forming each science unit, together with multiple interviews with the teacher throughout its implementation. Findings support those of other researchers suggesting that beliefs about purposes of science education, the nature of science, and science teaching and learning strongly influence teacher practice and knowledge. Beliefs about the purposes of science education were found to be a particularly strong influence on practice in the observed cases. However, beliefs about students and the teachers' aims for education generally, as well as teachers' notions concerning vertical science curriculum, were also crucially influential on the type of science learning opportunities that were promoted. Beliefs were found to additionally influence the nature of both subject matter knowledge and pedagogical content knowledge for science developed by the teachers.

  1. The knowledge-learning-instruction framework: bridging the science-practice chasm to enhance robust student learning.

    Science.gov (United States)

    Koedinger, Kenneth R; Corbett, Albert T; Perfetti, Charles

    2012-07-01

    Despite the accumulation of substantial cognitive science research relevant to education, there remains confusion and controversy in the application of research to educational practice. In support of a more systematic approach, we describe the Knowledge-Learning-Instruction (KLI) framework. KLI promotes the emergence of instructional principles of high potential for generality, while explicitly identifying constraints of and opportunities for detailed analysis of the knowledge students may acquire in courses. Drawing on research across domains of science, math, and language learning, we illustrate the analyses of knowledge, learning, and instructional events that the KLI framework affords. We present a set of three coordinated taxonomies of knowledge, learning, and instruction. For example, we identify three broad classes of learning events (LEs): (a) memory and fluency processes, (b) induction and refinement processes, and (c) understanding and sense-making processes, and we show how these can lead to different knowledge changes and constraints on optimal instructional choices. Copyright © 2012 Cognitive Science Society, Inc.

  2. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers' Science Content Knowledge and Pedagogy

    Science.gov (United States)

    Tuttle, Nicole; Kaderavek, Joan N.; Molitor, Scott; Czerniak, Charlene M.; Johnson-Whitt, Eugenia; Bloomquist, Debra; Namatovu, Winnifred; Wilson, Grant

    2016-11-01

    This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers' knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and classroom observations to measure possible changes in PK-3 teachers' science content knowledge and classroom practice from 11 teachers who attended the 2014 Summer Institute. Analysis of the concept maps demonstrated statistically significant growth in teachers' science content knowledge. Analysis of teachers' lesson plans demonstrated that the teachers could design high quality science inquiry lessons aligned to the Next Generation Science Standards following the professional development. Finally, examination of teachers' pre- and post-Summer Institute videotaped inquiry lessons showed evidence that teachers were incorporating new inquiry practices into their teaching, especially regarding classroom discourse. Our results suggest that an immersive inquiry experience is effective at beginning a shift towards reform-aligned science and engineering instruction but that early elementary educators require additional support for full mastery.

  3. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  4. Defining the requisite knowledge for providers of in-service professional development for K--12 teachers of science: Refining the construct

    Science.gov (United States)

    Tucker, Deborah L.

    Purpose. The purpose of this grounded theory study was to refine, using a Delphi study process, the four categories of the theoretical model of the comprehensive knowledge base required by providers of professional development for K-12 teachers of science generated from a review of the literature. Methodology. This grounded theory study used data collected through a modified Delphi technique and interviews to refine and validate the literature-based knowledge base required by providers of professional development for K-12 teachers of science. Twenty-three participants, experts in the fields of science education, how people learn, instructional and assessment strategies, and learning contexts, responded to the study's questions. Findings. By "densifying" the four categories of the knowledge base, this study determined the causal conditions (the science subject matter knowledge), the intervening conditions (how people learn), the strategies (the effective instructional and assessment strategies), and the context (the context and culture of formal learning environments) surrounding the science professional development process. Eight sections were added to the literature-based knowledge base; the final model comprised of forty-nine sections. The average length of the operational definitions increased nearly threefold and the number of citations per operational definition increased more than twofold. Conclusions. A four-category comprehensive model that can serve as the foundation for the knowledge base required by science professional developers now exists. Subject matter knowledge includes science concepts, inquiry, the nature of science, and scientific habits of mind; how people learn includes the principles of learning, active learning, andragogy, variations in learners, neuroscience and cognitive science, and change theory; effective instructional and assessment strategies include constructivist learning and inquiry-based teaching, differentiation of instruction

  5. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  6. Towards a pragmatic science in schools

    Science.gov (United States)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  7. Recent research on the aesthetics of knowledge in science and in religion

    Directory of Open Access Journals (Sweden)

    Arianna Borrelli

    2017-11-01

    Full Text Available As an introduction to the case studies collected in the current special issue, this review article provides a brief, and by no means exhaustive, overview of research that proves to be relevant to the development of a concept of an aesthetics of knowledge in the academic study of religion and in science and technology studies. Finally, it briefly discusses recent work explicitly addressing the aesthetic entangle-ment of science and religion.

  8. Economically Disadvantaged Minority Girls' Knowledge and Perceptions of Science and Engineering and Related Careers

    Science.gov (United States)

    Wang, Hui-Hui; Billington, Barbara L.

    2016-01-01

    This article addresses economically disadvantaged minority girls' knowledge and perceptions of science and engineering and the influence of their experiences with science, technology, engineering, and mathematics (STEM) on their choices for future careers. We interviewed three girls who participated in a 4-H-led gender-inclusive STEM program. Our…

  9. Nutrition knowledge of young, post-year one, non-biological science ...

    African Journals Online (AJOL)

    Methodology: Data were collected from engineering and computer science students using semi-structured questionnaire. Analysis was by frequency, percentage and SPSS version 20 statistical soft-ware. Results: Students generally had fair nutrition knowledge (59.7%). Further, 10.1% of engineering and 3.2% of computer ...

  10. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  11. Integrating traditional ecological knowledge with western science for optimal natural resource management

    Science.gov (United States)

    Serra J. Hoagland

    2017-01-01

    Traditional ecological knowledge (TEK) has been recognized within indigenous communities for millennia; however, traditional ecological knowledge has received growing attention within the western science (WS) paradigm over the past twenty-five years. Federal agencies, national organizations, and university programs dedicated to natural resource management are beginning...

  12. Critical Science Literacy: What Citizens and Journalists Need to Know to Make Sense of Science

    Science.gov (United States)

    Priest, Susanna

    2013-01-01

    Increasing public knowledge of science is a widely recognized goal, but what that knowledge might consist of is rarely unpacked. Existing measures of science literacy tend to focus on textbook knowledge of science. Yet constructing a meaningful list of facts, even facts in application, is not only difficult but less than satisfying as an indicator…

  13. Knowledge-Based Systems in Biomedicine and Computational Life Science

    CERN Document Server

    Jain, Lakhmi

    2013-01-01

    This book presents a sample of research on knowledge-based systems in biomedicine and computational life science. The contributions include: ·         personalized stress diagnosis system ·         image analysis system for breast cancer diagnosis ·         analysis of neuronal cell images ·         structure prediction of protein ·         relationship between two mental disorders ·         detection of cardiac abnormalities ·         holistic medicine based treatment ·         analysis of life-science data  

  14. Development and Validation of the ACSI: Measuring Students' Science Attitudes, Pro-Environmental Behaviour, Climate Change Attitudes and Knowledge

    Science.gov (United States)

    Dijkstra, E. M.; Goedhart, M. J.

    2012-01-01

    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of science, scientists, a career in science and the urgency…

  15. Forensic nursing science knowledge and competency: the use of simulation.

    Science.gov (United States)

    Drake, Stacy A; Langford, Rae; Young, Anne; Ayers, Constance

    2015-01-01

    Forensic nursing is a nursing specialty that provides services to a variety of patient populations who have experienced violence, including interpersonal violence, sudden or unexpected death, and motor vehicle collisions. However, many critical care nurses have received the background knowledge or practical skills required to provide the level of care required by many forensic patients. The purpose of this study was to determine whether differences in knowledge or practical competence exist between participants using 2 different learning modalities: medium fidelity simulation versus face-to-face lecture. Participants who were enrolled in an elective online forensic nursing science course were randomly assigned to an intervention or control group. The 18 intervention group participants were given three 2-hour forensic simulation sessions in the laboratory. The 17 control group participants attended 3 face-to-face lectures covering forensic science topics. All study participants also received the same forensic course content via the online Blackboard platform. No significant differences were found between the 2 groups in either knowledge or practical competency. The lack of results may have been heavily influenced by the small sample size, which resulted in insufficient power to detect possible differences.

  16. Knowledge Cluster Formation as a Science Policy in Malaysia: Lessons Learned

    OpenAIRE

    Hans-Dieter Evers; ZEF University of Bonn; Solvay Gerke; Centre for Development Research, University of Bonn

    2015-01-01

    Regional science policy aims to create productive knowledge clusters, which are central places within an epistemic landscape of knowledge production and dissemination. These so-called K-clusters are said to have the organisational capability to drive innovations and create new industries. Many governments have used cluster formation as one of their development strategies. This paper looks at Malaysia's path towards a knowledge-based economy and offers some evidence on the current state of kno...

  17. Handbook of information science

    CERN Document Server

    Stock, Wolfgang G

    2013-01-01

    Dealing with information is one of the vital skills in thetwenty-first century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, an

  18. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  19. Combining Science and Traditional Ecological Knowledge: Monitoring Populations for Co-Management

    Directory of Open Access Journals (Sweden)

    Henrik Moller

    2004-12-01

    Full Text Available Using a combination of traditional ecological knowledge and science to monitor populations can greatly assist co-management for sustainable customary wildlife harvests by indigenous peoples. Case studies from Canada and New Zealand emphasize that, although traditional monitoring methods may often be imprecise and qualitative, they are nevertheless valuable because they are based on observations over long time periods, incorporate large sample sizes, are inexpensive, invite the participation of harvesters as researchers, and sometimes incorporate subtle multivariate cross checks for environmental change. A few simple rules suggested by traditional knowledge may produce good management outcomes consistent with fuzzy logic thinking. Science can sometimes offer better tests of potential causes of population change by research on larger spatial scales, precise quantification, and evaluation of population change where no harvest occurs. However, science is expensive and may not always be trusted or welcomed by customary users of wildlife. Short scientific studies in which traditional monitoring methods are calibrated against population abundance could make it possible to mesh traditional ecological knowledge with scientific inferences of prey population dynamics. This paper analyzes the traditional monitoring techniques of catch per unit effort and body condition. Combining scientific and traditional monitoring methods can not only build partnership and community consensus, but also, and more importantly, allow indigenous wildlife users to critically evaluate scientific predictions on their own terms and test sustainability using their own forms of adaptive management.

  20. Science in the everyday world: Why perspectives from the history of science matter.

    Science.gov (United States)

    Pandora, Katherine; Rader, Karen A

    2008-06-01

    The history of science is more than the history of scientists. This essay argues that various modem "publics" should be counted as belonging within an enlarged vision of who constitutes the "scientific community"--and describes how the history of science could be important for understanding their experiences. It gives three examples of how natural knowledge-making happens in vernacular contexts: Victorian Britain's publishing experiments in "popular science" as effective literary strategies for communicating to lay and specialist readers; twentieth-century American science museums as important and contested sites for conveying both scientific ideas and ideas about scientific practice; and contemporary mass-mediated images of the "ideal" scientist as providing counternarratives to received professional scientific norms. Finally, it suggests how humanistic knowledge might help both scientists and historians grapple more effectively with contemporary challenges presented by science in public spheres. By studying the making and elaboration of scientific knowledge within popular culture, historians of science can provide substantively grounded insights into the relations between the public and professionals.

  1. Conceptual and procedural knowledge community college students use when solving a complex science problem

    Science.gov (United States)

    Steen-Eibensteiner, Janice Lee

    2006-07-01

    A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as

  2. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  3. Studying Computer Science in a Multidisciplinary Degree Programme: Freshman Students' Orientation, Knowledge, and Background

    Science.gov (United States)

    Kautz, Karlheinz; Kofoed, Uffe

    2004-01-01

    Teachers at universities are facing an increasing disparity in students' prior IT knowledge and, at the same time, experience a growing disengagement of the students with regard to involvement in study activities. As computer science teachers in a joint programme in computer science and business administration, we made a number of similar…

  4. Learning, Unlearning and Relearning--Knowledge Life Cycles in Library and Information Science Education

    Science.gov (United States)

    Bedford, Denise A. D.

    2015-01-01

    The knowledge life cycle is applied to two core capabilities of library and information science (LIS) education--teaching, and research and development. The knowledge claim validation, invalidation and integration steps of the knowledge life cycle are translated to learning, unlearning and relearning processes. Mixed methods are used to determine…

  5. Materials Knowledge Systems in Python - A Data Science Framework for Accelerated Development of Hierarchical Materials.

    Science.gov (United States)

    Brough, David B; Wheeler, Daniel; Kalidindi, Surya R

    2017-03-01

    There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.

  6. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  7. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-10-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.

  8. Construction of teacher knowledge in context: Preparing elementary teachers to teach mathematics and science

    Science.gov (United States)

    Lowery, Maye Norene Vail

    1998-12-01

    The purposes of this study were to further the understanding of how preservice teacher construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science and to determine the extent of that knowledge in a school-based setting. Preservice teachers, university instructors, inservice teachers, and other school personnel were involved in this context-specific study. Evidence of the preservice teachers' knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. Collected data included individual and group interviews, course documents, artifacts, and preservice teaching portfolios. Innovative aspects of this integrated mathematics and science elementary methods course included standards-based instruction with immediate access to field experiences. Grade-level teams of preservice and inservice teachers planned and implemented lessons in mathematics and science for elementary students. An on-site, portable classroom building served as a mathematics and science teaching and learning laboratory. A four-stage analysis was performed, revealing significant patterns of learning. An ecosystem of learning within a constructivist learning environment was identified to contain three systems: the university system; the school system; and the cohort of learners system. A mega system for the construction of teacher knowledge was revealed in the final analysis. Learning venues were discovered to be the conduits of learning in a situated learning context. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge through identified learning components. Patience, flexibility, and communication were identified as necessities for successful teaching. Learning components included: collaboration with inservice teachers; implementation of discovery learning and hands-on/minds-on learning; small groupwork; lesson planning

  9. Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom?

    Science.gov (United States)

    Maldonado, J.; Lazrus, H.; Gough, B.

    2017-12-01

    The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.

  10. New concepts of science and medicine in science and technology studies and their relevance to science education.

    Science.gov (United States)

    Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie

    2012-02-01

    Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.

  11. New concepts of science and medicine in science and technology studies and their relevance to science education

    Directory of Open Access Journals (Sweden)

    Hsiu-Yun Wang

    2012-02-01

    Full Text Available Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society.

  12. Science to the People

    CERN Document Server

    Doswaldbeck, L; Brancati, D; Colombo, U; Coyaud, S; De Semir, V; Dupuy, G; Ellis, Jonathan Richard; Lecourt, D; Llewellyn Smith, Christopher Hubert; Mettan, G; Montagnier, L; Morrison, Douglas Robert Ogston; Rampini, F; Ting, Samuel C C; Ugo, R; Widman, A; CERN. Geneva

    1994-01-01

    Science & society : urgent topics Risk perception : Ringing the alarm bells Basic research : Understanding its relevance Science and Economics : Comparing puplic costs and puplic benefits Language(s) : Translating expert knowledge into common culture Science and ethics : Freedom of research and limits to its applications Science,Media & Society: A confrontation

  13. Exploring knowledge perceptions and attitudes about generic medicines among finalyear health science students

    Directory of Open Access Journals (Sweden)

    Varsha Bangalee

    2016-05-01

    Full Text Available Background. The use of generic medicines to reduce healthcare costs has become a mandated policy in South Africa. An increase in the use of generics can be achieved through improved knowledge, attitudes and perceptions of generic medicine among healthcare professionals. Objective. To explore knowledge, attitudes and perceptions among final-year health science students on generic medication. Methods. A cross-sectional survey was carried out among the final-year audiology, dental therapy, pharmacy, physiotherapy, occupational therapy, optometry, speech-language and sport science students enrolled at the University of KwaZulu-Natal. A questionnaire was used as the study tool, developed using information adapted from literature reviews. Data analysis was completed using Statistical Package for the Social Sciences (SPSS version 21, and computed using descriptive statistics. Results. Total number of participants was 211, as follows: audiology (n=14, dental therapy (n=15, pharmacy (n=81, physiotherapy (n=41, occupational therapy (n=6, optometry (n=25, speech-language (n=6 and sport science (n=23. A total of 90.0% of students had heard of generic medicines, with 20.9% of them agreeing that generic medicines are less effective than brand-name medicines. Concerning safety, 30.4% believed that brand-name medicines are required to meet higher safety standards than generic medicines. Regarding the need for information on issues pertaining to safety and efficacy of medicines, 53.3% of participants felt that this need was not being met. Conclusion. All groups had knowledge deficits about the safety, quality and efficacy of generic medicines. The dissemination of information about generic medicines may strengthen future knowledge, attitudes and perceptions.

  14. The Life Science Exchange: a case study of a sectoral and sub-sectoral knowledge exchange programme.

    Science.gov (United States)

    Perkins, Brian Lee; Garlick, Rob; Wren, Jodie; Smart, Jon; Kennedy, Julie; Stephens, Phil; Tudor, Gwyn; Bisson, Jonathan; Ford, David V

    2016-04-27

    Local and national governments have implemented sector-specific policies to support economic development through innovation, entrepreneurship and knowledge exchange. Supported by the Welsh Government through the European Regional Development Fund, The Life Science Exchange® project was created with the aim to increase interaction between stakeholders, to develop more effective knowledge exchange mechanisms, and to stimulate the formation and maintenance of long-term collaborative relationships within the Welsh life sciences ecosystem. The Life Science Exchange allowed participants to interact with other stakeholder communities (clinical, academic, business, governmental), exchange perspectives and discover new opportunities. Six sub-sector focus groups comprising over 200 senior stakeholders from academia, industry, the Welsh Government and National Health Service were established. Over 18 months, each focus group provided input to inform healthcare innovation policy and knowledge mapping exercises of their respective sub-sectors. Collaborative projects identified during the focus groups and stakeholder engagement were further developed through sandpit events and bespoke support. Each sub-sector focus group produced a report outlining the significant strengths and opportunities in their respective areas of focus, made recommendations to overcome any 'system failures', and identified the stakeholder groups which needed to take action. A second outcome was a stakeholder-driven knowledge mapping exercise for each area of focus. Finally, the sandpit events and bespoke support resulted in participants generating more than £1.66 million in grant funding and inward investment. This article outlines four separate outcomes from the Life Science Exchange programme. The Life Science Exchange process has resulted in a multitude of collaborations, projects, inward investment opportunities and special interest group formations, in addition to securing over ten times its own

  15. Investigation of Technological Pedagogy Content Knowledge of Pre-Service Science and Technology Teachers

    OpenAIRE

    Bayram AKARSU; Esra GÜVEN

    2014-01-01

    The purpose of this study is to investigate Technological Pedagogical Content Knowledge (TPACK) of 3rd and 4th year prospective science teachers, enrollment at the faculty of education, with respect to the technological knowledge (TK), pedagogical knowledge (PK), content knowledge (CK), technological pedagogical knowledge (TPC), pedagogical content knowledge (PCK), and information in the technological content (TPC). These knowledge types are intersection of the sub-dimensions to determine whe...

  16. Assessing the Life Science Knowledge of Students and Teachers Represented by the K–8 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K–8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students’ performance and to have a high level of awareness of the particular misconceptions that their students hold on the K–4 standards, but a low level of awareness of misconceptions related to the 5–8 standards. PMID:24006402

  17. Assessing the life science knowledge of students and teachers represented by the K-8 national science standards.

    Science.gov (United States)

    Sadler, Philip M; Coyle, Harold; Smith, Nancy Cook; Miller, Jaimie; Mintzes, Joel; Tanner, Kimberly; Murray, John

    2013-01-01

    We report on the development of an item test bank and associated instruments based on the National Research Council (NRC) K-8 life sciences content standards. Utilizing hundreds of studies in the science education research literature on student misconceptions, we constructed 476 unique multiple-choice items that measure the degree to which test takers hold either a misconception or an accepted scientific view. Tested nationally with 30,594 students, following their study of life science, and their 353 teachers, these items reveal a range of interesting results, particularly student difficulties in mastering the NRC standards. Teachers also answered test items and demonstrated a high level of subject matter knowledge reflecting the standards of the grade level at which they teach, but exhibiting few misconceptions of their own. In addition, teachers predicted the difficulty of each item for their students and which of the wrong answers would be the most popular. Teachers were found to generally overestimate their own students' performance and to have a high level of awareness of the particular misconceptions that their students hold on the K-4 standards, but a low level of awareness of misconceptions related to the 5-8 standards.

  18. Evaluation of the Effect of Knowledge Concerning Healthy Nutrition and Nutrition Science on the Knowledge Development Approach

    Directory of Open Access Journals (Sweden)

    Asghari

    2016-02-01

    Full Text Available Background Nutrition can be regarded as an important part of any preparation program, as well as an important part of life. It seems essential to develop nutritional science and improve eating habits with the purpose of developing a healthy diet and avoiding the outcomes that arise from a lack of nutrition. Proper nutrition is one of the important factors for the development of health. Lack of sufficient awareness about nutrition can result in improper eating habits. Objectives The present study evaluated the effect of knowledge about healthy nutrition and nutrition science on the knowledge development approach. Materials and Methods In this cross-sectional descriptive study, the statistical population consisted of 190 experts and other scholars in the area of nutritional science. A questionnaire based on demographic details, nutritional science, nutrition education, research, proper solutions to individuals’ nutritional problems, and a culture of nutrition was used for data collection. Results A relatively strong positive correlation was found between the knowledge development approach, nutritional science, nutrition education and research, and proper solutions for individual nutritional problems and a culture of nutrition (P < 0.001. Conclusions 1 Effective enhancement and participation in an academic community will be important in the future of food and nutrition security; however, major gaps and weaknesses also exist in this context; 2 The main weaknesses in relation to the lack of clear policies and procedures include focusing on only Tehran, Iran; the need to overcome bureaucracy; and problems related to motivation, capital, and international communications; 3 Qualitative and quantitative improvement of research is not possible without access to skilled experts and researchers; 4 To solve these problems, it will be beneficial to pay more attention to the role of universities, facilitate intellectual communication among professors in

  19. Indigenous Knowledge, Science, and Resilience: What Have We Learned from a Decade of International Literature on "Integration"?

