WorldWideScience

Sample records for science integrating point

  1. Tipping Points and Balancing Acts: Grand Challenges and Synergistic Opportunities of Integrating Research and Education, Science and Solutions

    Science.gov (United States)

    McCaffrey, M. S.; Stroeve, J. C.

    2011-12-01

    thousands of US high schools that integrate climate science and solutions in a way that inspires and informs youth, and similar programs exist internationally. Other approaches to prepare vulnerable communities, especially young people, for natural hazards and human-induced environmental change include programs such as Plan International's "Child Centered Disaster Risk Reduction- Building Resilience Through Participation," and their "Weathering the Storm" project, focusing on integrating the needs of teenage girls with climate change adaptation and risk reduction. While minimizing global environmental and climate change is crucial, these and related programs that weave research with education, science with solutions offer the potential for addressing the "Grand Challenges" by better preparing for societal and environmental tipping points through a more balanced and integrated approach to addressing change."

  2. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  3. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Science of Drug Use: Discussion Points

    Science.gov (United States)

    ... The Science of Drug Use: Discussion Points The Science of Drug Use: Discussion Points Email Facebook Twitter ... was last updated February 2017 Related Topics Addiction Science Adolescent Brain Comorbidity College-Age & Young Adults Criminal ...

  5. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  6. Selective Integration in the Material-Point Method

    DEFF Research Database (Denmark)

    Andersen, Lars; Andersen, Søren; Damkilde, Lars

    2009-01-01

    The paper deals with stress integration in the material-point method. In order to avoid parasitic shear in bending, a formulation is proposed, based on selective integration in the background grid that is used to solve the governing equations. The suggested integration scheme is compared...... to a traditional material-point-method computation in which the stresses are evaluated at the material points. The deformation of a cantilever beam is analysed, assuming elastic or elastoplastic material behaviour....

  7. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  8. Using New-Antiquarian Photographic Processes to Integrate Art and Science

    Science.gov (United States)

    Beaver, J.

    2017-12-01

    In this session we describe an interdisciplinary course, The Art and Science of Photography (ASP), and its accompanying textbook and associated project-based activities, offered at the University of Wisconsin - Fox Valley in Menasha, Wisconsin. ASP uses photography as a point of departure to inspire students to ask fundamental questions about the nature of art, and to consider physics and astronomy as part of the study of nature. In turn, aspects of art and physics/astronomy are chosen in part for their direct relevance to the fundamentals of photography. For example, the subtle nature of shadows on a sunny day is related to the geometry of eclipses.ASP is offered as a 4-credit lecture/lab/studio course, and the students have a choice of registration for either art or natural-science credit. A large majority of students register for natural-science credit, and we suggest that ASP may be particularly useful as an entry point for students who view themselves as lacking ability in the sciences.Combining art with science in an introductory course is a particularly fruitful way to increase student engagement, as there is a perception that to be "artistic" precludes success in science. But it is of equal importance that students sometimes perceive that being "science-minded" precludes success in art.Part of the aim of ASP is to integrate art and science to such a degree that a student is always doing both, while still maintaining the integrity and rigor of each discipline. Towards this end, we have developed several unique hands-on practices that often use antiquarian photographic processes in a new way.Some of these hybrid techniques are little known or not previously described. Yet they allow for unique artistic expression, while also highlighting - in a way that ordinary digital photography does not - prinicpals of the interaction between light, atmosphere, weather, and the physical photographic substrate. These newly-described processes are accessible and inexpensive

  9. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  10. The Brave New Researcher of Doctoral Integrity Training in the Heath Sciences

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise

    2018-01-01

    as points of reference for an overall discussion of the implied ideas about the ideal researcher in a comparative cross-faculty perspective: 1) Translations between international/national/institutional and local/faculty ideas about what problems the integrity training is expected to solve, 2) Translations......The presented material is a part of a wider, comparative ethnography in which we study the emerging integrity training for PhD fellows provided by four different faculties: Science, Humanities, Social Science and Business, and Health. The comparison comprises the following themes that will serve...... between standardisations of curriculum and content, local development and ideas about what problems integrity training is expected to solve. 3) Translations between ideas about adequate pedagogies and ideas about what problems integrity training is expected to solve...

  11. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  12. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  13. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  14. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    Science.gov (United States)

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  15. Turning points towards sustainability: integrative science and policy for novel (but real landscape futures

    Directory of Open Access Journals (Sweden)

    David J. Brunckhorst

    2004-09-01

    Full Text Available Non-metropolitan landscapes are the major theatre of interactions where large-scale alteration occurs precipitated by local to global forces of economic, social and environmental change. However, these regional landscape effects are critical also to local natural resource and social sustainability, ecosystem health through to larger scales of biospheric functioning. The institutions contributing pressures and responses consequently shape future landscapes and in turn influence how social systems, resource users, governments and policy makers perceive those landscapes and their future. These are, in essence, complex social-ecological systems intertwined in a multitude of ways at many spatial scales across time. Over time, the cycles of complex social-ecological systems also reach crossroads, which might be crisis points at which future options are no longer available (possibly because of resource degradation or loss, or turning points where opportunities arise when it is easier to change direction towards more sustainable activities. This paper provides some examples of interdisciplinary research that has provided a holistic integration through close engagement with residents and communities or through deliberately implementing integrative high-risk ‘on-ground’ experimental models to ‘learn by doing’. In the final analysis, each project has characteristically, however, sought to integrate through spatial (if not temporal synthesis, policy analysis and (new or changed institutional arrangements that are relevant locally and corporately, as well as at broader levels of government and geography. This has provided transferable outcomes that can contribute real options and adaptive capacity for suitable positive futures.

  16. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    Science.gov (United States)

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  18. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  19. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  20. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  1. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  2. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  3. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  4. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  5. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    Science.gov (United States)

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  6. Development of an integrated pointing device driver for the disabled.

    Science.gov (United States)

    Shih, Ching-Hsiang; Shih, Ching-Tien

    2010-01-01

    To help people with disabilities such as those with spinal cord injury (SCI) to effectively utilise commercial pointing devices to operate computers. This study proposes a novel method to integrate the functions of commercial pointing devices. Utilising software technology to develop an integrated pointing device driver (IPDD) for a computer operating system. The proposed IPDD has the following benefits: (1) it does not require additional hardware cost or circuit preservations, (2) it supports all standard interfaces of commercial pointing devices, including PS/2, USB and wireless interfaces and (3) it can integrate any number of devices. The IPDD can be selected and combined according to their physical restriction. The IPDD is a novel method of integrating commercial pointing devices. Through IPDD, people with disabilities can choose a suitable combination of commercial pointing devices to achieve full cursor control and optimise operational performance. In contrast with previous studies, the software-based solution does not require additional hardware or circuit preservations, and it can support unlimited devices. In summary, the IPDD has the benefits of flexibility, low cost and high-device compatibility.

  7. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  8. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  9. The integration of open access journals in the scholarly communication system: Three science fields

    DEFF Research Database (Denmark)

    Faber Frandsen, Tove

    2009-01-01

    across disciplines. This study is an analysis of the citing behaviour in journals within three science fields: biology, mathematics, and pharmacy and pharmacology. It is a statistical analysis of OAJs as well as non-OAJs including both the citing and cited side of the journal to journal citations......The greatest number of open access journals (OAJs) is found in the sciences and their influence is growing. However, there are only a few studies on the acceptance and thereby integration of these OAJs in the scholarly communication system. Even fewer studies provide insight into the differences....... The multivariate linear regression reveals many similarities in citing behaviour across fields and media. But it also points to great differences in the integration of OAJs. The integration of OAJs in the scholarly communication system varies considerably across fields. The implications for bibliometric research...

  10. Magic identities for conformal four-point integrals

    International Nuclear Information System (INIS)

    Drummond, James M.; Henn, Johannes; Smirnov, Vladimir A.; Sokatchev, Emery

    2007-01-01

    We propose an iterative procedure for constructing classes of off-shell four-point conformal integrals which are identical. The proof of the identity is based on the conformal properties of a subintegral common for the whole class. The simplest example are the so-called 'triple scalar box' and 'tennis court' integrals. In this case we also give an independent proof using the method of Mellin-Barnes representation which can be applied in a similar way for general off-shell Feynman integrals

  11. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  12. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  13. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  14. The science of autonomy: integrating autonomous systems with the ISR enterprise

    Science.gov (United States)

    Creech, Gregory S.

    2013-05-01

    Consider a future where joint, unmanned operations are the norm. A fleet of autonomous airborne systems conducts overwatch and surveillance for their land and sea brethren, accurately reporting adversary position and aptly guiding the group of autonomous land and sea warriors into position to conduct a successful takedown. Sounds a bit like science fiction, but reality is just around the corner. The DoD ISR Enterprise has evolved significantly over the past decade and has learned many a harsh lesson along the way. Autonomous system operations supporting the warfighter have also evolved, arguably to a point where integration into the ISR Enterprise is a must, in order to reap the benefits that these highly capable systems possess. Achieving meaningful integration, however, is not without its challenges. The ISR Enterprise, for example, is still plagued with "stovepipe" efforts - sufficiently filling a niche for an immediate customer need, but doing little to service the needs of the greater enterprise. This paper will examine the science of autonomy, the challenges and potential benefits that it brings to the ISR Enterprise and recommendations that will facilitate smooth integration of emerging autonomous systems with the mature suite of traditional manned and unmanned ISR platforms.

  15. Reduction formalism for dimensionally regulated one-loop N-point integrals

    International Nuclear Information System (INIS)

    Binoth, T.; Guillet, J.Ph.; Heinrich, G.

    2000-01-01

    We consider one-loop scalar and tensor integrals with an arbitrary number of external legs relevant for multi-parton processes in massless theories. We present a procedure to reduce N-point scalar functions with generic 4-dimensional external momenta to box integrals in (4-2ε) dimensions. We derive a formula valid for arbitrary N and give an explicit expression for N=6. Further a tensor reduction method for N-point tensor integrals is presented. We prove that generically higher dimensional integrals contribute only to order ε for N≥5. The tensor reduction can be solved iteratively such that any tensor integral is expressible in terms of scalar integrals. Explicit formulas are given up to N=6

  16. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  17. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  18. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  19. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  20. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  1. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  2. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  3. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  4. Scientific integrity and research ethics an approach from the ethos of science

    CERN Document Server

    Koepsell, David

    2017-01-01

    This book is an easy to read, yet comprehensive introduction to practical issues in research ethics and scientific integrity. It addresses questions about what constitutes appropriate academic and scientific behaviors from the point of view of what Robert Merton called the “ethos of science.” In other words, without getting into tricky questions about the nature of the good or right (as philosophers often do), Koepsell’s concise book provides an approach to behaving according to the norms of science and academia without delving into the morass of philosophical ethics. The central thesis is that: since we know certain behaviors are necessary for science and its institutions to work properly (rather than pathologically), we can extend those principles to guide good behaviors as scientists and academics. The Spanish version of this book was commissioned by the Mexican National Science Foundation (CONACyT) and is being distributed to and used by Mexican scientists in a unique, national plan to improve scie...

  5. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  6. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  7. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  8. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  9. User requirements Massive Point Clouds for eSciences (WP1)

    NARCIS (Netherlands)

    Suijker, P.M.; Alkemade, I.; Kodde, M.P.; Nonhebel, A.E.

    2014-01-01

    This report is a milestone in work package 1 (WP1) of the project Massive point clouds for eSciences. In WP1 the basic functionalities needed for a new Point Cloud Spatial Database Management System are identified. This is achieved by (1) literature research, (2) discussions with the project

  10. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  11. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  12. Comprehensive Interpretation of a Three-Point Gauss Quadrature with Variable Sampling Points and Its Application to Integration for Discrete Data

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2013-01-01

    Full Text Available This study examined the characteristics of a variable three-point Gauss quadrature using a variable set of weighting factors and corresponding optimal sampling points. The major findings were as follows. The one-point, two-point, and three-point Gauss quadratures that adopt the Legendre sampling points and the well-known Simpson’s 1/3 rule were found to be special cases of the variable three-point Gauss quadrature. In addition, the three-point Gauss quadrature may have out-of-domain sampling points beyond the domain end points. By applying the quadratically extrapolated integrals and nonlinearity index, the accuracy of the integration could be increased significantly for evenly acquired data, which is popular with modern sophisticated digital data acquisition systems, without using higher-order extrapolation polynomials.

  13. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  14. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  15. Integral staggered point-matching method for millimeter-wave reflective diffraction gratings on electron cyclotron heating systems

    International Nuclear Information System (INIS)

    Xia, Donghui; Huang, Mei; Wang, Zhijiang; Zhang, Feng; Zhuang, Ge

    2016-01-01

    Highlights: • The integral staggered point-matching method for design of polarizers on the ECH systems is presented. • The availability of the integral staggered point-matching method is checked by numerical calculations. • Two polarizers are designed with the integral staggered point-matching method and the experimental results are given. - Abstract: The reflective diffraction gratings are widely used in the high power electron cyclotron heating systems for polarization strategy. This paper presents a method which we call “the integral staggered point-matching method” for design of reflective diffraction gratings. This method is based on the integral point-matching method. However, it effectively removes the convergence problems and tedious calculations of the integral point-matching method, making it easier to be used for a beginner. A code is developed based on this method. The calculation results of the integral staggered point-matching method are compared with the integral point-matching method, the coordinate transformation method and the low power measurement results. It indicates that the integral staggered point-matching method can be used as an optional method for the design of reflective diffraction gratings in electron cyclotron heating systems.

  16. Integral staggered point-matching method for millimeter-wave reflective diffraction gratings on electron cyclotron heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Donghui [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Huang, Mei [Southwestern Institute of Physics, 610041 Chengdu (China); Wang, Zhijiang, E-mail: wangzj@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhang, Feng [Southwestern Institute of Physics, 610041 Chengdu (China); Zhuang, Ge [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, 430074 Wuhan (China)

    2016-10-15

    Highlights: • The integral staggered point-matching method for design of polarizers on the ECH systems is presented. • The availability of the integral staggered point-matching method is checked by numerical calculations. • Two polarizers are designed with the integral staggered point-matching method and the experimental results are given. - Abstract: The reflective diffraction gratings are widely used in the high power electron cyclotron heating systems for polarization strategy. This paper presents a method which we call “the integral staggered point-matching method” for design of reflective diffraction gratings. This method is based on the integral point-matching method. However, it effectively removes the convergence problems and tedious calculations of the integral point-matching method, making it easier to be used for a beginner. A code is developed based on this method. The calculation results of the integral staggered point-matching method are compared with the integral point-matching method, the coordinate transformation method and the low power measurement results. It indicates that the integral staggered point-matching method can be used as an optional method for the design of reflective diffraction gratings in electron cyclotron heating systems.

  17. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  18. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  19. Integrated modeling and analysis methodology for precision pointing applications

    Science.gov (United States)

    Gutierrez, Homero L.

    2002-07-01

    Space-based optical systems that perform tasks such as laser communications, Earth imaging, and astronomical observations require precise line-of-sight (LOS) pointing. A general approach is described for integrated modeling and analysis of these types of systems within the MATLAB/Simulink environment. The approach can be applied during all stages of program development, from early conceptual design studies to hardware implementation phases. The main objective is to predict the dynamic pointing performance subject to anticipated disturbances and noise sources. Secondary objectives include assessing the control stability, levying subsystem requirements, supporting pointing error budgets, and performing trade studies. The integrated model resides in Simulink, and several MATLAB graphical user interfaces (GUI"s) allow the user to configure the model, select analysis options, run analyses, and process the results. A convenient parameter naming and storage scheme, as well as model conditioning and reduction tools and run-time enhancements, are incorporated into the framework. This enables the proposed architecture to accommodate models of realistic complexity.

  20. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  1. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  2. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  3. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  4. Rocking Your Writing Program: Integration of Visual Art, Language Arts, & Science

    Science.gov (United States)

    Poldberg, Monique M.,; Trainin, Guy; Andrzejczak, Nancy

    2013-01-01

    This paper explores the integration of art, literacy and science in a second grade classroom, showing how an integrative approach has a positive and lasting influence on student achievement in art, literacy, and science. Ways in which art, science, language arts, and cognition intersect are reviewed. Sample artifacts are presented along with their…

  5. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  6. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  7. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  8. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  9. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  10. Integrated CMOS dew point sensors for relative humidity measurement

    Science.gov (United States)

    Savalli, Nicolo; Baglio, Salvatore; Castorina, Salvatore; Sacco, Vincenzo; Tringali, Cristina

    2004-07-01

    This work deals with the development of integrated relative humidity dew point sensors realized by adopting standard CMOS technology for applications in various fields. The proposed system is composed by a suspended plate that is cooled by exploiting integrated Peltier cells. The cold junctions of the cells have been spread over the plate surface to improve the homogeneity of the temperature distribution over its surface, where cooling will cause the water condensation. The temperature at which water drops occur, named dew point temperature, is a function of the air humidity. Measurement of such dew point temperature and the ambient temperature allows to know the relative humidity. The detection of water drops is achieved by adopting a capacitive sensing strategy realized by interdigited fixed combs, composed by the upper layer of the adopted process. Such a capacitive sensor, together with its conditioning circuit, drives a trigger that stops the cooling of the plate and enables the reading of the dew point temperature. Temperature measurements are achieved by means of suitably integrated thermocouples. The analytical model of the proposed system has been developed and has been used to design a prototype device and to estimate its performances. In such a prototype, the thermoelectric cooler is composed by 56 Peltier cells, made by metal 1/poly 1 junctions. The plate has a square shape with 200 μm side, and it is realized by exploiting the oxide layers. Starting from the ambient temperature a temperature variation of ΔT = 15 K can be reached in 10 ms thus allowing to measure a relative humidity greater than 40%.

  11. Psychology as an Evolving, Interdisciplinary Science: Integrating Science in Sensation and Perception from Fourier to Fluid Dynamics

    Science.gov (United States)

    Ebersole, Tela M.; Kelty-Stephen, Damian G.

    2017-01-01

    This article outlines the theoretical rationale and process for an integrated-science approach to teaching sensation and perception (S&P) to undergraduate psychology students that may also serve as an integrated-science curriculum. The course aimed to introduce the interdisciplinary evolution of this psychological field irrespective of any…

  12. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  13. Bounds for the integral points on elliptic curves over function fields

    OpenAIRE

    Sedunova, Alisa

    2017-01-01

    In this paper we give an upper bound for the number of integral points on an elliptic curve E over F_q[T] in terms of its conductor N and q. We proceed by applying the lower bounds for the canonical height that are analogous to those given by Silverman and extend the technique developed by Helfgott-Venkatesh to express the number of integral points on E in terms of its algebraic rank. We also use the sphere packing results to optimize the size of an implied constant. In the end we use partial...

  14. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  15. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  16. Fixed point theorems for mappings satisfying contractive conditions of integral type and applications

    Directory of Open Access Journals (Sweden)

    Kang Shin

    2011-01-01

    Full Text Available Abstract In this paper, the existence, uniqueness and iterative approximations of fixed points for contractive mappings of integral type in complete metric spaces are established. As applications, the existence, uniqueness and iterative approximations of solutions for a class of functional equations arising in dynamic programming are discussed. The results presented in this paper extend and improve essentially the results of Branciari (A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 29, 531-536, 2002, Kannan (Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71-76, 1968 and several known results. Four concrete examples involving the contractive mappings of integral type with uncountably many points are constructed. 2010 Mathematics Subject Classfication: 54H25, 47H10, 49L20, 49L99, 90C39

  17. Students perception on the usage of PowerPoint in learning calculus

    Science.gov (United States)

    Othman, Zarith Sofiah; Tarmuji, Nor Habibah; Hilmi, Zulkifli Ab Ghani

    2017-04-01

    Mathematics is a core subject in most of the science and technology courses and in some social sciences programs. However, the low achievement of students in the subject especially in topics such as Differentiation and Integration is always an issue. Many factors contribute to the low performance such as motivation, environment, method of learning, academic background and others. The purpose of this paper is to determine the perception of learning mathematics using PowerPoint on Integration concepts at the undergraduate level with respect to mathematics anxiety, learning enjoyment, mobility and learning satisfaction. The main content of the PowerPoint presentation focused on the integration method with historical elements as an added value. The study was conducted on 48 students randomly selected from students in computer and applied sciences program as experimental group. Questionnaires were distributed to students to explore their learning experiences. Another 51 students who were taught using the traditional chalkboard method were used as the control group. Both groups were given a test on Integration. The statistical methods used were descriptive statistics and independent sample t-test between the experimental and the control group. The finding showed that most students perceived positively to the PowerPoint presentations with respect to mobility and learning satisfaction. The experimental group performed better than the control group.

  18. Integrating Mercury Science and Policy in the Marine Context: Challenges and Opportunities

    Science.gov (United States)

    Lambert, Kathleen F.; Evers, David C.; Warner, Kimberly A.; King, Susannah L.; Selin, Noelle E.