    Directory of Open Access Journals (Sweden)

    Erin L. Bohensky

    2011-12-01

    Full Text Available Despite the increasing trend worldwide of integrating indigenous and scientific knowledge in natural resource management, there has been little stock-taking of literature on lessons learned from bringing indigenous knowledge and science together and the implications for maintaining and building social-ecological system resilience. In this paper we investigate: (1 themes, questions, or problems encountered for integration of indigenous knowledge and science; (2 the relationship between knowledge integration and social-ecological system resilience; and (3 critical features of knowledge integration practice needed to foster productive and mutually beneficial relationships between indigenous knowledge and science. We examine these questions through content analyses of three special journal issues and an edited book published in the past decade on indigenous, local, and traditional knowledge and its interface with science. We identified broad themes in the literature related to: (1 similarities and differences between knowledge systems; (2 methods and processes of integration; (3 social contexts of integration; and (4 evaluation of knowledge. A minority of papers discuss a relationship between knowledge integration and social-ecological system resilience, but there remains a lack of clarity and empirical evidence for such a relationship that can help distinguish how indigenous knowledge and knowledge integration contribute most to resilience. Four critical features of knowledge integration are likely to enable a more productive and mutually beneficial relationship between indigenous and scientific knowledge: new frames for integration, greater cognizance of the social contexts of integration, expanded modes of knowledge evaluation, and involvement of inter-cultural "knowledge bridgers."

  20. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  1. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    Science.gov (United States)

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  2. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  3. Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland

    Science.gov (United States)

    Mthethwa-Kunene, Khetsiwe Eunice Faith

    Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of

  4. The impact of a dedicated Science-Technology-Society (STS) course on student knowledge of STS content

    Science.gov (United States)

    Barron, Paul E.

    In the last half century, public awareness of issues such as population growth, environmental pollution and the threat of nuclear war has pressured science education to reform to increase student social responsibility. The emerging Science-Technology-Society (STS) movement addressed these concerns by developing numerous strategies and curricula. Considerable diagnostic research has been conducted on student knowledge of the nature of science, but not on the wider scope of STS content (e.g., the nature of science and technology and their interactions with society). However, researchers have not widely studied the impact of comprehensive STS curricula on students' knowledge of STS content nor the nature of STS teaching practice that influenced this knowledge gain. This study examined student success and teacher performance in a special STS course in Ontario, Canada. Research questions focused on the STS content knowledge gain by students completing this course and the impact of the STS teachers' teaching practices on this knowledge gain. Student data were collected using pre-course and post-course assessments of students' STS content knowledge. Teacher data were obtained using semi-structured interviews, classroom observations and videotapes. Statistical analysis indicated that, after completing the STS course, students significantly increased their STS content knowledge as measured by the Views on Science Technology Society instrument. Gender and academic achievement had no significant impact on this knowledge gain, implying that this course, as taught by these teachers, could appeal to a wide range of students as a general education course. The second part of the study indicated that detailed research is needed on the relationship between STS teaching practice and student STS content knowledge gain. The small sample size prevents generalizations but initial indications show that factors such constructivist teaching practices and strong teacher STS content knowledge

  5. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  6. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  7. Associations for Citizen Science: Regional Knowledge, Global Collaboration

    Directory of Open Access Journals (Sweden)

    Martin Storksdieck

    2016-11-01

    Full Text Available Since 2012, three organizations advancing the work of citizen science practitioners have arisen in different regions: The primarily US-based but globally open Citizen Science Association (CSA, the European Citizen Science Association (ECSA, and the Australian Citizen Science Association (ACSA. These associations are moving rapidly to establish themselves and to develop inter-association collaborations. We consider the factors driving this emergence and the significance of this trend for citizen science as a field of practice, as an area of scholarship, and for the culture of scientific research itself.

  8. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    Science.gov (United States)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  9. Proceedings: international conference on transfer of forest science knowledge and technology.

    Science.gov (United States)

    Cynthia Miner; Ruth Jacobs; Dennis Dykstra; Becky Bittner

    2007-01-01

    This proceedings compiles papers presented by extensionists, natural resource specialists, scientists, technology transfer specialists, and others at an international conference that examined knowledge and technology transfer theories, methods, and case studies. Theory topics included adult education, applied science, extension, diffusion of innovations, social...

  10. The Naîure of Science and Librarianship and Information Science as a Disciplirıe of Science

    Directory of Open Access Journals (Sweden)

    Oya Gürdal

    1993-09-01

    Full Text Available Science is a systemized from of knowledge which is a product of human creativity. The aim of this study is to try to explain the nature of the concept of science, and to evaluate librarianship and information science as a scientific discipline in accordance with the synthesis achieved; and invite colleagues to consider this issue.

  11. The Science of Science Communication and Protecting the Science Communication Environment

    Science.gov (United States)

    Kahan, D.

    2012-12-01

    Promoting public comprehension of science is only one aim of the science of science communication and is likely not the most important one for the well-being of a democratic society. Ordinary citizens form quadrillions of correct beliefs on matters that turn on complicated scientific principles they cannot even identify much less understand. The reason they fail to converge on beliefs consistent with scientific evidence on certain other consequential matters—from climate change to genetically modified foods to compusory adolescent HPV vaccination—is not the failure of scientists or science communicators to speak clearly or the inability of ordinary citizens to understand what they are saying. Rather, the source of such conflict is the proliferation of antagonistic cultural meanings. When they become attached to particular facts that admit of scientific investigation, these meanings are a kind of pollution of the science communication environment that disables the faculties ordinary citizens use to reliably absorb collective knowledge from their everyday interactions. The quality of the science communication environment is thus just as critical for enlightened self-government as the quality of the natural environment is for the physical health and well-being of a society's members. Understanding how this science communication environment works, fashioning procedures to prevent it from becoming contaminated with antagonistic meanings, and formulating effective interventions to detoxify it when protective strategies fail—those are the most critical functions science communication can perform in a democratic society.

  12. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    Science.gov (United States)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  13. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  14. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  15. Development and Nature of Preservice Chemistry Teachers' Pedagogical Content Knowledge for Nature of Science

    Science.gov (United States)

    Demirdögen, Betül; Hanuscin, Deborah L.; Uzuntiryaki-Kondakci, Esen; Köseoglu, Fitnat

    2016-01-01

    The purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for…

  16. A Science Products Inventory for Citizen-Science Planning and Evaluation.

    Science.gov (United States)

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-06-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  17. A science products inventory for citizen-science planning and evaluation

    Science.gov (United States)

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K.; Weltzin, Jake F.

    2018-01-01

    Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

  18. A Science Products Inventory for Citizen-Science Planning and Evaluation

    Science.gov (United States)

    Wiggins, Andrea; Bonney, Rick; LeBuhn, Gretchen; Parrish, Julia K; Weltzin, Jake F

    2018-01-01

    Abstract Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science. PMID:29867254

  19. Linking vocabulary to imagery: Improving science knowledge through multimedia design

    Science.gov (United States)

    Adler, Tracy R.

    This qualitative study looked at the vocabulary development of four urban sixth-grade students as they used laser disk and computer technologies to view images and then connect those images to textual definitions through multimedia design. Focusing on three science content areas (the water cycle, the rock cycle, and the web of life), students worked in pairs to create their own multimedia stacks that focused on the prescribed vocabulary. Using a combination of text, images, and audio, students demonstrated their understanding of content vocabulary words and how these words are interconnects within a science topic. Further, the study examined the impact that linking images to vocabulary and textual definitions has on helping students memorize definitions of the science content words. It was found that the use of imagery had a positive affect on the students' ability to identify textual definitions and vocabulary words, though it did not have a great impact on their later recall of word/definition connections. In addition, by designing their own multimedia artifacts, students were able to connect the vocabulary and images within a specific content area and explain their function within a broader science concept. The results of this study were inconclusive as to the impact this activity had on the students' ability to transfer their knowledge to correctly answering questions similar to the ones they see on their state proficiency exam.

  20. KNOWLEDGE SCIENCES AND NANATSUDAKI: A NEW MODEL OF KNOWLEDGE CREATION PROCESSES

    Institute of Scientific and Technical Information of China (English)

    Andrzej P.WIERZBICKI; Yoshiteru NAKAMORI

    2007-01-01

    The paper starts from a discussion of the concepts of knowledge management versus technology management,and the emergence of knowledge sciences.This is followed be a summary of recent results in the theory of knowledge creation.Most of them concern diverse spirals of creative interplay between rational (explicit) and intuitive or emotional (tacit) aspects of knowledge.Some of them concentrate on organizational (market or purpose-oriented) knowledge creation,other describe academic (research-oriented) knowledge creation.The problem addressed in this paper is how to integrate diverse spirals of knowledge creation into a prescriptive or exemplar model that would help to overcome the differences between organizational (market-oriented) and normal academic knowledge creation.As such prescriptive approach,the JAIST Nanatsudaki Model of knowledge creation is proposed.It consists of seven spirals,known from other studies,but integrated in a sequence resulting from the experience of authors in practical management of research activities.Not all of these spirals have to be fully utilized,depending on a particular application,but all of them relate to some essential aspects of either academic or organizational knowledge creation.The paper presents Nanatsudaki Model in detail with comments on consecutive spirals.The results of a survey of opinions about creativity conditions at JAIST indicate the importance of many spirals constituting the Nanatsudaki Model.Directions of further testing the Nanatsudaki Model are indicated.

  1. Capable and credible? Challenging nutrition science : Challenging nutrition science

    NARCIS (Netherlands)

    Penders, Bart; Wolters, Anna; Feskens, Edith F; Brouns, Fred; Huber, Machteld; Maeckelberghe, Els L M; Navis, Gerjan; Ockhuizen, Theo; Plat, Jogchum; Sikkema, Jan; Stasse-Wolthuis, Marianne; van 't Veer, Pieter; Verweij, Marcel; de Vries, Jan

    Nutrition science has enriched our understanding of how to stay healthy by producing valuable knowledge about the interaction of nutrients, food, and the human body. Nutrition science also has raised societal awareness about the links between food consumption and well-being, and provided the basis

  2. Science Shops: an initiative to combine technical and societal knowledge for risk governance

    International Nuclear Information System (INIS)

    Martell, Meritxell; Duro, L.; Bruno, J.

    2006-01-01

    Continuing societal concerns limit the application of deep geological disposal in many countries. Wider societal involvement at a variety of governance levels in an open, inclusive and transparent manner is a top-level concern in all European and national organisations involved in radioactive waste management. Nevertheless, current approaches to governance of spent fuel reveal two weaknesses. Firstly, local and regional communities lack access to an authoritative yet independent platform of experts to address their concerns and information needs in a systematic way and which could provide them with the sufficient knowledge base as to be able to take sound decisions concerning the long-term. Secondly, the difficulties to maintain sufficient level of knowledge and capabilities at educational institutions become a challenge to ensure long-term solutions for the management of radioactive waste. The EC 6th FP Integrated Project 'Fundamental Processes of Radionuclide Migration' (FUNMIG) places a special emphasis on knowledge transfer, dissemination of knowledge and training. Within the framework of FUNMIG, one of the instruments for knowledge production and use is the establishment of a Science Shop at the European level. This Science Shop provides independent, participatory research support in response to concerns expressed by civil society on nuclear issues. The FUNMIG Consortium involves 51 organisations from 15 European countries which are eager to develop formalised channels of communication with non-governmental organisations (NGOs) and citizens' groups in need of expertise on the nuclear field. The Science Shop will further ease the transparency of knowledge production and raise public awareness of the problems associated with radioactive waste management

  3. Science Shops: an initiative to combine technical and societal knowledge for risk governance

    Energy Technology Data Exchange (ETDEWEB)

    Martell, Meritxell; Duro, L.; Bruno, J. [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    Continuing societal concerns limit the application of deep geological disposal in many countries. Wider societal involvement at a variety of governance levels in an open, inclusive and transparent manner is a top-level concern in all European and national organisations involved in radioactive waste management. Nevertheless, current approaches to governance of spent fuel reveal two weaknesses. Firstly, local and regional communities lack access to an authoritative yet independent platform of experts to address their concerns and information needs in a systematic way and which could provide them with the sufficient knowledge base as to be able to take sound decisions concerning the long-term. Secondly, the difficulties to maintain sufficient level of knowledge and capabilities at educational institutions become a challenge to ensure long-term solutions for the management of radioactive waste. The EC 6th FP Integrated Project 'Fundamental Processes of Radionuclide Migration' (FUNMIG) places a special emphasis on knowledge transfer, dissemination of knowledge and training. Within the framework of FUNMIG, one of the instruments for knowledge production and use is the establishment of a Science Shop at the European level. This Science Shop provides independent, participatory research support in response to concerns expressed by civil society on nuclear issues. The FUNMIG Consortium involves 51 organisations from 15 European countries which are eager to develop formalised channels of communication with non-governmental organisations (NGOs) and citizens' groups in need of expertise on the nuclear field. The Science Shop will further ease the transparency of knowledge production and raise public awareness of the problems associated with radioactive waste management.

  4. "Towards a Europe of Knowledge and Innovation", the EIROforum paper on science policy

    Science.gov (United States)

    2005-04-01

    Brussels, April 20, 2005 - Today Europe's seven major intergovernmental research organisations, working together in the EIROforum partnership, presented their comprehensive paper on science policy, "Towards a Europe of Knowledge and Innovation", in the presence of the European Commissioner for Science and Research, Mr. Janez Potocnik and the Luxembourg Minister for Culture, Higher Education, Employment and Research, Mr. François Biltgen. Luxembourg currently holds the presidency of the European Union. ESO PR Photo 11/05 ESO PR Photo 11/05 EIROforum Paper on Science Policy Presentation [Preview - JPEG: 400 x 475 pix - 176k] [Normal - JPEG: 800 x 950 pix - 505k] [Full Res - JPEG: 2023 x 2402 pix - 2.1M] Five years ago, at the meeting of the European Council in Lisbon, the creation of a European Research Area (ERA) was proposed as a means to achieve the ambitious targets necessary to develop a leading, knowledge-based economy in Europe. The ERA intends to make a single market for European research, bringing together scientists from all member states. The EIROforum partners operate some of the largest research infrastructures in the world, possess unique and long-standing expertise in the organisation of pan-European research, bring expert knowledge to discussions about new large facilities in Europe, provide a model for the ERA, and offer their experience and active engagement in creating a true European Research Area. The EIROforum paper on science policy describes their collective vision on the future of European scientific research in order to support the Lisbon Process by working, alongside the Commission, for the implementation of the European Research Area. In combination with the individual success and expertise of each of the EIROforum partners, this provides a strong boost to European Research and thus to the Lisbon Goals of developing a knowledge-based economy. "As the borders of the European Union expand there is a fundamental role for the EIROforum

  5. Investigating Coherence among Turkish Elementary Science Teachers' Teaching Belief Systems, Pedagogical Content Knowledge and Practice

    Science.gov (United States)

    Bahcivan, Eralp; Cobern, William W.

    2016-01-01

    This study investigated comprehensive science teaching belief systems and their relation to science teachers' pedagogical content knowledge and teaching practices. Rokeach's (1968) belief system was used as a framework for representing the hierarchy among in-service teachers' teaching beliefs. This study employed a multiple case study design with…

  6. High School Students' Evaluations, Plausibility (Re) Appraisals, and Knowledge about Topics in Earth Science

    Science.gov (United States)

    Lombardi, Doug; Bickel, Elliot S.; Bailey, Janelle M.; Burrell, Shondricka

    2018-01-01

    Evaluation is an important aspect of science and is receiving increasing attention in science education. The present study investigated (1) changes to plausibility judgments and knowledge as a result of a series of instructional scaffolds, called model-evidence link activities, that facilitated evaluation of scientific and alternative models in…

  7. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    Science.gov (United States)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  8. Emerging areas of science: Recommendations for Nursing Science Education from the Council for the Advancement of Nursing Science Idea Festival.

    Science.gov (United States)

    Henly, Susan J; McCarthy, Donna O; Wyman, Jean F; Heitkemper, Margaret M; Redeker, Nancy S; Titler, Marita G; McCarthy, Ann Marie; Stone, Patricia W; Moore, Shirley M; Alt-White, Anna C; Conley, Yvette P; Dunbar-Jacob, Jacqueline

    2015-01-01

    The Council for the Advancement of Nursing Science aims to "facilitate and recognize life-long nursing science career development" as an important part of its mission. In light of fast-paced advances in science and technology that are inspiring new questions and methods of investigation in the health sciences, the Council for the Advancement of Nursing Science convened the Idea Festival for Nursing Science Education and appointed the Idea Festival Advisory Committee (IFAC) to stimulate dialogue about linking PhD education with a renewed vision for preparation of the next generation of nursing scientists. Building on the 2005 National Research Council report Advancing The Nation's Health Needs and the 2010 American Association of Colleges of Nursing Position Statement on the Research-Focused Doctorate Pathways to Excellence, the IFAC specifically addressed the capacity of PhD programs to prepare nursing scientists to conduct cutting-edge research in the following key emerging and priority areas of health sciences research: omics and the microbiome; health behavior, behavior change, and biobehavioral science; patient-reported outcomes; big data, e-science, and informatics; quantitative sciences; translation science; and health economics. The purpose of this article is to (a) describe IFAC activities, (b) summarize 2014 discussions hosted as part of the Idea Festival, and (c) present IFAC recommendations for incorporating these emerging areas of science and technology into research-focused doctoral programs committed to preparing graduates for lifelong, competitive careers in nursing science. The recommendations address clearer articulation of program focus areas; inclusion of foundational knowledge in emerging areas of science in core courses on nursing science and research methods; faculty composition; prerequisite student knowledge and skills; and in-depth, interdisciplinary training in supporting area of science content and methods. Copyright © 2015 Elsevier Inc

  9. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  10. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  11. Analogies, Models and Metaphors in the Production of Social Science Knowledge

    Directory of Open Access Journals (Sweden)

    Léo Peixoto Rodrigues

    2007-12-01

    Full Text Available This article focus on discussing the legitimacy of the use of analogies, models and metaphors in the production of the scientific knowledge. These concepts have been widely debated philosophically and epistemologically, however, there are few papers regarding this subject from a social sciences’ point of view and approach. The analytical epistemological tradition has whether denied or minimized the importance of use of analogies, models and metaphors in the scientific “discoveries’” logic, in its different areas. Taking some historical and current aspects of this question we point out the heuristically importance of these three aspects to the production of science, including its use in social sciences.

  12. The founding of ISOTT: the Shamattawa of engineering science and medical science.

    Science.gov (United States)

    Bruley, Duane F

    2014-01-01

    The founding of ISOTT was based upon the blending of Medical and Engineering sciences. This occurrence is portrayed by the Shamattawa, the joining of the Chippewa and Flambeau rivers. Beginning with Carl Scheele's discovery of oxygen, the medical sciences advanced the knowledge of its importance to physiological phenomena. Meanwhile, engineering science was evolving as a mathematical discipline used to define systems quantitatively from basic principles. In particular, Adolf Fick's employment of a gradient led to the formalization of transport phenomena. These two rivers of knowledge were blended to found ISOTT at Clemson/Charleston, South Carolina, USA, in 1973.The establishment of our society with a mission to support the collaborative work of medical scientists, clinicians and all disciplines of engineering was a supporting step in the evolution of bioengineering. Traditional engineers typically worked in areas not requiring knowledge of biology or the life sciences. By encouraging collaboration between medical science and traditional engineering, our society became one of the forerunners in establishing bioengineering as the fifth traditional discipline of engineering.

  13. Students' Perceptions of Vocabulary Knowledge and Learning in a Middle School Science Classroom

    Science.gov (United States)

    Brown, Patrick L.; Concannon, James P.

    2016-01-01

    This study investigated eighth-grade science students' (13-14-year-olds) perceptions of their vocabulary knowledge, learning, and content achievement. Data sources included pre- and posttest of students' perceptions of vocabulary knowledge, students' perceptions of vocabulary and reading strategies surveys, and a content achievement test.…

  14. Conceptualizing In-service Secondary School Science Teachers' Knowledge Base for Promoting Understanding about the Science of Global Climate Change

    Science.gov (United States)

    Bhattacharya, Devarati

    Efforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners' capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers' understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex

  15. Pedagogical Content Knowledge and Educational Cases in Computer Science: an Exploration

    NARCIS (Netherlands)

    Koppelman, Hermannus

    2008-01-01

    The concept of pedagogical content knowledge has been explored in the context of several disciplines, such as mathematics, medicine and chemistry. In this paper the concept is explored and applied to the subject matter of computer science, in particular to the sub domain of building UML class

  16. Sociology of scientific knowledge and science education part 2: Laboratory life under the microscope

    Science.gov (United States)

    Slezak, Peter

    1994-10-01

    This article is the second of two that examine some of the claims of contemporary sociology of scientific knowledge (SSK) and the bearing of these claims upon the rationale and practice of science teaching. In the present article the celebrated work Laboratory Life of Latour and Woolgar is critically examined. Its radical, iconoclastic view of science is shown to be not merely without foundation but an extravagant deconstructionist nihilism according to which all science is fiction and the world is said to be socially constructed by negotiation. On this view, the success of a theory is not due to its intellectual merits or explanatory plausibility but to the capacity of its proponents to “extract compliance” from others. If warranted, such views pose a revolutionary challenge to the entire Western tradition of science and the goals of science education which must be misguided and unrealizable in principle. Fortunately, there is little reason to take these views seriously, though their widespread popularity is cause for concern among science educators.

  17. Citizen Science Initiatives: Engaging the Public and Demystifying Science

    Directory of Open Access Journals (Sweden)

    Kim Van Vliet

    2015-12-01

    Full Text Available The Internet and smart phone technologies have opened up new avenues for collaboration among scientists around the world. These technologies have also expanded citizen science opportunities and public participation in scientific research (PPSR. Here we discuss citizen science, what it is, who does it, and the variety of projects and methods used to increase scientific knowledge and scientific literacy. We describe a number of different types of citizen-science projects. These greatly increase the number of people involved, helping to speed the pace of data analysis and allowing science to advance more rapidly. As a result of the numerous advantages of citizen-science projects, these opportunities are likely to expand in the future and increase the rate of novel discoveries.