    2014-01-01

    Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury. PMID:22901766

  19. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  20. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  1. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  2. Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme

    International Nuclear Information System (INIS)

    Doliwa, A.; Grinevich, P.; Nieszporski, M.; Santini, P. M.

    2007-01-01

    We present the sublattice approach, a procedure to generate, from a given integrable lattice, a sublattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sublattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable discrete geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). Therefore an integrable, at one energy, discretization of elliptic two-dimensional operators is considered. We use the sublattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. In particular, we show that the corresponding restrictions on the finite-gap data are of the same type as those for the fixed energy problem for the two-dimensional Schroedinger operator. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3

  3. Against integration - Why evolution cannot unify the social sciences

    NARCIS (Netherlands)

    Derksen, M

    A lack of integration is often identified as a fundamental problem in psychology and the social sciences. It is thought that only through increased cooperation among the various disciplines and subdisciplines, and integration of their different theoretical approaches, can psychology and the social

  4. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  5. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  6. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  7. Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2009-01-01

    Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .

  8. A new integral method for solving the point reactor neutron kinetics equations

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian

    2009-01-01

    A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.

  9. The wisdom of nature in integrating science, ethics and the arts.

    Science.gov (United States)

    Moser, A

    2000-07-01

    This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.

  10. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  11. Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14

    Science.gov (United States)

    Zhao, Jianhong

    2018-03-01

    The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).

  12. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    Science.gov (United States)

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  13. Phase-integral method allowing nearlying transition points

    CERN Document Server

    Fröman, Nanny

    1996-01-01

    The efficiency of the phase-integral method developed by the present au­ thors has been shown both analytically and numerically in many publica­ tions. With the inclusion of supplementary quantities, closely related to new Stokes constants and obtained with the aid of comparison equation technique, important classes of problems in which transition points may approach each other become accessible to accurate analytical treatment. The exposition in this monograph is of a mathematical nature but has important physical applications, some examples of which are found in the adjoined papers. Thus, we would like to emphasize that, although we aim at mathematical rigor, our treatment is made primarily with physical needs in mind. To introduce the reader into the background of this book, we start by de­ scribing the phase-integral approximation of arbitrary order generated from an unspecified base function. This is done in Chapter 1, which is reprinted, after minor changes, from a review article. Chapter 2 is the re...

  14. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  15. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  16. Can We Integrate Qualitative and Quantitative Research in Science Education?

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this paper is to emphasize the importance of integrating qualitative and quantitative research methodologies in science education. It is argued that the Kuhnian in commensurability thesis (a major source of inspiration for qualitative researchers) represents an obstacle for this integration. A major thesis of the paper is that qualitative researchers have interpreted the increased popularity of their paradigm (research programme) as a revolutionary break through in the Kuhnian sense. A review of the literature in areas relevant to science education shows that researchers are far from advocating qualitative research as the only methodology. It is concluded that competition between divergent approaches to research in science education (cf. Lakatos, 1970) would provide a better forum for a productive sharing of research experiences.

  17. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  18. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  19. Integrating Social Science and Ecosystem Management: A National Challenge

    Science.gov (United States)

    Cordell; H. Ken; Linda Caldwell

    1995-01-01

    These proceedings contain the contributed papers and panel presentations, as well as a paper presented at the National Workshop, of the Conference on Integrating Social Sciences and Ecosystem Management, which was held at Unicoi Lodge and Conference Center, Helen, GA, December 12-14, 1995. The overall purpose of this Conference was to improve understanding, integration...

  20. Integration of Point Clouds Dataset from Different Sensors

    Science.gov (United States)

    Abdullah, C. K. A. F. Che Ku; Baharuddin, N. Z. S.; Ariff, M. F. M.; Majid, Z.; Lau, C. L.; Yusoff, A. R.; Idris, K. M.; Aspuri, A.

    2017-02-01

    Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).

  1. Wärtsilä turbocharger wash and dew point controller integration

    OpenAIRE

    Perälä, Antti

    2013-01-01

    There are two separate control cabinets used in Wärtsilä marine solutions, Turbocharger Wash Control and the Dew Point Control. The cabinets contain similar PLCs with I/O-cards needed in the system and touch screen for monitoring and controlling purposes. The purpose of the thesis was to find and implement a solution for integration of the control cabinets. The advantages of the integration are savings in material, space in the engine room and amount of work. The aim of the project was to cre...

  2. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  3. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  4. Integrated communication in retail fashion: a study of integration Between advertising and communication at the point of sale

    Directory of Open Access Journals (Sweden)

    Marcela Bortotti Favero

    2013-06-01

    Full Text Available This paper aims to verify if there is integration and consistency between the messages and positioning used in communication campaigns propagated by television and print media in relation to existing communication at point of sale, the major department stores of fashion. The study is based on the importance of communication from the point of sale with in the compound of integrated communications. The research methodology involved multiple case studies, and the stores surveyed were: C&A, Riachue loand Marisa. Data collection took two steps: mapping of communication actions at the point of sale through visits and research of television campaigns and printed via virtual files. The analysis focused on the discourse promoted by the material and identified that there is a consistency in the message and also the similarity of communication these brands.

  5. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  6. Basing Science Ethics on Respect for Human Dignity.

    Science.gov (United States)

    Aközer, Mehmet; Aközer, Emel

    2016-12-01

    A "no ethics" principle has long been prevalent in science and has demotivated deliberation on scientific ethics. This paper argues the following: (1) An understanding of a scientific "ethos" based on actual "value preferences" and "value repugnances" prevalent in the scientific community permits and demands critical accounts of the "no ethics" principle in science. (2) The roots of this principle may be traced to a repugnance of human dignity, which was instilled at a historical breaking point in the interrelation between science and ethics. This breaking point involved granting science the exclusive mandate to pass judgment on the life worth living. (3) By contrast, respect for human dignity, in its Kantian definition as "the absolute inner worth of being human," should be adopted as the basis to ground science ethics. (4) The pathway from this foundation to the articulation of an ethical duty specific to scientific practice, i.e., respect for objective truth, is charted by Karl Popper's discussion of the ethical principles that form the basis of science. This also permits an integrated account of the "external" and "internal" ethical problems in science. (5) Principles of the respect for human dignity and the respect for objective truth are also safeguards of epistemic integrity. Plain defiance of human dignity by genetic determinism has compromised integrity of claims to knowledge in behavioral genetics and other behavioral sciences. Disregard of the ethical principles that form the basis of science threatens epistemic integrity.

  7. Career-Oriented Performance Tasks in Chemistry: Effects on Students Integrated Science Process Skills

    OpenAIRE

    Allen A. Espinosa; Sheryl Lyn C. Monterola; Amelia E. Punzalan

    2013-01-01

    The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students’ integrated science process skills. Specifically, it sought to find out if students exposed to COPT have higher integrated science process skills than those students exposed to the traditional teaching approach (TTA). Career-Oriented Performance Task (COPT) approach aims to integrate career-oriented examples and inquiry-b...

  8. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  9. Interactive Whiteboard Use in High-Tech Science Classrooms: Patterns of Integration

    Directory of Open Access Journals (Sweden)

    Rena Stroud

    2014-10-01

    Full Text Available Interactive whiteboard (IWB use has been associated with increased student motivation, engagement, and achievement, though many studies ignore the role of the teacher in effecting those positive changes. The current study followed the practice of 28 high school science teachers as they integrated the IWB into their regular classroom activities. The extent of teachers’ adoption and integration fell along a continuum, from the technologically confident “early adopter” to the low-use “resistant adopter.” Patterns of use are explored by extracting data from representative teachers’ practice. Science-specific benefits of IWB use, barriers to integration, and lessons learned for professional development are discussed.

  10. A natural user interface to integrate citizen science and physical exercise

    OpenAIRE

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed envir...

  11. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  12. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  13. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  14. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  15. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  16. Goal-Role Integration as Driver for Customer Engagement Behaviours across Touch-points

    DEFF Research Database (Denmark)

    Haurum, Helle; Beckmann, Suzanne C.

    Customers and firms interact at many different touch-points that enable customer engagement behaviour. By adopting a customer-centric approach we investigated through 20 in-depth interviews what drives service customers’ CEB manifestations in touch-points, which the firm either manages, monitors......, or manoeuvres between. The key findings are that (a) CEBs are driven by different forms of goal-role integration across touch-points, (b) customers’ goal-directedness determines the touch-points where CEBs are manifested, (c) customers’ role-playing behaviours determine the nature of CEBs, and (d) customers......’ role-playing behaviours can change across touch-points, contingent upon goal-directedness. Hence, this study provides rich insights into customer-firm encounters at touch-points, which subsequently define and shape the relation over time....

  17. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  18. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  19. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  20. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  1. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  2. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  3. Promoting Science and Technology in Primary Education: A Review of Integrated Curricula

    NARCIS (Netherlands)

    Drs Rens Gresnigt; Koeno Gravemeijer; Hanno Keulen, van; Liesbeth Baartman; Ruurd Taconis

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  4. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  5. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Hanno van Keulen; Rens Gresnigt; Liesbeth Baartman; Ruurd Taconis; Koeno Gravemeijer

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  6. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  7. PowerCube: Integrated Power, Propulsion, and Pointing for CubeSats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tethers Unlimited, Inc. proposes to develop the PowerCube, an integrated power, propulsion, and pointing solution for CubeSats. The PowerCube combines three...

  8. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  9. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  10. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  11. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  12. On Solid Ground: Science, Technology, and Integrated Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Commission's Panel on Integrated Land Management was convened to explore how science and technology could contribute to the overall discussion of land management as part of the review by the Commission on Sustainable Development of the follow-up to the 1992 United Nations Conference on Environment and ...

  13. Water. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 3.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of water in students' daily lives; (2) the need to purify drinking…

  14. Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems

    International Nuclear Information System (INIS)

    Konopelchenko, B G; Ortenzi, G

    2013-01-01

    The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)

  15. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  16. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  17. Three- and two-point one-loop integrals in heavy particle effective theories

    International Nuclear Information System (INIS)

    Bouzas, A.O.

    2000-01-01

    We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)

  18. INTEGRATION OF BUSINESS, EDUCATION AND SCIENCE AT THE REGIONAL LEVEL FOR IMPLEMENTING THE NATIONAL TECHNOLOGICAL INITIATIVE

    Directory of Open Access Journals (Sweden)

    Innara Lyapina

    2018-01-01

    Full Text Available Current world affairs show that the post-industrial stage of development of all mature world powers’ economies is followed by creation of a new development paradigm, which is based on the economy of knowledge, science achievements, innovations, global information and communication systems, and which leads to innovative economy formation. In the context of the national innovation economy formation in the Russian Federation, prerequisites are created for integrating the efforts of business, science and education representatives to develop, produce and market high-tech products which have significant economic or social potential. And this is not only the task announced by the Russian government, but also a natural process in the country’s economy, which contributes to the increase in the integration participants’ efficiency. The result of such integrated interaction of education, science and business consists in a synergistic effect through formation of an interactive cooperation model that involves the active use of combined knowledge, ideas, technologies and other resources during innovative projects implementation. At the same time, integration processes are diverse, complex and occur in each case taking into account the integrating parties’ activity specifics. Within this framework, the goal of the research is to characterize the impact of the education, science and business integration process, on the national technological initiative implementation in the country on the whole and to study the integrating experience of these entities at the regional level. In the course of the research, the stages of the Russian national innovation economy formation process have been studied; the role of education, science and business in the National Technological Initiative implementation has been characterized; it’s been proved that educational institutions are the key link in the integration process in the chain “education – science

  19. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  20. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    Science.gov (United States)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  1. An integrative relational point of view.

    Science.gov (United States)

    Wachtel, Paul L

    2014-09-01

    This article, part of a special section on the Relational Foundations of Psychotherapy, describes a particular relational approach called cyclical psychodynamics. Cyclical psychodynamics is rooted both in the relational perspective in psychoanalysis and in an integrative melding of psychodynamic, cognitive-behavioral, systemic, and experiential points of view. Central to its theoretical structure is a focus on the vicious and virtuous circles that perpetuate (or contribute to changing) personality patterns that may have originated in childhood but that persist because they often generate the very feedback from others that is necessary to keep them going. As a consequence of this latter focus, the relational foundation of cyclical psychodynamic therapy addresses in equal and dynamically reciprocal fashion both the therapeutic relationship in the consulting room and the key relationships outside the consulting room that play an essential role in the maintenance or change of the problematic patterns the person has come to therapy to work on. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  3. PowerCube: Integrated Power, Propulsion, and Pointing for CubeSats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The PowerCube is a 1U CubeSat module that provides integrated propulsion, power, and precision pointing to enable the low-cost CubeSat platform to be used to conduct...

  4. Linking Science and Language Arts: A Review of the Literature Which Compares Integrated versus Non-Integrated Approaches

    Science.gov (United States)

    Bradbury, Leslie U.

    2014-01-01

    The purpose of this paper is to review the literature published during the last 20 years that investigates the impact of approaches that describe themselves as integrating science and language arts on student learning and/or attitude at the elementary level. The majority of papers report that integrated approaches led to greater student…

  5. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  6. Vertical integration of basic science in final year of medical education.

    Science.gov (United States)

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  7. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  8. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition.

    Science.gov (United States)

    Wiltshire, Travis J; Lobato, Emilio J C; McConnell, Daniel S; Fiore, Stephen M

    2014-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others' mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.

  9. The Information Book Genre: Its Role in Integrated Science Literacy Research and Practice

    Science.gov (United States)

    Pappas, Christine C.

    2006-01-01

    There has been a call for approaches that connect science learning with literacy, yet the use of, and research on, children's literature information books in science instruction has been quite limited. Because the discipline of science involves distinctive generic linguistic registers, what information books should be integrated in science…

  10. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  11. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  12. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  13. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  14. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  15. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  16. Integrating social science knowledge into natural resource management public involvement practice

    DEFF Research Database (Denmark)

    Stummann, Cathy Brown

    This PhD study explores the long-recognized challenge of integrating social science knowledge into NRM public involvement practice theoretically and empirically. Theoretically, the study draws on research from adult learning, continuing rofessional education and professional knowledge development...... to better understand how social science knowledge can benefit NRM public involvement practice. Empirically, the study explores the potential of NRM continuing professional education as a means for introducing social science knowledge to public NRM professionals. The study finds social science knowledge can...... be of value to NRM public involvement prospectively and retrospectively; and that continuing professional education can be an effective means to introducing social science knowledge to public NRM professionals. In the design of NRM continuing professional education focused on social science knowledge...

  17. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  18. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  19. Science technology, way to go? or logic to be broken?

    International Nuclear Information System (INIS)

    Kim, O Sik

    1994-10-01

    This book deals with development and prospect of science technology, effectiveness and limitation of science technology method, introduction of oriental reasons toward science technology, practice and management of science technology, and process of assimilation of modern science technology. It also covers historic background of modern science technology, logic and error of science technology, ignorance and science technology, freedom and values and compensation of a systematic study, integrated development of science technology, and point for the future of science technology.

  20. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  1. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  2. Using XML technology for the ontology-based semantic integration of life science databases.

    Science.gov (United States)

    Philippi, Stephan; Köhler, Jacob

    2004-06-01

    Several hundred internet accessible life science databases with constantly growing contents and varying areas of specialization are publicly available via the internet. Database integration, consequently, is a fundamental prerequisite to be able to answer complex biological questions. Due to the presence of syntactic, schematic, and semantic heterogeneities, large scale database integration at present takes considerable efforts. As there is a growing apprehension of extensible markup language (XML) as a means for data exchange in the life sciences, this article focuses on the impact of XML technology on database integration in this area. In detail, a general architecture for ontology-driven data integration based on XML technology is introduced, which overcomes some of the traditional problems in this area. As a proof of concept, a prototypical implementation of this architecture based on a native XML database and an expert system shell is described for the realization of a real world integration scenario.

  3. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  4. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  5. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

    Science.gov (United States)

    1973-01-01

    The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

  6. The XMM-Newton Science Archive and its integration into ESASky

    Science.gov (United States)

    Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.

    2017-07-01

    We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.

  7. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  8. Preserving the Integrity of Citations and References by All Stakeholders of Science Communication.

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Voronov, Alexander A; Gerasimov, Alexey N; Kostyukova, Elena I; Kitas, George D

    2015-11-01

    Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals.

  9. Preserving the Integrity of Citations and References by All Stakeholders of Science Communication

    Science.gov (United States)

    Yessirkepov, Marlen; Voronov, Alexander A.; Gerasimov, Alexey N.; Kostyukova, Elena I.; Kitas, George D.

    2015-01-01

    Citations to scholarly items are building bricks for multidisciplinary science communication. Citation analyses are currently influencing individual career advancement and ranking of academic and research institutions worldwide. This article overviews the involvement of scientific authors, reviewers, editors, publishers, indexers, and learned associations in the citing and referencing to preserve the integrity of science communication. Authors are responsible for thorough bibliographic searches to select relevant references for their articles, comprehend main points, and cite them in an ethical way. Reviewers and editors may perform additional searches and recommend missing essential references. Publishers, in turn, are in a position to instruct their authors over the citations and references, provide tools for validation of references, and open access to bibliographies. Publicly available reference lists bear important information about the novelty and relatedness of the scholarly items with the published literature. Few editorial associations have dealt with the issue of citations and properly managed references. As a prime example, the International Committee of Medical Journal Editors (ICMJE) issued in December 2014 an updated set of recommendations on the need for citing primary literature and avoiding unethical references, which are applicable to the global scientific community. With the exponential growth of literature and related references, it is critically important to define functions of all stakeholders of science communication in curbing the issue of irrational and unethical citations and thereby improve the quality and indexability of scholarly journals. PMID:26538996

  10. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments

    Science.gov (United States)

    Larson, E. K.; Li, J.; Zycherman, A.

    2017-12-01

    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  11. The Level of Utilizing Blended Learning in Teaching Science from the Point of View of Science Teachers in Private Schools of Ajman Educational Zone

    Science.gov (United States)

    Al-Derbashi, Khaled Y.; Abed, Osama H.

    2017-01-01

    This study aims to define the level of utilizing blended learning in teaching science from the point of view of science teachers (85 male and female teachers) who are working in private schools of Ajman Educational Zone. The study also aims to find if there are significant differences according to gender, years of experience, or the fact that…

  12. A point implicit time integration technique for slow transient flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Kadioglu, Samet Y., E-mail: kadioglu@yildiz.edu.tr [Department of Mathematical Engineering, Yildiz Technical University, 34210 Davutpasa-Esenler, Istanbul (Turkey); Berry, Ray A., E-mail: ray.berry@inl.gov [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States); Martineau, Richard C. [Idaho National Laboratory, P.O. Box 1625, MS 3840, Idaho Falls, ID 83415 (United States)

    2015-05-15

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  13. A point implicit time integration technique for slow transient flow problems

    International Nuclear Information System (INIS)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-01-01

    Highlights: • This new method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods. • It is unconditionally stable, as a fully implicit method would be. • It exhibits the simplicity of implementation of an explicit method. • It is specifically designed for slow transient flow problems of long duration such as can occur inside nuclear reactor coolant systems. • Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust. - Abstract: We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very

  14. Prospects for direct social perception: A multi-theoretical integration to further the science of social cognition

    Directory of Open Access Journals (Sweden)

    Travis J. Wiltshire

    2015-01-01

    Full Text Available In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience.

  15. Prospects for direct social perception: a multi-theoretical integration to further the science of social cognition

    Science.gov (United States)

    Wiltshire, Travis J.; Lobato, Emilio J. C.; McConnell, Daniel S.; Fiore, Stephen M.

    2015-01-01

    In this paper we suggest that differing approaches to the science of social cognition mirror the arguments between radical embodied and traditional approaches to cognition. We contrast the use in social cognition of theoretical inference and mental simulation mechanisms with approaches emphasizing a direct perception of others’ mental states. We build from a recent integrative framework unifying these divergent perspectives through the use of dual-process theory and supporting social neuroscience research. Our elaboration considers two complementary notions of direct perception: one primarily stemming from ecological psychology and the other from enactive cognition theory. We use this as the foundation from which to offer an account of the informational basis for social information and assert a set of research propositions to further the science of social cognition. In doing so, we point out how perception of the minds of others can be supported in some cases by lawful information, supporting direct perception of social affordances and perhaps, mental states, and in other cases by cues that support indirect perceptual inference. Our goal is to extend accounts of social cognition by integrating advances across disciplines to provide a multi-level and multi-theoretic description that can advance this field and offer a means through which to reconcile radical embodied and traditional approaches to cognitive neuroscience. PMID:25709572

  16. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  17. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  18. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  19. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  20. An integral constraint for the evolution of the galaxy two-point correlation function

    International Nuclear Information System (INIS)

    Peebles, P.J.E.; Groth, E.J.