  18. Vernacular Knowledge and Water Management – Towards the Integration of Expert Science and Local Knowledge in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Hugh Simpson

    2015-10-01

    Full Text Available Complex environmental problems cannot be solved using expert science alone. Rather, these kinds of problems benefit from problem-solving processes that draw on 'vernacular' knowledge. Vernacular knowledge integrates expert science and local knowledge with community beliefs and values. Collaborative approaches to water problem-solving can provide forums for bringing together diverse, and often competing, interests to produce vernacular knowledge through deliberation and negotiation of solutions. Organised stakeholder groups are participating increasingly in such forums, often through involvement of networks, but it is unclear what roles these networks play in the creation and sharing of vernacular knowledge. A case-study approach was used to evaluate the involvement of a key stakeholder group, the agricultural community in Ontario, Canada, in creating vernacular knowledge during a prescribed multi-stakeholder problem-solving process for source water protection for municipal supplies. Data sources – including survey questionnaire responses, participant observation, and publicly available documents – illustrate how respondents supported and participated in the creation of vernacular knowledge. The results of the evaluation indicate that the respondents recognised and valued agricultural knowledge as an information source for resolving complex problems. The research also provided insight concerning the complementary roles and effectiveness of the agricultural community in sharing knowledge within a prescribed problem-solving process.

  19. Science Anxiety, Science Attitudes, and Constructivism: A Binational Study

    Science.gov (United States)

    Bryant, Fred B.; Kastrup, Helge; Udo, Maria; Hislop, Nelda; Shefner, Rachel; Mallow, Jeffry

    2013-08-01

    Students' attitudes and anxieties about science were measured by responses to two self-report questionnaires. The cohorts were Danish and American students at the upper secondary- and university-levels. Relationships between and among science attitudes, science anxiety, gender, and nationality were examined. Particular attention was paid to constructivist attitudes about science. These fell into at least three broad conceptual categories: Negativity of Science Toward the Individual, Subjective Construction of Knowledge, and Inherent Bias Against Women. Multigroup confirmatory factor analyses revealed that these dimensions of constructivist attitudes were equally applicable and had the same meaning in both cultures. Gender differences in mean levels of constructivist attitudes were found; these varied across the two cultures. Constructivist beliefs were associated with science anxiety, but in different ways for females and males, and for Danes and Americans. In agreement with earlier studies, females in both the US and Danish cohorts were significantly more science anxious than males, and the gender differences for the Americans were larger than those for the Danes. Findings are discussed in terms of their implications for reducing science anxiety by changing constructivist beliefs.

  20. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  1. Surgical data science: The new knowledge domain

    Science.gov (United States)

    Vedula, S. Swaroop; Hager, Gregory D.

    2017-01-01

    Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care with the goal of maximizing quality and value of care. While innovations in diagnostic and therapeutic technologies have driven past improvements in quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytic techniques, and translation or integration of research findings into patient care. We foresee the emergence of Surgical/Interventional Data Science (SDS) as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model and quantify the pathways or processes within the context of patient health states or outcomes, and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data is pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care including prevention, diagnosis, intervention, or post-operative recovery. Existing literature already provides preliminary results suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from pre-, intra-, and post-operative contexts, how it could support intra-operative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective assessments, automated virtual coaching, and robot

  2. Surgical data science: The new knowledge domain.

    Science.gov (United States)

    Vedula, S Swaroop; Hager, Gregory D

    2017-04-01

    Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care with the goal of maximizing quality and value of care. While innovations in diagnostic and therapeutic technologies have driven past improvements in quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytic techniques, and translation or integration of research findings into patient care. We foresee the emergence of Surgical/Interventional Data Science (SDS) as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model and quantify the pathways or processes within the context of patient health states or outcomes, and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data is pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care including prevention, diagnosis, intervention, or post-operative recovery. Existing literature already provides preliminary results suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from pre-, intra-, and post-operative contexts, how it could support intra-operative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective assessments, automated virtual coaching, and robot

  3. Surgical data science: the new knowledge domain

    Directory of Open Access Journals (Sweden)

    Vedula S. Swaroop

    2017-04-01

    Full Text Available Healthcare in general, and surgery/interventional care in particular, is evolving through rapid advances in technology and increasing complexity of care, with the goal of maximizing the quality and value of care. Whereas innovations in diagnostic and therapeutic technologies have driven past improvements in the quality of surgical care, future transformation in care will be enabled by data. Conventional methodologies, such as registry studies, are limited in their scope for discovery and research, extent and complexity of data, breadth of analytical techniques, and translation or integration of research findings into patient care. We foresee the emergence of surgical/interventional data science (SDS as a key element to addressing these limitations and creating a sustainable path toward evidence-based improvement of interventional healthcare pathways. SDS will create tools to measure, model, and quantify the pathways or processes within the context of patient health states or outcomes and use information gained to inform healthcare decisions, guidelines, best practices, policy, and training, thereby improving the safety and quality of healthcare and its value. Data are pervasive throughout the surgical care pathway; thus, SDS can impact various aspects of care, including prevention, diagnosis, intervention, or postoperative recovery. The existing literature already provides preliminary results, suggesting how a data science approach to surgical decision-making could more accurately predict severe complications using complex data from preoperative, intraoperative, and postoperative contexts, how it could support intraoperative decision-making using both existing knowledge and continuous data streams throughout the surgical care pathway, and how it could enable effective collaboration between human care providers and intelligent technologies. In addition, SDS is poised to play a central role in surgical education, for example, through objective

  4. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  5. Democratizing data science through data science training.

    Science.gov (United States)

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O'Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2018-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training.

  6. Beyond Learning Management Systems: Designing for Interprofessional Knowledge Building in the Health Sciences

    Science.gov (United States)

    Lax, Leila; Scardamalia, Marlene; Watt-Watson, Judy; Hunter, Judith; Bereiter, Carl

    2010-01-01

    This paper examines theoretical, pedagogical, and technological differences between two technologies that have been used in undergraduate interprofessional health sciences at the University of Toronto. One, a learning management system, WebCT 2.0, supports online coursework. The other, a Knowledge Building environment, Knowledge Forum 2.0,…

  7. Feminist Knowledge Claims, Local Knowledge, and Gender Divisions of Agricultural Labor: Constructing a Successor Science.

    Science.gov (United States)

    Feldman, Shelley; Welsh, Rick

    1995-01-01

    Issues raised by feminist epistemic critiques of social science are used to examine local (farmer-based) knowledge of agriculture and its contribution to analyses of agricultural sustainability. Focuses on the on-farm gender division of labor as critical in constituting the family farm, and elaborates how different experiences of men and women…

  8. An examination of the relationship among science teaching actions, beliefs, and knowledge of the nature of science

    Science.gov (United States)

    Chun, Sajin

    Scholars in science education advocate curriculum and instruction practices that reflect an understanding of the nature of science. This aspect of school science is an important component of scientific literacy, a primary goal of science education. Considering teaching as a thoughtful profession, there has been a growing research interest on the issue of the consistency between teacher beliefs and actions. Yet, the self-evident assumption that teachers' beliefs about the nature of science will impact on their classroom teaching actions has not been justified. The purpose of this study was to examine the relationship between science teaching actions and beliefs about the nature of science. Defining teacher beliefs as a broad construct, the researcher tried to examine not only teacher's cognitive understanding about the nature of science but also teachers' affect as well as actions with regard to the nature of science. Guiding research questions were as follows: (a) what are the teachers' beliefs about the nature of science; (b) how do the teachers, pedagogical actions reflect their beliefs about the nature of science; and (c) what are the other referent beliefs that mediate the teachers, pedagogical actions within a local school culture. The methodology of this study was an interpretive, qualitative approach that included multiple sources of data, interviews, classroom observations, and instructional materials. Six science teachers from a secondary school located in a rural area of the southeastern US were chosen by convenience. The cross-case study and the grounded theory study designs were adopted as the data analysis process. The constant comparative analysis method was used to generate the emerging themes for this study. This study revealed a gap between these teachers' personal beliefs of the nature of science and the concepts of the nature of science suggested by many researchers. These teachers' personal beliefs about the nature of science have been

  9. Knowledge Production on Science and Technology: a Conceptual Approach; Produccion de Conocimiento Cientifico y Tecnologico: una Aproximacion Conceptual

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, I

    2013-02-01

    One traditional reflection on philosophy of science is the analysis of knowledge production. This is also a relevant aim for contemporary social studies of science. This work review the main contributions routed in this academic field regarding present production of knowledge -Weinberg (1961, 1972), Funtowicz and Ravetz (1993), Gibbons et al. (1994), Jasanoff (1995), Ziman (1998) and Echeverria (2003). A specific attention to the consequences of its features for the public management of science and technology and it relation with society will be attended. (Author) 31 refs.

  10. A brief simulation intervention increasing basic science and clinical knowledge

    Directory of Open Access Journals (Sweden)

    Maria L. Sheakley

    2016-04-01

    Full Text Available Background: The United States Medical Licensing Examination (USMLE is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose: To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods: This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515 and the intervention group received lecture plus a simulation exercise (nl+s=1,066. Assessment included summative exam questions (n=4 that were scored as pass/fail (≥75%. USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results: Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003. Discussion: Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  11. Students' Attitudes toward Science as Predictors of Gains on Student Content Knowledge: Benefits of an After-School Program

    Science.gov (United States)

    Newell, Alana D.; Zientek, Linda R.; Tharp, Barbara Z.; Vogt, Gregory L.; Moreno, Nancy P.

    2015-01-01

    High-quality after-school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content…

  12. Expanding Science Knowledge: Enabled by Nuclear Power

    Science.gov (United States)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  13. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  14. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  15. Fermilab Friends for Science Education | Tree of Knowledge

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Tree of Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education precollege science education programs. Prominently displayed at the Lederman Science Center is the lovely

  16. From art to applied science.

    Science.gov (United States)

    Schatzberg, Eric

    2012-09-01

    Before "applied science" and "technology" became keywords, the concept of art was central to discourse about material culture and its connections to natural knowledge. By the late nineteenth century, a new discourse of applied science had replaced the older discourse of art. This older discourse of art, especially as presented in Enlightenment encyclopedias, addressed the relationship between art and science in depth. But during the nineteenth century the concept of fine art gradually displaced the broader meanings of "art," thus undermining the utility of the term for discourse on the relationship between knowledge and practice. This narrowed meaning of "art" obscured key aspects of the industrial world. In effect, middle-class agents of industrialism, including "men of science," used the rhetoric of "applied science" and, later, "technology" to cement the exclusion of artisanal knowledge from the discourse of industrial modernity.

  17. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  18. Tanzania Journal of Science: Editorial Policies

    African Journals Online (AJOL)

    Tanzania Journal of Science (TJS), is professional, peer reviewed journal, published in ... Optics, Thin films, Zoography, Military sciences, Biological sciences, Biodiversity, ... animal and veterinary sciences, Geology, Agricultural Sciences, Cytology, ... available to the public supports a greater global exchange of knowledge.

  19. Systematic Approach to Remediation in Basic Science Knowledge for Preclinical Students: A case study

    Science.gov (United States)

    Amara, Francis

    Remediation of pre-clerkship students for deficits in basic science knowledge should help them overcome their learning deficiencies prior to clerkship. However, very little is known about remediation in basic science knowledge during pre-clerkship. This study utilized the program theory framework to collect and organize mixed methods data of the remediation plan for pre-clerkship students who failed their basic science cognitive examinations in a Canadian medical school. This plan was analyzed using a logic model narrative approach and compared to literature on the learning theories. The analysis showed a remediation plan that was strong on governance and verification of scores, but lacked: clarity and transparency of communication, qualified remedial tutors, individualized diagnosis of learner's deficits, and student centered learning. Participants admitted uncertainty about the efficacy of the remediation process. A remediation framework is proposed that includes student-centered participation, individualized learning plan and activities, deliberate practice, feedback, reflection, and rigorous reassessment.

  20. Promoting elementary students' epistemology of science through computer-supported knowledge-building discourse and epistemic reflection

    Science.gov (United States)

    Lin, Feng; Chan, Carol K. K.

    2018-04-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.

  1. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  2. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    Science.gov (United States)

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  3. Benefits from an exchange of knowledge in the treaty-related science and technologies: A personal perspective

    International Nuclear Information System (INIS)

    Marshall, P.D.

    1999-01-01

    This paper describes benefits from an exchange of knowledge in the non-proliferation treaty related science and technologies concerning science and technology development. Benefits to State Parties are concerned with non-treaty uses of seismic, hydro acoustic, infrasound and radionuclides data, their evaluation and measuring techniques

  4. Learning from Rookie Mistakes: Critical Incidents in Developing Pedagogical Content Knowledge for Teaching Science to Teachers

    Science.gov (United States)

    Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.

    2017-01-01

    While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…

  5. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System

    Science.gov (United States)

    Niepold, F.; Byers, A.

    2009-12-01

    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  6. Reconnecting art and science for sustainability: learning from indigenous knowledge through participatory action-research in the Amazon

    Directory of Open Access Journals (Sweden)

    Simone Athayde

    2017-06-01

    Full Text Available Sustainability science focuses on generating and applying knowledge to environmentally sound human development around the world. It requires working toward greater integration of different types of knowledge, ways of knowing, and between academy and society. We contribute to the development of approaches for learning from indigenous knowledge, through enhanced understanding of the system of values, meanings, and relationships afforded by indigenous arts. We focus on a long-term, participatory action research project developed for the revitalization of weaving knowledge among three Kawaiwete (also known as Kaiabi indigenous groups in the Amazon. The problem was originally defined by indigenous communities, concerned with the erosion of weaving knowledge of basketry and textiles among men and women. Methods for coproduction of knowledge included dialogical methods and tools, indigenous-led strategies, and quantitative and qualitative approaches across biophysical and social sciences. Longitudinal and cross-sectional studies considered multiple dimensions, scales, and networks of knowledge creation, distribution, and transmission. Innovation and articulation with western systems, along with shamanism, gender, and leadership, were key factors enhancing artistic knowledge resilience. We reflect on lessons learned and implications of this initiative for broadening the understanding of art and science intersections toward a sustainable future.

  7. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  8. Investigate the relation between the media literacy and information literacy of students of communication science and information science and knowledge

    Directory of Open Access Journals (Sweden)

    Elham Esmaeil Pounaki

    2017-03-01

    Full Text Available The new millennium is called Information Age, in which information and communication technologies have been developed. The transfer from industrial society to information society has changed the form and level of education and information from those of the past times. In the past, literacy meant the ability of reading and writing, but today the meaning of literacy has been changed through the time and such a type of literacy is not enough to meet people’s needs in the industrial society of the 21st century. Today’s life requires media and information literacy especially for the students, whose duty is to research and who have a significant role in the development of their country from any perspective. This research aims to study the relation between the media literacy and information literacy of the students of the fields of communication science and information science and knowledge. This is an applied research in terms of its objective and uses a survey-correlation method. The statistical population of this research consists of the postgraduate students studying in the fields of study of information science and knowledge and communication science at Tehran University and Allameh Tabatabai University. The data required for this research were collected by a researcher-made questionnaire. The reliability of the questionnaire has been evaluated by Cronbach’s Alpha, which was equal to 0.936. The data were analyzed using descriptive and inferential statistic methods. The results showed that the level of media literacy and information literacy of students is desirable. There is a significant relationship between the economic status of students and their media literacy. However, the social status of students was directly related to their "ability to communicate" variable of media literacy. Also the Pearson correlation test showed a significant relationship between the variables of media literacy and information literacy.

  9. Evaluation of the Knowledge and Misconceptions of Science Teacher Candidates in Turkey Regarding the Greenhouse Effect through the Use of Drawings

    Science.gov (United States)

    Aksan, Zeynep; Çelikler, Dilek

    2015-01-01

    The aim of this study was to identify, through the use drawings, the knowledge and misconceptions of science teacher candidates regarding the greenhouse effect, and to thereby categorize their level of knowledge on this subject. The study was conducted with a group of 327 science teacher candidates. In this study, science teacher candidates were…

  10. Testing a model of science process skills acquisition: An interaction with parents' education, preferred language, gender, science attitude, cognitive development, academic ability, and biology knowledge

    Science.gov (United States)

    Germann, Paul J.

    Path analysis techniques were used to test a hypothesized structural model of direct and indirect causal effects of student variables on science process skills. The model was tested twice using data collected at the beginning and end of the school year from 67 9th- and 10th-grade biology students who lived in a rural Franco-American community in New England. Each student variable was found to have significant effects, accounting for approximately 80% of the variance in science process skills achievement. Academic ability, biology knowledge, and language preference had significant direct effects. There were significant mediated effects by cognitive development, parents' education, and attitude toward science in school. The variables of cognitive development and academic ability had the greatest total effects on science process skills. Implications for practitioners and researchers are discussed.

  11. Science Literacy of Undergraduates in the United States

    Science.gov (United States)

    Impey, Chris

    2013-01-01

    Science literacy is a matter of broad concern among scientists, educators, and many policy-makers. National Science Foundation surveys of the general public for biannual Science Indicators series show that respondents on average score less than 2/3 correct on a series of science knowledge questions, and less than half display an understanding of the process of scientific inquiry. Both measures are essentially unchanged over two decades. At the University of Arizona, we have gathered over 11,000 undergraduate student responses to a survey of knowledge and beliefs that is tethered in the NSF survey. This non-science major population demographically represents ten million students nationwide. There is a less than 10% gain in performance in the science knowledge score between the incoming freshmen and seniors who graduate having completed their requirement of three science classes. Belief levels in pseudoscience and supernatural phenomena are disconcertingly high, mostly resistant to college science instruction, and weakly correlated with performance on the science knowledge questions. The Internet is rapidly becoming the primary information source for anyone interested in science so students may not get most of their information from the classroom. Educators and policy makers need to decide what aspects of science knowledge and process are important for adults to know. College science educators have major challenges in better in preparing graduates for participation in a civic society largely driven by science and technology.

  12. Using the Mixture Rasch Model to Explore Knowledge Resources Students Invoke in Mathematic and Science Assessments

    Science.gov (United States)

    Zhang, Danhui; Orrill, Chandra; Campbell, Todd

    2015-01-01

    The purpose of this study was to investigate whether mixture Rasch models followed by qualitative item-by-item analysis of selected Programme for International Student Assessment (PISA) mathematics and science items offered insight into knowledge students invoke in mathematics and science separately and combined. The researchers administered an…

  13. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  14. Islands of knowledge: science and agriculture in the history of Latin America and the Caribbean.

    Science.gov (United States)

    Fernández Prieto, Leida

    2013-12-01

    This essay explores the participation of Latin America and the Caribbean in the construction and circulation of tropical agricultural science during the nineteenth century and the first half of the twentieth century. It uses the term "islands of knowledge" to underscore the idea that each producing region across the global tropics, including Latin America and the Caribbean, was instrumental in the creation, adoption, and application of scientific procedures. At the same time, it emphasizes the value of interchange and interconnection between these regions, as well as the many and heterogeneous local areas, for analyzing what it calls "global archipelago agricultural scientific knowledge." This focus challenges the traditional center/periphery hierarchy and opens it to a wider vision of science and practice in agriculture. This essay shows how writing in related areas of research--specifically, commodity histories, biological exchange studies, and knowledge exchange studies--introduces approaches and case studies that are useful for the history of tropical agricultural science. In particular, this work provides analytical frameworks for developing studies of exchanges across the Global South.

  15. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  16. NUCLEONICA: a nuclear science portal

    International Nuclear Information System (INIS)

    Magill, J.; Galy, J.; Dreher, R.; Hamilton, D.; Tufan, M.; Normand, C.; Schwenk-Ferrero, A.; Wiese, H.W.

    2008-01-01

    NUCLEONICA is a new nuclear science web portal from the European Commission's Joint Research Centre. The portal provides a customizable, integrated environment and collaboration platform for the nuclear sciences using the latest 'Web 2.0' dynamic technology. NUCLEONICA is aimed at professionals, academics and students working with radionuclides in fields as diverse as the life sciences (e.g., biology, medicine, agriculture), the earth sciences (geology, meteorology, environmental science) and the more traditional disciplines such as nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. It is also used as a knowledge management tool to preserve nuclear knowledge built up over many decades by creating modern web-based versions of so-called legacy computer codes. (authors)

  17. Citizen Science for public health.

    Science.gov (United States)

    Den Broeder, Lea; Devilee, Jeroen; Van Oers, Hans; Schuit, A Jantine; Wagemakers, Annemarie

    2016-12-23

    Community engagement in public health policy is easier said than done. One reason is that public health policy is produced in a complex process resulting in policies that may appear not to link up to citizen perspectives. We therefore address the central question as to whether citizen engagement in knowledge production could enable inclusive health policy making. Building on non-health work fields, we describe different types of citizen engagement in scientific research, or 'Citizen Science'. We describe the challenges that Citizen Science poses for public health, and how these could be addressed. Despite these challenges, we expect that Citizen Science or similar approaches such as participatory action research and 'popular epidemiology' may yield better knowledge, empowered communities, and improved community health. We provide a draft framework to enable evaluation of Citizen Science in practice, consisting of a descriptive typology of different kinds of Citizen Science and a causal framework that shows how Citizen Science in public health might benefit both the knowledge produced as well as the 'Citizen Scientists' as active participants. © The Author 2016. Published by Oxford University Press.

  18. Integrating science with farmer knowledge: Sorghum diversity management in north-east Ghana

    NARCIS (Netherlands)

    Kudadjie, C.Y.

    2006-01-01

    Keywords:   Convergence of sciences, diversity management, experimentation, farmer knowledge, genetic diversity, Ghana, plant variation, private sector, research, Sorghum

  19. When science became Western: historiographical reflections.

    Science.gov (United States)

    Elshakry, Marwa

    2010-03-01

    While thinking about the notion of the "global" in the history of the history of science, this essay examines a related but equally basic concept: the idea of "Western science." Tracing its rise in the nineteenth century, it shows how it developed as much outside the Western world as within it. Ironically, while the idea itself was crucial for the disciplinary formation of the history of science, the global history behind this story has not been much attended to. Drawing on examples from nineteenth-century Egypt and China, the essay begins by looking at how international vectors of knowledge production (viz., missionaries and technocrats) created new global histories of science through the construction of novel genealogies and through a process of conceptual syncretism. Turning next to the work of early professional historians of science, it shows how Arabic and Chinese knowledge traditions were similarly reinterpreted in light of the modern sciences, now viewed as part of a diachronic and universalist teleology ending in "Western science." It concludes by arguing that examining the global emergence of the idea of Western science in this way highlights key questions pertaining to the relation of the history of science to knowledge traditions across the world and the continuing search for global histories of science.