    1976-01-01

    Under some conditions an integral over the galaxy two-point correlation function, xi(x,t), evolves with the expansion of the universe in a simple manner easily computed from linear perturbation theory.This provides a useful constraint on the possible evolution of xi(x,t) itself. We test the integral constraint with both an analytic model and numerical N-body simulations for the evolution of irregularities in an expanding universe. Some applications are discussed. (orig.) [de

  1. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  2. Conserving Our Environment. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 13.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit focuses on: (1) basic ecological and conservation concepts; (2) problems and complexities of…

  3. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  4. Conserving Our Health. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 12.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with conserving health, focusing on such body processes as breathing, digestion, excretion,…

  5. Living Things Reproduce. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 6.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on reproduction in animals and in flowering plants. Particular topics examined include the…

  6. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    Science.gov (United States)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  7. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    Science.gov (United States)

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  8. An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models

    NARCIS (Netherlands)

    Krijnen, T.F.; Beetz, J.

    2017-01-01

    In this paper we suggest an extension to the Industry Foundation Classes (IFC) model to integrate point cloud datasets. The proposal includes a schema extension to the core model allowing the storage of points, either as Cartesian coordinates, points in parametric space of associated building

  9. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  10. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-01-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…

  11. Women, Men, and Academic Performance in Science and Engineering: The Gender Difference in Undergraduate Grade Point Averages

    Science.gov (United States)

    Sonnert, Gerhard; Fox, Mary Frank

    2012-01-01

    Using longitudinal and multi-institutional data, this article takes an innovative approach in its analyses of gender differences in grade point averages (GPA) among undergraduate students in biology, the physical sciences, and engineering over a 16-year period. Assessed are hypotheses about (a) the gender ecology of science/engineering and (b) the…

  12. Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.

    Science.gov (United States)

    Novo, P; Chu, V; Conde, J P

    2014-07-15

    The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Responsible science: Ensuring the integrity of the research process, volume 1

    Science.gov (United States)

    This report thoughtfully examines the challenges posed in ensuring that the search for truth reflects adherence to ethical standards. In recent years, we have learned, sometimes painfully, that not all scientists adhere to this obligation. Reports of falsified research results and plagiarism involving both junior and senior scientists have stimulated doubts and criticism about the ways in which misconduct in science is addressed by the research community. Misconduct in science is now being publicly examined in all of its aspects; how misconduct is defined, the process by which misconduct is discovered, and procedures for judging innocence or guilt and assessing penalties. Also being explored are the appropriate roles of individuals, research institutions, journals, government research agencies, and the legal system. Issues of misconduct and integrity in science present complex questions. These issues require the sustained attention of all members of the research community as well as of leaders in the public and private sector who are concerned with safeguarding the health of science. In this regard ensuring the integrity of the research process is similar to assuring safety in the workplace: it is a process that requires continued participation from all levels of the entire research enterprise--the practitioners, the host institutions, the sponsors in government, and the legislators who provide the funds.

  14. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  15. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  16. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  17. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  18. Science and scientists from the children point of view, an overlook from drawings

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Rubbia, Giuliana; Carosi, Alessandro

    2013-04-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is currently the largest European scientific institution dealing with Earth Sciences research and real-time surveillance, early warning, and forecast activities in geophysics and volcanology. The Laboratorio Didattica e Divulgazione Scientifica of INGV organizes every year educational and outreach activities with schools of different levels and with general public to convey scientific knowledge and to promote the Research on Earth Science, focusing on volcanic and seismic hazard. Among the most successful initiatives is the creation of a calendar designed for the schools and realized based on a competition devoted to children of primary school. The intent is to provide a pleasant stimulus for discussion for teachers and students. Schools participate with enthusiasm by sending drawings made by children on a specified theme, different each year, chosen among geophysics and earth sciences arguments. For 2011, the theme was selected also with the aims to investigate on the image the young generations have of the Research and on its potential and future prospective. The title was "Scienziato anche io! La Scienza e gli scienziati visti dai bambini" (I'm a scientist too! Science and scientists from the children point of view), with the purpose of give a shape to the image children have of the world of science, its potential and the figure of the scientists. We asked the children to realized a draw suggesting some possible arguments between: 1. How do you imagine a scientist? How do you imagine the daily activities of a researcher? 2. What is the invention you consider the most important among all those you know? 3. What would you invent? The 986 drawings realized by 6 up to 10 years old boys and girls from 48 schools distributed throughout the Italian territory, report us a generally positive picture of the work of scientists and also highlight a great level of confidence in the potential of science, capable to

  19. Next Generation Space Telescope Integrated Science Module Data System

    Science.gov (United States)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  20. Art-science integration: Portrait of a residency

    Science.gov (United States)

    Feldman, Rhoda Lynn

    This dissertation is based on a year-long study of an arts integration residency at Hampton, a public elementary school in the Midwest. The study examined residency curriculum and pedagogies, factors facilitating and constraining the integration, and the perception of the artist, teachers, and students of the program and arts integration within it. The Hampton residency, "Art and Science: A Shared Evolution," represented a historical approach to the linking of the two disciplines within the framework of a survey extending from the origins of the universe to relativity theory, from cave paintings to Picasso. Findings indicate that integration encompassed more than issues of curriculum and pedagogy---that it was closely linked to the nature and extent of artist-teacher collaboration (importance of the interpersonal element); that multiple factors seemed to militate against integration and collaboration, including differing expectations of teachers and artist for the residency and integration, the lack of sustained professional development to support the integration of disciplines and collaboration of participants, and the pressure upon teachers of high stakes testing; that a common prep period was a necessary but not sufficient condition for collaboration to occur; and that the pedagogy of the artist while at Hampton was different than while at another school with similar demographics. The experience at Hampton seems to support conceiving of integration as a partnership capitalizing on the strengths of each partner, including teachers in the planning and development of curriculum, establishing structures to support teachers and artists in integrating curriculum and building/sustaining collaborative relationships, and insuring alignment of residency units with subject-area teaching. The study revealed that while integration in theory can offer an antidote for fragmentation of the school curriculum, in practice it is difficult to execute in a way that is meaningful to

  1. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science

    DEFF Research Database (Denmark)

    Miller, K.; Charles, A.; Barange, M.

    2010-01-01

    This paper explores the importance of a focus on the fundamental goals of resilience and adaptive capacity in the governance of uncertain fishery systems, particularly in the context of climate change. Climate change interacts strongly with fishery systems, and adds to the inherent uncertainty...... that understanding these aspects of fishery systems and fishery governance is valuable even in the absence of climate-induced processes of change, but that attention to climate change both reinforces the need for, and facilitates the move toward, implementation of integrative science for improved fishery governance....... and processes – to support suitable institutional responses, a broader planning perspective, and development of suitable resilience-building strategies. The paper explores how synergies between institutional change and integrative science can facilitate the development of more effective fisheries policy...

  2. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  3. Developing health science students into integrated health professionals: a practical tool for learning

    Directory of Open Access Journals (Sweden)

    Duncan Madeleine

    2007-11-01

    Full Text Available Abstract Background An integrated sense of professionalism enables health professionals to draw on relevant knowledge in context and to apply a set of professional responsibilities and ethical principles in the midst of changing work environments 12. Inculcating professionalism is therefore a critical goal of health professional education. Two multi-professional courses for first year Health Science students at the University of Cape Town, South Africa aim to lay the foundation for becoming an integrated health professional 3. In these courses a diagram depicting the domains of the integrated health professional is used to focus the content of small group experiential exercises towards an appreciation of professionalism. The diagram serves as an organising framework for conceptualising an emerging professional identity and for directing learning towards the domains of 'self as professional' 45. Objective This paper describes how a diagrammatic representation of the core elements of an integrated health professional is used as a template for framing course content and for organising student learning. Based on the assumption that all health care professionals should be knowledgeable, empathic and reflective, the diagram provides students and educators with a visual tool for investigating the subjective and objective dimensions of professionalism. The use of the diagram as an integrating point of reference for individual and small group learning is described and substantiated with relevant literature. Conclusion The authors have applied the diagram with positive impact for the past six years with students and educators reporting that "it just makes sense". The article includes plans for formal evaluation. Evaluation to date is based on preliminary, informal feedback on the value of the diagram as a tool for capturing the domains of professionalism at an early stage in the undergraduate education of health professional students.

  4. Stateless Programming as a Motif for Teaching Computer Science

    Science.gov (United States)

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  5. Different Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets.] Unit 5.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) help students develop an elementary understanding of how living things can be…

  6. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  7. Techniques and Measurements. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 1.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) introduce students to and familiarize them with working in the school laboratory;…

  8. Food and Growth. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 7.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit examines: (1) the role played by bones, muscles, and teeth and the importance of developing and…

  9. Heat and Molecules. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 10.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit deals with: (1) changes in temperature which make matter expand and contract (and how this affects…

  10. Magnets and Electricity. Seychelles Integrated Science [Teacher and Pupil Booklets]. Unit 8.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) elementary concepts in magnetic theory and the role magnets and magnetism play in…

  11. Acids and Alkalis. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 9.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) the uses of acids and bases (alkalis) in students' everyday lives, stressing their…

  12. Indigenous Knowledge, Science, and Resilience: What Have We Learned from a Decade of International Literature on "Integration"?

    Directory of Open Access Journals (Sweden)

    Erin L. Bohensky

    2011-12-01

    Full Text Available Despite the increasing trend worldwide of integrating indigenous and scientific knowledge in natural resource management, there has been little stock-taking of literature on lessons learned from bringing indigenous knowledge and science together and the implications for maintaining and building social-ecological system resilience. In this paper we investigate: (1 themes, questions, or problems encountered for integration of indigenous knowledge and science; (2 the relationship between knowledge integration and social-ecological system resilience; and (3 critical features of knowledge integration practice needed to foster productive and mutually beneficial relationships between indigenous knowledge and science. We examine these questions through content analyses of three special journal issues and an edited book published in the past decade on indigenous, local, and traditional knowledge and its interface with science. We identified broad themes in the literature related to: (1 similarities and differences between knowledge systems; (2 methods and processes of integration; (3 social contexts of integration; and (4 evaluation of knowledge. A minority of papers discuss a relationship between knowledge integration and social-ecological system resilience, but there remains a lack of clarity and empirical evidence for such a relationship that can help distinguish how indigenous knowledge and knowledge integration contribute most to resilience. Four critical features of knowledge integration are likely to enable a more productive and mutually beneficial relationship between indigenous and scientific knowledge: new frames for integration, greater cognizance of the social contexts of integration, expanded modes of knowledge evaluation, and involvement of inter-cultural "knowledge bridgers."

  13. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  14. Integrating research into clinical internship training bridging the science/practice gap in pediatric psychology.

    Science.gov (United States)

    McQuaid, Elizabeth L; Spirito, Anthony

    2012-03-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a "capstone experience"; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the "business of science." Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists.

  15. Integrating Research Into Clinical Internship Training Bridging the Science/Practice Gap in Pediatric Psychology

    Science.gov (United States)

    Spirito, Anthony

    2012-01-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a “capstone experience”; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the “business of science.” Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists. PMID:22286345

  16. A Comparison of Science Word Meaning in the Classrooms of Two Different Countries: Scottish Integrated Science in Scotland and in Malaysia.

    Science.gov (United States)

    Isa, A. M.; Maskill, R.

    1982-01-01

    Investigates the difference between two groups of adolescents learning basic science from the same curriculum (Scottish Integrated Science) but in two different languages and cultural settings. Word association tests distinguished between the groups, with the Malay children producing more associations than the Scottish children. (Author/JJD)

  17. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  18. Analysis of expert validation on developing integrated science worksheet to improve problem solving skills of natural science prospective teachers

    Science.gov (United States)

    Widodo, W.; Sudibyo, E.; Sari, D. A. P.

    2018-04-01

    This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.

  19. Fixed points for alpha-psi contractive mappings with an application to quadratic integral equations

    Directory of Open Access Journals (Sweden)

    Bessem Samet

    2014-06-01

    Full Text Available Recently, Samet et al [24] introduced the concept of alpha-psi contractive mappings and studied the existence of fixed points for such mappings. In this article, we prove three fixed point theorems for this class of operators in complete metric spaces. Our results extend the results in [24] and well known fixed point theorems due to Banach, Kannan, Chatterjea, Zamfirescu, Berinde, Suzuki, Ciric, Nieto, Lopez, and many others. We prove that alpha-psi contractions unify large classes of contractive type operators, whose fixed points can be obtained by means of the Picard iteration. Finally, we utilize our results to discuss the existence and uniqueness of solutions to a class of quadratic integral equations.

  20. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report, Sep 2008)

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scien...

  1. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  2. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  3. Kernel integration scatter model for parallel beam gamma camera and SPECT point source response

    International Nuclear Information System (INIS)

    Marinkovic, P.M.

    2001-01-01

    Scatter correction is a prerequisite for quantitative single photon emission computed tomography (SPECT). In this paper a kernel integration scatter Scatter correction is a prerequisite for quantitative SPECT. In this paper a kernel integration scatter model for parallel beam gamma camera and SPECT point source response based on Klein-Nishina formula is proposed. This method models primary photon distribution as well as first Compton scattering. It also includes a correction for multiple scattering by applying a point isotropic single medium buildup factor for the path segment between the point of scatter an the point of detection. Gamma ray attenuation in the object of imaging, based on known μ-map distribution, is considered too. Intrinsic spatial resolution of the camera is approximated by a simple Gaussian function. Collimator is modeled simply using acceptance angles derived from the physical dimensions of the collimator. Any gamma rays satisfying this angle were passed through the collimator to the crystal. Septal penetration and scatter in the collimator were not included in the model. The method was validated by comparison with Monte Carlo MCNP-4a numerical phantom simulation and excellent results were obtained. The physical phantom experiments, to confirm this method, are planed to be done. (author)

  4. A Network for Integrated Science and Mathematics Teaching and Learning. NCSTL Monograph Series, #2.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    This monograph presents a summary of the results of the Wingspread Conference in April, 1991 concerning the viability and future of the concept of integration of mathematics and science teaching and learning. The conference focused on three critical issues: (1) development of definitions of integration and a rationale for integrated teaching and…

  5. Brazilian Science and Research Integrity: Where are We? What Next?

    Directory of Open Access Journals (Sweden)

    Sonia M.R. Vasconcelos

    2015-06-01

    Full Text Available Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  6. Brazilian Science and Research Integrity: Where are We? What Next?

    Science.gov (United States)

    Vasconcelos, Sonia M R; Sorenson, Martha M; Watanabe, Edson H; Foguel, Debora; Palácios, Marisa

    2015-01-01

    Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  7. Adaptive double-integral-sliding-mode-maximum-power-point tracker for a photovoltaic system

    Directory of Open Access Journals (Sweden)

    Bidyadhar Subudhi

    2015-10-01

    Full Text Available This study proposed an adaptive double-integral-sliding-mode-controller-maximum-power-point tracker (DISMC-MPPT for maximum-power-point (MPP tracking of a photovoltaic (PV system. The objective of this study is to design a DISMC-MPPT with a new adaptive double-integral-sliding surface in order that MPP tracking is achieved with reduced chattering and steady-state error in the output voltage or current. The proposed adaptive DISMC-MPPT possesses a very simple and efficient PWM-based control structure that keeps switching frequency constant. The controller is designed considering the reaching and stability conditions to provide robustness and stability. The performance of the proposed adaptive DISMC-MPPT is verified through both MATLAB/Simulink simulation and experiment using a 0.2 kW prototype PV system. From the obtained results, it is found out that this DISMC-MPPT is found to be more efficient compared with that of Tan's and Jiao's DISMC-MPPTs.

  8. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  9. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  10. 14th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Riva, Matteo; Lamberti, Pier; Musolino, Paolo

    2017-01-01

    This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

  11. Rural School Math and Science Teachers' Technology Integration Familiarization

    Science.gov (United States)

    Kalonde, Gilbert

    2017-01-01

    This study explored the significance of technology integration familiarization and the subsequent PD provided to rural middle school teachers with several opportunities to gain technological skills for technology use in rural middle school math and science classrooms. In order to explore the use of technology in rural schools, this study surveyed…

  12. Effectiveness of integrated science instructional material on pressure in daily life theme to improve digital age literacy of students

    Science.gov (United States)

    Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.

    2018-04-01

    Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.

  13. Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson

    Science.gov (United States)

    Carignan, Anastasia; Hussain, Mahjabeen

    2016-01-01

    In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…

  14. Nanoethics and the breaching of boundaries: a heuristic for going from encouragement to a fuller integration of ethical, legal and social issues and science : commentary on: "Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center".

    Science.gov (United States)

    Tuma, Julio R

    2011-12-01

    The intersection of ELSI and science forms a complicated nexus yet their integration is an important goal both for society and for the successful advancement of science. In what follows, I present a heuristic that makes boundary identification and crossing an important tool in the discovery of potential areas of ethical, legal, and social concern in science. A dynamic and iterative application of the heuristic can lead towards a fuller integration and appreciation of the concerns of ELSI and of science from both sides of the divide.

  15. Elementary Science Teachers' Integration of Engineering Design into Science Instruction: Results from a Randomised Controlled Trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-01-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). "Teaching engineering…

  16. Integration of Molecular Pathology, Epidemiology, and Social Science for Global Precision Medicine

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L.; Nishihara, Reiko; Tan, Andy S.; Kawachi, Ichiro; Ogino, Shuji

    2015-01-01

    Summary The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations, and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial, and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors, and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference, and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology, and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors, and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging, and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science. PMID:26636627

  17. Integration of molecular pathology, epidemiology and social science for global precision medicine.

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L; Nishihara, Reiko; Tan, Andy S; Kawachi, Ichiro; Ogino, Shuji

    2016-01-01

    The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.

  18. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  19. The Community for Data Integration (CDI): Building Knowledge, Networks, and Integrated Science Capacity

    Science.gov (United States)

    Hsu, L.

    2017-12-01

    In 2009, the U.S. Geological Survey determined that a focused effort on data integration was necessary to capture the full scientific potential of its topically and geographically diverse data assets. The Community for Data Integration was established to fill this role, and an emphasis emerged on grassroots learning and solving of shared data integration and management challenges. Now, eight years later, the CDI has grown to over 700 members and runs monthly presentations, working groups, special training events, and an annual USGS-wide grants program. With a diverse membership of scientists, technologists, data managers, program managers, and others, there are a wide range of motivations and interests competing to drive the direction of the community. Therefore, an important role of the community coordinators is to prioritize member interests while valuing and considering many different viewpoints. To do this, new tools and mechanisms are frequently introduced to circulate information and obtain community input and feedback. The coordinators then match community interests with opportunities to address USGS priorities. As a result, the community has facilitated the implementation of USGS-wide data policies and data management procedures, produced guidelines and lessons learned for technologies like mobile applications and use of semantic web technologies, and developed technical recommendations to enable integrated science capacity for USGS leadership.

  20. On the Diversity of Linguistic Data and the Integration of the Language Sciences

    Directory of Open Access Journals (Sweden)

    Roberta D’Alessandro

    2017-11-01

    Full Text Available An integrated science of language is usually advocated as a step forward for linguistic research. In this paper, we maintain that integration of this sort is premature, and cannot take place before we identify a common object of study. We advocate instead a science of language that is inherently multi-faceted, and takes into account the different viewpoints as well as the different definitions of the object of study. We also advocate the use of different data sources, which, if non-contradictory, can provide more solid evidence for linguistic analysis. Last, we argue that generative grammar is an important tile in the puzzle.

  1. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  2. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  3. Toward an integrated ice core chronology using relative and orbital tie-points

    Science.gov (United States)

    Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Toyé Mahamadou Kele, H.; Blunier, T.; Capron, E.; Chappellaz, J.; Fischer, H.; Leuenberger, M.; Lipenkov, V.; Loutre, M.-F.; Martinerie, P.; Parrenin, F.; Prié, F.; Raynaud, D.; Veres, D.; Wolff, E.

    2012-04-01

    Precise ice cores chronologies are essential to better understand the mechanisms linking climate change to orbital and greenhouse gases concentration forcing. A tool for ice core dating (DATICE [developed by Lemieux-Dudon et al., 2010] permits to generate a common time-scale integrating relative and absolute dating constraints on different ice cores, using an inverse method. Nevertheless, this method has only been applied for a 4-ice cores scenario and for the 0-50 kyr time period. Here, we present the bases for an extension of this work back to 800 ka using (1) a compilation of published and new relative and orbital tie-points obtained from measurements of air trapped in ice cores and (2) an adaptation of the DATICE inputs to 5 ice cores for the last 800 ka. We first present new measurements of δ18Oatm and δO2/N2 on the Talos Dome and EPICA Dome C (EDC) ice cores with a particular focus on Marine Isotopic Stages (MIS) 5, and 11. Then, we show two tie-points compilations. The first one is based on new and published CH4 and δ18Oatm measurements on 5 ice cores (NorthGRIP, EPICA Dronning Maud Land, EDC, Talos Dome and Vostok) in order to produce a table of relative gas tie-points over the last 400 ka. The second one is based on new and published records of δO2/N2, δ18Oatm and air content to provide a table of orbital tie-points over the last 800 ka. Finally, we integrate the different dating constraints presented above in the DATICE tool adapted to 5 ice cores to cover the last 800 ka and show how these constraints compare with the established gas chronologies of each ice core.