  20. Implementing the Next Generation Science Standards

    Science.gov (United States)

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  1. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  2. The psychological characteristics of experiences that influence science motivation and content knowledge

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2017-11-01

    While motivational changes towards science are common during adolescence, our work asks which perceived classroom experiences are most strongly related to these changes. Additionally, we examine which experiences are most strongly associated with learning classroom content. In particular, using self-reports from a sample of approximately 3000 middle school students, this study investigates the influence of perceived science classroom experiences, namely student engagement and perceived success, on motivational change (fascination, values, competency belief) and content knowledge. Controlling for demographic information, school effects, and initial levels of motivation and content knowledge, we find that dimensions of engagement (affect, behavioural/cognitive) and perceived success are differentially associated with changes in particular motivational constructs and learning. Affective engagement is positively associated with motivational outcomes and negatively associated with learning outcomes, behavioural-cognitive engagement is associated only with learning, and perceived success is related only to motivational outcomes. Theoretical and practical implications are discussed.

  3. Transfer Entails Communication: The Public Understanding of (Social) Science as a Stage and a Play for Implementing Evidence-Based Prevention Knowledge and Programs.

    Science.gov (United States)

    Bromme, Rainer; Beelmann, Andreas

    2018-04-01

    Many social science-based interventions entail the transfer of evidence-based knowledge to the "target population," because the acquisition and the acceptance of that knowledge are necessary for the intended improvement of behavior or development. Furthermore, the application of a certain prevention program is often legitimated by a reference to science-based reasons such as an evaluation according to scientific standards. Hence, any implementation of evidence-based knowledge and programs is embedded in the public understanding of (social) science. Based on recent research on such public understanding of science, we shall discuss transfer as a process of science communication.

  4. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    Science.gov (United States)

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  5. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  6. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  7. Narratives of Dynamic Lands: Science Education, Indigenous Knowledge and Possible Futures

    Science.gov (United States)

    McGinty, Megan; Bang, Megan

    2016-01-01

    We aim to share some of our work currently focused on understanding and unearthing the multiplicities of ways the denial of culture in relation to science and knowledge construction is embedded in issues of climate change and climate change education. The issues become more troubling when we consider how effects of climate change are manifesting…

  8. Science of adaptation to climate change and science for adaptation

    Directory of Open Access Journals (Sweden)

    Rob eSwart

    2014-07-01

    Full Text Available Adaptation to climate change has gained a prominent place next to mitigation on global, national and local policy agendas. However, while an abundance of adaptation strategies, plans and programmes have been developed, progress in turning these into action has been slow. The development of a sound knowledge basis to support adaptation globally is suggested to accelerate progress, but has lagged behind. The emphasis in both current and newly proposed programmes is very much on practice-oriented research with strong stakeholder participation. This paper supports such practice-oriented research, but argues that this is insufficient to support adaptation policy and practice in a productive manner. We argue that there is not only a need for science for adaptation, but also a science of adaptation. The paper argues that participatory, practice-oriented research is indeed essential, but has to be complemented by and connected to more fundamental inquiry and concept development, which takes into account knowledge that has been developed in disciplinary sciences and on issues other than climate change adaptation. At the same time, the level and method of participation in science for adaptation should be determined on the basis of the specific project context and goals. More emphasis on science of adaptation can lead to improved understanding of the conditions for successful science for adaptation.

  9. Developing the STS sound pollution unit for enhancing students' applying knowledge among science technology engineering and mathematics

    Science.gov (United States)

    Jumpatong, Sutthaya; Yuenyong, Chokchai

    2018-01-01

    STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.

  10. Exposure to science, perspectives on science and religion, and religious commitment in young adulthood.

    Science.gov (United States)

    Uecker, Jeremy E; Longest, Kyle C

    2017-07-01

    Social scientists know very little about the consequences of exposure to scientific knowledge and holding different perspectives on science and religion for individuals' religious lives. Drawing on secularization and post-secular theories, we develop and test several hypotheses about the relationships among exposure to scientific knowledge, perspectives on religion and science, and religious commitment using panel data from the National Study of Youth and Religion. Our findings indicate that religious faith is strongest among young adults who: (1) accommodate scientific knowledge into their religious perspective, or (2) reject scientific knowledge that directly contradicts their religious beliefs about the origins of the world. Young adults are also more likely to have lower religious commitment when they view science and religion as independent institutions, lending support to secularization ideas about how social differentiation secularizes individuals. We further find that mere exposure to scientific knowledge, in terms of majoring in biology or acknowledging conflict between the teachings of religion and science, is usually not sufficient to undermine religious commitment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Knowledge, Attitude and Practice on Blood Donation among Health Science Students in a University campus, South India

    Directory of Open Access Journals (Sweden)

    Sabu Karakkamandapam

    2011-07-01

    Full Text Available Background: The major part of demand for blood in India has been meeting through voluntary blood donations. The healthy, active and receptive huge student population is potential blood donors to meet safe blood requirements. However, there is a paucity of studies on awareness and attitude among health science students on voluntary blood donation. Objective: The objective of this study was to determine the knowledge and attitude about blood donation among health science students. Methods: A cross-sectional study was conducted among 410 health sciences students from different streams in a University campus of South India through a structured survey questionnaire in the year 2009. Results: The overall knowledge on blood donation was good, but majority (62% of students never donated blood. Knowledge level was found highest among allied health science (53.1% and lowest among pharmacy students (20.7%. ‘Feeling of medically unfit’ and ‘never thought of blood donation’ were the major reasons for not donating blood. A significant association was observed between different streams of students and levels of knowledge and attitude about blood donation. Conclusion: This study elicits the importance of adopting effective measures in our campuses to motivate about voluntary blood donation among students.

  12. State of the Art in HIV Drug Resistance: Science and Technology Knowledge Gap.

    Science.gov (United States)

    Boucher, Charles A; Bobkova, Marina R; Geretti, Anna Maria; Hung, Chien-Ching; Kaiser, Rolf; Marcelin, Anne-Geneviève; Streinu-Cercel, Adrian; van Wyk, Jean; Dorr, Pat; Vandamme, Anne-Mieke

    2018-01-01

    Resistance to antiretroviral therapy (ART) threatens the efficacy of human immunodeficiency virus type 1 (HIV-1) treatment. We present a review of knowledge gaps in the science and technologies of acquired HIV-1 drug resistance (HIVDR) in an effort to facilitate research, scientific exchange, and progress in clinical management. The expert authorship of this review convened to identify data gaps that exist in the field of HIVDR and discuss their clinical implications. A subsequent literature review of trials and current practices was carried out to provide supporting evidence. Several gaps were identified across HIVDR science and technology. A summary of the major gaps is presented, with an expert discussion of their implications within the context of the wider field. Crucial to optimizing the use of ART will be improved understanding of protease inhibitors and, in particular, integrase strand transfer inhibitors (INSTI) in the context of HIVDR. Limited experience with INSTI represents an important knowledge gap in HIV resistance science. Utilizing such knowledge in a clinical setting relies on accurate testing and analysis of resistance-associated mutations. As next-generation sequencing becomes more widely available, a gap in the interpretation of data is the lack of a defined, clinically relevant threshold of minority variants. Further research will provide evidence on where such thresholds lie and how they can be most effectively applied. Expert discussion identified a series of gaps in our knowledge of HIVDR. Addressing prefsuch gaps through further research and characterization will facilitate the optimal use of ART therapies and technologies.

  13. A guided science

    DEFF Research Database (Denmark)

    Valsiner, Jaan

    That sciences are guided by explicit and implicit ties to their surrounding social world is not new. Jaan Valsiner fills in the wide background of scholarship on the history of science, the recent focus on social studies of sciences, and the cultural and cognitive analyses of knowledge making....... The theoretical scheme that he uses to explain the phenomena of social guidance of science comes from his thinking about processes of development in general—his theory of bounded indeterminacy—and on the relations of human beings with their culturally organized environments. Valsiner examines reasons for the slow...... and nonlinear progress of ideas in psychology as a science at the border of natural and social sciences. Why is that intellectual progress occurs in different countries at different times? Most responses are self-serving blinders for presenting science as a given rather than understanding it as a deeply human...

  14. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  15. Engineering science as a "Discipline of the particular"? : types of generalization in engineering sciences

    NARCIS (Netherlands)

    Vries, de M.J.; Poel, van de I.; Goldberg, D.E.

    2010-01-01

    Literature suggests that in engineering sciences the possibilities to generalize knowledge are more limited than in natural sciences. This is related to the action-oriented nature of engineering sciences and to the role of values. I will discuss the contributions of abstraction and idealization to

  16. The relationship between knowledge of ergonomic science and the occupational health among nursing staff affiliated to Golestan University of Medical Sciences

    Science.gov (United States)

    Juibari, Leila; Sanagu, Akram; Farrokhi, Nafiseh

    2010-01-01

    BACKGROUND: Occupational hazards are much higher for nurses than many other jobs and neglecting this fact may reduce the quality of nursing services. The aim of this study was to investigate the relationship between knowledge of ergonomics and occupational health among the nursing staff affiliated to Golestan University of Medical Sciences. METHODS: It was a cross-sectional analytical study on 423 nursing staff working in various medical centers affiliated to Golestan University of Medical Sciences in 2008, selected by quota randomized sampling. Data collection instrument was Ergonomics Questionnaire, which consisted of 72 questions. Cronbach’s alpha for main sections of the questionnaire was 0.8, 0.8 and 0.9. Descriptive and analytical tests were used for data analysis and an alpha error of 5% was considered. RESULTS: Of all the subjects, 36.1% had 5-10 years of work experience, 61.9% had a good knowledge of ergonomic principles, and 83% were exposed to a mild level of occupational hazards. There was no significant relationship between knowledge of ergonomics and occupational health (p = 0.08). The relationships between knowledge of ergonomics and age, gender, marital status, work experience, the type, and the location of service were significant (p ergonomics can provide a healthier work environment for nurses and optimize human resource efficiency. PMID:21589793

  17. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  18. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  19. The rise of information science: a changing landscape for soil science

    Science.gov (United States)

    Roudier, Pierre; Ritchie, Alistair; Hedley, Carolyn; Medyckyj-Scott, David

    2015-07-01

    The last 15 years have seen the rapid development of a wide range of information technologies. Those developments have been impacting all fields of science, at every step of the scientific method: data collection, data analysis, inference, science communication and outreach. The rate at which data is being generated is increasing exponentially, giving opportunities to improve our understanding of soils. Parallel developments in computing hardware and methods, such as machine learning, open ways to not only harness the '”data deluge”, but also offer a new way to generate knowledge. Finally, emerging data and information delivery protocols are leveraging the outreach power of the World Wide Web to disseminate scientific data and information, and increase their use and understanding outside the boundaries of a given scientific field. However, the nature of this data is mostly new to soil science, and requires adaptation to its diversity and volume. In particular, the integration of the significant amount of legacy soil data collected throughout decades of soil science can be problematic when all necessary metadata is not available. Likewise, knowledge accumulated by our scientific field needs to be acknowledged by - rather than opposed to - numerical methods. While the introduction of this set of emerging technologies is enabling soil science from different points of view, its successful implementation depends on the ability of soil scientists to act as knowledge brokers and support numerical methods.

  20. Science Literacy: Concepts, Contexts, and Consequences

    Science.gov (United States)

    Snow, Catherine E., Ed.; Dibner, Kenne A., Ed.

    2016-01-01

    Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to science--whether using knowledge or creating it--necessitates some level of familiarity with the enterprise and…

  1. Public Knowledge, Private Minds: Meaning Making on the Pathways of Science Communication

    Science.gov (United States)

    Davis, Pryce R.

    Every day people are inundated with news reports about the latest scientific research. The ways in which these texts enlighten or misinform the general public is a central question in both the research literature and discussions in popular culture. However, both research and popular discussion often take on deficit views of these texts, and the capabilities of readers to critically engage with them, and treat them as static, one-way conduits that transfer information to a passive audience. In contrast, I advocate treating popular science texts as the result of a chain of consumption and production that are actively shaped by the varied perspectives of scientists, communicators, and members of the general public. My work envisions all of these actors as science learners who simultaneously act as both producers and consumers of science, and who interact with one another through in-the-moment meaning making. This dissertation examines how the meaning of scientific research is filtered and transformed in moments of interaction and knowledge construction as it moves along this pathway of science communication from scientists to the general public. I present the results of a study that attempts to follow pieces of recent scientific research as they work their way from scientists to publication as popular science news stories, and ultimately to the public. To that end, I collected data from three types of actors involved in the paths of science communication, as well as the texts they read and generate. These actors include (1) the scientists who performed the research, (2) the reporters tasked with writing about it for popular dissemination, and (3) members of the public who must read and interpret the research. The texts I analyze include: peer-reviewed scientific journal articles, university-produced news briefs, popular press science stories, and various text-based conversations between scientists and reporters. Through an analysis of texts, individual interviews, and

  2. Student science publishing: an exploratory study of undergraduate science research journals and popular science magazines in the US and Europe

    Directory of Open Access Journals (Sweden)

    Mico Tatalovic

    2008-09-01

    Full Text Available Science magazines have an important role in disseminating scientific knowledge into the public sphere and in discussing the broader scope affected by scientific research such as technology, ethics and politics. Student-run science magazines afford opportunities for future scientists, communicators, politicians and others to practice communicating science. The ability to translate ‘scientese’ into a jargon-free discussion is rarely easy: it requires practice, and student magazines may provide good practice ground for undergraduate and graduate science students wishing to improve their communication skills.

  3. SOCIAL SCIENCE CONTRIBUTIONS TO DISCUSSIONS AFFECT THE SCIENCE, TECHNOLOGY AND INNOVATION

    Directory of Open Access Journals (Sweden)

    Renato Santiago Quintal

    2015-04-01

    Full Text Available In its origins, the social sciences have focused on technological issues. Social scientists have devoted much attention to the subject affects the action of technological progress on the conformation of human life in General, as well as keeping an eye on more concreteness about the aspects related to the way the technique is acquired, the ways employed to protect her and the tools used to Exchange and protection. In this context, the article aims to identify the contributions of social sciences-notably of the applied social sciences-to discussions involving science, technology and innovation. The survey used the inductive method, applied to the literature review. The findings point to multidisciplinarity of significant thematic affects to science, technology and innovation. Keywords: Scientific knowledge; Social Sciences; Technology and society.

  4. Exploring the Relationship between Secondary Science Teachers' Subject Matter Knowledge and Knowledge of Student Conceptions While Teaching Evolution by Natural Selection

    Science.gov (United States)

    Lucero, Margaret M.; Petrosino, Anthony J.; Delgado, Cesar

    2017-01-01

    The fundamental scientific concept of evolution occurring by natural selection is home to many deeply held alternative conceptions and considered difficult to teach. Science teachers' subject matter knowledge (SMK) and the pedagogical content knowledge (PCK) component of knowledge of students' conceptions (KOSC) can be valuable resources for…

  5. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  6. Systemics, Communication and Knowledge: Shifts of Perspective and the Need for Requirements in Second-Order Science

    Directory of Open Access Journals (Sweden)

    Thomas J. Marlowe

    2013-12-01

    Full Text Available The systemic view of second-order science emphasizes the interaction of observer and observed, but tacitly assumes a single observer, or at least a unity of observer perspective. But experience in multiple domains, including software engineering, decision science, health sciences, co-creation and Living Labs, knowledge management, community development and government policy has emphasized the multiplicity of goals and perspectives across stakeholders. We look at the issues that arise when multiple views are incorporated, and propose a toolkit for addressing those issues.

  7. Fairness in Knowing: Science Communication and Epistemic Justice.

    Science.gov (United States)

    Medvecky, Fabien

    2017-09-22

    Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.

  8. Power and Networks in Worldwide Knowledge Coordination: The Case of Global Science

    Science.gov (United States)

    King, Roger

    2011-01-01

    The article considers the global governance of knowledge systems, exploring concepts of power, networks, standards (defined as normative practices), and structuration. The focus is on science as a form of predominantly private global governance, particularly the self-regulatory and collaborative processes stretching across time and space. These…

  9. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  10. Scientific Knowledge, Popularisation, and the Use of Metaphors: Modern Genetics in Popular Science Magazines

    Science.gov (United States)

    Pramling, Niklas; Saljo, Roger

    2007-01-01

    The article reports an empirical study of how authors in popular science magazines attempt to render scientific knowledge intelligible to wide audiences. In bridging the two domains of "popular" and "scientific" knowledge, respectively, metaphor becomes central. We ask the empirical question of what metaphors are used when communicating about…

  11. Interaction between NGOs and science through science shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    and institutions have more resources themselves and easier access to and influence on the research facilities than NGO’s like consumer organisations, environmental organisations, trade unions, social organisations etc. Science shops are organisations that offer NGO’s free or very low-cost access to scientific...... knowledge and research in order to help them achieve social and environmental improvement. Originally developed at Dutch universities during the 1970’s, science shops now also exist in Austria, Denmark, Germany, Romania and the U.K., as well as in a number of non-European countries including Australia......, Canada, Malaysia, South Korea and the USA. Some science shops are independent not-for-profit research centres and some are affiliated to a university acting as the intermediary between NGO’s and university researchers, teachers and students, who conduct research in response. Most university based science...

  12. Sports-science roundtable: does sports-science research influence practice?

    Science.gov (United States)

    Bishop, David; Burnett, Angus; Farrow, Damian; Gabbett, Tim; Newton, Robert

    2006-06-01

    As sports scientists, we claim to make a significant contribution to the body of knowledge that influences athletic practice and performance. Is this the reality? At the inaugural congress of the Australian Association for Exercise and Sports Science, a panel of well-credentialed academic experts with experience in the applied environment debated the question, Does sports-science research influence practice? The first task was to define "sports-science research," and it was generally agreed that it is concerned with providing evidence that improves sports performance. When practices are equally effective, sports scientists also have a role in identifying practices that are safer, more time efficient, and more enjoyable. There were varying views on the need for sports-science research to be immediately relevant to coaches or athletes. Most agreed on the importance of communicating the results of sports-science research, not only to the academic community but also to coaches and athletes, and the need to encourage both short- and long-term research. The panelists then listed examples of sports-science research that they believe have influenced practice, as well as strategies to ensure that sports-science research better influences practice.

  13. Expert and Generalist Local Knowledge about Land-cover Change on South Africa's Wild Coast: Can Local Ecological Knowledge Add Value to Science?

    Directory of Open Access Journals (Sweden)

    Nigel Chalmers

    2007-06-01

    Full Text Available Local ecological knowledge (LEK can shed light on ecosystem change, especially in under-researched areas such as South Africa's Wild Coast. However, for ecosystem planning purposes, it is necessary to assess the accuracy and validity of LEK, and determine where such knowledge is situated in a community, and how evenly it is spread. Furthermore, it is relevant to ask: does LEK add value to science, and how do science and local knowledge complement one another? We assessed change in woodland and forest cover in the Nqabara Administrative Area on South Africa's Wild Coast between 1974 and 2001. The inhabitants of Nqabara are "traditional" Xhosa-speaking people who are highly dependent on natural resources for their livelihoods. More recently, however, infrastructural development has influenced traditional lifestyles at Nqabara, although poverty remains high and formal education levels low. We assessed LEK about changes in woodland and forest cover over the past 30 years by interviewing 11 local "experts," who were recognized as such by the Nqabara community, and 40 senior members of randomly selected households in each village. We also analyzed land-cover change, using orthorectified aerial photos taken in 1974 and 2001. Forest and woodland cover had increased by 49% between 1974 and 2001. The 11 "experts" had a nuanced understanding of these changes and their causes. Their understanding was not only remarkably consistent with that of scientists, but it added considerable value to scientific understanding of the ultimate causes of land-cover change in the area. The experts listed combinations of several causal factors, operating at different spatial and temporal scales. The 40 randomly selected respondents also knew that forest and woodland cover had increased, but their understanding of the causes, and the role of fire in particular, was somewhat simplistic. They could identify only three causal factors and generally listed single factors rather

  14. The logical foundations of forensic science: towards reliable knowledge.

    Science.gov (United States)

    Evett, Ian

    2015-08-05

    The generation of observations is a technical process and the advances that have been made in forensic science techniques over the last 50 years have been staggering. But science is about reasoning-about making sense from observations. For the forensic scientist, this is the challenge of interpreting a pattern of observations within the context of a legal trial. Here too, there have been major advances over recent years and there is a broad consensus among serious thinkers, both scientific and legal, that the logical framework is furnished by Bayesian inference (Aitken et al. Fundamentals of Probability and Statistical Evidence in Criminal Proceedings). This paper shows how the paradigm has matured, centred on the notion of the balanced scientist. Progress through the courts has not been always smooth and difficulties arising from recent judgments are discussed. Nevertheless, the future holds exciting prospects, in particular the opportunities for managing and calibrating the knowledge of the forensic scientists who assign the probabilities that are at the foundation of logical inference in the courtroom. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Knowledge in motion: The cultural politics of modern science translations in Arabic.

    Science.gov (United States)

    Elshakry, Marwa S

    2008-12-01

    This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.

  16. KNOWLEDGE AND ATTITUDES OF HEALTH CARE SCIENCE STUDENTS TOWARD OLDER PEOPLE.

    Science.gov (United States)

    Milutinović, Dragana; Simin, Dragana; Kacavendić, Jelena; Turkulov, Vesna

    2015-01-01

    Education of health science students in geriatrics is important in order to provide optimal care for the growing number of elderly people because it is the attitudes of health professionals toward the elderly that play the key role in the quality of care provided. Therefore, the aim of this study was to assess the knowledge and attitudes of health care science students towards ageing and care for the elderly. The present cross-sectional study was carried out on a sample of 130 students (medical, nursing and special education and rehabilitation) of the Faculty of Medicine, University of Novi Sad. The students were divided into two groups. The first group (E) included students having been taught geriatrics and nursing older adults and the other group (C) included students who had not been trained in this subject. The authors used Palmore's facts on Ageing Quiz for the knowledge evaluation and Kogan's Attitude toward Older People Scale for the attitude evaluation. The results of Facts on Aging Quiz showed the average level of students' knowledge and statistically significant difference between E and C group. The analysis of Kogan's Attitudes toward Old People Scale showed that both groups had neutral attitudes toward older people. Furthermore, a positive correlation between students' knowledge and attitudes was found. There is increasing evidence on the correlation between education, knowledge and attitudes toward older people which suggests that by acquiring better insights into all aspects of ageing through their education the students develop more positive attitudes and interest in working with older adults.