  4. A natural user interface to integrate citizen science and physical exercise.

    Science.gov (United States)

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  5. A natural user interface to integrate citizen science and physical exercise.

    Directory of Open Access Journals (Sweden)

    Eduardo Palermo

    Full Text Available Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  6. On art and science: an epistemic framework for integrating social science and clinical medicine.

    Science.gov (United States)

    Wasserman, Jason Adam

    2014-06-01

    Calls for incorporating social science into patient care typically have accounted for neither the logistic constraints of medical training nor the methodological fallacies of utilizing aggregate "social facts" in clinical practice. By elucidating the different epistemic approaches of artistic and scientific practices, this paper illustrates an integrative artistic pedagogy that allows clinical practitioners to generate social scientific insights from actual patient encounters. Although there is no shortage of calls to bring social science into medicine, the more fundamental processes of thinking by which art and science proceed have not been addressed to this end. As such, the art of medical practice is conceptualized as an innate gift, and thus little is done to cultivate it. Yet doing so is more important than ever because uncertainty in diagnosing and treating chronic illnesses, the most significant contemporary mortality risks, suggests a re-expanding role for clinical judgment. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  8. Epistemology, development, and integrity in a science education professional development program

    Science.gov (United States)

    Hancock, Elizabeth St. Petery

    This research involved interpretive inquiry to understand changes in the notion of "self" as expressed by teachers recently enrolled as graduate students in an advanced degree program in science education at Florida State University. Teachers work in a context that integrates behavior, social structure, culture, and intention. Within this context, this study focused on the intentional realm that involves interior understandings, including self-epistemology, professional self-identity, and integrity. Scholarship in adult and teacher development, especially ways of knowing theory, guided my efforts to understand change in these notions of self. The five participants in this study were interviewed in depth to explore their "self"-related understandings in detail. The other primary data sources were portfolios and work the participants submitted as part of the program. Guided by a constructivist methodology, I used narrative inquiry and grounded theory to conduct data analysis. As learners and teachers, these individuals drew upon epistemological orientations emphasizing a procedural orientation to knowledge. They experienced varying degrees of interior and exterior development in self and epistemology. They created integrity in their efforts to align their intentions with their actions with a dynamic relationship to context. This study suggests that professional development experiences in science education include consideration of the personal and the professional, recognize and honor differing perspectives, facilitate development, and assist individuals to recognize and articulate their integrity.

  9. Health Care and Family and Consumer Sciences Education: An Integrative Approach.

    Science.gov (United States)

    Montgomery, Ruth; Rider, Mary Ellen

    2001-01-01

    Uses ecological systems theory as a foundation for integrating health care and its public policy issues into family and consumer sciences classrooms. Offers teachers alternative perspectives on consumer behavior changes and needs in heath care systems and policies. Contains 24 references. (JOW)

  10. Gardening for Homonyms: Integrating Science and Language Arts to Support Children's Creative Use of Multiple Meaning Words

    Science.gov (United States)

    Luna, Melissa J.; Rye, James Andrew; Forinash, Melissa; Minor, Alana

    2015-01-01

    Curriculum integration can increase the presence of science at the elementary level. The purpose of this article is to share how two second-grade teachers have integrated language arts content as a part of science-language arts instruction in a garden-based learning context. One application was a teacher-designed "Gardening for Homonyms"…

  11. Integrated Schools: Finding a New Path

    Science.gov (United States)

    Orfield, Gary; Frankenberg, Erica; Siegel-Hawley, Genevieve

    2010-01-01

    Research shows that schools remain a powerful tool for shoring up individual opportunity and for attaining a thriving, multiracial democratic society. The authors point to social science evidence that demonstrates how segregated schooling limits the prospects of both minority and majority students and how integrated education can close the…

  12. Research on integrated simulation of fluid-structure system by computation science techniques

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1996-01-01

    In Power Reactor and Nuclear Fuel Development Corporation, the research on the integrated simulation of fluid-structure system by computation science techniques has been carried out, and by its achievement, the verification of plant systems which has depended on large scale experiments is substituted by computation science techniques, in this way, it has been aimed at to reduce development costs and to attain the optimization of FBR systems. For the purpose, it is necessary to establish the technology for integrally and accurately analyzing complicated phenomena (simulation technology), the technology for applying it to large scale problems (speed increasing technology), and the technology for assuring the reliability of the results of analysis when simulation technology is utilized for the permission and approval of FBRs (verifying technology). The simulation of fluid-structure interaction, the heat flow simulation in the space with complicated form and the related technologies are explained. As the utilization of computation science techniques, the elucidation of phenomena by numerical experiment and the numerical simulation as the substitute for tests are discussed. (K.I.)

  13. Linkage of reproductive sciences: from 'quick fix' to 'integrated' conservation.

    Science.gov (United States)

    Wildt, D E; Ellis, S; Howard, J G

    2001-01-01

    Our laboratory has experienced four phases in understanding how the reproductive sciences contribute to genuine conservation of biodiversity. The first is the 'quick fix phase' in which the erroneous assumption is made that extant knowledge and techniques are readily adaptable to an unstudied wild animal to produce offspring rapidly. The second is the 'species-specificity phase' in which it is recognized that every species has evolved unique reproductive mechanisms that must be mastered before propagation can be enhanced. The third is the 'applicability phase' in which one grasps that all the new knowledge and technology are of minimal relevance without the cooperation of wildlife managers. The final phase is 'integration', the realization that reproduction is only one component in an abundantly complex conservation puzzle that requires interweaving many scientific disciplines with elaborate biopolitical, economic and habitat variables. These phases are illustrated using 20 years of experience with wildlife species, including the cheetah, black-footed ferret and giant panda. We conclude that the foremost value of the reproductive sciences for conserving endangered species is the discipline's powerful laboratory tools for understanding species-specific reproductive mechanisms. Such scholarly information, when applied holistically, can be used to improve management by natural or, occasionally, assisted breeding. Genuine conservation is achieved only when the reproductive knowledge and technologies are integrated into multidisciplinary programmes that preserve species integrity ex situ and preferably in situ.

  14. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes

    Science.gov (United States)

    Talbot, Christopher; Yap, Lydia

    2013-01-01

    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  15. Soil and Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 4.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the structure of the two main soil types in Seychelles; (2) the role of roots in…

  16. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    Science.gov (United States)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  17. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  18. Sensors, Circuits, and Satellites - NGSS at it's best: the integration of three dimensions with NASA science

    Science.gov (United States)

    Butcher, G. J.; Roberts-Harris, D.

    2013-12-01

    A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these

  19. Integration of population census and water point mapping data-A case study of Cambodia, Liberia and Tanzania.

    Science.gov (United States)

    Yu, Weiyu; Wardrop, Nicola A; Bain, Robert; Wright, Jim A

    2017-07-01

    Sustainable Development Goal (SDG) 6 has expanded the Millennium Development Goals' focus from improved drinking-water to safely managed water services. This expanded focus to include issues such as water quality requires richer monitoring data and potentially integration of datasets from different sources. Relevant data sets include water point mapping (WPM), the survey of boreholes, wells and other water points, census and household survey data. This study examined inconsistencies between population census and WPM datasets for Cambodia, Liberia and Tanzania, and identified potential barriers to integrating the two datasets to meet monitoring needs. Literatures on numbers of people served per water point were used to convert WPM data to population served by water source type per area and compared with census reports. For Cambodia and Tanzania, discrepancies with census data suggested incomplete WPM coverage. In Liberia, where the data sets were consistent, WPM-derived data on functionality, quantity and quality of drinking water were further combined with census area statistics to generate an enhanced drinking-water access measure for protected wells and springs. The process revealed barriers to integrating census and WPM data, including exclusion of water points not used for drinking by households, matching of census and WPM source types; temporal mismatches between data sources; data quality issues such as missing or implausible data values, and underlying assumptions about population served by different water point technologies. However, integration of these two data sets could be used to identify and rectify gaps in WPM coverage. If WPM databases become more complete and the above barriers are addressed, it could also be used to develop more realistic measures of household drinking-water access for monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Dr Kathryn Beers, Assistant Director Physical Sciences and Engineering, Office of Science and Technology Policy Executive Office of the President United States of America visit the CMS experiment at point 5.

  1. The Starting Point of Hobbes’s Science of Politics

    Directory of Open Access Journals (Sweden)

    Luka Ribarević

    2008-01-01

    Full Text Available As a logical starting point structuring the entire theoretical field of political analysis, Hobbes’s definition of the state of nature is a key for understanding his science of politics. The paper shows that the concept of the state of nature implies two fundamentally distinct types of states in which neither people nor troubles with which they are faced are identical. In the original state of nature conflicts among people stem directly from their nature. Based on the analysis of Hobbes’s understanding of human nature and critical reading of his interpretation of the state of nature by Jean Hampton, the paper identifies the mechanism by which reason and passion turn the state of nature into a state of war. However, alongside the original state of nature, a historical state of nature also coexists, in which conflicts spring from religious views and political beliefs immanent to people as religious and political beings, and as beings of language and conscience. What is crucial for conflicts in this historical state of nature is the influence exerted by language as a discursive context on human action. As the state of war feeds from both human nature and history, any attempt of overcoming the state of nature must abandon them: the state is necessarily an artificial and ahistorical project, based on science of politics as a new political language appropriate for human self-preservation.

  2. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  3. USGS Integration of New Science and Technology, Appendix A

    Science.gov (United States)

    Brey, Marybeth; Knights, Brent C.; Cupp, Aaron R.; Amberg, Jon J.; Chapman, Duane C.; Calfee, Robin D.; Duncker, James J.

    2017-01-01

    This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

  4. Integration of Culturally Relevant Pedagogy Into the Science Learning Progression Framework

    Science.gov (United States)

    Bernardo, Cyntra

    This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and students involved in science courses in public high school. Through a qualitative intrinsic case study, data were collected and analyzed using traditional methods. Data from primary participants (educators) were analyzed through identification of big ideas, open coding, and themes. Through this process, patterns and emergent ideas were reported. Outcomes of this study demonstrated that educators lack knowledge about research-based academic frameworks and multicultural education strategies, but benefit through institutionally-based professional development. Students from diverse cultures responded positively to culturally-based instruction. Their progress was further manifested in better communication and discourse with their teacher and peers, and increased academic outcomes. This study has postulated and provided an exemplar for science teachers to expand and improve multicultural knowledge, ultimately transferring these skills to their pedagogical practice.

  5. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    Science.gov (United States)

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  6. Solving discrete zero point problems

    NARCIS (Netherlands)

    van der Laan, G.; Talman, A.J.J.; Yang, Z.F.

    2004-01-01

    In this paper an algorithm is proposed to .nd a discrete zero point of a function on the collection of integral points in the n-dimensional Euclidean space IRn.Starting with a given integral point, the algorithm generates a .nite sequence of adjacent integral simplices of varying dimension and

  7. The Integration of HIV and AIDS as a Socio-Scientific Issue in the Life Sciences Curriculum

    Science.gov (United States)

    Wolff, Eugenie; Mnguni, Lindelani

    2015-01-01

    The potential of science to transform lives has been highlighted by a number of scholars. This means that critical socio-scientific issues (SSIs) must be integrated into science curricula. Development of context-specific scientific knowledge and twenty-first-century learning skills in science education could be used to address SSIs such as…

  8. Evaluation of the Level of ICT Integration in Sciences Subjects at the ...

    African Journals Online (AJOL)

    Evaluation of the Level of ICT Integration in Sciences Subjects at the Namibian ... The study was informed by Rogers' theory of diffusion and adopted a qualitative ... A semi- structured interview guide and an observation schedule were used to ...

  9. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  10. A framework for integrating and synthesizing data to ask and answer science questions in the Critical Zone

    Science.gov (United States)

    Bristol, S.

    2014-12-01

    In 2007, the U.S. Geological Survey (USGS) published a science strategy that resulted in an organizational pivot toward more focused attention on societal challenges and our ability to predict changes and study mitigation and resilience. The strategy described a number of global dynamics including climate and resource-related critical zone (CZ) impacts and emphasized the need for data integration as a significant underpinning for all of the science questions raised in the report. Organizational changes that came about as a result of the science strategy sparked a new entity called Core Science Systems, which has set as its mission the creation of a Modular Science Framework designed to seamlessly organize and integrate all data, information, and knowledge from the CZ. A part of this grand challenge is directly within the purview of the USGS mission and our science programs, while the data integration framework itself is part of a much larger global scientific cyberinfrastructure. This talk describes current research and development in pursuit of the USGS Modular Science Framework and how the work is being conducted in the context of the broader earth system sciences. Communities of practice under the banner of the Earth Science Information Partners are fostering working relationships vital to cohesion and interoperability between contributing institutions. The National Science Foundation's EarthCube and Cyberinfrastructure for the 21st Century initiatives are providing some of the necessary building blocks through foundational informatics and data science research. The U.S. Group on Earth Observations is providing leadership and coordination across agencies who operate earth observation systems. The White House Big Data Initiative is providing long term research and development vision to set the stage for sustainable, long term infrastructure across government data agencies. The end result will be a major building block of CZ science.

  11. Implications of a Cognitive Science Model Integrating Literacy in Science on Achievement in Science and Reading: Direct Effects in Grades 3-5 with Transfer to Grades 6-7

    Science.gov (United States)

    Romance, Nancy; Vitale, Michael

    2017-01-01

    Reported are the results of a multiyear study in which reading comprehension and writing were integrated within an in-depth science instructional model (Science IDEAS) in daily 1.5 to 2 h daily lessons on a schoolwide basis in grades 3-4-5. Multilevel (HLM7) achievement findings showed the experimental intervention resulted in significant and…

  12. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    Science.gov (United States)

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  13. Perspektiven einer Rezeption neurowissenschaftlicher Erkenntnisse in der Erziehungswissenschaft (Perspectives of an Integration of Neuro-Scientific Findings into Educational Science).

    Science.gov (United States)

    Becker, Nicole

    2002-01-01

    Sketches the status quo and possible starting points for the adoption of neuro-scientific findings by educational science. Describes the latest developments in U.S. research. Discusses the adoption of these points by German educational science. Outlines the possibilities and limits of an interdisciplinary discourse. (CAJ)

  14. Integrating E-Books into Science Teaching by Preservice Elementary School Teachers

    Science.gov (United States)

    Lai, Ching-San

    2016-01-01

    This study aims to discuss the issues of integrating e-books into science teaching by preservice elementary school teachers. The study adopts both qualitative and quantitative research methods. In total, 24 preservice elementary school teachers participated in this study. The main sources of research data included e-books produced by preservice…

  15. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  16. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    Science.gov (United States)

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  17. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  18. Perspectives on Psychological Science: Right Way/Wrong Way Symposium.

    Science.gov (United States)

    Gunnar, Megan R

    2017-07-01

    In unpredictable times, it is perhaps even more important to contemplate the direction different fields of science are headed. In this article, I contemplate two directions of psychological science: the increasing integration of the study of psychology with other sciences and the concern of many sciences, including ours, with improving the reproducibility of our findings. Both of these are argued to be "right ways," but these directions also have challenges that, unless carefully addressed, could detract from our ability to move the science of psychology forward. I detail these challenges along with a consideration of how to chart our science through the unpredictable waters we face at this point in history.

  19. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  20. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  1. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  2. Fixed Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Charting a path for health sciences librarians in an integrated information environment.

    Science.gov (United States)

    Jones, C J

    1993-10-01

    Changes in the health information environment present a major challenge to health sciences librarians. To successfully meet this challenge, librarians must apply the concepts of informal, self-directed, lifelong learning to their own carers. The Joint Commission on Accreditation of Healthcare Organizations is creating an integrated information environment in health care organizations. The health sciences librarian brings unique knowledge and skills to this environment. The reference technique, a methodology that closely parallels other problem-solving approaches such as the physician's diagnostic technique, equips librarians with the conceptual skills to develop creative solutions to information management problems. Each health sciences librarian must assume responsibility for extending professional skills and abilities and demonstrating them in the workplace.

  4. A Network for Integrated Science and Mathematics Teaching and Learning Conference Plenary Papers. NSF/SSMA Wingspread Conference (Racine, Wisconsin, April 1991). School Science and Mathematics Association Topics for Teachers Series Number 7.

    Science.gov (United States)

    Berlin, Donna F., Ed.

    The integration of mathematics and science is not a new concept. However, during recent years it has been a major focus in education reform. A Wingspread conference promoted discussion regarding the integration of mathematics and science and explored ways to improve science and mathematics education in grades K-12. Papers from the conference…

  5. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Second External Review Draft, Sep 2011)

    Science.gov (United States)

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  6. Integrated assessment, water resources, and science-policy communication

    International Nuclear Information System (INIS)

    Davies, E.G.R.; Akhtar, M.K.; McBean, G.A.; Simonovic, S.P.

    2009-01-01

    Traditional climate change modeling neglects the role of feedbacks between different components of society-biosphere-climate system. Yet, such interconnections are critical. This paper describes an alternative, Integrated Assessment (IA) model that focuses on feedbacks not only within individual elements of the society-biosphere-climate system, but also on their interconnections. The model replicates the relevant dynamics of nine components of the society-biosphere- climate system at the sectoral, or single-component, level: climate, carbon cycle, hydrological cycle, water demand, water quality, population, land use, energy and economy. The paper discusses the role of the model in science-policy dialogue. (author)

  7. Quantum Group U_q(sl(2 Symmetry and Explicit Evaluation of the One-Point Functions of the Integrable Spin-1 XXZ Chain

    Directory of Open Access Journals (Sweden)

    Tetsuo Deguchi

    2011-06-01

    Full Text Available We show some symmetry relations among the correlation functions of the integrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple integrals representing the one-point functions in the spin-1 case. We review the multiple-integral representations of correlation functions for the integrable higher-spin XXZ chains derived in a region of the massless regime including the anti-ferromagnetic point. Here we make use of the gauge transformations between the symmetric and asymmetric R-matrices, which correspond to the principal and homogeneous gradings, respectively, and we send the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical support for the analytical expression of the one-point functions in the spin-1 case.

  8. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  9. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  10. Teaching Science from Cultural Points of Intersection

    Science.gov (United States)

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  11. Preservice Teachers' Reconciliation of an Epistemological Issue in an Integrated Mathematics/Science Methods Course

    Science.gov (United States)

    Cormas, Peter C.

    2017-01-01

    Preservice teachers in six sections (n = 87) of a sequenced, methodological and process-integrated elementary mathematics/science methods course were able to reconcile an issue centered on a similar area of epistemology. Preservice teachers participated in a science inquiry lesson on biological classification and a mathematics problem-solving…

  12. Turkey Point Plant application of an integrated flag system and quality in daily work

    International Nuclear Information System (INIS)

    Labarraque, J.A.

    1987-01-01

    The objective of this paper is to explain the approach and methodology that Turkey Point Nuclear Plant management selected to integrate management's accountabilities and workers' routine activities to support a safe and efficient plant operation. This integrated approach had a significant effect in aligning the whole organization to work toward a common goal and increasing the understanding and level of accountabilities of managers and workers throughout the organization. The new approach of monitoring and controlling organizational activities using Florida Power and Light Company's quality improvement program techniques has resulted in improved personnel performance and awareness with minimum permanent personnel increases

  13. Integrating Sustainability Science with the Sciences of Human Well-being to Inform Design and Planning in an Urbanizing World

    Science.gov (United States)

    Alberti, M.; Graumlich, L. J.; Frumkin, H.; Friedman, D.