  17. The "New" Science Specialists: Promoting and Improving the Teaching of Science in Primary Schools

    Science.gov (United States)

    Campbell, Coral; Chittleborough, Gail

    2014-01-01

    A Victorian government initiative called "The Primary Science Specialists Professional Learning Program" is designed to tackle students' falling interest in science by investing in the building of teacher capacity. The aims of the initiative are: to improve the science knowledge base of all teachers and therefore increase teachers'…

  18. Mainstreaming the social sciences in conservation.

    Science.gov (United States)

    Bennett, Nathan J; Roth, Robin; Klain, Sarah C; Chan, Kai M A; Clark, Douglas A; Cullman, Georgina; Epstein, Graham; Nelson, Michael Paul; Stedman, Richard; Teel, Tara L; Thomas, Rebecca E W; Wyborn, Carina; Curran, Deborah; Greenberg, Alison; Sandlos, John; Veríssimo, Diogo

    2017-02-01

    Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers-ideological, institutional, knowledge, and capacity-to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy-influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science-one that includes the natural and social sciences-will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into

  19. Finding science in students' talk

    Science.gov (United States)

    Yeo, Jennifer

    2009-12-01

    What does it mean to understand science? This commentary extends Brown and Kloser's argument on the role of native language for science learning by exploring the meaning of understanding in school science and discusses the extent that science educators could tolerate adulterated forms of scientific knowledge. Taking the perspective of social semiotics, this commentary looks at the extent that school science can be represented with other discourse practices. It also offers an example to illustrate how everyday language can present potential hindrance to school science learning.

  20. Weaving a knowledge network for Deep Carbon Science

    Science.gov (United States)

    Ma, Xiaogang; West, Patrick; Zednik, Stephan; Erickson, John; Eleish, Ahmed; Chen, Yu; Wang, Han; Zhong, Hao; Fox, Peter

    2017-05-01

    Geoscience researchers are increasingly dependent on informatics and the Web to conduct their research. Geoscience is one of the first domains that take lead in initiatives such as open data, open code, open access, and open collections, which comprise key topics of Open Science in academia. The meaning of being open can be understood at two levels. The lower level is to make data, code, sample collections and publications, etc. freely accessible online and allow reuse, modification and sharing. The higher level is the annotation and connection between those resources to establish a network for collaborative scientific research. In the data science component of the Deep Carbon Observatory (DCO), we have leveraged state-of-the-art information technologies and existing online resources to deploy a web portal for the over 1000 researchers in the DCO community. An initial aim of the portal is to keep track of all research and outputs related to the DCO community. Further, we intend for the portal to establish a knowledge network, which supports various stages of an open scientific process within and beyond the DCO community. Annotation and linking are the key characteristics of the knowledge network. Not only are key assets, including DCO data and methods, published in an open and inter-linked fashion, but the people, organizations, groups, grants, projects, samples, field sites, instruments, software programs, activities, meetings, etc. are recorded and connected to each other through relationships based on well-defined, formal conceptual models. The network promotes collaboration among DCO participants, improves the openness and reproducibility of carbon-related research, facilitates accreditation to resource contributors, and eventually stimulates new ideas and findings in deep carbon-related studies.

  1. Using Doubly Latent Multilevel Analysis to Elucidate Relationships between Science Teachers' Professional Knowledge and Students' Performance

    Science.gov (United States)

    Mahler, Daniela; Großschedl, Jörg; Harms, Ute

    2017-01-01

    Teachers make a difference for the outcome of their students in science classrooms. One focus in this context lies on teachers' professional knowledge. We describe this knowledge according to three domains, namely (1) content knowledge (CK), (2) pedagogical content knowledge (PCK), and (3) curricular knowledge (CuK). We hypothesise a positive…

  2. Climate Science: An Empirical Example of Postnormal Science.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    1999-03-01

    This paper addresses the views regarding the certainty and uncertainty of climate science knowledge held by contemporary climate scientists. More precisely, it addresses the extension of this knowledge into the social and political realms as per the definition of postnormal science. The data for the analysis is drawn from a response rate of approximately 40% from a survey questionnaire mailed to 1000 scientists in Germany, the United States, and Canada, and from a series of in-depth interviews with leading scientists in each country. The international nature of the sample allows for cross-cultural comparisons.With respect to the relative scientific discourse, similar assessments of the current state of knowledge are held by the respondents of each country. Almost all scientists agreed that the skill of contemporary models is limited. Minor differences were notable. Scientists from the United States were less convinced of the skills of the models than their German counterparts and, as would be expected under such circumstances, North American scientists perceived the need for societal and political responses to be less urgent than their German counterparts. The international consensus was, however, apparent regarding the utility of the knowledge to date: climate science has provided enough knowledge so that the initiation of abatement measures is warranted. However, consensus also existed regarding the current inability to explicitly specify detrimental effects that might result from climate change. This incompatibility between the state of knowledge and the calls for action suggests that, to some degree at least, scientific advice is a product of both scientific knowledge and normative judgment, suggesting a socioscientific construction of the climate change issue.

  3. When Knowledge Isn't Power: Science, Technology, and the Environment in the 21st Century

    Science.gov (United States)

    Oreskes, N.

    2012-12-01

    Ever since Sir Francis Bacon coined the adage, scientists have believed that "knowledge is power," but this presupposes that people are willing to embrace knowledge. Today, a significant proportion of the American public rejects the scientific evidence of climate change, and many of these Americans are highly educated, so their views cannot be attributed to scientific illiteracy or misunderstanding. Historical evidence shows that resistance to scientific evidence of climate change--like the earlier resistance to the evidence of acid rain, the ozone hole, and the harms of tobacco use--is rooted in intellectual commitments to freedom, individualism, and the power of the free market to protect political freedom while delivering goods and services. Therefore, good public policy is not likely to be achieved by producing more science, better science, or communicating that science more effectively. Rather, it suggests that effective public policy must acknowledge these commitments and concerns, and offer solutions that are not perceived to threaten the American way of life.

  4. Open Science: a first step towards Science Communication

    Science.gov (United States)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  5. Informal Science Educators' Views about Nature of Scientific Knowledge

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Norman G.

    2014-01-01

    Publications such as "Surrounded by science: Learning science in informal environments" [Fenichel, M., & Schweingruber, H. A. (2010). Washington, DC: The National Academies Press] and "Learning science in informal environments: People, places, and pursuits" [National Research Council. (2009). Washington, DC: National…

  6. Development and validation of the ACSI : measuring students' science attitudes, pro-environmental behaviour, climate change attitudes and knowledge

    NARCIS (Netherlands)

    Dijkstra, E. M.; Goedhart, M. J.

    2012-01-01

    This article describes the development and validation of the Attitudes towards Climate Change and Science Instrument. This 63-item questionnaire measures students' pro-environmental behaviour, their climate change knowledge and their attitudes towards school science, societal implications of

  7. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members....... The most common image was the usefulness of science which displays science in an unproblematic and single-dimensioned way. In order to explore what underlying assumptions and factors which affect how science is constituted, 17 staff members who worked with planning and constructing new exhibitions...

  8. New languages for the spreading of scientific knowledge: broadening the dialog between science and society (Portuguese original version

    Directory of Open Access Journals (Sweden)

    Danielle Pereira Cavalcanti

    2009-03-01

    Full Text Available The Internet is by far the most intensely used communication tool of today and the main channel of interaction in the globalized world. This technology has opened up a whole new area for the interaction of knowledge: cyberspace, where information is always present and continuously changing. The interactivity that characterizes the virtual media together with the interactive modules developed by science centers and museums make the Internet a whole new space for the popularization of science. In order to stimulate dialog between science and society, Espaço Ciência Viva has decided to employ the Internet to divulge and to popularize scientific knowledge by bringing debates about the advances of science to the daily lives of people. To this end, its website was remodeled, which led to an increase of up to 600% in the number of visitors.

  9. An analysis of science conceptual knowledge in journals of students with disabilities and normally achieving students

    Science.gov (United States)

    Grigg, Gail S.

    Science education reforms of the last two decades have focused on raising the bar for ALL students which includes students with mild to moderate disabilities. Formative assessment can be used to assess the progress of these students to inquire, understand scientific concepts, reason scientifically, make decisions, and communicate effectively in science. The purpose of this study is to examine the use of science journals as a formative assessment in a guided inquiry unit of study for students with learning disabilities. Two normally achieving students (NA) and five students with learning disabilities (SLD) participated in a study of mammals that utilized journals to record the development of student knowledge through the course of study. Students were interviewed after the lessons were complete using the same prompts required in the journals. Themes were developed from the student writings and their verbal discourse using Grounded Theory. Journals and verbal discourse were rated following the themes of Knowledge Telling (KT) and Knowledge Transformation (KTR). Concept maps were developed for the Pre and Post test lessons (written and verbal discourses) by the raters in an attempt to further explain the knowledge that the students conveyed. The results of this study suggest that SLD are able to demonstrate knowledge about mammals better through verbal discourse than written discourse. While the NA students wrote more and used more technical discourse than did their SLD peers, the conceptual understanding of the topic by the SLD was no less inclusive than their NA peers when accessed verbally. The journals demonstrated limited conceptual growth for the SLD. Further, while lexical density is important to the development of knowledge in science, this study suggests the "conceptual density" may be another important indicator to examine.

  10. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  11. Data-intensive science

    CERN Document Server

    Critchlow, Terence

    2013-01-01

    Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significan

  12. Teachers' instructional goals for science practice: Identifying knowledge gaps using cultural-historical activity theory (CHAT)

    Science.gov (United States)

    Farrar, Cynthia Hamen

    In AP Biology, the course goal, with respect to scientific acts and reasoning, has recently shifted toward a reform goal of science practice, where the goal is for students to have a scientific perspective that views science as a practice of a community rather than a body of knowledge. Given this recent shift, this study is interested in the gaps that may exist between an individual teacher's instructional goal and the goals of the AP Biology course. A Cultural-Historical Activity Theory (CHAT) methodology and perspective is used to analyze four teachers' knowledge, practice, and learning. Teachers have content knowledge for teaching, a form of knowledge that is unique for teaching called specialized content knowledge. This specialized content knowledge (SCK) defines their instructional goals, the student outcomes they ultimately aim to achieve with their students. The study employs a cultural-historical continuum of scientific acts and reasoning, which represents the development of the AP Biology goal over time, to study gaps in their instructional goal. The study also analyzes the contradictions within their teaching practice and how teachers address those contradictions to shift their instructional practice and learn. The findings suggest that teachers have different interpretations of the AP Biology goals of science practice, placing their instructional goal at different points along the continuum. Based on the location of their instructional goal, different micro-communities of teachers exist along the continuum, comprised of teachers with a shared goal, language, and culture of their AP Biology teaching. The in-depth study of one teacher's AP Biology teaching, using a CHAT perspective, provides a means for studying the mechanisms that connect SCK to classroom actions and ultimately to instructional practice. CHAT also reveals the nature and importance of contradictions or cognitive dissonance in teacher learning and the types of support teachers need to

  13. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  14. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  15. Knowledge, Attitudes and Practices (KAP) Relating to Dietary Supplements Among Health Sciences and Non-Health Sciences Students in One of The Universities of United Arab Emirates (UAE).

    Science.gov (United States)

    Alhomoud, Farah Kais; Basil, Mohammed; Bondarev, Andrey

    2016-09-01

    The use of Dietary Supplements (DS) has increased substantially in the United Arab Emirates (UAE) in recent years, despite the fact that the efficacy and safety of these supplements are not proven yet. In addition, the practices of supplement users in the UAE remain undocumented. To determine the usage of DS in health sciences and non-health sciences students; and to determine their knowledge, attitudes and practices (KAP) regarding these supplements. A descriptive, cross-sectional, questionnaire-based study was conducted among university students. Based on the Raosoft online calculator, it was anticipated that the sample of 383 students would enable us to achieve the study objectives. Students were recruited from Ajman University of Science and Technology and identified by the academic staff through students' records. All students who were registered at Ajman University of Science and Technology - including medical (i.e. dental, pharmacy and health sciences) and non-medical colleges (i.e. engineering, business administration, law, information technology, mass communications and humanities) - were invited to participate, after obtaining the approval of the Institutional Ethics Committee (IEC), (during the period of January-February 2015). This study used quantitative method approach. Therefore, data were analysed quantitatively using SPSS version 22.0. More than one-third of participants (39%) were found to consume DS. The most common reasons for consuming supplements were to maintain good health (58,21%) and ensure adequate nutrition (43,15%). Almost two-thirds of participants (65%) perceived that the best way to obtain nutrients is through food and DS together (49%), or DS alone (16%). Therefore, there was a relatively high amount of DS intake among participants in this study. With regard to medical and non-medical students' use of DS, there were no significant differences in the use (p=0.139). However, other findings suggest that there are significant

  16. Data Linkage Graph: computation, querying and knowledge discovery of life science database networks

    Directory of Open Access Journals (Sweden)

    Lange Matthias

    2007-12-01

    Full Text Available To support the interpretation of measured molecular facts, like gene expression experiments or EST sequencing, the functional or the system biological context has to be considered. Doing so, the relationship to existing biological knowledge has to be discovered. In general, biological knowledge is worldwide represented in a network of databases. In this paper we present a method for knowledge extraction in life science databases, which prevents the scientists from screen scraping and web clicking approaches.

  17. Knowledge and attitudes of infection prevention and control among health sciences students at University of Namibia.

    Science.gov (United States)

    Ojulong, J; Mitonga, K H; Iipinge, S N

    2013-12-01

    Health Sciences students are exposed early to hospitals and to activities which increase their risk of acquiring infections. Infection control practices are geared towards reduction of occurrence and transmission of infectious diseases. To evaluate knowledge and attitudes of infection prevention and control among Health Science students at University of Namibia. To assess students' knowledge and attitudes regarding infection prevention and control and their sources of information, a self-administered questionnaire was used to look at standard precautions especially hands hygiene. One hundred sixty two students participated in this study of which 31 were medical, 17 were radiography and 114 were nursing students. Medical students had better overall scores (73%) compared to nursing students (66%) and radiology students (61%). There was no significant difference in scores between sexes or location of the high school being either in rural or urban setting. Serious efforts are needed to improve or review curriculum so that health sciences students' knowledge on infection prevention and control is imparted early before they are introduced to the wards.

  18. The science teacher as the organic link in science learning: Identity, motives, and capital transfer

    Science.gov (United States)

    Alexakos, Konstantinos

    This life history study is based on in-depth interviews of five science teachers and explores themes of science teachers' experiences as science learners and how these experiences frame what I have come to call "the subjective aspects of teaching." These themes seem to imply that through such individual experiences individuals develop a personally unique lens through which they view and interpret science, science meanings, and science teaching and learning. Emerging themes created new questions to pursue and they in turn produced new themes. These were further investigated in an attempt to connect science learning and science teachers to broader issues in society. These themes include that of a dynamic, dialectical learning and understanding of science by the participants, developed and influenced through a combination of their families, their schools, and their professional experiences, and in which morals and passion play major roles. The theme of the "organic link" is also introduced and developed in this research. It includes these individuals' views of science and the scientific enterprise, their path to learning, their morals, passions, and choices, and their way of constructing knowledge and the transmission of such a process. As organic links, they are seen as a direct and necessary social connection between science and the science learner, and they foster educational experiences grounded in the social lives of their students. Not only are they seen as "transmitters" of science knowledge and the process of constructing knowledge, but they are also seen as correcting and adjusting perceived diversions of the students' thinking from that of their own. It is in this context that the concept of capital (human and cultural capital, as well as capital exchange) is also explored. These themes are seen as having immense impact on how these science teachers teach, where they teach, what is communicated to their students, and whether they become or remain science

  19. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  20. The Place of Science in Education

    Science.gov (United States)

    Jevons, F. R.

    1972-01-01

    Suggests that the curriculum include a balance of both science and non-science and that the thought process of science be applied in non-science situations. Schools and colleges must expose students to this application of scientific thinking. Knowledge in breadth does not necessarily mean lower standards. (PS)

  1. Mars: A Freshmen Year Seminar of Science and Science-fiction

    Science.gov (United States)

    Svec, Michael; Moffett, D. A.; Winiski, M.

    2013-06-01

    "Mars: On the shoulder of giants" is a freshmen year seminar developed collaboratively between the physics, education, and center for teaching and learning. This course focuses on how scientific knowledge is developed through the lens of our changing view of Mars throughout history. Analyses of current studies of Mars are juxtaposed against historical understanding and perceptions of the planet found in scientific and popular literature of the day, as well as the movies. Kim Stanley Robinson’s "Red Mars" provides a unifying story throughout the course complimented by Fredrick Taylor’s "The Scientific Exploration of Mars" and Hartmann’s "A Traveler’s Guide to Mars." Based on the three-years of experience, the authors advocate the use of the speculative science-fiction novel and argue for its use in high school and undergraduate courses including those for science majors. Many of the students who selected this seminar went on to major in science and in subsequent interviews discussed the influence of science fiction on their decision to major in science. Science fiction provided story, science, and speculation that became a rich medium for critical-thinking skills and critical literacy. Student reflections indicated that science fiction served as a reminder of why they study science, a source for imagination, and exploration of science as a human endeavor. Based on this experience, we propose five elements for selecting science-fiction for inclusion in science classes: 1) Provides a deep description of the science content or technologies, 2) Describes science and technologies are plausible or accurate to the time period, 3) Contains a novum or plausible innovation that plays a key element in the speculation, 4) Exploration of the impact on society or humanity, and, 5) Shows science and technology as human endeavors.

  2. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  3. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  4. Working knowledges before and after circa 1800: practices and disciplines in the history of science, technology, and medicine.

    Science.gov (United States)

    Pickstone, John V

    2007-09-01

    Historians of science, inasmuch as they are concerned with knowledges and practices rather than institutions, have tended of late to focus on case studies of common processes such as experiment and publication. In so doing, they tend to treat science as a single category, with various local instantiations. Or, alternatively, they relate cases to their specific local contexts. In neither approach do the cases or their contexts build easily into broader histories, reconstructing changing knowledge practices across time and space. This essay argues that by systematically deconstructing the practices of science and technology and medicine (STM) into common, recurrent elements, we can gain usefully "configurational" views, not just of particular cases and contexts but of synchronic variety and diachronic changes, both short term and long. To this end, we can begin with the customary actors' disciplines of early modern knowledge (natural philosophy, natural history, mixed mathematics, and experimental philosophy), which can be understood as elemental "ways of knowing and working," variously combined and disputed. I argue that these same working knowledges, together with a later mode-synthetic experimentation and systematic invention-may also serve for the analysis of STM from the late eighteenth century to the present. The old divisions continued explicitly and importantly after circa 1800, but they were also "built into" an array of new sciences. This historiographic analysis can help clarify a number of common problems: about the multiplicity of the sciences, the importance of various styles in science, and the relations between science and technology and medicine. It suggests new readings of major changes in STM, including the first and second scientific revolutions and the transformations of biomedicine from the later twentieth century. It offers ways of recasting both microhistories and macrohistories, so reducing the apparent distance between them. And it may thus

  5. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  6. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  7. [Common sense, science and philosophy: the links of knowledge necessary for promoting health care].

    Science.gov (United States)

    Rios, Ediara Rabello Girão; Franchi, Kristiane Mesquita Barros; da Silva, Raimunda Magalhães; de Amorim, Rosendo Freitas; Costa, Nhandeyjara de Carvalho

    2007-01-01

    In its evolution, humanity has accumulated data which were systematized as knowledge. Philosophy through self examination helps us in its practical and theoretical functions to reach a concept of the universe. Common sense helps science evolve. People's daily difficulties stir up the need for research, for deepening data interpretation and to propose solutions to overcome the population's problems. Science exists to explain difficult aspects of common sense, to support questions, as well as to substantiate knowledge produced as a response to demands. Thus, knowledge involved in this reflection sets out to foster an articulation between basic forms of knowledge and to develop a satisfactory understanding of the health care process, through a shared and critically consciousness view of the changes in the health system's paradigm. We understand that health education is an essential component within this process, provided that it is focused primarily on an individual belonging to a community with its multiple relationships, especially between the community context and the subjective dimension, which can provide citizenship empowerment redemption.

  8. Enhancing Students' NOS Views and Science Knowledge Using Facebook-Based Scientific News

    Science.gov (United States)

    Huang, Hsi-Yu; Wu, Hui-Ling; She, Hsiao-Ching; Lin, Yu-Ren

    2014-01-01

    This study investigated how the different discussion approaches in Facebook influenced students' scientific knowledge acquisition and the nature of science (NOS) views. Two eighth- and two ninth-grade classes in a Taiwanese junior high school participated in the study. In two of the classes students engaged in synchronous discussion, and in the…

  9. Data Recipes: Toward Creating How-To Knowledge Base for Earth Science Data

    Science.gov (United States)

    Shen, Suhung; Lynnes, Chris; Acker, James G.; Beaty, Tammy

    2015-01-01

    Both the diversity and volume of Earth science data from satellites and numerical models are growing dramatically, due to an increasing population of measured physical parameters, and also an increasing variety of spatial and temporal resolutions for many data products. To further complicate matters, Earth science data delivered to data archive centers are commonly found in different formats and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and or formats. The data recipe project at Goddard Earth Science Data and Information Services Center (GES DISC) was initiated in late 2012 for enhancing user support. A data recipe is a How-To online explanatory document, with step-by-step instructions and examples of accessing and working with real data (http:disc.sci.gsfc.nasa.govrecipes). The current suite of recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant, even though the data recipe topics are still limited. An Earth Science Data System Working Group (ESDSWG) for data recipes was established in the spring of 2014, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group is working on an inventory and analysis of existing data recipes and tutorials, and will provide guidelines and recommendation for writing and grouping data recipes, and for cross linking recipes to data products. This presentation gives an

  10. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    Science.gov (United States)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  11. Science and Art

    Science.gov (United States)

    Moore, John W.

    2001-10-01

    Science and art diverge in that art usually represents a single individual's conception and viewpoint, even when many others are involved in bringing a work to fruition, whereas science progresses by extending consensus among those knowledgeable in a field. Art usually communicates at an emotional level. It values individual expression and impact on the emotions at the expense of objectivity. Science, especially in its archival record, values objectivity and reproducibility and does not express the imagination and joy of discovery inherent in its practice. This is too bad, because it does not give a realistic picture of how science is really done and because individuality and emotion are inherently more interesting than consensus. Leaving out the personal, emotional side can make science seem boring and pedestrian, when exactly the opposite is true. In teaching science we need to remember that communication always benefits from imagination and esthetic sense. If we present science artistically and imaginatively, as well as objectively and precisely, students will develop a more complete understanding of what science and scientists are about--one that is likely to capture their imaginations, emotions, and best efforts.

  12. Conceptualising 'knowledge management' in the context of library and information science using the core/periphery model

    Directory of Open Access Journals (Sweden)

    O.B. Onyancha

    2009-04-01

    Full Text Available This study took cognisance of the fact that the term 'knowledge management' lacks a universally accepted definition, and consequently sought to describe the term using the most common co-occurring terms in knowledge management (KM literature as indexed in the Library, Information Science and Technology Abstracts (LISTA database. Using a variety of approaches and analytic techniques (e.g. core/periphery analysis and co-occurrence of words as subject terms, data were analysed using the core/periphery model and social networks through UCINET for Windows, TI, textSTAT and Bibexcel computer-aided software. The study identified the following as the compound terms with which KM co-occurs most frequently: information resources management, information science, information technology, information services, information retrieval, library science, management information systems and libraries. The core single subject terms with which KM can be defined include resources, technology, libraries, systems, services, retrieval, storage, data and computers. The article concludes by offering the library and information science (LIS professionals' general perception of KM based on their use of terms, through which KM can be defined within the context of LIS.

  13. Weaving a Knowledge Network for Deep Carbon Science

    Directory of Open Access Journals (Sweden)

    Xiaogang Ma

    2017-05-01

    Full Text Available Geoscience researchers are increasingly dependent on informatics and the Web to conduct their research. Geoscience is one of the first domains that take lead in initiatives such as open data, open code, open access, and open collections, which comprise key topics of Open Science in academia. The meaning of being open can be understood at two levels. The lower level is to make data, code, sample collections, and publications, etc., freely accessible online and allow reuse, modification, and sharing. The higher level is the annotation and connection between those resources to establish a network for collaborative scientific research. In the data science component of the Deep Carbon Observatory (DCO, we have leveraged state-of-the-art information technologies and existing online resources to deploy a web portal for the over 1,000 researchers in the DCO community. An initial aim of the portal is to keep track of all research and outputs related to the DCO community. Further, we intend for the portal to establish a knowledge network, which supports various stages of an open scientific process within and beyond the DCO community. Annotation and linking are the key characteristics of the knowledge network. Not only are key assets, including DCO data and methods, published in an open and inter-linked fashion, but the people, organizations, groups, grants, projects, samples, field sites, instruments, software programs, activities, meetings, etc., are recorded and connected to each other through relationships based on well-defined, formal conceptual models. The network promotes collaboration among DCO participants, improves the openness and reproducibility of carbon-related research, facilitates accreditation to resource contributors, and eventually stimulates new ideas and findings in deep carbon-related studies.

  14. Science and technology

    CERN Document Server

    Chorafas, Dimitris N

    2014-01-01

    The aim of this book is to explore science and technology from the viewpoint of creating new knowledge, as opposed to the reinterpretation of existing knowledge in ever greater but uncertain detail. Scientists and technologists make progress by distinguishing between what they regard as meaningful and what they consider as secondary or unimportant. The meaningful is dynamic; typically, the less important is static. Science and technology have made a major contribution to the culture and to the standard of living of our society. From antiquity to the present day, the most distinguished scientis

  15. Digital platforms for research collaboration: using design science in developing a South African open knowledge repository

    CSIR Research Space (South Africa)

    van Biljon, J

    2017-05-01

    Full Text Available ) enabled collaboration through the design and development of a sustainable open knowledge repository (OKR) according to the design science research (DSR) paradigm. OKRs are tools used to support knowledge sharing and collaboration. The theoretical...

  16. Moral Perceptions of College Science Students

    Science.gov (United States)

    Nolan, Eric

    This thesis argues that college-level science education is in need of explicit moral focuses centered on society's use of scientific knowledge. Many benefits come with scientific advancements but unfortunately the misuse of scientific knowledge has led to planetary crises that should be a concern for all who inhabit the Earth (e.g., climate change). The teaching of the misuses of science is often left out of college science classrooms and the purpose of this thesis is to see what effect college science students' education has had on their moral perception of these pressing issues. To evaluate how college science students morally perceive these global issues within their educational experiences, two focus group interviews were conducted and analyzed. Students converged on three themes when thinking of society's misuse of science: 1) there is something wrong with the way science is communicated between science and non-science groups; 2) misusing science for private benefit is not right, and 3) it is important for people to comprehend sustainability along different scales of understanding and action. This thesis concludes that although to some extent students were familiar with moral features that stem from society's misuse of science, they did not attribute their learning of those features from any of their required coursework within their programs of study.

  17. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  18. Argumentation-Teaching as a Method to Introduce Indigenous Knowledge into Science Classrooms: Opportunities and Challenges

    Science.gov (United States)

    Hewson, Mariana G.; Ogunniyi, Meshach B.

    2011-01-01

    An innovative school science curriculum in South Africa requires the inclusion of African societal/cultural knowledge, such as indigenous knowledge (IK). The main project involves introducing argumentation to accomplish this requirement. We used a focus group plus critical incident technique to ascertain nine teachers' understandings of…

  19. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  20. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  1. Physics Guided Data Science in the Earth Sciences

    Science.gov (United States)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  2. Journalism and science

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2006-01-01

    that are likely to occur to journalistic attitudes - mirroring changing attitudes in the wider society - towards science and scientific researchers. Two journalistic conventions - those of science transmission and of investigative journalism - are presented and discussed in relation to the present drive towards...... commercialization within the world of science: how are journalists from these different schools of thought likely to respond to the trend of commercialization? Likely journalistic reactions could, while maintaining the authority of the scientific method, be expected to undermine public trust in scientists....... In the long term, this may lead to an erosion of the idea of knowledge as something that cannot simply be reduced o the outcome of negotiation between stakeholders. It is argued that science is likely to be depicted as a fallen angel. This may be countered, it is posited, by science turning human...

  3. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  4. What do Football Coaches want from Sport Science?

    NARCIS (Netherlands)

    Brink, Michel S.; Kuyvenhoven, Jurian P.; Toering, Tynke; Jordet, Geir; Frencken, Wouter G. P.

    Sport science can contribute to the body of knowledge that influences practice and performance. Despite this, knowledge transfer from sport science to football coaches needs further improvement. The present study's purpose is to gain insight in current sport science needs and perceived barriers

  5. WHAT DO FOOTBALL COACHES WANT FROM SPORT SCIENCE?

    NARCIS (Netherlands)

    Brink, Michel S.; Kuyvenhoven, Jurian P.; Toering, Tynke; Jordet, Geir; Frencken, Wouter G. P.

    Sport science can contribute to the body of knowledge that influences practice and performance. Despite this, knowledge transfer from sport science to football coaches needs further improvement. The present study's purpose is to gain insight in current sport science needs and perceived barriers

  6. The knowledge most worth having: Otis W. Caldwell (1869 1947) and the rise of the general science course

    Science.gov (United States)

    Heffron, John M.

    1995-07-01

    In 1860 Herbert Spencer asked the famous rhetorical question ‘What Knowledge is of Most Worth?’ The unequivocal answer was science. Giving greater attention to science and scientific knowledge would not only produce additional scientists; more important, argued Spencer, it would make better parents, better church-goers, better citizens and workers, better artists and better consumers of art. It would lead to a ‘command of fundamental processes’, ‘worthy home membership’, ‘worthy use of leisure’, ‘ethical character’ — the goals of a general education spelled out by Spencerians within the National Educational Association in 1918. Here is our puzzle, then: how are we to interpret a definition of science, one widely accepted both in Spencer's time and in our own, that comes so close descriptively to a commonsensical view of what constitutes non-science? The answer to this question lies in part in the historical relationship between science and general education, a relationship established in the opening decades of this century, when the authority of science and scientific objectivity was in the minds of most educators unimpeachable. The high school general science course, developed in its early stages by the botanist and educator, Otis W. Caldwell, was a potent symbol of this new relationship. Organized around broad, topical issues and claiming to teach the mundane truths of life, general science was more than a loose collection of facts from the various earth, biological, and physical sciences. Its many advocates viewed the new unified science course as pedagogically independent of the specialties yet central to education in general. In 1949, two years after Caldwell's death, 72 percent of the total science enrollments in the United States were in general science and biology, its closest cognate. This paper examines the rise of the general science course and its implications for the reform of secondary school science education. It concludes that

  7. Emerging Fabric of Science: Persistent Identifiers and Knowledge Networks

    Science.gov (United States)

    Hugo, W.

    2017-12-01

    There is an increasing emphasis on the use of persistent identifiers in the description of scientific activity, whether this is done to cite scholarly publications and research output, reliably identify role players such as funders and researchers, or to provide long-lasting references to controlled vocabulary. The ICSU World Data System has been promoting the establishment of a "Knowledge Network" to describe research activity, realising that parts of the network will be established as a federated `system', based on linkages between registries of persistent identifiers. In addition, there is a growing focus on not only the relationship between these major role players and associated digital objects, but also on the processes of science: provenance, reproducibility, and re-usability being significant topics of discussion. The paper will focus on description of the `Fabric of Science' from the perspectives of both structure and processes, review the state of implementation of real services and infrastructure in support of it. A case is made for inclusion of persistent identifiers into the mainstream activities of scientists and data infrastructure managers, and for the development of services, such as Scholix, to make better use of the relationships between digital objects and major role players. A proposal is made for the adoption of a federated system of services that are based on a hybrid graph-object framework similar to Scholix for recording the activity of scientific research. Finally, links to related ideas are explored: novel ways of representing of knowledge (such as Nanopublications) and the possibility that the publication paradigm currently in use may have to be amended.

  8. Promoting Elementary Students' Epistemology of Science through Computer-Supported Knowledge-Building Discourse and Epistemic Reflection

    Science.gov (United States)

    Lin, Feng; Chan, Carol K. K.

    2018-01-01

    This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a…

  9. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  10. Western teachers of science or teachers of Western science: On the influence of Western modern science in a post-colonial context

    Science.gov (United States)

    Burke, Lydia E. Carol-Ann

    An expanding body of research explores the social, political, cultural and personal challenges presented by the Western emphasis of curricula around the world. The aim of my study is to advance this field of inquiry by gaining insight into perceptions of Western modern science presented by students, teachers and administrators in a given Caribbean setting. Through this study I asked how my research participants described the nature of scientific knowledge, how they related scientific knowledge to other culturally-valued knowledges and the meanings they attached to the geographic origins of science teachers. Situating this work firmly within the practice of Foucauldian critical discourse analysis, I have utilised a conceptual framework defined by the power/knowledge and complicity/resistance themes of post-colonial theory to support my interpretation of participant commentary in an overall quest that is concerned about the ways in which Western modern science might be exerting a colonising influence. Fourteen students, nine teachers (both expatriate and local) and three administrators participated in the study. I combined a semi-structured question and answer interview format with a card sort activity. I used a procedure based on my own adaptation of Stephenson's Q methodology, where the respondents placed 24 statements hierarchically along a continuum of increasing strength of agreement, presenting their rationalisations, personal stories and illustrations as they sorted. I used an inverse factor analysis, in combination with the interview transcripts, to assist me in the identification of three discourse positions described by my research participants: The truth value of scientific knowledge, The pragmatic use of science to promote progress, and The priority of cultural preservation. The interview transcripts were also analysed for emergent themes, providing an additional layer of data interpretation. The research findings raise concerns regarding the hegemonic

  11. Global histories, vernacular science, and African genealogies; or, Is the history of science ready for the world?

    Science.gov (United States)

    Tilley, Helen

    2010-03-01

    Scholars in imperial and science studies have recently begun to examine more systematically the different ways knowledge systems around the world have intersected. This essay concentrates on one aspect of this process, the codification of research into "primitive" or "indigenous" knowledge, especially knowledge that was transmitted orally, and argues that such investigations were a by-product of four interrelated phenomena: the globalization of the sciences themselves, particularly those fields that took the earth and its inhabitants as their object of analysis; the professionalization of anthropology and its growing emphasis on studying other cultures' medical, technical, and natural knowledge; the European push, in the late nineteenth century, toward "global colonialism" and the ethnographic research that accompanied colonial state building; and, finally, colonized and marginalized peoples' challenges to scientific epistemologies and their paradoxical call that scientists study their knowledge systems more carefully. These phenomena came together on a global scale in the decades surrounding the turn of the twentieth century to produce a subgenre of research within the sciences, here labeled "vernacular science," focused explicitly on "native" knowledge.

  12. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  13. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  14. Faunal knowledge of students in rural schools: a guide for their recognition in science class

    Directory of Open Access Journals (Sweden)

    Rubinsten Hernández-Barbosa

    2018-02-01

    Full Text Available This text aims to describe a methodological proposal to identify, classify, and organize the faunistic knowledge of students of rural schools. The research was conducted with twenty sixth graders from a rural school in the Department of Cundinamarca, Colombia. Through five types of activities, they expressed, in different ways, their knowledge about the animals of the region. The information collected was organized, categorized, and systematized in tables; these tables resulted from the analysis of the information the students provided. It is a possibility of school work that favors the recognition and valuation of the traditional and ancestral knowledge, and its incorporation to the dynamics of the teaching and learning of the Natural Sciences as a way to create “bridges” between that knowledge and the scholarly scientific knowledge. It is a proposal that, among other things, favors the development of more positive attitudes toward science itself, motivates students to ask questions, to recognize the importance of the cultural context, and to recognize themselves as part of a biocultural system.

  15. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  16. Measuring Science Inquiry Skills in Youth Development Programs: The Science Process Skills Inventory

    Directory of Open Access Journals (Sweden)

    Mary E. Arnold

    2013-03-01

    Full Text Available In recent years there has been an increased emphasis on science learning in 4-H and other youth development programs. In an effort to increase science capacity in youth, it is easy to focus only on developing the concrete skills and knowledge that a trained scientist must possess. However, when science learning is presented in a youth-development setting, the context of the program also matters. This paper reports the development and testing of the Science Process Skills Inventory (SPSI and its usefulness for measuring science inquiry skill development in youth development science programs. The results of the psychometric testing of the SPSI indicated the instrument is reliable and measures a cohesive construct called science process skills, as reflected in the 11 items that make up this group of skills. The 11 items themselves are based on the cycle of science inquiry, and represent the important steps of the complete inquiry process.

  17. Trends in life science grid: from computing grid to knowledge grid

    Directory of Open Access Journals (Sweden)

    Konagaya Akihiko

    2006-12-01

    Full Text Available Abstract Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.

  18. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    Science.gov (United States)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  19. Exploring the Influence of Nature Relatedness and Perceived Science Knowledge on Proenvironmental Behavior

    Science.gov (United States)

    Obery, Amanda; Bangert, Arthur

    2017-01-01

    This study was undertaken to investigate the factors influencing proenvironmental behavior of individuals residing in the Northern Rocky Mountains (N = 267). Measures of relatedness to nature and perceived science knowledge were collected through a convenience sample approach using multiple avenues such as city email lists, organizational…

  20. The place of practical wisdom in science education: what can be learned from Aristotelian ethics and a virtue-based theory of knowledge

    Science.gov (United States)

    Salloum, Sara

    2017-06-01

    This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher knowledge, its development, and consequently models of teacher education. Views of teacher knowledge presented in this paper are informed by philosophical literature that questions normative views of knowledge and argues for a virtue-based epistemology rather than a belief-based one. The paper first outlines general features of phronesis/practical wisdom. Later, a virtue-based view of knowledge is described. A virtue-based view binds knowledge with moral concepts and suggests that knowledge development is motivated by intellectual virtues such as intellectual sobriety, perseverance, fairness, and humility. A virtue-based theory of knowledge gives prominence to the virtue of phronesis/practical wisdom, whose primary function is to mediate among virtues and theoretical knowledge into a line of action that serves human goods. The role of phronesis and its relevance to teaching science are explained accordingly. I also discuss differences among various characterizations of practical knowledge in science education and a virtue-based characterization. Finally, implications and further questions for teacher education are presented.

  1. Knowledge Incubation and Collaboration for Science, Technology Adoption, Resourcing and Transfer (KIC-START)

    International Nuclear Information System (INIS)

    Ugbor, U.; Cilliers, A.; Kurwitz, R. C.

    2016-01-01

    Full text: In order to address the effectiveness of national networks in Member States, and to implement regional and national strategies, it is important to understand the necessary conditions that ensure successful creation and sharing of knowledge, including, effective policy and programme incentives, promoting collaboration, innovation and networking. Furthermore, Member States with aspirations to develop their nuclear programmes (power and non-power applications in agriculture, industry and health sector), need to develop their own capabilities if they are to fully benefit from the social and economic opportunities from nuclear science and technology. Ultimately nuclear innovation programmes that take into account the role of universities, education and industry would lead to a robust nuclear programme that maximizes social and economic benefit. This paper a presents an initiative for capturing best practices in the areas of university collaboration and innovation, which are driven by learning, research and entrepreneurship. The initiative covers Knowledge (creation), Innovation and Collaboration for Science and Technology Adoption, Resourcing and Transfer (KIC-START). (author

  2. Examining the Nexus of Science Communication and Science Education: A Content Analysis of Genetics News Articles

    Science.gov (United States)

    Shea, Nicole A.

    2015-01-01

    Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…

  3. Teaching science through literature

    Science.gov (United States)

    Barth, Daniel

    2007-12-01

    The hypothesis of this study was that a multidisciplinary, activity rich science curriculum based around science fiction literature, rather than a conventional text book would increase student engagement with the curriculum and improve student performance on standards-based test instruments. Science fiction literature was chosen upon the basis of previous educational research which indicated that science fiction literature was able to stimulate and maintain interest in science. The study was conducted on a middle school campus during the regular summer school session. Students were self-selected from the school's 6 th, 7th, and 8th grade populations. The students used the science fiction novel Maurice on the Moon as their only text. Lessons and activities closely followed the adventures of the characters in the book. The student's initial level of knowledge in Earth and space science was assessed by a pre test. After the four week program was concluded, the students took a post test made up of an identical set of questions. The test included 40 standards-based questions that were based upon concepts covered in the text of the novel and in the classroom lessons and activities. The test also included 10 general knowledge questions that were based upon Earth and space science standards that were not covered in the novel or the classroom lessons or activities. Student performance on the standards-based question set increased an average of 35% for all students in the study group. Every subgroup disaggregated by gender and ethnicity improved from 28-47%. There was no statistically significant change in the performance on the general knowledge question set for any subgroup. Student engagement with the material was assessed by three independent methods, including student self-reports, percentage of classroom work completed, and academic evaluation of student work by the instructor. These assessments of student engagement were correlated with changes in student performance

  4. Nuclear science and engineering workshop for secondary science teachers

    International Nuclear Information System (INIS)

    Miller, W.H.; Neumeyer, G.M.; Langhorst, S.M.

    1992-01-01

    A 2-week workshop has been held for the past 10 yr at the University of Missouri-Columbia for secondary science teachers to increase their knowledge of nuclear science and its applications. It is sponsored jointly by Union Electric Company (St. Louis, Missouri), the University of Missouri-Columbia, the American Nuclear Society (ANS) student branch at the University of Missouri-Columbia, and the Central/Eastern Section of the ANS. The workshop focuses on two principal educational areas: basic nuclear science and its applications and nuclear energy systems. The philosophy of the workshop is to provide factual information without emphasis on the political issues of the use of nuclear without emphasis on the political issues of the use of nuclear science in the modern society, allowing the participants to form their own perceptions of the risks and benefits of nuclear technology. The paper describes the workshop organization, curriculum, and evaluation

  5. Global power knowledge science and technology in international affairs

    CERN Document Server

    Barth, Kai-Henrik

    2006-01-01

    Osiris annualy examines a particular topic in the history of science, bringing together experts in the field to consider multiple aspects of the time period, episode, or theme. Volume 21, Historical Perspectives on Science, Technology, and International Affairs, explores the ways in which scientists and issues in science and technology have played significant roles in foreign policy and international relations, especially since the Second World War.

  6. X-Informatics: Practical Semantic Science

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  7. New Trends in E-Science: Machine Learning and Knowledge Discovery in Databases

    Science.gov (United States)

    Brescia, Massimo

    2012-11-01

    Data mining, or Knowledge Discovery in Databases (KDD), while being the main methodology to extract the scientific information contained in Massive Data Sets (MDS), needs to tackle crucial problems since it has to orchestrate complex challenges posed by transparent access to different computing environments, scalability of algorithms, reusability of resources. To achieve a leap forward for the progress of e-science in the data avalanche era, the community needs to implement an infrastructure capable of performing data access, processing and mining in a distributed but integrated context. The increasing complexity of modern technologies carried out a huge production of data, whose related warehouse management and the need to optimize analysis and mining procedures lead to a change in concept on modern science. Classical data exploration, based on local user own data storage and limited computing infrastructures, is no more efficient in the case of MDS, worldwide spread over inhomogeneous data centres and requiring teraflop processing power. In this context modern experimental and observational science requires a good understanding of computer science, network infrastructures, Data Mining, etc. i.e. of all those techniques which fall into the domain of the so called e-science (recently assessed also by the Fourth Paradigm of Science). Such understanding is almost completely absent in the older generations of scientists and this reflects in the inadequacy of most academic and research programs. A paradigm shift is needed: statistical pattern recognition, object oriented programming, distributed computing, parallel programming need to become an essential part of scientific background. A possible practical solution is to provide the research community with easy-to understand, easy-to-use tools, based on the Web 2.0 technologies and Machine Learning methodology. Tools where almost all the complexity is hidden to the final user, but which are still flexible and able to

  8. Promoting Shifts in Preservice Science Teachers' Thinking through Teaching and Action Research in Informal Science Settings

    Science.gov (United States)

    Wallace, Carolyn S.