    2012-12-01

    A sustainable human future requires both healthy ecosystems and communities in which people thrive, with opportunities for health, well-being, happiness, economic prosperity, and equity. To make progress towards this goal, two largely disparate communities of scholars and practitioners must come together: sustainability science needs to be integrated with the sciences of human health and well-being. The opportunity for such integration is particularly ripe for urbanizing regions which not only dominate energy and resource use but also increasingly represent the human habitat. We present a conceptual framework that integrates sustainability science with the sciences of human health and well-being to explicitly articulate testable hypotheses on the relationships between humans and their habitat. We are interested in human behaviors and metrics of health and well-being in relationship to the characteristics of the built environment at various scales from buildings to metro regions. Focusing on the U.S. Pacific Northwest (PNW) as a testbed, we are building on our current empirical studies on urban sprawl and ecosystem function including biodiversity, air quality, hydrological, biogeochemical, and human health to develop formal hypotheses on how alternative urban design and development patterns may influence health outcomes and well-being. The PNW is an ideal setting for this work because of the connected metropolitan areas within a region characterized by a spectacular diversity of aquatic and terrestrial ecosystems and deeply held cultural and political aspirations towards sustainability. The framework also highlights opportunities for translation of knowledge to practice in the design and planning of built environments. For example, understanding these associations is critical to assessing tradeoffs in design and planning strategies and exploring potential synergies that optimize both sustainability and human well-being. In complex systems such as cities, managers

  14. An ultrahigh-accuracy Miniature Dew Point Sensor based on an Integrated Photonics Platform

    Science.gov (United States)

    Tao, Jifang; Luo, Yu; Wang, Li; Cai, Hong; Sun, Tao; Song, Junfeng; Liu, Hui; Gu, Yuandong

    2016-07-01

    The dew point is the temperature at which vapour begins to condense out of the gaseous phase. The deterministic relationship between the dew point and humidity is the basis for the industry-standard “chilled-mirror” dew point hygrometers used for highly accurate humidity measurements, which are essential for a broad range of industrial and metrological applications. However, these instruments have several limitations, such as high cost, large size and slow response. In this report, we demonstrate a compact, integrated photonic dew point sensor (DPS) that features high accuracy, a small footprint, and fast response. The fundamental component of this DPS is a partially exposed photonic micro-ring resonator, which serves two functions simultaneously: 1) sensing the condensed water droplets via evanescent fields and 2) functioning as a highly accurate, in situ temperature sensor based on the thermo-optic effect (TOE). This device virtually eliminates most of the temperature-related errors that affect conventional “chilled-mirror” hygrometers. Moreover, this DPS outperforms conventional “chilled-mirror” hygrometers with respect to size, cost and response time, paving the way for on-chip dew point detection and extension to applications for which the conventional technology is unsuitable because of size, cost, and other constraints.

  15. Integrated, Multidisciplinary and Technology-Enhanced Science Education: The Next Frontier

    OpenAIRE

    Dinov, Ivo D.

    2008-01-01

    Contemporary science education at all levels presents several critical pedagogical and social challenges to educators and learners alike. Among these challenges are the widening Intergenerational Information Technology (IIT) divide and the need for a comprehensive and balanced multidisciplinary training. In the past few years, it has become clear that one significant hurdle impedes the efforts to integrate information technology in the classroom – the Intergenerational IT divide. The IIT gap ...

  16. Journal of Mind and Medical Sciences: translational and integrative mission

    OpenAIRE

    David L. Rowland; Ion G. Motofei

    2017-01-01

    Initiated four years ago, Journal of Mind and Medical Sciences (J Mind Med Sci.) established the mission to publish papers on mental and medical topics in distinct but closely interrelated domains. The editorial policy especially encourages interdisciplinary and integrative perspectives, being equally focused on basic research and clinical investigations and short reports. The journal adheres to the philosophy that high quality, original ideas and information should be readily accessibl...

  17. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  18. Solution of the Stokes system by boundary integral equations and fixed point iterative schemes

    International Nuclear Information System (INIS)

    Chidume, C.E.; Lubuma, M.S.

    1990-01-01

    The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs

  19. STANDARDIZATION OF CUPPING THERAPY POINTS AND MECHANISM OF ACTION IN THE LIGHT OF SCIENCE

    OpenAIRE

    Dr. Izharul Hasan

    2018-01-01

    Now a day’s cupping therapy is an established therapeutic modality among Indian system of medicine as well as worldwide. Inspite of that, standard operative procedure (SOPs) for cupping therapy is yet to develop. In this paper author comprises the possible indications of cupping therapy along with procedures, application points, safety concerns, historical perspective, surgical operative standards described in traditional system of medicine as well as in the light of science. Cupping may be d...

  20. A Small Mission Concept to the Sun-Earth Lagrangian L5 Point for Innovative Solar, Heliospheric and Space Weather Science

    Science.gov (United States)

    Lavraud, B.; Liu, Y.; Segura, K.; He, J.; Qin, G.; Temmer, M.; Vial, J.-C.; Xiong, M.; Davies, J. A.; Rouillard, A. P.; hide

    2016-01-01

    We present a concept for a small mission to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science. The proposed INvestigation of Solar-Terrestrial Activity aNd Transients (INSTANT) mission is designed to identify how solar coronal magnetic fields drive eruptions, mass transport and particle acceleration that impact the Earth and the heliosphere. INSTANT is the first mission designed to (1) obtain measurements of coronal magnetic fields from space and (2) determine coronal mass ejection (CME) kinematics with unparalleled accuracy. Thanks to innovative instrumentation at a vantage point that provides the most suitable perspective view of the Sun-Earth system, INSTANT would uniquely track the whole chain of fundamental processes driving space weather at Earth. We present the science requirements, payload and mission profile that fulfill ambitious science objectives within small mission programmatic boundary conditions.

  1. Imaginative methodologies in the social sciences

    DEFF Research Database (Denmark)

    Imaginative Methodologies develops, expands and challenges conventional social scientific methodology and language by way of literary, poetic and other alternative sources of inspiration. Sociologists, social workers, anthropologists, criminologists and psychologists all try to rethink, provoke...... and reignite social scientific methodology. Imaginative Methodologies challenges the mainstream social science methodological orthodoxy closely guarding the boundaries between the social sciences and the arts and humanities, pointing out that authors and artists are often engaged in projects parallel to those...... of the social sciences and vice versa, and that artistic and cultural productions today do not constitute a specialist field, but are integral to our social reality. The book will be of interest to scholars and students in the social sciences and across the arts and humanities working with questions...

  2. COGNITIVE SCIENCE: FROM MULTIDISCIPLINARITY TO INTERDISCIPLINARITY

    Directory of Open Access Journals (Sweden)

    Marina Bogdanova

    2017-12-01

    Full Text Available Cognitive science is a network of interrelated scientific disciplines engaged in researching human cognition and its brain mechanisms. The birth of cognitive science has been the result of numerous integrated processes. Cognitive science is made up of experimental psychology cognition, philosophy consciousness, neuroscience, cognitive anthropology, linguistics, computer science and artificial intelligence. In recent years, a number of other research areas have been added to the body of cognitive science. Among researchers there have been discussions about whether cognitive science is a separate research area or it consists of a series of specialized areas. In fact, the point at issue is whether cognitive science is still a multidisciplinary project or already an interdisciplinary one. P. Thagard believes that cognitive science has reached the level of interdisciplinarity and explains the advances in this area through the metaphor of “trading zones”. The success elements of cognitive science are: fruitful unification of scientific interests of cognitive science founders; organizational structure of the scientific community – universities, where a special interdisciplinary intellectual environment has been created; a large number of joint research projects supported by governments and business; integrated use of scientific methods and fundamental ideas. D. Sperber and J. Miller prefer to talk not about a unified cognitive science but cognitive sciences, i.e., the commonwealth of sciences working together on the study of a single object - human cognition, however, the extent of their interactive communication is still small. Thus, we should speak about multidisciplinarity rather than genuine interdisciplinarity of the joint research of separate sciences.

  3. Foucault's points of resistance. Women in science: 1620--2000

    Science.gov (United States)

    Vitale, Cindy Gail

    In his unique method of historical research, Michel Foucault was concerned with how institutional power relations are both established and maintained through discourse, in its broadest sense. Foucault found that the character of the discourse of any given period of history serves as the foundation of knowledge which is then transformed into power by those who "appropriate," "bound," then use it as "technologies of discipline." This power operates transparently and serves to "construct" individuals to meet institutional expectations. Important for this study is that Foucault believed that where there is power there is resistance, and that "points of resistance" operate everywhere in "power networks." This study has two parts. The first is a description and an extension of Foucault's notion of resistance as it operates within institutional power relations. The second, using the extended version of Foucault's resistance, is a deconstruction of the discourse of science education in the United States. The deconstruction focused on resistance operating within the male/female power relations network. The deconstruction revealed three overlapping yet distinct historical periods in which the dominant discourse was characterized by one of Foucault's three general technologies of discipline. During the first period, 1620--1790, women were generally not allowed access to formal (institutional) education. This disciplinary technology, which Foucault called "dividing practices," was justified by the commonly accepted religious view of the period that females were both mentally and morally inferior beings. Women were, so to speak, "barred at the schoolhouse gate." In the second period, 1790--1920, female resistance to these dividing practices was parallel to their limited access to formal education. Women were "admitted at the schoolhouse gate," and the appearance of successful resistance occurred as women began to enroll in science classes. Unlike their male counterparts

  4. Integrability and Linearizability of the Lotka-Volterra System with a Saddle Point with Rational Hyperbolicity Ratio

    Science.gov (United States)

    Gravel, Simon; Thibault, Pierre

    In this paper, we consider normalizability, integrability and linearizability properties of the Lotka-Volterra system in the neighborhood of a singular point with eigenvalues 1 and - λ. The results are obtained by generalizing and expanding two methods already known: the power expansion of the first integral or of the linearizing transformation and the transformation of the saddle into a node. With these methods we find conditions that are valid for λ∈ R+ or λ∈ Q. These conditions will allow us to find all the integrable and linearizable systems for λ= {p}/{2} and {2}/{p} with p∈ N+.

  5. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    Science.gov (United States)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  6. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  7. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  8. Point-of-care and point-of-procedure optical imaging technologies for primary care and global health.

    Science.gov (United States)

    Boppart, Stephen A; Richards-Kortum, Rebecca

    2014-09-10

    Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. Copyright © 2014, American Association for the Advancement of Science.

  9. Non point source pollution modelling in the watershed managed by Integrated Conctructed Wetlands: A GIS approach.

    OpenAIRE

    Vyavahare, Nilesh

    2008-01-01

    The non-point source pollution has been recognised as main cause of eutrophication in Ireland (EPA Ireland, 2001). Integrated Constructed Wetland (ICW) is a management practice adopted in Annestown stream watershed, located in the south county of Waterford in Ireland, used to cleanse farmyard runoff. Present study forms the annual pollution budget for the Annestown stream watershed. The amount of pollution from non-point sources flowing into the stream was simulated by using GIS techniques; u...

  10. Numerical simulation of a lattice polymer model at its integrable point

    International Nuclear Information System (INIS)

    Bedini, A; Owczarek, A L; Prellberg, T

    2013-01-01

    We revisit an integrable lattice model of polymer collapse using numerical simulations. This model was first studied by Blöte and Nienhuis (1989 J. Phys. A: Math. Gen. 22 1415) and it describes polymers with some attraction, providing thus a model for the polymer collapse transition. At a particular set of Boltzmann weights the model is integrable and the exponents ν = 12/23 ≈ 0.522 and γ = 53/46 ≈ 1.152 have been computed via identification of the scaling dimensions x t = 1/12 and x h = −5/48. We directly investigate the polymer scaling exponents via Monte Carlo simulations using the pruned-enriched Rosenbluth method algorithm. By simulating this polymer model for walks up to length 4096 we find ν = 0.576(6) and γ = 1.045(5), which are clearly different from the predicted values. Our estimate for the exponent ν is compatible with the known θ-point value of 4/7 and in agreement with very recent numerical evaluation by Foster and Pinettes (2012 J. Phys. A: Math. Theor. 45 505003). (paper)

  11. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  12. The Implementation of Integrated Science Technology, Engineering and Mathematics (STEM) Instruction Using Robotics in the Middle School Science Classroom

    Science.gov (United States)

    Ntemngwa, Celestin; Oliver, J. Steve

    2018-01-01

    The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…

  13. Planning for the integration of the digital library, clinical decision support, and evidence at the point of care.

    Science.gov (United States)

    Schwartz, Linda Matula; Iobst, Barbara

    2008-01-01

    Integrating knowledge-based resources at the point of care is an important opportunity for hospital library involvement. In the progression of an IAIMS planning grant, the digital library is recognized as pivotal to the success of information domain integration throughout the institution. The planning process, data collection, and evolution of the planning project are discussed.

  14. Teacher candidates' perceptions regarding the integration of fictional literature into elementary science instruction

    Science.gov (United States)

    Everman, Daphne Jane

    The purpose of this study was to investigate the thoughts, feelings, and beliefs held by teacher candidates (TCs) regarding the integration of fictional literature into elementary science instruction. Data were collected in the forms of a Q sort completed by two sections of TCs as an in-class activity, demographics and background information filled out by each participant, and two focus groups. The data were analyzed through a blend of Q methodology and Yin's five phase analysis approach (2011), and a constructivist framework was used to analyze the potential impact TCs' background had on their perceptions of the use of fictional literature in elementary science. Key findings indicated that while many TCs have limited backgrounds in the use of fictional literature during science and would like more information about how to use it, overall, there was strong support for its use as a science teaching tool because it makes science more approachable, builds excitement, and encourages students to become more engaged.

  15. Global Social Challenges: insights from the physical sciences and their relevance to the evolution of social science

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The complex challenges confronting humanity today point to the need for new thinking and new theory in the social sciences which overcomes the limitations of compartmentalized, sectoral concepts, strategies and policies and mechanistic approaches to living social systems. The World Academy of Art & Science is convening a consortium of leading institutions and thinkers from different sectors to contribute ideas for formulation of a cohesive framework capable of addressing global social challenges in their totality and complex interrelationships. The objective of my presentation will be to explore the potential for collaboration between the physical and social sciences to arrive at a more cohesive and effective framework by exploring a series of questions, including - - Is an integrated science of society possible that transcends disciplinary boundaries based on common underlying principles as we find in the natural sciences? - To what extent can principles of natural science serve as valid models and a...

  16. Integrating Service-Learning Pedagogy for Preservice Elementary Teachers' Science Identity Development

    Science.gov (United States)

    Wilson, Rachel E.; Bradbury, Leslie U.; McGlasson, Martha A.

    2015-04-01

    The purpose of this article is to explore how preservice elementary teachers (PSETs) interpreted their service-learning experiences within a pre-methods environmentally focused course and how their interpretations shaped their science teaching identities. Along a continuum of service-learning experiences were events that emphasized science learning, that focused on science teaching, and that were transitional, with elements of both science learning and science teaching. These various service-learning experiences were designed to be "boundary experiences" for professional identity development (Geijsel & Meijers in Educational Studies, 3(4), 419-430, 2005), providing opportunities for PSETs to reflect on meanings in cultural contexts and how they are related to their own personal meanings. We analyzed written reflections and end-of-course oral reflection interviews from 42 PSETs on their various service-learning experiences. PSETs discussed themes related to the meanings they made of the service-learning experiences: (a) experiencing science in relation to their lives as humans and future teachers, (b) interacting with elementary students and other PSETs, and (c) making an impact in the physical environment and in the community. The connections that PSETs were making between the discursive spaces (service-learning contexts) and their own meaning-making of these experiences (as connected to their own interests in relation to their future professions and daily lives) shows evidence of the potential that various types of science service-learning experiences have for PSETs in developing inbound science teaching identity trajectories (Wenger in Communities of practice: Learning, meaning, and identity. Cambridge: Cambridge University Press, 1998). The findings of this study point to positive outcomes for PSETs when they participate in structured service-learning experiences along a learning to teaching continuum (246).

  17. Integrated Science Assessment (ISA) for Carbon Monoxide (Second External Review Draft, Sep 2009)

    Science.gov (United States)

    EPA announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of t...

  18. CILogon: An Integrated Identity and Access Management Platform for Science

    Science.gov (United States)

    Basney, J.

    2016-12-01

    When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid

  19. Building a Semantic Framework for eScience

    Science.gov (United States)

    Movva, S.; Ramachandran, R.; Maskey, M.; Li, X.

    2009-12-01

    The e-Science vision focuses on the use of advanced computing technologies to support scientists. Recent research efforts in this area have focused primarily on “enabling” use of infrastructure resources for both data and computational access especially in Geosciences. One of the existing gaps in the existing e-Science efforts has been the failure to incorporate stable semantic technologies within the design process itself. In this presentation, we describe our effort in designing a framework for e-Science built using Service Oriented Architecture. Our framework provides users capabilities to create science workflows and mine distributed data. Our e-Science framework is being designed around a mass market tool to promote reusability across many projects. Semantics is an integral part of this framework and our design goal is to leverage the latest stable semantic technologies. The use of these stable semantic technologies will provide the users of our framework the useful features such as: allow search engines to find their content with RDFa tags; create RDF triple data store for their content; create RDF end points to share with others; and semantically mash their content with other online content available as RDF end point.

  20. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  1. Evaluation of NSF's Program of Grants and Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE)

    Science.gov (United States)

    National Academies Press, 2009

    2009-01-01

    In 1998, the National Science Foundation (NSF) launched a program of Grants for Vertical Integration of Research and Education in the Mathematical Sciences (VIGRE). These grants were designed for institutions with PhD-granting departments in the mathematical sciences, for the purpose of developing high-quality education programs, at all levels,…

  2. Conceptual Integration of Hybridization by Algerian Students Intending to Teach Physical Sciences

    Science.gov (United States)

    Salah, Hazzi; Dumon, Alain

    2011-01-01

    This work aims to assess the difficulties encountered by students of the Ecole Normale Superieure of Kouba (Algeria) intending to teach physical science in the integration of the hybridization of atomic orbitals. It is a concept that they should use in describing the formation of molecular orbitals ([sigma] and [pi]) in organic chemistry and gaps…

  3. Promoting of Thematic-Based Integrated Science Learning on the Junior High School

    Science.gov (United States)

    Pursitasari, Indarini Dwi; Nuryanti, Siti; Rede, Amran

    2015-01-01

    This study was conducted to explain the effect of thematic based integrated science learning to the student's critical thinking skills and character. One group pretest-posttest design is involving thirty students in one of the junior high school in the Palu city. A sample was taken using purposive sampling. Data of critical thinking skills…

  4. SCIENTIFIC STUDY OF NATURE AND SCIENTIFIC STUDY OF CULTURE: INTE-GRATION TREND, PRACTICAL VALUE

    Directory of Open Access Journals (Sweden)

    Fokina Zoya Titovna

    2017-03-01

    Full Text Available This article deals with a topic of interest : studying the expanding and deepening trend of integration of natural, technical, social and humanities fields of scientific knowledge. The point of absolute opposition between the sciences dealing with nature and those dealing with culture is subjected to criticism, the forms of integration of scientific knowledge are identified: mathematization, formalization, computerization of knowledge; philosophization/dialectization and environmentalization of the scientific knowledge. It is noted that such areas of scientific knowledge as synergetics, cybernetics, system theory, information technology, sociosynergetics, historical informatics, cliometrics, informatics for economics, evolutionary economics, human ecology, etc. Many scientific fields appear on the border between the science, technology and mathematics, and social and humanities studies, while the sharp borders between the natural sciences and cultural sciences tend to disappear, although specifics of studying the social reality still exists. Within the context of integration of sciences, comprehensive approach, synergetics, cybernetics, and mathematical model approach are analyzed. The philosophy of technology, and environmental problems, which are caused by the development of technological civilization, are studied. Practical value of integration processes in science is identified. The studied data is addressed to the specialists who are interested in the modern processes of integration of sciences, and modern issues of scientific and technical development of humanity, survival of humanity under the conditions of increasing technological understanding of the nature.

  5. Life sciences payload definition and integration study, task C and D. Volume 1: Management summary

    Science.gov (United States)

    1973-01-01

    The findings of a study to define the required payloads for conducting life science experiments in space are presented. The primary objectives of the study are: (1) identify research functions to be performed aboard life sciences spacecraft laboratories and necessary equipment, (2) develop conceptual designs of potential payloads, (3) integrate selected laboratory designs with space shuttle configurations, and (4) establish cost analysis of preliminary program planning.

  6. The EuroSITES network: Integrating and enhancing fixed-point open ocean observatories around Europe

    Science.gov (United States)

    Lampitt, Richard S.; Larkin, Kate E.; EuroSITES Consortium

    2010-05-01

    EuroSITES is a 3 year (2008-2011) EU collaborative project (3.5MEuro) with the objective to integrate and enhance the nine existing open ocean fixed point observatories around Europe (www.eurosites.info). These observatories are primarily composed of full depth moorings and make multidisciplinary in situ observations within the water column as the European contribution to the global array OceanSITES (www.oceansites.org). In the first 18 months, all 9 observatories have been active and integration has been significant through the maintenance and enhancement of observatory hardware. Highlights include the enhancement of observatories with sensors to measure O2, pCO2, chlorophyll, and nitrate in near real-time from the upper 1000 m. In addition, some seafloor missions are also actively supported. These include seafloor platforms currently deployed in the Mediterranean, one for tsunami detection and one to monitor fluid flow related to seismic activity and slope stability. Upcoming seafloor science missions in 2010 include monitoring benthic biological communities and associated biogeochemistry as indicators of climate change in both the Northeast Atlantic and Mediterranean. EuroSITES also promotes the development of innovative sensors and samplers in order to progress capability to measure climate-relevant properties of the ocean. These include further developing current technologies for autonomous long-term monitoring of oxygen consumption in the mesopelagic, pH and mesozooplankton abundance. Many of these science missions are directly related to complementary activities in other European projects such as EPOCA, HYPOX and ESONET. In 2010 a direct collaboration including in situ field work will take place between ESONET and EuroSITES. The demonstration mission MODOO (funded by ESONET) will be implemented in 2010 at the EuroSITES PAP observatory. Field work will include deployment of a seafloor lander system with various sensors which will send data to shore in real

  7. Agroecology as a Science of Integration for Sustainability in Agriculture

    Directory of Open Access Journals (Sweden)

    Fabio Caporali

    2007-06-01

    Full Text Available A knowledge contribution is provided in order to understand agroecology as both a scientific discipline and a philosophical paradigm for promoting sustainability in agriculture. The peculiar character of agroecology as an applied science based on the systems paradigm is explored in the fields of research and tuition. As an organisational capability of connecting different hierarchical levels in accordance with the goal of sustainability, integration is shown as an emergent property of the evolution of agriculture as a human activity system.