    2013-08-01

    The purpose of this study was to investigate the influence of an integrated experiential learning and action research project on preservice science teachers' developing ideas about science teaching, learning, and action research itself. The qualitative, interpretive study examined the action research of 10 master's degree students who were involved in service learning with children in informal education settings. Results indicated that all of the participants enhanced their knowledge of children as diverse learners and the importance of prior knowledge in science learning. In-depth case studies for three of the participants indicated that two developed deeper understandings of science learners and learning. However, one participant was resistant to learning and gained more limited understandings.

  9. Dewey's "Science as Method" a Century Later: Reviving Science Education for Civic Ends

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    Over a hundred years ago, John Dewey delivered his now-well-known address "Science as Subject-Matter and as Method" to those assembled at the Boston meeting of the American Association for the Advancement of Science in which he lamented the nearly exclusive focus on content knowledge in early-20th-century school science classrooms. This…

  10. ROLE OF INTERNET - RESOURCES IN FORMING OF ECOLOGICAL KNOWLEDGE AT THE STUDY OF NATURAL SCIENCES SUBJECTS

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2013-06-01

    Full Text Available The problem of internet resources application for forming of pupils ecological knowledge at the study of natural sciences subjects is considered. It is noticed, that distribution of ecological knowledge and development of ecological education became the near-term tasks of school education, taking into account a global ecological crisis. It is therefore important to use in school preparation all possibilities that allow to promote the level of ecological knowledge of students and to influence the same on forming of modern views in relation to environmental preservation. Considerable attention is given to advices for the teachers of natural sciences subjects in relation to methodology of the internet resources use at preparation and realization of practical and laboratory works and other forms of educational-searching activity of students.

  11. Bridging Professional Teacher Knowledge for Science and Literary Integration via Design-Based Research

    Science.gov (United States)

    Fazio, Xavier; Gallagher, Tiffany L.

    2018-01-01

    We offer insights for using design-based research (DBR) as a model for constructing professional development that supports curriculum and instructional knowledge regarding science and literacy integration. We spotlight experiences in the DBR process from data collected from a sample of four elementary teachers. Findings from interviews, focus…

  12. Science and film-making.

    Science.gov (United States)

    Gouyon, Jean-Baptiste

    2016-01-01

    The essay reviews the literature, mostly historical, on the relationship between science and film-making, with a focus on the science documentary. It then discusses the circumstances of the emergence of the wildlife making-of documentary genre. The thesis examined here is that since the early days of cinema, film-making has evolved from being subordinate to science, to being an equal partner in the production of knowledge, controlled by non-scientists. © The Author(s) 2015.

  13. Formalization of the engineering science discipline - knowledge engineering

    Science.gov (United States)

    Peng, Xiao

    Knowledge is the most precious ingredient facilitating aerospace engineering research and product development activities. Currently, the most common knowledge retention methods are paper-based documents, such as reports, books and journals. However, those media have innate weaknesses. For example, four generations of flying wing aircraft (Horten, Northrop XB-35/YB-49, Boeing BWB and many others) were mostly developed in isolation. The subsequent engineers were not aware of the previous developments, because these projects were documented such which prevented the next generation of engineers to benefit from the previous lessons learned. In this manner, inefficient knowledge retention methods have become a primary obstacle for knowledge transfer from the experienced to the next generation of engineers. In addition, the quality of knowledge itself is a vital criterion; thus, an accurate measure of the quality of 'knowledge' is required. Although qualitative knowledge evaluation criteria have been researched in other disciplines, such as the AAA criterion by Ernest Sosa stemming from the field of philosophy, a quantitative knowledge evaluation criterion needs to be developed which is capable to numerically determine the qualities of knowledge for aerospace engineering research and product development activities. To provide engineers with a high-quality knowledge management tool, the engineering science discipline Knowledge Engineering has been formalized to systematically address knowledge retention issues. This research undertaking formalizes Knowledge Engineering as follows: 1. Categorize knowledge according to its formats and representations for the first time, which serves as the foundation for the subsequent knowledge management function development. 2. Develop an efficiency evaluation criterion for knowledge management by analyzing the characteristics of both knowledge and the parties involved in the knowledge management processes. 3. Propose and develop an

  14. Suggesting a NOS Map for Nature of Science for Science Education Instruction

    Science.gov (United States)

    Oh, Jun-Young

    2017-01-01

    The aims of this research are 1) to explore the inter-relationships within the individual elements or tenets of Nature of Science (NOS), based on the dimensions of scientific knowledge in science learning, and 2) to consider Kuhn's concept of how scientific revolution takes place. This study suggests that instruction according to our NOS Flowchart…

  15. Learning and Teaching Climate Science: The Perils of Consensus Knowledge Using Agnotology

    Science.gov (United States)

    Legates, David R.; Soon, Willie; Briggs, William M.

    2013-08-01

    Agnotology has been defined in a variety of ways including "the study of ignorance and its cultural production" and "the study of how and why ignorance or misunderstanding exists." More recently, however, it has been posited that agnotology should be used in the teaching of climate change science. But rather than use agnotology to enhance an understanding of the complicated nature of the complex Earth's climate, the particular aim is to dispel alternative viewpoints to the so-called consensus science. One-sided presentations of controversial topics have little place in the classroom as they serve only to stifle debate and do not further knowledge and enhance critical thinking. Students must understand not just what is known and why it is known to be true but also what remains unknown and where the limitations on scientific understanding lie. Fact recitation coupled with demonizing any position or person who disagrees with a singularly-derived conclusion has no place in education. Instead, all sides must be covered in highly debatable and important topics such as climate change, because authoritarian science never will have all the answers to such complex problems.

  16. Giving priority to evidence in science teaching: A first-year elementary teacher's specialized practices and knowledge

    NARCIS (Netherlands)

    Avraamidou, Lucy; Zembal-Saul, Carla

    2005-01-01

    The purpose of this qualitative case study was to examine the nature of a first-year elementary teacher's specialized practices and knowledge for giving priority to evidence in science teaching and to explore the possible sources from which this knowledge was generated. Data included three

  17. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  18. The History of Science from a science-technology-society perspective (CTS

    Directory of Open Access Journals (Sweden)

    Katiuska Pérez Bejerano

    2003-12-01

    Full Text Available One of the many goals of scientific training under CTS is to contribute to improving public understanding of the nature of science. It emphasizes the article in the possibilities of the history of science on this issue clarifying and illustrating through the history of chemistry as you can put scientific knowledge in context unraveled the complex relationship science - society links with the philosophical, ethical, political positions. This will help form a more responsible citizen, with a deeper awareness of their own activity, which takes sides with the problems affecting the world and their community.

  19. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Parents' and children's beliefs about science and science careers

    Science.gov (United States)

    Telfer, Jo Ann

    Science has become an essential part of our cultural, social and technological lives. Around the world economic policies are giving high priority to the production of new knowledge generated by scientists. Unfortunately, gender equality in science-related careers has not been achieved. Women who possess high intellectual and personal abilities are succeeding in many occupational areas previously closed to all but the most impervious women, but females are still largely underrepresented in physical science and mathematics related careers. The purpose of the current study was to examine the reasons for this underrepresentation of women in science-related careers. Participants included a subset of mothers (n = 174), fathers (n = 132) and children (n = 186) from a larger study at the University of Calgary entitled Gender Differences in Student Participation and Achievement in the Sciences: Choice or Chance ? Telephone interview and survey questionnaire data were examined for gender and achievement level differences, focusing on high achieving girls who are most likely to succeed in science-related careers. Relationships between parents' and children's responses were also examined using the theoretical construct of Eccles' Model of Achievement Related Choices. Gathered data were studied using factor analysis, multivariate analysis of variance, analysis of variance as well as categorical analysis of qualitative results. Girls and boys achieved similar grades on all academic measures except the Alberta Science Achievement Test, where boys scored significantly higher than girls. Mothers, fathers, and children indicated positive attitudes towards science, no gender stereotyping about science and science careers, and gender neutral beliefs about science achievement. Gender differences were found in expressed possibility of future career choice. Science/Professional Careers were viewed as male occupations by mothers and children, but as gender neutral occupations by fathers

  1. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  2. Teacher- or Learner-Centred? Science Teacher Beliefs Related to Topic Specific Pedagogical Content Knowledge: A South African Case Study

    Science.gov (United States)

    Mavhunga, Elizabeth; Rollnick, Marissa

    2016-12-01

    In science education, learner-centred classroom practices are widely accepted as desirable and are associated with responsive and reformed kinds of teacher beliefs. They are further associated with high-quality Pedagogical Content Knowledge (PCK). Topic-Specific Pedagogical Content Knowledge (TSPCK), a version of PCK defined at topic level, is known to enable the transformation of topic content into a form accessible to learners. However, little is known about teacher science beliefs in relation to TSPCK and therefore the nature of likely associated classroom practices. In this study, we investigated the relationship between TSPCK and underlying science teacher beliefs following an intervention targeting the improvement of TSPCK in the topic chemical equilibrium. Sixteen final year pre-service chemistry teachers were exposed to an intervention that explicitly focussed on knowledge for transforming the content of chemical equilibrium using the five knowledge components of TSPCK. A specially designed TSPCK instrument in chemical equilibrium and the Teacher Belief Instrument (TBI) were used to capture written responses in pre- and post-tests. Additional qualitative data was collected from audio-recorded discussions and written responses from an open-ended question asked before and after the intervention. Two key findings emerged from the study. Firstly, the development of TSPCK was linked to shifts in underlying science teacher beliefs in the direction of learner-centred teaching for the majority of pre-service teachers. Secondly, this shift was not evident for all, as for some there was development of TSPCK without a shift from teacher-centred beliefs about science teaching.

  3. A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity

    Science.gov (United States)

    Brooks, Kristine M.

    The goal of science education is the preparation of scientifically literate students (Abd-El-Khalick & Lederman, 2000, & American Association for the Advancement of Science (AAAS), 1990). In order to instruct students in the nature of science with its history, development, methods and applications, science teachers use textbooks as the primary organizer for the curriculum (Chippetta, Ganesh, Lee, & Phillips, 2006). Science textbooks are the dominant instructional tool that exerts great influence on instructional content and its delivery (Wang, 1998). Science and science literacy requires acquiring knowledge about the natural world and understanding its application in society, or, in other words, the nature of science. An understanding of the nature of science is an important part of science literacy (Abd-El-Khalik & Lederman, 2000, & AAAS, 1990). The nature of science has four basic themes or dimensions: science as a body of knowledge, science as a way of thinking, science as a way of investigating, and science with its interaction with technology and society (Chippetta & Koballa, 2006). Textbooks must relay and incorporate these themes to promote science literacy. The results from this content analysis provide further insights into science textbooks and their content with regard to the inclusion of the nature of science and ethnic diversity. Science textbooks usually downplay human influences (Clough & Olson, 2004) whether as part of the nature of science with its historical development or its interaction with societies of diverse cultures. Minority students are underperforming in science and science is divided on ethnic, linguistic, and gender identity (Brown, 2005). Greater representations of diversity in curriculum materials enable minority students to identify with science (Nines, 2000). Textbooks, with their influence on curriculum and presentation, must include links for science and students of diverse cultures. What is the balance of the four aspects of the

  4. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  5. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  6. A sociological Analysis on the Modes of Science Production

    Directory of Open Access Journals (Sweden)

    Ali Rabbani Khorasgani

    2012-12-01

    Full Text Available The main aim of this article was sociological Analysis on the modes of science, survey of new Approaches in this context, description of available Approaches relevant to Application of Indigenous paradigm in prodvetion of knowledge and conclusion to attain imitated Approaches from Analysis and mentioned discussions for planning in space of science production in society of Iran. After Analysis of propound Approaches in sociology of science concreted that sociology of science three generation transitioned yet : classic sociology of science (OSS [ Theories of Merton ] , New sociology of science ( NSS [Theories of Thomas kuhn and others ] and Third generation sociology of science that consisted of non - Marxist composinal and processive Approaches for example: Actor - Network theory (ANT, Triple Helix Theory life eyeles, mode 2 and Mode 3. On the other hand , because science production is encompass process in social structures and social communications , allowance for Analysis of Recent Development in mode of science production , three paradigm Analysis and critiqued titles mode 1 , 2 , 3 production of knowledge . Also, Application of Indigenous paradigm studied in production of knowledge and introduced two groups: A - External Approaches B - Internal Approaches that each of two groups propounded Ideas relevant to Indigenous knowledge and Indigenization of knowledge. In the final section, mode an efforted to answered this question that what doctrines can be concluded from these discourse in order to improve the conditions in Iran.

  7. From science to popularization, and back--the science and journalism of the Belgian economist Gustave de Molinari.

    Science.gov (United States)

    Van Dijck, Maarten

    2008-09-01

    Sociologists and historians of science, such as Richard Whitley and Stephen Hilgartner, identified a culturally dominant discourse of science popularization in the broader society. In this dominant view, a clear distinction is maintained between scientific knowledge and popularized knowledge. Popularization of science is seen as the process of transmitting real science to a lay public. This discourse on science popularization was criticized by Whitley and Hilgartner as an inadequate simplification. Yet, the battered traditional model of popularization remains remarkably resistant to these theoretical attacks. In this paper I will argue, based on research of the output of the Belgian economist Gustave de Molinari (1819-1912), and more specifically, his opinion on the role of government in economic life, that the boundary between science and popularization in political economy is not clear and that the status of scientists fluctuates over time and in different contexts. It is therefore impossible for historians or economists to distinguish science from popularization based on the essential characteristics or intrinsic quality of the work. De Molinari's ideas are followed through the different media of science and journalism. Although de Molinari himself differentiated between his scientific and "popular" work, the boundary between science and popularization proves to be highly permeable, in both directions.

  8. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  9. Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning

    Science.gov (United States)

    Shear, Linda; Penuel, William R.

    2010-01-01

    The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…

  10. Constructivist learning at the science-policy interface: tsunami science informing disaster policy in West Sumatra

    Science.gov (United States)

    McCaughey, J.; Dewi, P. R.; Natawidjaja, D. H.; Sieh, K. E.

    2012-12-01

    Science communication often falls short when it is based on the blank-slate assumption that if we can just get the message right, then the information will be received and understood as intended. In contrast, constructivist learning theory and practice suggest that we all actively construct our knowledge from a variety of information sources and through particular, novel associations with our prior knowledge. This constructed knowledge can be quite different from any of its original sources, such as a particular science communication. Successful communication requires carefully examining how people construct their knowledge of the topic of interest. Examples from our outreach work to connect hazard-science research with disaster-risk reduction practice in West Sumatra illustrate the mismatch between expert and stakeholder/public mental models of the characteristics of tsunamigenic earthquakes. There are incorrect conceptions that seawater always withdraws before a tsunami, and that a tsunami can be produced by an earthquake only if the epicenter is located at the ocean trench. These incorrect conceptions arise from generalizations based on recent, local earthquake experiences, as well as from unintended consequences of science outreach, science education, and, in one case, the way that tsunami modelling is graphically presented in scientific journals. We directly address these incorrect conceptions in our discussions with government officials and others; as a result, the local disaster-management agency has changed its policies to reflect an increased understanding of the hazard. This outreach success would not have been possible without eliciting the prior knowledge of our audiences through dialogue.

  11. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  12. Measurable Changes in Pre-Post Test Scores in Iraqi 4-H Leader’s Knowledge of Animal Science Production Principles

    Directory of Open Access Journals (Sweden)

    Justen O. Smith

    2015-06-01

    Full Text Available The 4-H volunteer program is a new concept to the people of Iraq, for decades the country has been closed to western ideas. Iraqi culture and the Arabic customs have not embraced the volunteer concept and even more the concept of scientific animal production technologies designed to increase profitability for producers. In 2011 the USAID-Inma Agribusiness program teamed with the Iraq 4-H program to create youth and community entrepreneurship opportunities for widowed families. Iraq 4-H provided the youth members and adult volunteers and Inma provided the financial capital (livestock and the animal science training program for the volunteers. The purpose of this study was to measure the knowledge level gained through intensive animal science training for Iraqi 4-H volunteers. Researchers designed and implemented a pre and post test to measure the knowledge of fifteen volunteers who participated in the three day course. The pretest exposed a general lack of animal science knowledge of all volunteers; over 80% of the participants incorrectly answered the questions. However, the post-test indicated positive change in the participants understanding of animal science production principles.

  13. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers' Science Content Knowledge and Pedagogy

    Science.gov (United States)

    Tuttle, Nicole; Kaderavek, Joan N.; Molitor, Scott; Czerniak, Charlene M.; Johnson-Whitt, Eugenia; Bloomquist, Debra; Namatovu, Winnifred; Wilson, Grant

    2016-01-01

    This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers' knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and…

  14. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  15. Climate science and the transfer of knowledge to public and political realms

    Energy Technology Data Exchange (ETDEWEB)

    Bray, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Storch, H. von

    1999-11-01

    This paper presents the results of a survey of the perspectives of climate scientists on the topic of global warming. It addresses both internal and external elements of the science. A total of 412 responses from climate scientists in Canada. USA and Germany are analyzed. Differences among those groups with higher levels of involvement with policy makers, with the media, and the less vocal members of the scientific community are the focus of this paper. Statistically significant differences were found among these three groups on a number of pertinent issues. These differences were more often among those areas which were beyond the areas of the scientists` areas of expertise. More precisely differences were found in: The assessment that global warming is a process already underway, the nature of the impacts of climate change, the knowledge transfer process, and the conduct of the climate sciences. These perspectives are of considerable importance for they relate to the transfer of scientific knowledge to the public and political realms. In short, this paper contributes to the discussion of the socio-scientific construction of the climate change issue. (orig.) 11 refs.

  16. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  17. What is Science?

    International Nuclear Information System (INIS)

    Quinn, H.

    2009-01-01

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just one more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work

  18. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  19. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    This study examines exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their students' use of computer applications/tools in or for their science class. After a relevant review of the literature certain variables were selected for analysis. These variables included personal self-efficacy in teaching with computers, outcome expectancy, pupil-control ideology, level of computer use, age, gender, teaching experience, personal computer use, professional computer use and science teachers' level of knowledge/skills in using specific computer applications for science instruction. The sample for this study includes middle and high school science teachers who received the Presidential Award for Excellence in Science Teaching Award (sponsored by the White House and the National Science Foundation) between the years 1997 and 2003 from all 50 states and U.S. territories. Award-winning science teachers were contacted about the survey via e-mail or letter with an enclosed return envelope. Of the 334 award-winning science teachers, usable responses were received from 92 science teachers, which made a response rate of 27.5%. Analysis of the survey responses indicated that exemplary science teachers have a variety of knowledge/skills in using computer related applications/tools. The most commonly used computer applications/tools are information retrieval via the Internet, presentation tools, online communication, digital cameras, and data collection probes. Results of the study revealed that students' use of technology in their science classroom is highly correlated with the frequency of their science teachers' use of computer applications/tools. The results of the multiple regression analysis revealed that personal self-efficacy related to

  20. The Place of Practical Wisdom in Science Education: What Can Be Learned from Aristotelian Ethics and a Virtue-Based Theory of Knowledge

    Science.gov (United States)

    Salloum, Sara

    2017-01-01

    This conceptual paper aims to characterize science teachers' practical knowledge utilizing a virtue-based theory of knowledge and the Aristotelian notion of phronesis/practical wisdom. The article argues that a greater understanding of the concept of phronesis and its relevance to science education would enrich our understandings of teacher…

  1. Cool Science: Engaging Adult and K-16 Audiences in Climate Change Science

    Science.gov (United States)

    Lustick, D.; Lohmeier, J.; Chen, R. F.

    2012-12-01

    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) uses advertising spaces on buses and terminals to engage the public with an Out of Home Multi-Media (OHMM) learning experience. K-16 classrooms throughout Massachusetts will submit original artwork that conveys a scientific concept central to understanding climate change. The best 6 works submitted will be printed and placed on every bus in the city over a 6 month period during the first half of 2013. CS aims to promote and evaluate learning about climate change science among the general adult public and k-16 students/teachers. Cool Science offers teachers an efficient and effective means of seamlessly bringing the study of climate change into classroom learning both within science and across disciplines. The products of this effort are then used to improve public engagement with the science of climate change in mass transit environments. Cool Science is an example of Science, Technology, Engineering, Art and Math education (STEAM). The goals of CS are: 1) Engage professors, teachers, and their respective students in a climate change science communication competition. 2) Run the winning 6 selected placards and posters throughout the LRTA. 3) Identify how different communities of risk among the riding public approach and understand climate change. 4) Identify the advantages and disadvantages of using buses as a context for research on informal science learning. 5) Determine the extent to which student artwork serves as a trusted source of information. As advances in technology allow for more scientific knowledge to be generated, the role of informal education to improve adult understanding of science has never been greater. We see the convergence of circumstances (ISE, climate change, OHMM, mobile technology) as an enormous

  2. Writing for Science Literacy

    Science.gov (United States)

    Chamberlin, Shannon Marie

    Scientific literacy is the foundation on which both California's currently adopted science standards and the recommended new standards for science are based (CDE, 2000; NRC, 2011). The Writing for Science Literacy (WSL) curriculum focuses on a series of writing and discussion tasks aimed at increasing students' scientific literacy. These tasks are based on three teaching and learning constructs: thought and language, scaffolding, and meta-cognition. To this end, WSL is focused on incorporating several strategies from the Rhetorical Approach to Reading, Writing, Listening and Speaking to engage students in activities designed to increase their scientific literacy; their ability to both identify an author's claim and evidence and to develop their own arguments based on a claim and evidence. Students participated in scaffolded activities designed to strengthen their written and oral discourse, hone their rhetorical skills and improve their meta-cognition. These activities required students to participate in both writing and discussion tasks to create meaning and build their science content knowledge. Students who participated in the WSL curriculum increased their written and oral fluency and were able to accurately write an evidence-based conclusion all while increasing their conceptual knowledge. This finding implies that a discourse rich curriculum can lead to an increase in scientific knowledge.