  8. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    Science.gov (United States)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  9. Teacher Design in Teams as a Professional Development Arrangement for Developing Technology Integration Knowledge and Skills of Science Teachers in Tanzania

    Science.gov (United States)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…

  10. Nonlinear Dynamics, Fixed Points and Coupled Fixed Points in Generalized Gauge Spaces with Applications to a System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Adrian Petruşel

    2015-01-01

    Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.

  11. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    Science.gov (United States)

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  12. Bridging Professional Teacher Knowledge for Science and Literary Integration via Design-Based Research

    Science.gov (United States)

    Fazio, Xavier; Gallagher, Tiffany L.

    2018-01-01

    We offer insights for using design-based research (DBR) as a model for constructing professional development that supports curriculum and instructional knowledge regarding science and literacy integration. We spotlight experiences in the DBR process from data collected from a sample of four elementary teachers. Findings from interviews, focus…

  13. Technology Integration in K-12 Science Classrooms: An Analysis of Barriers and Implications

    Science.gov (United States)

    Hechter, Richard P.; Vermette, Laurie Anne

    2013-01-01

    This paper examines the barriers to technology integration for Manitoban K-12 inservice science educators (n = 430) based on a 10-item online survey; results are analyzed according to teaching stream using the Technology, Pedagogy, and Content Knowledge (TPACK) framework. Quantitative descriptive statistics indicated that the leading barriers…

  14. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  15. Integrating scientific data for drug discovery and development using the Life Sciences Grid.

    Science.gov (United States)

    Dow, Ernst R; Hughes, James B; Stephens, Susie M; Narayan, Vaibhav A; Bishop, Richard W

    2009-06-01

    There are many daunting challenges for companies who wish to bring novel drugs to market. The information complexity around potential drug targets has increased greatly with the introduction of microarrays, high-throughput screening and other technological advances over the past decade, but has not yet fundamentally increased our understanding of how to modify a disease with pharmaceuticals. Further, the bar has been raised in getting a successful drug to market as just being new is no longer enough: the drug must demonstrate improved performance compared with the ever increasing generic pharmacopeia to gain support from payers and government authorities. In addition, partly as a consequence of a climate of concern regarding the safety of drugs, regulatory authorities have approved fewer new molecular entities compared to historical norms over the past few years. To overcome these challenges, the pharmaceutical industry must fully embrace information technology to bring better understood compounds to market. An important first step in addressing an unmet medical need is in understanding the disease and identifying the physiological target(s) to be modulated by the drug. Deciding which targets to pursue for a given disease requires a multidisciplinary effort that integrates heterogeneous data from many sources, including genetic variations of populations, changes in gene expression and biochemical assays. The Life Science Grid was developed to provide a flexible framework to integrate such diverse biological, chemical and disease information to help scientists make better-informed decisions. The Life Science Grid has been used to rapidly and effectively integrate scientific information in the pharmaceutical industry and has been placed in the open source community to foster collaboration in the life sciences community.

  16. Disaster Management: AN Integral Part of Science & Technology System and Land Administration-Management System

    Science.gov (United States)

    Ghawana, T.; Zlatanova, S.

    2016-06-01

    Disaster management is a multidisciplinary field, which requires a general coordination approach as well as specialist approaches. Science and Technology system of a country allows to create policies and execution of technical inputs required which provide services for the specific types of disasters management. Land administration and management agencies, as the administrative and management bodies, focus more on the coordination of designated tasks to various agencies responsible for their dedicated roles. They get help from Scientific and technical inputs & policies which require to be implemented in a professional manner. The paper provides an example of such integration from India where these two systems complement each other with their dedicated services. Delhi, the Capital of India, has such a disaster management system which has lot of technical departments of government which are mandated to provide their services as Emergency Service Functionaries. Thus, it is shown that disaster management is a job which is an integral part of Science & Technology system of a country while being implemented primarily with the help of land administration and management agencies. It is required that new policies or mandates for the Science and technology organizations of government should give a primary space to disaster management

  17. The correlation between physical activity and grade point average for health science graduate students.

    Science.gov (United States)

    Gonzalez, Eugenia C; Hernandez, Erika C; Coltrane, Ambrosia K; Mancera, Jayme M

    2014-01-01

    Researchers have reported positive associations between physical activity and academic achievement. However, a common belief is that improving academic performance comes at the cost of reducing time for and resources spent on extracurricular activities that encourage physical activity. The purpose of this study was to examine the relationship between self-reported physical activity and grade point average (GPA) for health science graduate students. Graduate students in health science programs completed the International Physical Activity Questionnaire and reported their academic progress. Most participants (76%) reported moderate to vigorous physical activity levels that met or exceeded the recommended levels for adults. However, there was no significant correlation between GPA and level of physical activity. Negative findings for this study may be associated with the limited range of GPA scores for graduate students. Future studies need to consider more sensitive measures of cognitive function, as well as the impact of physical activity on occupational balance and health for graduate students in the health fields. Copyright 2014, SLACK Incorporated.

  18. Almost Poisson integration of rigid body systems

    International Nuclear Information System (INIS)

    Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang

    1993-01-01

    In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs

  19. Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...

  20. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  1. Natural Resource Management Schemes as Entry Points for Integrated Landscape Approaches: Evidence from Ghana and Burkina Faso.

    Science.gov (United States)

    Foli, Samson; Ros-Tonen, Mirjam A F; Reed, James; Sunderland, Terry

    2017-04-20

    In recognition of the failures of sectoral approaches to overcome global challenges of biodiversity loss, climate change, food insecurity and poverty, scientific discourse on biodiversity conservation and sustainable development is shifting towards integrated landscape governance arrangements. Current landscape initiatives however very much depend on external actors and funding, raising the question of whether, and how, and under what conditions, locally embedded resource management schemes can serve as entry points for the implementation of integrated landscape approaches. This paper assesses the entry point potential for three established natural resource management schemes in West Africa that target landscape degradation with involvement of local communities: the Chantier d'Aménagement Forestier scheme encompassing forest management sites across Burkina Faso and the Modified Taungya System and community wildlife resource management initiatives in Ghana. Based on a review of the current literature, we analyze the extent to which design principles that define a landscape approach apply to these schemes. We found that the CREMA meets most of the desired criteria, but that its scale may be too limited to guarantee effective landscape governance, hence requiring upscaling. Conversely, the other two initiatives are strongly lacking in their design principles on fundamental components regarding integrated approaches, continual learning, and capacity building. Monitoring and evaluation bodies and participatory learning and negotiation platforms could enhance the schemes' alignment with integrated landscape approaches.

  2. How I learned to appreciate our tame social scientist : experiences in integrating design research and the behavioural sciences

    NARCIS (Netherlands)

    Reint-Jan Renes; Sander Hermsen; Remko van der Lugt; Sander Mulder

    2016-01-01

    Designing solutions for complex behaviour change processes can be greatly aided by integrating insights from the behavioural sciences into design practice. However, this integration is hampered by the relative inaccessibility of behavioral scientific knowledge. Working in a multidisciplinary of

  3. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  4. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  5. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  6. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  7. The Predominance Of Integrative Tests Over Discrete Point Tests In Evaluating The Medical Students' General English Knowledge

    Directory of Open Access Journals (Sweden)

    maryam Heydarpour Meymeh

    2009-03-01

    Full Text Available Background and purpose: Multiple choice tests are the most common type of tests used in evaluating the general English knowledge of the students in most medical universities, however the efficacy of these tests are not examined precisely. Wecompare and examine the integrative tests and discrete point tests as measures of the English language knowledge of medical students.Methods: Three tests were given to 60 undergraduate physiotherapy and Audiology students in their second year of study (after passing their general English course. They were divided into 2 groups.The first test for both groups was an integrative test, writing. The second test was a multiple - choice test 0.(prepositions for group one and a multiple - choice test of tensesfor group two. The same items which were mostfi-equently used wrongly in thefirst test were used in the items of the second test. A third test, a TOEFL, was given to the subjects in order to estimate the correlation between this test and tests one and two.Results: The students performed better in the second test, discrete point test rather than the first which was an integrative test. The same grammatical mistakes in the composition were used correctly in the multiple choice tests by the students.Conclusion:Our findings show that student perform better in non-productive rather than productive test. Since being competent English language user is an expected outcome of university language courses it seems warranted to switch to integrative tests as a measure of English language competency.Keywords: INTEGRATIVE TESTS, ENGLISH LANGUAGE FOR MEDICINE, ACADEMIC ENGLISH

  8. Una estrategia para favorecer la comprensión y el aprendizaje en las Ciencias Morfológicas: Presentaciones en PowerPoint. [ A strategy to improve the comprehension and learning in morphological science: powerpoint presentation

    Directory of Open Access Journals (Sweden)

    Carranza, Miriam L. y Celaya, Gabriela

    2003-07-01

    Full Text Available In this paper, a hypertext to the Morphological Sciences in biological area was developed and evaluated. The application with format of digital atlas approaches Anatomical, Histological and Functional concepts about the man and animals in integrated form. PowerPoint presentation was developed to operators which experience in the handling of software are limited. This digital resource was qualified as a good complement of other didactic materials. In this knowledge area offers opportunity to develop significant knowledge to improve the understanding and learning through an interactive methodology

  9. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  10. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish

  11. Teaching of science and language by elementary teachers who emphasize the integrated language approach: A descriptive study

    Science.gov (United States)

    Blouch, Kathleen Kennedy

    This research involved investigating the nature of science and language instruction in 13 elementary classrooms where teachers have restructured their language programs to reflect an integrated or holistic view of language instruction. The teachers were identified by school administrators and other professionals as teachers who have implemented instructional reforms described in the Pennsylvania Framework for Reading, Writing and Speaking Across the Curriculum (PCRPII), (Lytle & Botel, 1900). The instruction utilized by these teachers was described as atypical when compared to that of teachers utilizing the more traditional didactic skills oriented approach to language literacy. The research involved observing, recording and categorizing teaching behaviors during both science and language instruction. Videotaped observations were followed by analyses and descriptions of these behaviors. Interviews were also conducted to ascertain the basis for selection of the various instructional approaches. The instruction was compared on four dimensions: participation patterns, time the behaviors were practiced, type of tasks and levels of questioning. The instruction was then described in light of constructivist teaching practices: student collaboration, student autonomy, integration and higher order thinking. Constructivist practices differed among teachers for science and language instruction. During science instruction teachers spent more time involved in teacher-whole group participation patterns with more direct questioning as compared to language instruction in which children participated alone or in groups and had opportunity to initiate conversations and questions. Student inquiry was evidenced during language instruction more so than during science. The 13 teachers asked a variety of levels and types of questions both in science and language instruction. More hands-on science experiences were observed when science was taught separately compared to when integrated with

  12. Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Imen Boutana

    2007-12-01

    Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.

  13. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  14. ICAT: Integrating data infrastructure for facilities based science

    International Nuclear Information System (INIS)

    Flannery, Damian; Matthews, Brian; Griffin, Tom; Bicarregui, Juan; Gleaves, Michael; Lerusse, Laurent; Downing, Roger; Ashton, Alun; Sufi, Shoaib; Drinkwater, Glen; Kleese van Dam, Kerstin

    2009-01-01

    ICAT: Integrating data infrastructure for facilities based science Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael Gleaves, Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen Drinkwater, Kerstin Kleese Abstract Scientific facilities, in particular large-scale photon and neutron sources, have demanding requirements to manage the increasing quantities of experimental data they generate in a systematic and secure way. In this paper, we describe the ICAT infrastructure for cataloguing facility generated experimental data which has been in development within STFC and DLS for several years. We consider the factors which have influenced its design and describe its architecture and metadata model, a key tool in the management of data. We go on to give an outline of its current implementation and use, with plans for its future development.

  15. On formally integrating science and policy: walking the walk

    Science.gov (United States)

    Nichols, James D.; Johnson, Fred A.; Williams, Byron K.; Boomer, G. Scott

    2015-01-01

    The contribution of science to the development and implementation of policy is typically neither direct nor transparent.  In 1995, the U.S. Fish and Wildlife Service (FWS) made a decision that was unprecedented in natural resource management, turning to an unused and unproven decision process to carry out trust responsibilities mandated by an international treaty.  The decision process was adopted for the establishment of annual sport hunting regulations for the most economically important duck population in North America, the 6 to 11 million mallards Anas platyrhynchos breeding in the mid-continent region of north-central United States and central Canada.  The key idea underlying the adopted decision process was to formally embed within it a scientific process designed to reduce uncertainty (learn) and thus make better decisions in the future.  The scientific process entails use of models to develop predictions of competing hypotheses about system response to the selected action at each decision point.  These prediction not only are used to select the optimal management action, but also are compared with the subsequent estimates of system state variables, providing evidence for modifying degrees of confidence in, and hence relative influence of, these models at the next decision point.  Science and learning in one step are formally and directly incorporated into the next decision, contrasting with the usual ad hoc and indirect use of scientific results in policy development and decision-making.  Application of this approach over the last 20 years has led to a substantial reduction in uncertainty, as well as to an increase in transparency and defensibility of annual decisions and a decrease in the contentiousness of the decision process.  As resource managers are faced with increased uncertainty associated with various components of global change, this approach provides a roadmap for the future scientific management of natural resources.  

  16. LRN, ERN:, & BERN @ Wireless Integrating the Sciences (WITS) Theatre

    Science.gov (United States)

    Hilliard, L.; Campbell, B.; Foody, M.; Klitsner, D.

    2010-01-01

    In order to develop a call to action for a learning tool that would work to best teach Science Technology Engineering and Math (STEM), the NASA Goddard team will partner with the inventor of Bop It!, an interactive game of verbs and following instructions; and Global Imagination, the developers of Magic Planet. In this paper Decision-making Orbital Health! (DOH!) will be described as a game derived from the basic functions necessary for Bop lt!, a familiar game. that will ask the educational audience to respond to changing commands to Bop It!, Twist It!, and Squeeze It! The success of the new version of the game, will be that the Earth will be making these commands from Dynamic Planet, and the crowd assembled can play wirelessly. Wireless Integrating The Sciences (WITS) Theatre : A balanced approach will describe how the communities local to Goddard and perhaps San Francisco will develop curriculum that helps kids teach kids with an engaging game and a STEM message. The performing arts will be employed to make it entertaining and appropriate to the size of the gathering, and the students educational level.

  17. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    Science.gov (United States)

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  18. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    Science.gov (United States)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    ://dx.doi.org/10.1126/science.1213847 Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., Sliz, P., 2012. Shining light into black boxes. Science 336 (6078), 159-160. http://dx.doi.org/10.1126/science.1218263 Nature, 2011. Devil in the details. Nature 470 (7334), 305-306. http://dx.doi.org/10.1038/470305b Stodden, V., 2012. Reproducible research: Tools and strategies for scientific computing. Computing in Science and Engineering 14, 11-12. http://dx.doi.org/10.1109/MCSE.2012.82 de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San-Miguel-Ayanz, J., (exp. 2013). Supporting Environmental Modelling and Science-Policy Interface at European Scale with Geospatial Semantic Array Programming. In prep. Molloy, J. C., 2011. The open knowledge foundation: Open data means better science. PLoS Biology 9 (12), e1001195+. http://dx.doi.org/10.1371/journal.pbio.1001195 de Rigo, D., 2013. Software Uncertainty in Integrated Environmental Modelling: the role of Semantics and Open Science. Geophysical Research Abstracts 15, EGU General Assembly 2013. Cerf, V. G., 2012. Where is the science in computer science? Commun. ACM 55 (10), 5. http://dx.doi.org/10.1145/2347736.2347737 Wilson, G., 2006. Where's the real bottleneck in scientific computing? American Scientist 94 (1), 5+. http://dx.doi.org/10.1511/2006.1.5 de Rigo, D. 2012. Integrated Natural Resources Modelling and Management: minimal redefinition of a known challenge for environmental modelling. Excerpt from the Call for a shared research agenda toward scientific knowledge freedom, Maieutike Research Initiative. http://www.citeulike.org/groupfunc/15400/home Stallman, R. M., 2005. Free community science and the free development of science. PLoS Med 2 (2), e47+. http://dx.doi.org/10.1371/journal.pmed.0020047 Stallman, R. M., 2009. Viewpoint: Why "open source" misses the point of free software. Communications of the ACM 52 (6), 31-33. http://dx.doi.org/10.1145/1516046.1516058 (free access version: http://www.gnu.org/philosophy/open-source-misses-the-point

  19. ECOSYSTEM SERVICES AND BEYOND: INTEGRATION OF ECOSYSTEM SCIENCE AND MULTIMEDIA EXPOSURE MODELING FOR ENVIRONMENTAL PROTECTION

    Science.gov (United States)

    Decision-making for ecosystem protection and resource management requires an integrative science and technology applied with a sufficiently comprehensive systems approach. Single media (e.g., air, soil and water) approaches that evaluate aspects of an ecosystem in a stressor-by-...

  20. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  1. Literacy and Arts-Integrated Science Lessons Engage Urban Elementary Students in Exploring Environmental Issues

    Science.gov (United States)

    Gray, P.; Elser, C. F.; Klein, J. L.; Rule, A. C.

    2016-01-01

    This descriptive case study examined student attitudes, writing skills and content knowledge of urban fourth and fifth graders (6 males, 9 female) during a six-week literacy, thinking skill, and art-integrated environmental science unit. Pre- and post-test questions were used to address knowledge of environmental problems and student environmental…

  2. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  3. Gulf of Mexico Integrated Science - Tampa Bay Study - Data Information Management System (DIMS)

    Science.gov (United States)

    Johnston, James

    2004-01-01

    The Tampa Bay Integrated Science Study is an effort by the U.S. Geological Survey (USGS) that combines the expertise of federal, state and local partners to address some of the most pressing ecological problems of the Tampa Bay estuary. This project serves as a template for the application of integrated research projects in other estuaries in the Gulf of Mexico. Efficient information and data distribution for the Tampa Bay Study has required the development of a Data Information Management System (DIMS). This information system is being used as an outreach management tool, providing information to scientists, decision makers and the public on the coastal resources of the Gulf of Mexico.

  4. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  5. Integration and Differentiation as the Universal Scientific Categories and their Reflection in the Theory and Practice of Natural Science Education

    Directory of Open Access Journals (Sweden)

    V. A. Ignatova

    2013-01-01

    Full Text Available The post-industrial society gives way to the qualitatively new formation of education, integrated at its every level: integration with science and production; cooperation of different educational establishments; succession of educational levels; cross-disciplinary and inter-disciplinary expertise development; choice of methods, technologies and organizational forms of education and upbringing, etc. The integration and differentiation in their didactic unity reflect the complexity and contradiction of educational process, either of them dominating in certain socio-economic conditions of the given historic period. The retrospective analysis of the above correlation regarding the natural science disciplines demonstrates the lack of theoretical and methodological bases for integration, and its accidental unsystematic character in educational processes. The main conclusion of the study is the need for the complex competence model to combine the ideas of integration and differentiation providing both the wide outlook and professional training. For overcoming the predominance of differentiated education, the author suggests adapting the concepts of post-non-classical science, and selection and structuring of educational information with the reference to the semantic universals of systematic synergetic approach. The research findings can be used in pedagogic research methodology, educational process design and modeling, its content, technology and organization. 

  6. Theorizing political psychology: Doing integrative social science under the condition of postmodernity

    OpenAIRE

    Rosenberg, Shawn W.

    2003-01-01

    At the beginning of the 21st century, the field of political psychology; like the social sciences more generally, is being challenged. New theoretical direction is being demanded from within and a greater epistemological sophistication and ethical relevance is being demanded from without. In response, direction for a reconstructed political psychology is offered here. To begin, a theoretical framework for a truly integrative political psychology is sketched. This is done in light of the appar...

  7. OLED Hybrid Integrated Polymer Microfluidic Biosensing for Point of Care Testing

    Directory of Open Access Journals (Sweden)

    Ashwin Acharya

    2015-09-01

    Full Text Available This paper reports a microfluidic platform with external hybrid integration of an organic light emitting diode (OLED as an excitation source. This device can be used as a simple and cost effective biosensing element. The device is capable of rapid in-situ detection of biological elements such as sensing of interaction of antigen with fluorescent tagged antibody conjugates. These portable microfluidic systems have great potential for use an OLED in a single chip with very high accuracy and sensitivity for various point-of-care (POC diagnosis and lab on a chip (LOC applications, as the miniaturization of the biosensor is essential for handling smaller sample volumes in order to achieve high throughput. The biosensing element was successfully tested to detect anti-sheep IgG conjugates tagged to Alexafluor using a fluorescence based immunoassay method.