  3. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  4. Teachers' Views of the Nature of Science: A Study on Pre-Service Science Teachers in Sabah, Malaysia

    Science.gov (United States)

    Fah, Lay Yoon; Hoon, Khoo Chwee

    2011-01-01

    Science education in Malaysia nurtures a science and technology culture by focusing on the development of individuals who are competitive, dynamic, robust, resilient and able to master scientific knowledge and technological competency. To this end, the science curriculum in Malaysia gives conscious emphasis to the acquisition of scientific skills…

  5. When science becomes too easy: Science popularization inclines laypeople to underrate their dependence on experts.

    Science.gov (United States)

    Scharrer, Lisa; Rupieper, Yvonne; Stadtler, Marc; Bromme, Rainer

    2017-11-01

    Science popularization fulfills the important task of making scientific knowledge understandable and accessible for the lay public. However, the simplification of information required to achieve this accessibility may lead to the risk of audiences relying overly strongly on their own epistemic capabilities when making judgments about scientific claims. Moreover, they may underestimate how the division of cognitive labor makes them dependent on experts. This article reports an empirical study demonstrating that this "easiness effect of science popularization" occurs when laypeople read authentic popularized science depictions. After reading popularized articles addressed to a lay audience, laypeople agreed more with the knowledge claims they contained and were more confident in their claim judgments than after reading articles addressed to expert audiences. Implications for communicating scientific knowledge to the general public are discussed.

  6. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  7. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  8. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  9. Knowledge, attitude and practice of students towards blood donation in Arsi university and Adama science and technology university: a comparative cross sectional study.

    Science.gov (United States)

    Gebresilase, Habtom Woldeab; Fite, Robera Olana; Abeya, Sileshi Garoma

    2017-01-01

    Blood can save millions of lives. Even though people do not donate blood regularly, there is a constant effort to balance the supply and demand of blood. The aim of this study was, therefore, to determine the knowledge, attitude and practice of blood donation between university students. The comparative cross sectional study design was used in Adama Science and Technology University and Arsi University from April 11-May 2, 2016.360 students were selected using stratified sampling. Frequencies and proportions were computed. Chi-Square and logistic regressions were carried out and associations were considered significant at p students of Arsi University and Non-Health Science students of Adama Science and Technology University. The gender of the students (AOR = 3.150, 95% CI: 1.313, 7.554) was a significant predictor of the level of knowledge of Health Science students. The ethnicity of students (AOR = 2.085, 95% CI: 1.025, 4.243) was a significant predictor of the level of an attitude of Health Science students and gender of students (AOR = 0.343, 95% CI: 0.151, 0.779) was a significant predictor of the level of an attitude of Health Science students. Concerning Non-Health Science students, religion (AOR = 10.173, 95% CI: 1.191, 86.905) and original residence (AOR = 0.289, 95% CI: 0.094, 0.891) were a significant predictor of the level of knowledge of Non-Health Science students. Gender (AOR = 0.389, 95% CI: 0.152, 0.992) and Year of study (AOR = 0.389(0.164, 0.922) were significant predictor of level of attitude of Non-Health Science students. Year of study (AOR = 5.159, 95% CI: 1.611, 16.525) was a significant predictor of level of practice of Health Science students. Significant knowledge difference and attitude difference were observed between students from Arsi University and Adama Science and Technology University.

  10. Bridging the Science-Management Divide: Moving from Unidirectional Knowledge Transfer to Knowledge Interfacing and Sharing

    Directory of Open Access Journals (Sweden)

    Dirk J. Roux

    2006-06-01

    Full Text Available Sustainable ecosystem management relies on a diverse and multi-faceted knowledge system in which techniques are continuously updated to reflect current understanding and needs. The challenge is to minimize delay as ideas flow from intent through scientific capability, and finally to implementation to achieve desired outcomes. The best way to do this is by setting the stage for the flow of knowledge between researchers, policy makers, and resource managers. The cultural differences between these groups magnify the challenge. This paper highlights the importance of the tacit dimension of knowledge, and how this renders the concept of knowledge transfer much less useful than the concepts of information transfer and technology transfer. Instead of knowledge transfer, we propose that "co-production" of knowledge through collaborative learning between "experts" and "users" is a more suitable approach to building a knowledge system for the sustainable management of ecosystems. This can be achieved through knowledge interfacing and sharing, but requires a shift from a view of knowledge as a "thing" that can be transferred to viewing knowledge as a "process of relating" that involves negotiation of meaning among partners. Lessons from informal communities of practice provide guidance on how to nurture and promote knowledge interfacing between science and management in R&D programs.

  11. Risk literacy for scientists. Invitation to regulatory science

    International Nuclear Information System (INIS)

    Ono, Kyoko

    2012-01-01

    This paper discusses a regulatory science, which fills a gap between scientific knowledge and regulatory actions. The author provides examples of the regulatory science employed in chemical risk assessment, such as the linear non-threshold theory. In the regulatory science, scientific data as well as scientific reasoning based on scientific knowledge - or regulatory rules - should play an important role. It is important to recognize that the rules facilitate transparent decision making under conditions of uncertainty and time constraints. Furthermore, the development of traditional or pure science results in the validation of regulatory rules, and subsequently, the regulatory science procedure develops more systematically. The concept of this science should be understood by those engaged in governmental decision making. (author)

  12. Leadership in science.

    Science.gov (United States)

    Broome, Marion E

    2015-04-01

    In this article, there is a leadership discussion related to the development of leaders in nursing science-a topic rarely discussed. Given the recent dramatic shifts in funding as well as changes in methods of inquiry and data models, there is a clear need for individuals in nursing science who can not only negotiate the turbulent waters of funding but can also lead teams of others, and the discipline, to generate and translate knowledge that will truly be useful to providers, patients, and families. This requires leaders in science who can challenge the prevailing views and traditional paths to excellence held sacred by some. © The Author(s) 2015.

  13. The Impact of a Summer Institute on Inservice Early Childhood Teachers' Knowledge of Earth and Space Science Concepts

    Science.gov (United States)

    Sackes, Mesut; Trundle, Kathy Cabe; Krissek, Lawrence A.

    2011-01-01

    This study investigated inservice PreK to Grade two teachers' knowledge of some earth and space science concepts before and after a short-term teacher institute. A one-group pre-test-post-test design was used in the current study. Earth science concepts targeted during the professional development included properties of rocks and soils, and the…

  14. Digital Humanities e Library and Information Science. Through the lens of knowledge organization

    Directory of Open Access Journals (Sweden)

    Marilena Daquino

    2016-05-01

    Full Text Available This paper describes how the methodology of Digital Humanities is related to the Library and Information Science practices. The aim is to disclose connections and shared approaches. In particular knowledge organization and ontologies, as a tool for formalizing knowledge, are the contact points. Data modeling is increasingly perceived as a need among communities, as it is related to research scope and content of both the domains: on the one hand in data preservation, and on the other, in interpretation.

  15. Developing Technological Pedagogical Content Knowledge in pre-service science teachers: Support from blended learning

    NARCIS (Netherlands)

    Alayyar, G.; Fisser, Petra; Voogt, Joke

    2012-01-01

    The Technological Pedagogical Content Knowledge (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an

  16. Developing Technological Pedagogical Content Knowledge in pre-service science teachers : Support from blended learning

    NARCIS (Netherlands)

    Alayyar, G.; Fisser, Petra; Voogt, Joke

    2012-01-01

    The Technological Pedagogical Content Knowledge (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an

  17. Towards A Regional Science Academy: A Manifesto

    Directory of Open Access Journals (Sweden)

    Karima Kourtit

    2016-04-01

    Full Text Available This Manifesto provides a joint proposal to create a Regional Science Academy as a think-tank support platform for a strategic development of the spatial sciences. The Regional Science Academy is a strategic spatial knowledge catalyst: it acts as a global intellectual powerhouse for new knowledge network initiatives and scholarly views on regions and cities as vital centrepieces of interconnected spatial systems. This contribution highlights its role and presents various activity plans.

  18. Teaching and Assessing the Nature of Science

    Science.gov (United States)

    Clough, Michael P.

    2011-01-01

    Understanding the nature of science (NOS)--what science is and how it works, the assumptions that underlie scientific knowledge, how scientists function as a social group, and how society impacts and reacts to science--is prominent in science education reform documents (Rutherford and Ahlgren 1990; AAAS 1993; McComas and Olson 1998; NRC 1996; AAAS…

  19. Fermentation. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  20. Exemplary Science Teachers' Use of Technology

    Science.gov (United States)

    Hakverdi-Can, Meral; Dana, Thomas M.

    2012-01-01

    The purpose of this study is to examine exemplary science teachers' level of computer use, their knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, how often they required their students to use those applications in or for their science class…

  1. Spacelab Science Results Study

    Science.gov (United States)

    Naumann, R. J.; Lundquist, C. A.; Tandberg-Hanssen, E.; Horwitz, J. L.; Germany, G. A.; Cruise, J. F.; Lewis, M. L.; Murphy, K. L.

    2009-01-01

    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied.

  2. Feminist philosophy of science: `standpoint' and knowledge

    Science.gov (United States)

    Crasnow, Sharon

    2008-11-01

    Feminist philosophy of science has been criticized on several counts. On the one hand, it is claimed that it results in relativism of the worst sort since the political commitment to feminism is prima facie incompatible with scientific objectivity. On the other hand, when critics acknowledge that there may be some value in work that feminists have done, they comment that there is nothing particularly feminist about their accounts. I argue that both criticisms can be addressed through a better understanding of the current work in feminist epistemology. I offer an examination of standpoint theory as an illustration. Harding and Wylie have suggested ways in which the objectivity question can be addressed. These two accounts together with a third approach, ‘model-based objectivity’, indicate there is a clear sense in which we can understand how a standpoint theory both contributes to a better understanding of scientific knowledge and can provide a feminist epistemology.

  3. Science and Library in the Ancient Age

    Directory of Open Access Journals (Sweden)

    Hasan Sacit Keseroğlu

    2016-09-01

    Full Text Available Science assumes its contemporary identity as a result of the stages of magic, religion and reason. The religious stage starts with the invention of writing and this stage leaves its place to reason with Thales in Ancient Greece. Knowledge eludes from religious beliefs. Ways to reach accurate, reliable and realistic knowledge are sought, along with the answer for what knowledge is. Therefore, beginning of the science is taken into consideration together with science and philosophy. The purpose of this study is to approach knowledge and science of the ancient age in Mesopotamia, Egypt and Ancient Greece in general terms and to determine the relationship between the knowledge produced in those places and libraries established. The hypothesis has been determined as “Egypt and Mesopotamia at the starting point of the history of science and science, and libraries in Ancient Greece have developed parallelly to each other.” The scope of the study has been limited to Mesopotamia, Egypt and Ancient Greece; and Ancient Greece has been explained, with descriptive method, in the frame of the topics of Ionia, Athens, Hellenistic Period and Rome. Many archives and libraries have been established in the ancient age. The difference between an archive and a library has been mentioned first, and then, various libraries have been introduced such as Nineveh in Mesopotamia, Alexandria in Ancient Greece and many others in Egypt. It has been clearly distinguished that there had been a very tight relationship between knowledge production and library, especially with the Library of Alexandria.

  4. Focus: global currents in national histories of science: the "global turn" and the history of science in Latin America.

    Science.gov (United States)

    McCook, Stuart

    2013-12-01

    The "global turn" in the history of science offers new ways to think about how to do national and regional histories of science, in this case the history of science in Latin America. For example, it questions structuralist and diffusionist models of the spread of science and shows the often active role that people in Latin America (and the rest of the Global South) played in the construction of "universal" scientific knowledge. It suggests that even national or regional histories of science must be situated in a global context; all too often, such histories have treated global processes as a distant backdrop. At the same time, historians need to pay constant attention to the role of power in the construction of scientific knowledge. Finally, this essay highlights a methodological tool for writing globally inflected histories of science: the method of "following".

  5. African Indigenous science in higher education in Uganda

    Science.gov (United States)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and

  6. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  7. Examination of Knowledge and NOS in a PBL Curriculum: Comparing the Impact on Pre-service Teachers and Science Career Undergraduates

    Science.gov (United States)

    Schleigh, S.; Manda, A. K.

    2011-12-01

    "Those who don't know or can't do, teach". This is a well known statement accepted by many as an adage. It is a statement that implies that the teachers of our science content really do not understand the science. In this study, we examined whether there was some truth in this statement by comparing undergraduates heading towards science careers and undergraduates heading toward science teaching careers. Do teachers really have a different understanding for science than scientists? If so, do they learn differently from each other? Our study examines content knowledge gains and ability to apply and engage in science using the content that is being addressed. We questioned (1)if students in one track engage and develop knowledge and skills more proficiently than another; (2)if the PBL approach is more effective for a particular group of learners; (3)if the PBL environment (virtual/physical) impacts the development and understanding for NOS; and (4) how the engagement of learning through PBL transfers to classroom practice. We used the Problem Based Approach (PBL) in undergraduate courses that covered the science content related to climate change. Project-based learning (PBL) is an approach to science education that has been shown to support student understanding for science concepts by allowing them to apply knowledge to real-world, relevant applications. Recent research has focused on developing teachers' understanding for science by engaging them in learning events that are found in PBL and authentic research approaches (AR)( e.g. Abd-El-Khalick and Lederman, 2000). We used mixed methods to answer each of our questions. Our instruments included a likert scale for the nature of science as argumentation, a concept mapping activity, a written essay, a content exam and an observation protocol for the teaching practice. In this study we included a total of 40 pre-service teachers (online) 30 pre-service teachers (physical classroom) and 35 undergraduates (physical

  8. Comparative analysis of knowledge representation and reasoning requirements across a range of life sciences textbooks.

    Science.gov (United States)

    Chaudhri, Vinay K; Elenius, Daniel; Goldenkranz, Andrew; Gong, Allison; Martone, Maryann E; Webb, William; Yorke-Smith, Neil

    2014-01-01

    Using knowledge representation for biomedical projects is now commonplace. In previous work, we represented the knowledge found in a college-level biology textbook in a fashion useful for answering questions. We showed that embedding the knowledge representation and question-answering abilities in an electronic textbook helped to engage student interest and improve learning. A natural question that arises from this success, and this paper's primary focus, is whether a similar approach is applicable across a range of life science textbooks. To answer that question, we considered four different textbooks, ranging from a below-introductory college biology text to an advanced, graduate-level neuroscience textbook. For these textbooks, we investigated the following questions: (1) To what extent is knowledge shared between the different textbooks? (2) To what extent can the same upper ontology be used to represent the knowledge found in different textbooks? (3) To what extent can the questions of interest for a range of textbooks be answered by using the same reasoning mechanisms? Our existing modeling and reasoning methods apply especially well both to a textbook that is comparable in level to the text studied in our previous work (i.e., an introductory-level text) and to a textbook at a lower level, suggesting potential for a high degree of portability. Even for the overlapping knowledge found across the textbooks, the level of detail covered in each textbook was different, which requires that the representations must be customized for each textbook. We also found that for advanced textbooks, representing models and scientific reasoning processes was particularly important. With some additional work, our representation methodology would be applicable to a range of textbooks. The requirements for knowledge representation are common across textbooks, suggesting that a shared semantic infrastructure for the life sciences is feasible. Because our representation overlaps

  9. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    Science.gov (United States)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  10. Science at the supermarket: multiplication, personalization and consumption of science in everyday life.

    Science.gov (United States)

    Tateo, Luca

    2014-06-01

    Which is the kind science's psychological guidance upon everyday life? I will try to discuss some issues about the role that techno-scientific knowledge plays in sense-making and decision making about practical questions of life. This relation of both love and hate, antagonism and connivance is inscribable in a wider debate between a trend of science to intervene in fields that are traditionally prerogative of political, religious or ethical choices, and, on the other side, the position of those who aim at stemming "technocracy" and governing these processes. I argue that multiplication, personalization and consumption are the characteristics of the relationship between science, technology and society in the age of "multiculturalism" and "multi-scientism". This makes more difficult but intriguing the study and understanding of the processes through which scientific knowledge is socialized. Science topics, like biotech, climate change, etc. are today an unavoidable reference frame. It is not possible to not know them and to attach them to the most disparate questions. Like in the case of Moscovici's "Freud for all seasons", the fact itself that the members of a group or a society believe in science as a reference point for others, roots its social representation and the belief that it can solve everyday life problems.

  11. KNOWLEDGE AND ATTITUDES RELATED TO HIV/AIDS AMONG MEDICAL AND ALLIED HEALTH SCIENCES STUDENTS

    Directory of Open Access Journals (Sweden)

    Mohammad Akhtar Hussain

    2011-12-01

    Full Text Available Background: India estimates third highest number of HIV infections in the world, with about 2.4 million people currently living with HIV/AIDS. Adequately trained and sensitized healthcare professionals can play a vital role in combating this epidemic. Limited studies have explored knowledge and attitudes of medical students relating to HIV/AIDS, particularly in the eastern part of India. Methods: The present cross sectional study explored knowledge and attitudes of first year MBBS, BDS & BPT students of Kalinga Institute of Medical Sciences (KIMS, Bhubaneswar, Odisha on HIV/AIDS using a self-administered questionnaire. Data thus collected were analyzedand relevant statistics were calculated. Knowledge and attitude scores were determined and analysis of variance (ANOVA test was used to examine the equality between the groups. Results: All students scored low on the overall knowledge scale (<10/15. Specifically, knowledgewas low on modes of transmission and treatment. Attitudinal scores in the areas of precautions and need for training on HIV was low for all the three streams.The willingness to treat HIV/AIDS patient was found to be high amongst study participants. Conclusion: There is a need and scope to provide correct and detailed information on HIV/AIDS for new entrants in medical and allied health sciences to help them acquire adequate knowledge and develop appropriate attitudes towards HIV/AIDS.

  12. Pre-Service Teachers' Knowledge and Teaching Comfort Levels for Agricultural Science and Technology Objectives

    Science.gov (United States)

    Wingenbach, Gary J.; White, Judith McIntosh; Degenhart, Shannon; Pannkuk, Tim; Kujawski, Jenna

    2007-01-01

    Self-efficacy beliefs are defined as context-specific assessments of one's competence to perform specific tasks, influence one's efforts, persistence, and resilience to succeed in a given task. Such beliefs are important determinants when considering agricultural science teachers' subject matter knowledge, teaching comfort levels, and their…

  13. Using Augmented Reality and Knowledge-Building Scaffolds to Improve Learning in a Science Museum

    Science.gov (United States)

    Yoon, Susan A.; Elinich, Karen; Wang, Joyce; Steinmeier, Christopher; Tucker, Sean

    2012-01-01

    Although learning science in informal non-school environments has shown great promise in terms of increasing interest and engagement, few studies have systematically investigated and produced evidence of improved conceptual knowledge and cognitive skills. Furthermore, little is known about how digital technologies that are increasingly being used…

  14. Science Communication in Denmark

    DEFF Research Database (Denmark)

    Busch, Henrik

    2005-01-01

    This paper was presented during the author?s visit at the Faculty of Human Development of the University of Kobe . The paper is intended to provide the knowledge about science communication in the Nordic countries (in particular in Denmark). The focus in the paper is on (i) examples of new...... and innovative modes of science communication in Denmark and (ii) educational programs for science communicators. Furthermore, emphasis is on the pedagogical ideas behind the initiatives, rather than on thorough descriptions of structures, curricula and evaluations of the projects....

  15. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    Science.gov (United States)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research

  16. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries

    Science.gov (United States)

    Johnson, Layne M.; Butler, John T.; Johnston, Lisa R.

    2013-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed. PMID:23585706

  17. Developing E-science and Research Services and Support at the University of Minnesota Health Sciences Libraries.

    Science.gov (United States)

    Johnson, Layne M; Butler, John T; Johnston, Lisa R

    2012-01-01

    This paper describes the development and implementation of e-science and research support services in the Health Sciences Libraries (HSL) within the Academic Health Center (AHC) at the University of Minnesota (UMN). A review of the broader e-science initiatives within the UMN demonstrates the needs and opportunities that the University Libraries face while building knowledge, skills, and capacity to support e-research. These experiences are being used by the University Libraries administration and HSL to apply support for the growing needs of researchers in the health sciences. Several research areas that would benefit from enhanced e-science support are described. Plans to address the growing e-research needs of health sciences researchers are also discussed.

  18. Knowledge Cluster Formation as a Science Policy in Malaysia: Lessons Learned

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Evers

    2015-01-01

    Full Text Available Regional science policy aims to create productive knowledge clusters, which are central places within an epistemic landscape of knowledge production and dissemination. These so-called K-clusters are said to have the organisational capability to drive innovations and create new industries. Many governments have used cluster formation as one of their development strategies. This paper looks at Malaysia’s path towards a knowledge-based economy and offers some evidence on the current state of knowledge cluster formation in that country. If the formation of a knowledge cluster has been the government policy, what has been the result? Is there an epistemic landscape of knowledge clusters? Has the main knowledge cluster really materialised? Data collected from websites, directories, government publications and expert interviews have enabled us to construct the epistemic landscape of Peninsular Malaysia, and Penang in particular. We identify and describe several knowledge clusters with a high density of knowledge producing institutions and their knowledge workers. An analysis of the knowledge output, measured in terms of scientific publications, patents and trademarks, shows that knowledge clusters have indeed been productive – as predicted by cluster theory – although the internal working of clusters require further explanation.

  19. Environmental science-policy interactions

    DEFF Research Database (Denmark)

    Kamelarczyk, Kewin Bach Friis

    + (Reduced Emissions from Deforestation and forest Degradation and enhancement of forest carbon stocks) process and the phenomenon of deforestation in Zambia as research examples. The research was carried out from mid 2008 and to mid 2013 and applies a mixed methods research design. Fieldwork was carried out...... to science? This PhD thesis contributes to answering this questions; however it does this by questioning the conceptions of science that contribute to political decision-making and by exploring the relationship between scientific knowledge, other types of knowledge and policy. This PhD study employs the REDD...... in future REDD+ design and implementation. To curtail potential negative consequences of the identified mode of science-policy interaction in Zambia, the study concludes by making a number of proposals. The proposals are generic in nature and may be found relevant in environmental policy processes outside...

  20. Who cares about the history of science?

    Science.gov (United States)

    Chang, Hasok

    2017-01-01

    The history of science has many functions. Historians should consider how their work contributes to various functions, going beyond a simple desire to understand the past correctly. There are both internal and external functions of the history of science in relation to science itself; I focus here on the internal, as they tend to be neglected these days. The internal functions can be divided into orthodox and complementary. The orthodox function is to assist with the understanding of the content and methods of science as it is now practised. The complementary function is to generate and improve scientific knowledge where current science itself fails to do so. Complementary functions of the history of science include the raising of critical awareness, and the recovery and extension of past scientific knowledge that has become forgotten or neglected. These complementary functions are illustrated with some concrete examples.