  8. The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)

    Science.gov (United States)

    Hoffman, Reviewed By Megan M.

    2000-01-01

    "You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon

  9. Improving integration for integrated coastal zone management: an eight country study.

    Science.gov (United States)

    Portman, M E; Esteves, L S; Le, X Q; Khan, A Z

    2012-11-15

    Integrated coastal zone management (ICZM) is a widely accepted approach for sustainable management of the coastal environment. ICZM emphasizes integration across sectors, levels of government, uses, stakeholders, and spatial and temporal scales. While improving integration is central to progress in ICZM, the role of and the achievement of integration remain understudied. To further study these two points, our research analyzes the performance of specific mechanisms used to support ICZM in eight countries (Belgium, India, Israel, Italy, Portugal, Sweden, UK, and Vietnam). The assessment is based on a qualitative comparative analysis conducted through the use of two surveys. It focuses on five ICZM mechanisms (environmental impact assessment; planning hierarchy; setback lines; marine spatial planning, and regulatory commission) and their role in improving integration. Our findings indicate that certain mechanisms enhance specific types of integration more effectively than others. Environmental impact assessment enhances science-policy integration and can be useful to integrate knowledge across sectors. Planning hierarchy and regulatory commissions are effective mechanisms to integrate policies across government levels, with the latter also promoting public-government integration. Setback lines can be applied to enhance integration across landscape units. Marine spatial planning is a multi-faceted mechanism with the potential to promote all types of integration. Policy-makers should adopt the mechanisms that are suited to the type of integration needed. Results of this study also contribute to evidence-based coastal management by identifying the most common impediments related to the mechanisms of integration in the eight studied countries. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Classical integrability for three-point functions: cognate structure at weak and strong couplings

    Energy Technology Data Exchange (ETDEWEB)

    Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2016-10-10

    In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.

  11. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.

    Science.gov (United States)

    Kadimisetty, Karteek; Song, Jinzhao; Doto, Aoife M; Hwang, Young; Peng, Jing; Mauk, Michael G; Bushman, Frederic D; Gross, Robert; Jarvis, Joseph N; Liu, Changchun

    2018-06-30

    Molecular diagnostics that involve nucleic acid amplification tests (NAATs) are crucial for prevention and treatment of infectious diseases. In this study, we developed a simple, inexpensive, disposable, fully 3D printed microfluidic reactor array that is capable of carrying out extraction, concentration and isothermal amplification of nucleic acids in variety of body fluids. The method allows rapid molecular diagnostic tests for infectious diseases at point of care. A simple leak-proof polymerization strategy was developed to integrate flow-through nucleic acid isolation membranes into microfluidic devices, yielding a multifunctional diagnostic platform. Static coating technology was adopted to improve the biocompatibility of our 3D printed device. We demonstrated the suitability of our device for both end-point colorimetric qualitative detection and real-time fluorescence quantitative detection. We applied our diagnostic device to detection of Plasmodium falciparum in plasma samples and Neisseria meningitides in cerebrospinal fluid (CSF) samples by loop-mediated, isothermal amplification (LAMP) within 50 min. The detection limits were 100 fg for P. falciparum and 50 colony-forming unit (CFU) for N. meningitidis per reaction, which are comparable to that of benchtop instruments. This rapid and inexpensive 3D printed device has great potential for point-of-care molecular diagnosis of infectious disease in resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Integration of point-of-care ultrasound during rapid sequence intubation in trauma resuscitation

    Directory of Open Access Journals (Sweden)

    Prakash Ranjan Mishra

    2018-01-01

    Full Text Available Introduction: Airway and breathing management play critical role in trauma resuscitation. Early identification of esophageal intubation and detection of fatal events is critical. Authors studied the utility of integration of point-of-care ultrasound (POCUS during different phases of rapid sequence intubation (RSI in trauma resuscitation. Methods: It was prospective, randomized single-centered study conducted at the Emergency Department of a level one trauma center. Patients were divided into ultrasonography (USG and clinical examination (CE arm. The objectives were to study the utility of POCUS in endotracheal tube placement and confirmations and identification of potentially fatal conditions as tracheal injury, midline vessels, paratracheal hematoma, vocal cord pathology, pneumothorax, and others during RSI. Patient >1 year of age were included. Time taken for procedure, number of incorrect intubations, and pathologies detected were noted. The data were collected in Microsoft Excel spread sheets and analyzed using Stata (version 11.2, Stata Corp, Texas, U. S. A software. Results: One hundred and six patients were recruited. The mean time for primary survey USG versus CE arm was (20 ± 10.01 vs. 18 ± 11.03 seconds. USG detected four pneumothorax, one tracheal injury, and one paratracheal hematoma. The mean procedure time USG versus CE arm was (37.3 ± 21.92 vs. 58 ± 32.04 seconds. Eight esophageal intubations were identified in USG arm by POCUS and two in CE arm by EtCO2 values. Conclusion: Integration of POCUS was useful in all three phases of RSI. It identified paratracheal hematoma, tracheal injury, and pneumothorax. It also identified esophageal intubation and confirmed main stem tracheal intubation in less time compared to five-point auscultation and capnography.

  13. Functional screen printed radio frequency identification tags on flexible substrates, facilitating low-cost and integrated point-of-care diagnostics

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2018-05-01

    Full Text Available This work explores the practical functionality of ultra-high frequency (UHF) radio frequency identification (RFID) tags screen printed onto various low-cost, flexible substrates. The need for integrated and automated low-cost point...

  14. Strategical integration and prior evaluation of science and innovation projects in Ecuadorians sports organizations.

    Directory of Open Access Journals (Sweden)

    Gloria Barroso Rodríguez

    2015-09-01

    Full Text Available This work shows the design of a procedure for evaluating the strategical integration of science and innovation projects level in the physical and sport sphere, and its validation through expert criteria for application to Ecuadorian sports organizations. As a result, it was possible to demonstrate the validity of the procedure designed, so it will be possible to be used to facilitate decision-making in relation to the execution of such projects considering, as a value judgment, the level of their essential components integration for the achievement of objectives aligned to the strategic priorities of the Ecuadorians sports organizations.  

  15. PNAUM: integrated approach to Pharmaceutical Services, Science, Technology and Innovation.

    Science.gov (United States)

    Gadelha, Carlos Augusto Grabois; Costa, Karen Sarmento; Nascimento, José Miguel do; Soeiro, Orlando Mário; Mengue, Sotero Serrate; Motta, Márcia Luz da; Carvalho, Antônio Carlos Campos de

    2016-12-01

    This paper describes the development process of the Pesquisa Nacional sobre Acesso, Utilização e Promoção do Uso Racional de Medicamentos (PNAUM - National Survey on Access, Use and Promotion of Rational Use of Medicines) based on an integrated approach to pharmaceutical services, science, technology and innovation. It starts by contextualizing health and development in Brazil and features elements of the National Policy for Science, Technology and Innovation in Health in Brazil and the National Policy for Pharmaceutical Services. On presenting pharmaceutical policy guidelines, it stresses the lack of nationwide data. This survey, commissioned by the Brazilian Ministry of Health, has two components: household survey and evaluation of pharmaceutical services in primary care. The findings point to perspectives that represent, besides the enhancement of public policy for pharmaceutical services and public health, results of government action aimed at developing the economic and industrial health care complex to improve the health conditions of the Brazilian population. RESUMO O artigo apresenta o processo de construção da Pesquisa Nacional sobre Acesso, Utilização e Promoção do Uso Racional de Medicamento a partir de uma concepção integradora da Assistência Farmacêutica, Ciência, Tecnologia e Inovação. Inicia-se contextualizando a saúde e o desenvolvimento no País e apresenta elementos da Política Nacional de Ciência Tecnologia e Inovação em Saúde no Brasil e da Política Nacional de Assistência Farmacêutica. Ao apresentar as diretrizes das Políticas Farmacêuticas, destaca-se a carência de dados de abrangência nacional. A presente pesquisa, encomendada pelo Ministério da Saúde, foi estruturada em dois componentes: inquérito domiciliar e avaliação dos serviços de assistência farmacêutica na atenção básica. As perspectivas dos resultados representam, além do incremento das políticas públicas farmacêuticas e de saúde p

  16. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction

    Science.gov (United States)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.

    2016-02-01

    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  17. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  18. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  19. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    Science.gov (United States)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  20. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  1. Caring for nanotechnology? Being an integrated social scientist.

    Science.gov (United States)

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration.

  2. Successful Integration of Hepatitis C Virus Point-of-Care Tests into the Denver Metro Health Clinic

    Directory of Open Access Journals (Sweden)

    A. Jewett

    2013-01-01

    Full Text Available Background. The Centers for Disease Control and Prevention (CDC recommends testing and linkage to care for persons most likely infected with hepatitis C virus (HCV, including persons with human immunodeficiency virus. We explored facilitators and barriers to integrating HCV point-of-care (POC testing into standard operations at an urban STD clinic. Methods. The OraQuick HCV rapid antibody test was integrated at the Denver Metro Health Clinic (DMHC. All clients with at least one risk factor were offered the POC test. Research staff conducted interviews with clients (three HCV positive and nine HCV negative. Focus groups were conducted with triage staff, providers, and linkage-to-care counselors. Results. Clients were pleased with the ease of use and rapid return of results from the HCV POC test. Integrating the test into this setting required more time but was not overly burdensome. While counseling messages were clear to staff, clients retained little knowledge of hepatitis C infection or factors related to risk. Barriers to integrating the HCV POC test into clinic operations were loss to follow-up and access to care. Conclusion. DMHC successfully integrated HCV POC testing and piloted a HCV linkage-to-care program. Providing testing opportunities at STD clinics could increase identification of persons with HCV infection.

  3. Integrated STEM in secondary education: A case study

    International Nuclear Information System (INIS)

    De Meester, Jolien; Dehaene, Wim; Knipprath, Heidi; Thielemans, Jan; De Cock, Mieke; Langie, Greet

    2015-01-01

    Despite many opportunities to study STEM (Science, Technology, Engineering and Mathematics) in Flemish secondary education, only a minority of pupils are actually pursuing STEM fields in higher education and jobs. One reason could be that they do not see the relevance of science and mathematics. In order to draw their pupils’ interest in STEM, a Belgian school started a brand new initiative: the school set up and implemented a first year course that integrates various STEM disciplines, hoping to provide an answer to the question pupils often ask themselves about the need to study math and science. The integrated curriculum was developed by the school’s teachers and a STEM education research group of the University of Leuven. To examine the pupils’ attitude towards STEM and STEM professions and their notion of relevance of STEM at the end of this one-year course, a post-test was administered to the group of pupils who attended the integrated STEM course (the experimental group) and to a group of pupils that took traditional, non-integrated STEM courses (the control group). The results reveal that attending the integrated STEM course is significantly related to pupils’ interest in STEM and notion of relevance of STEM. Another post-test was administered only to the experimental group to investigate pupils’ understanding of math and physics concepts and their relation when taught in an integrated way. The results reveal that the pupils have some conceptual understanding and can, to a certain extent, make a transfer of concepts across different STEM disciplines. However, the test results did point out that some additional introductory training in pure math context is needed.

  4. Bridging views in cinema: a review of the art and science of view integration.

    Science.gov (United States)

    Levin, Daniel T; Baker, Lewis J

    2017-09-01

    Recently, there has been a surge of interest in the relationship between film and cognitive science. This is reflected in a new science of cinema that can help us both to understand this art form, and to produce new insights about cognition and perception. In this review, we begin by describing how the initial development of cinema involved close observation of audience response. This allowed filmmakers to develop an informal theory of visual cognition that helped them to isolate and creatively recombine fundamental elements of visual experience. We review research exploring naturalistic forms of visual perception and cognition that have opened the door to a productive convergence between the dynamic visual art of cinema and science of visual cognition that can enrich both. In particular, we discuss how parallel understandings of view integration in cinema and in cognitive science have been converging to support a new understanding of meaningful visual experience. WIREs Cogn Sci 2017, 8:e1436. doi: 10.1002/wcs.1436 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  5. The rise of information science: a changing landscape for soil science

    Science.gov (United States)

    Roudier, Pierre; Ritchie, Alistair; Hedley, Carolyn; Medyckyj-Scott, David

    2015-07-01

    The last 15 years have seen the rapid development of a wide range of information technologies. Those developments have been impacting all fields of science, at every step of the scientific method: data collection, data analysis, inference, science communication and outreach. The rate at which data is being generated is increasing exponentially, giving opportunities to improve our understanding of soils. Parallel developments in computing hardware and methods, such as machine learning, open ways to not only harness the '”data deluge”, but also offer a new way to generate knowledge. Finally, emerging data and information delivery protocols are leveraging the outreach power of the World Wide Web to disseminate scientific data and information, and increase their use and understanding outside the boundaries of a given scientific field. However, the nature of this data is mostly new to soil science, and requires adaptation to its diversity and volume. In particular, the integration of the significant amount of legacy soil data collected throughout decades of soil science can be problematic when all necessary metadata is not available. Likewise, knowledge accumulated by our scientific field needs to be acknowledged by - rather than opposed to - numerical methods. While the introduction of this set of emerging technologies is enabling soil science from different points of view, its successful implementation depends on the ability of soil scientists to act as knowledge brokers and support numerical methods.

  6. Publication point indicators

    DEFF Research Database (Denmark)

    Elleby, Anita; Ingwersen, Peter

    2010-01-01

    ; the Cumulated Publication Point Indicator (CPPI), which graphically illustrates the cumulated gain of obtained vs. ideal points, both seen as vectors; and the normalized Cumulated Publication Point Index (nCPPI) that represents the cumulated gain of publication success as index values, either graphically......The paper presents comparative analyses of two publication point systems, The Norwegian and the in-house system from the interdisciplinary Danish Institute of International Studies (DIIS), used as case in the study for publications published 2006, and compares central citation-based indicators...... with novel publication point indicators (PPIs) that are formalized and exemplified. Two diachronic citation windows are applied: 2006-07 and 2006-08. Web of Science (WoS) as well as Google Scholar (GS) are applied to observe the cite delay and citedness for the different document types published by DIIS...

  7. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  8. CONTRIBUTIONS OF HEBB AND VYGOTSKY TO AN INTEGRATED SCIENCE OF MIND

    Science.gov (United States)

    Ghassemzadeh, Habibollah; Posner, Michael I.; Rothbart, Mary K.

    2013-01-01

    Hebb and Vygotsky are two of the most influential figures of psychology in the first half of the 20th century. They represent cultural and biological approaches to explaining human development, and thus a number of their ideas remain relevant to current psychology and cognitive neuroscience. In this paper we examine similarities and differences between these two important figures, exploring possibilities for a theoretical synthesis between their two literatures, which have had little contact each other. To pursue these goals the following topics are discussed: 1) Hebb and Vygotsky’s lives and training; 2) their innovations in theory building relating to an “objective psychology” and objective science of mind, 3) their developmental approach, 4) their treatment of mediation and neuropsychology and 5) their current relevance and possible integration of their views. We argue that considering the two together improves prospects for a more complete and integrated approach to mind and brain in society. PMID:23679195

  9. Why we do what we do: a theoretical evaluation of the integrated practice model for forensic nursing science.

    Science.gov (United States)

    Valentine, Julie L

    2014-01-01

    An evaluation of the Integrated Practice Model for Forensic Nursing Science () is presented utilizing methods outlined by . A brief review of nursing theory basics and evaluation methods by Meleis is provided to enhance understanding of the ensuing theoretical evaluation and critique. The Integrated Practice Model for Forensic Nursing Science, created by forensic nursing pioneer Virginia Lynch, captures the theories, assumptions, concepts, and propositions inherent in forensic nursing practice and science. The historical background of the theory is explored as Lynch's model launched the role development of forensic nursing practice as both a nursing and forensic science specialty. It is derived from a combination of nursing, sociological, and philosophical theories to reflect the grounding of forensic nursing in the nursing, legal, psychological, and scientific communities. As Lynch's model is the first inception of forensic nursing theory, it is representative of a conceptual framework although the title implies a practice theory. The clarity and consistency displayed in the theory's structural components of assumptions, concepts, and propositions are analyzed. The model is described and evaluated. A summary of the strengths and limitations of the model is compiled followed by application to practice, education, and research with suggestions for ongoing theory development.

  10. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  11. A Hybrid Neuro-Fuzzy Model For Integrating Large Earth-Science Datasets

    Science.gov (United States)

    Porwal, A.; Carranza, J.; Hale, M.

    2004-12-01

    A GIS-based hybrid neuro-fuzzy approach to integration of large earth-science datasets for mineral prospectivity mapping is described. It implements a Takagi-Sugeno type fuzzy inference system in the framework of a four-layered feed-forward adaptive neural network. Each unique combination of the datasets is considered a feature vector whose components are derived by knowledge-based ordinal encoding of the constituent datasets. A subset of feature vectors with a known output target vector (i.e., unique conditions known to be associated with either a mineralized or a barren location) is used for the training of an adaptive neuro-fuzzy inference system. Training involves iterative adjustment of parameters of the adaptive neuro-fuzzy inference system using a hybrid learning procedure for mapping each training vector to its output target vector with minimum sum of squared error. The trained adaptive neuro-fuzzy inference system is used to process all feature vectors. The output for each feature vector is a value that indicates the extent to which a feature vector belongs to the mineralized class or the barren class. These values are used to generate a prospectivity map. The procedure is demonstrated by an application to regional-scale base metal prospectivity mapping in a study area located in the Aravalli metallogenic province (western India). A comparison of the hybrid neuro-fuzzy approach with pure knowledge-driven fuzzy and pure data-driven neural network approaches indicates that the former offers a superior method for integrating large earth-science datasets for predictive spatial mathematical modelling.

  12. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  13. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  14. Responses and Clarifications Regarding Science and Worldviews

    Science.gov (United States)

    Gauch, Hugh G.

    2009-06-01

    This article responds to the other 10 papers in this thematic issue on science and worldviews and it clarifies some of the points in my lead article. The Bayesian framework provides helpful structure for worldview inquiries by recognizing and integrating both public and personal evidence. Drawing upon the other 10 papers, six kinds of potential evidence or considerations are identified: the problem of evil, evolution, miracles and prayer, the Anthropic Principle, religious experience, and natural theology. The thesis is defended that considerations informing worldview convictions include public evidence from the sciences and the humanities and personal evidence from individual experience. Additional topics addressed briefly include scientific realism, the tentativeness of scientific knowledge, science’s presuppositions, the relationship between natural science and natural theology, the nature of religious faith, and the importance of philosophy in science education. Seven questions are posed for which further leadership from the AAAS and NAS would benefit the scientific community.

  15. Postural strategies and sensory integration: no turning point between childhood and adolescence.

    Directory of Open Access Journals (Sweden)

    Sophie Mallau

    Full Text Available In this study, we investigated the sensory integration to postural control in children and adolescents from 5 to 15 years of age. We adopted the working hypothesis that considerable body changes occurring during these periods may lead subjects to under-use the information provided by the proprioceptive pathway and over-use other sensory systems such as vision to control their orientation and stabilize their body. It was proposed to determine which maturational differences may exist between the sensory integration used by children and adolescents in order to test the hypothesis that adolescence may constitute a specific phase in the development of postural control. This hypothesis was tested by applying an original protocol of slow oscillations below the detection threshold of the vestibular canal system, which mainly serves to mediate proprioceptive information, to the platform on which the subjects were standing. We highlighted the process of acquiring an accurate sensory and anatomical reference frame for functional movement. We asked children and adolescents to maintain a vertical stance while slow sinusoidal oscillations in the frontal plane were applied to the support at 0.01 Hz (below the detection threshold of the semicircular canal system and at 0.06 Hz (above the detection threshold of the semicircular canal system with their eyes either open or closed. This developmental study provided evidence that there are mild differences in the quality of sensory integration relative to postural control in children and adolescents. The results reported here confirmed the predominance of vision and the gradual mastery of somatosensory integration in postural control during a large period of ontogenesis including childhood and adolescence. The youngest as well as the oldest subjects adopted similar qualitative damping and segmental stabilization strategies that gradually improved with age without reaching an adult's level. Lastly, sensory

  16. Bridging the Arts and Computer Science: Engaging At-Risk Students through the Integration of Music

    Science.gov (United States)

    Moyer, Lisa; Klopfer, Michelle; Ernst, Jeremy V.

    2018-01-01

    Linux Laptop Orchestra (L2Ork), founded in 2009 in the Virginia Tech Music Department's Digital and Interactive Sound & Intermedia Studio, "explores the power of gesture, communal interaction, and the multidimensionality of arts, as well as technology's potential to seamlessly integrate arts and sciences with particular focus on K-12…

  17. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (First External Review Draft, Sep 2007)

    Science.gov (United States)

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluatio...

  18. An Evaluation of Integrated Curriculum as It Exists in Mathematics and Science SSS as Well as the Subsequent Supportive Presentation of Those Standards in Eighth Grade Mathematics and Science Textbooks

    Science.gov (United States)

    Gill, Clara Joanne Schneberger

    2010-01-01

    This study attempted to verify points of intersection (POIs) between mathematics and science in the eighth grade Sunshine State Standards (SSS), and to develop a valid and reliable instrument to evaluate these POIs as they were presented in the respective mathematics and science textbooks approved for use in Florida public schools. Shannon and…

  19. Multimedia Bootcamp: a health sciences library provides basic training to promote faculty technology integration.

    Science.gov (United States)

    Ramsey, Ellen C

    2006-04-25

    Recent research has shown a backlash against the enthusiastic promotion of technological solutions as replacements for traditional educational content delivery. Many institutions, including the University of Virginia, have committed staff and resources to supporting state-of-the-art, showpiece educational technology projects. However, the Claude Moore Health Sciences Library has taken the approach of helping Health Sciences faculty be more comfortable using technology in incremental ways for instruction and research presentations. In July 2004, to raise awareness of self-service multimedia resources for instructional and professional development needs, the Library conducted a "Multimedia Bootcamp" for nine Health Sciences faculty and fellows. Case study. Program stewardship by a single Library faculty member contributed to the delivery of an integrated learning experience. The amount of time required to attend the sessions and complete homework was the maximum fellows had to devote to such pursuits. The benefit of introducing technology unfamiliar to most fellows allowed program instructors to start everyone at the same baseline while not appearing to pass judgment on the technology literacy skills of faculty. The combination of wrapping the program in the trappings of a fellowship and selecting fellows who could commit to a majority of scheduled sessions yielded strong commitment from participants as evidenced by high attendance and a 100% rate of assignment completion. Response rates to follow-up evaluation requests, as well as continued use of Media Studio resources and Library expertise for projects begun or conceived during Bootcamp, bode well for the long-term success of this program. An incremental approach to integrating technology with current practices in instruction and presentation provided a supportive yet energizing environment for Health Sciences faculty. Keys to this program were its faculty focus, traditional hands-on instruction, unrestricted

  20. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    Science.gov (United States)

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  1. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, N.; Giacomini, Alex [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)

    2017-07-15

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaitre-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa. (orig.)

  2. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    International Nuclear Information System (INIS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-01-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaitre-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa. (orig.)

  3. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-07-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.

  4. How two word-trained dogs integrate pointing and naming

    NARCIS (Netherlands)

    Grassmann, Susanne; Kaminski, Juliane; Tomasello, Michael

    Two word-trained dogs were presented with acts of reference in which a human pointed, named objects, or simultaneously did both. The question was whether these dogs would assume co-reference of pointing and naming and thus pick the pointed-to object. Results show that the dogs did indeed assume

  5. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System

    Science.gov (United States)

    Durant, Anne Foss; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California’s Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes. PMID:26828076

  6. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System.

    Science.gov (United States)

    Foss Durant, Anne; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California's Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes.

  7. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  8. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices

    Directory of Open Access Journals (Sweden)

    Bart Verhees

    2017-12-01

    Full Text Available Point-of-care testing (POCT—laboratory tests performed with new mobile devices and online technologies outside of the central laboratory—is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP’s network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre.

  9. Care Model Design for E-Health: Integration of Point-of-Care Testing at Dutch General Practices.

    Science.gov (United States)

    Verhees, Bart; van Kuijk, Kees; Simonse, Lianne

    2017-12-21

    Point-of-care testing (POCT)-laboratory tests performed with new mobile devices and online technologies outside of the central laboratory-is rapidly outpacing the traditional laboratory test market, growing at a rate of 12 to 15% each year. POCT impacts the diagnostic process of care providers by yielding high efficiency benefits in terms of turnaround time and related quality improvements in the reduction of errors. However, the implementation of this disruptive eHealth technology requires the integration and transformation of diagnostic services across the boundaries of healthcare organizations. Research has revealed both advantages and barriers of POCT implementations, yet to date, there is no business model for the integration of POCT within general practice. The aim of this article is to contribute with a design for a care model that enables the integration of POCT in primary healthcare. In this research, we used a design modelling toolkit for data collection at five general practices. Through an iterative design process, we modelled the actors and value transactions, and designed an optimized care model for the dynamic integration of POCTs into the GP's network of care delivery. The care model design will have a direct bearing on improving the integration of POCT through the connectivity and norm guidelines between the general practice, the POC technology, and the diagnostic centre.

  10. Multiscale paradigms in integrated computational materials science and engineering materials theory, modeling, and simulation for predictive design

    CERN Document Server

    Runge, Keith; Muralidharan, Krishna

    2016-01-01

    This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

  11. Effects of Teacher Lesson Introduction on Second Graders' Creativity in a Science/Literacy Integrated Unit on Health and Nutrition

    Science.gov (United States)

    Webb, Angela Naomi; Rule, Audrey C.

    2014-01-01

    The focus on standardized testing in the areas of reading and mathematics in early elementary education often minimalizes science and the arts in the curriculum. The science topics of health and nutrition were integrated into the reading curriculum through read aloud books. Inclusion of creativity skills through figural transformation drawings…

  12. Why is integration so difficult? Shifting roles of ethics and three idioms for thinking about science, technology and society

    Directory of Open Access Journals (Sweden)

    Rune Nydal

    2015-05-01

    Full Text Available Contemporary science and technology research are now expected to become more responsible through collaboration with social scientists and scholars from the humanities. This paper suggests a frame explaining why such current calls for ‘integration’ are seen as appropriate across sectors even though there are no shared understanding of how proper integration is to take place. The call for integration is understood as a response to shifting roles of ethics within research structures following shifts in modes of knowledge production. Integration is difficult, this paper suggests, because it challenges the modern normative division of labor affecting professional identities across sectors. Working out modes of integration is one important venue for working out alternative professional identities on the one hand and viable alternative understandings of research on the other hand. This paper discusses the matter with reference to three successive idioms for thinking about science, technology and society discussed in the literature; the representational, performative and co-production idiom.http://dx.doi.org/10.5324/eip.v9i1.1835

  13. A Science of Social Work, and Social Work as an Integrative Scientific Discipline: Have We Gone Too Far, or Not Far Enough?

    Science.gov (United States)

    Brekke, John S.

    2014-01-01

    There are two purposes to this article. The first is to update the science of social work framework. The second is to use recent discussions on the nature of realist science and on social work science to propose a definition of social work as an integrative scientific discipline that complements its definition as a profession.

  14. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  15. Science and Ecological Economics: Integrating of the Study of Humans and the Rest of Nature

    Science.gov (United States)

    Costanza, Robert

    2009-01-01

    Ecological economics is a transdisciplinary field that seeks to integrate the study of humans and the rest of nature as the basis for the creation of a sustainable and desirable future. It seeks to dissolve the barriers between the traditional disciplines and achieve a true "consilience" of all the sciences and humanities. This consilient,…

  16. Fuels planning: science synthesis and integration; environmental consequences fact sheet 05: prescriptions and fire effects

    Science.gov (United States)

    Melanie Miller

    2004-01-01

    Fuels planning: science synthesis and integration; environmental consequences fact sheet 5: prescriptions and fire effects. Miller, Melanie. 2004. Res. Note RMRS-RN-23-5-WWW. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 2 p. While our understanding of the causes for variation in postfire effects is increasing, burn...

  17. Integrating natural and social sciences to inspire public confidence in radioactive waste policy case study - Committee on radioactive waste management

    International Nuclear Information System (INIS)

    Usher, Sam

    2007-01-01

    Integrating Natural and Social Sciences to Inspire Public Confidence in Radioactive Waste Policy Case Study: Committee on Radioactive Waste Management Implementing effective long-term radioactive waste management policy is challenging, and both UK and international experience is littered with policy and programme failures. Policy must not only be underpinned by sound science and technical rationale, it must also inspire the confidence of the public and other stakeholders. However, in today's modern society, communities will not simply accept the word of scientists for setting policy based purely on technical grounds. This is particularly so in areas where there are significant social and ethical issues, such as radioactive waste disposal. To develop and implement effective policy, governments, waste owners and implementing bodies must develop processes which effectively integrate both complex technical and scientific issues, with equally challenging social and ethical concerns. These integrating processes must marry often intricate technical issues with broad public and stakeholder engagement programmes, in programmes which can expect the highest levels of public scrutiny, and must invariably be delivered within challenging time and budget constraints. This paper considers a model for how such integrating processes can be delivered. The paper reviews, as a case study, how such challenges were overcome by the Committee on Radioactive Waste Management (CoRWM), which, in July 2006, made recommendations to the UK government for the establishment of a long-term radioactive waste policy. Its recommendations were underpinned by sound science, but also engendered public confidence through undertaking the largest and most significant deliberative public and stakeholder engagement programme on a complex policy issue in the UK. Effective decision-making was enabled through the integration of both proven and bespoke methodologies, including Multi-criteria Decision Analysis and

  18. Integrating ICTs into the Environmental Science Primary School Classroom in Chegutu District, Zimbabwe: Problems and Solutions

    Science.gov (United States)

    Shadreck, Mandina

    2015-01-01

    This study investigated primary school teachers' perceptions of the barriers and challenges preventing them from integrating ICTs in the environmental science classroom. The study adopted a qualitative research approach that is in line with the phenomenological perspective as it sought to acquire knowledge through understanding the direct…

  19. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Science.gov (United States)

    2010-11-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9224-7] Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Workshop... (NAAQS) for Lead (Pb), EPA is announcing that a workshop to evaluate initial draft materials for the Pb...

  20. An Integrative Review of In-Class Activities That Enable Active Learning in College Science Classroom Settings

    Science.gov (United States)

    Arthurs, Leilani A.; Kreager, Bailey Zo

    2017-01-01

    Engaging students in active learning is linked to positive learning outcomes. This study aims to synthesise the peer-reviewed literature about "active learning" in college science classroom settings. Using the methodology of an integrative literature review, 337 articles archived in the Educational Resources Information Center (ERIC) are…

  1. Agriculture and crop science in China:Innovation and sustainability

    Institute of Scientific and Technical Information of China (English)

    Yunbi Xu; Jiayang Li; Jianmin Wan

    2017-01-01

    The International Crop Science Congress (ICSC) is a regularly held event allowing crop scientists to integrate current knowledge into a global context and international applications. The 7th ICSC was held on August 14–19, 2016 in Beijing, China, with the theme "Crop Science: Innovation and Sustainability". As a companion production for this great congress, the nine papers collected in this special issue feature important fields of crop science in China. This editorial first briefly introduces the 7th ICSC, followed by a brief discussion of the current status of, constraints to, and innovations in Chinese agriculture and crop science. Finally, the main scientific points of the papers published in this special issue are surveyed, covering important advances in hybrid rice breeding, minor cereals, food legumes, rapeseed, crop systems, crop management, cotton, genomics-based germplasm research, and QTL mapping. In a section describing future prospects, it is indicated that China faces a full transition from traditional to modern agriculture and crop science.

  2. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  3. Integrating Earth System Science Data Into Tribal College and University Curricula

    Science.gov (United States)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    , surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.

  4. Creating a FIESTA (Framework for Integrated Earth Science and Technology Applications) with MagIC

    Science.gov (United States)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.

    2017-12-01

    The Magnetics Information Consortium (https://earthref.org/MagIC) has recently developed a containerized web application to considerably reduce the friction in contributing, exploring and combining valuable and complex datasets for the paleo-, geo- and rock magnetic scientific community. The data produced in this scientific domain are inherently hierarchical and the communities evolving approaches to this scientific workflow, from sampling to taking measurements to multiple levels of interpretations, require a large and flexible data model to adequately annotate the results and ensure reproducibility. Historically, contributing such detail in a consistent format has been prohibitively time consuming and often resulted in only publishing the highly derived interpretations. The new open-source (https://github.com/earthref/MagIC) application provides a flexible upload tool integrated with the data model to easily create a validated contribution and a powerful search interface for discovering datasets and combining them to enable transformative science. MagIC is hosted at EarthRef.org along with several interdisciplinary geoscience databases. A FIESTA (Framework for Integrated Earth Science and Technology Applications) is being created by generalizing MagIC's web application for reuse in other domains. The application relies on a single configuration document that describes the routing, data model, component settings and external services integrations. The container hosts an isomorphic Meteor JavaScript application, MongoDB database and ElasticSearch search engine. Multiple containers can be configured as microservices to serve portions of the application or rely on externally hosted MongoDB, ElasticSearch, or third-party services to efficiently scale computational demands. FIESTA is particularly well suited for many Earth Science disciplines with its flexible data model, mapping, account management, upload tool to private workspaces, reference metadata, image

  5. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  6. Leverage points for sustainability transformation.

    Science.gov (United States)

    Abson, David J; Fischer, Joern; Leventon, Julia; Newig, Jens; Schomerus, Thomas; Vilsmaier, Ulli; von Wehrden, Henrik; Abernethy, Paivi; Ives, Christopher D; Jager, Nicolas W; Lang, Daniel J

    2017-02-01

    Despite substantial focus on sustainability issues in both science and politics, humanity remains on largely unsustainable development trajectories. Partly, this is due to the failure of sustainability science to engage with the root causes of unsustainability. Drawing on ideas by Donella Meadows, we argue that many sustainability interventions target highly tangible, but essentially weak, leverage points (i.e. using interventions that are easy, but have limited potential for transformational change). Thus, there is an urgent need to focus on less obvious but potentially far more powerful areas of intervention. We propose a research agenda inspired by systems thinking that focuses on transformational 'sustainability interventions', centred on three realms of leverage: reconnecting people to nature, restructuring institutions and rethinking how knowledge is created and used in pursuit of sustainability. The notion of leverage points has the potential to act as a boundary object for genuinely transformational sustainability science.

  7. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.

    Science.gov (United States)

    Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

  8. Structural integrity for DEMO: An opportunity to close the gap from materials science to engineering needs

    Energy Technology Data Exchange (ETDEWEB)

    Porton, M., E-mail: michael.porton@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wynne, B.P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); University of Sheffield, Sheffield, South Yorkshire S10 2TN (United Kingdom); Bamber, R.; Hardie, C.D.; Kalsey, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Key shortfalls in the current approaches to verification of structural integrity are outlined. • Case studies for high integrity applications in other demanding environments are examined. • Relevant lessons are drawn from fission and space for the design stage and through service life. • Future efforts are suggested to align materials and engineering for DEMO structural integrity. - Abstract: It is clear that fusion demonstration devices offer unique challenges due to the myriad, interacting material degradation effects and the numerous, conflicting requirements that must be addressed in order for in-vessel components to deliver satisfactory performance over the required lifetime. The link between mechanical engineering and materials science is pivotal to assure the timely realisation and exploitation of successful fusion power. A key aspect of this link is the verification of structural integrity, achieved at the design stage via structural design criteria against which designs are judged to be sufficiently resilient (or not) to failure, for a given set of loading conditions and desired lifetime. As various demonstration power plant designs progress through their current conceptual design phases, this paper seeks to highlight key shortfalls in this vital link between engineering needs and materials science, offering a perspective on where future attention can be prioritised to maximise impact. Firstly, issues in applying existing structural design criteria to demonstration power plant designs are identified. Whilst fusion offers particular challenges, there are significant insights to be gained from attempts to address such issues for high performance, high integrity applications in other demanding environments. Therefore case studies from beyond fusion are discussed. These offer examples where similar shortfalls have been successfully addressed, via approaches at the design stage and through service lifetime in order to deliver significant

  9. Kantian Turning Point in Gadamer's Philosophical Hermeneutics

    Directory of Open Access Journals (Sweden)

    Kristína Bosáková

    2016-11-01

    Full Text Available The paper is treating the theme of a Kantian turning-point in the philosophical hermeneutics of H.- G. Gadamer based on of the harmonic relationship between metaphysics and science in Kantian philosophy from the point of view of the philosophical hermeneutics of Gadamer. The philosophical work of Kant had such an influence on Gadamer that without exaggerating we can talk about the Kantian turning-point in Gadamerian hermeneutics. Grondin, a former student of Gadamer, is talking about Kantian turning-point on the field of aesthetics, but in reality Kantian turning-point means much more than a mere change in the reception of the concept of judgement. It is a discovery of harmonical relationship between the beauty and the moral, between the reason and the sensitivity, between the modern sciences and the metaphysical tradition in the Kantian philosophy, made by Gadamer. This is what we call the Kantian turning-point in Gadamerian hermeneutics.

  10. The Content and Integrative Component of Capstone Experiences: An Analysis of Political Science Undergraduate Programs

    Science.gov (United States)

    Hummer, Jill Abraham

    2014-01-01

    In 1991, the APSA Task Force on Political Science recommended elements of a curricular structure that would best promote student learning. The report stated that there should be a capstone experience at the end of the senior year and that the capstone should require students to integrate their whole learning experience in the major. This article…

  11. Automatic Integration Testbeds validation on Open Science Grid

    International Nuclear Information System (INIS)

    Caballero, J; Potekhin, M; Thapa, S; Gardner, R

    2011-01-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit 'VO-like' jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  12. Automatic Integration Testbeds validation on Open Science Grid

    Science.gov (United States)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  13. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    Science.gov (United States)

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  14. Data integration in biological research: an overview.

    Science.gov (United States)

    Lapatas, Vasileios; Stefanidakis, Michalis; Jimenez, Rafael C; Via, Allegra; Schneider, Maria Victoria

    2015-12-01

    Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration. The quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide background on what is data integration from a computational science point of view, how it has been applied to biological research, which key aspects contributed to its success and future directions.

  15. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    Science.gov (United States)

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential

  16. Preparing Pre-Service Teachers to Teach Primary Science: An Integrated Approach Using the Theme of Sustainability

    Science.gov (United States)

    King, Donna

    2014-01-01

    An integrated approach to assessment afforded pre-service teachers the opportunity to learn about a local sustainability issue through three learning areas: science and technology, the arts and studies of society and environment (SOSE). Three sustainability issues chosen by the pre-service teachers are presented in this paper highlighting the…

  17. Integration of Research Into Science-outreach (IRIS): A Video and Web-based Approach

    Science.gov (United States)

    Clay, P. L.; O'Driscoll, B.

    2013-12-01

    The development of the IRIS (Integration of Research Into Science-outreach) initiative is aimed at using field- and laboratory- based videos and blog entries to enable a sustained outreach relationship between university researchers and local classrooms. IRIS seeks to communicate complex, cutting-edge scientific research in the Earth and Planetary sciences to school-aged children in a simple and interesting manner, in the hope of ameliorating the overall decline of children entering into science and engineering fields in future generations. The primary method of delivery IRIS utilizes is the media of film, ';webinars' and blog entries. Filmed sequences of laboratory work, field work, science demos and mini webinars on current and relevant material in the Earth and Planetary sciences are ';subscribed' to by local schools. Selected sequences are delivered in 20-30 minute film segments with accompanying written material. The level at which the subject matter is currently geared is towards secondary level school-aged children, with the purpose of inspiring and encouraging curiosity, learning and development in scientific research. The video broadcasts are supplemented by a hands-on visit 1-2 times per year by a group of scientists participating in the filmed sequences to the subscribing class, with the objective of engaging and establishing a natural rapport between the class and the scientists that they see in the broadcasts. This transgresses boundaries that traditional 'one off' outreach platforms often aren't able to achieve. The initial results of the IRIS outreach initiative including successes, problems encountered and classroom feedback will be reported.

  18. Social Infrastructure to Integrate Science and Practice: the Experience of the Long Tom Watershed Council

    Directory of Open Access Journals (Sweden)

    Rebecca L. Flitcroft

    2009-12-01

    Full Text Available Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated results without the appropriate social infrastructure. For the Long Tom Watershed Council, social infrastructure includes a management structure, membership, vision, priorities, partners, resources, and the acquisition of scientific knowledge, as well as the communication with and education of people associated with and affected by actions to protect and restore the watershed. Key to integrating science and practice is keeping science in the loop, using data collection as an outreach tool, and the Long Tom Watershed Council's subwatershed enhancement program approach. Resulting from these methods are ecological leadership, restoration projects, and partnerships that catalyze landscape-level change.

  19. Implementation science approaches for integrating eHealth research into practice and policy.

    Science.gov (United States)

    Glasgow, Russell E; Phillips, Siobhan M; Sanchez, Michael A

    2014-07-01

    To summarize key issues in the eHealth field from an implementation science perspective and to highlight illustrative processes, examples and key directions to help more rapidly integrate research, policy and practice. We present background on implementation science models and emerging principles; discuss implications for eHealth research; provide examples of practical designs, measures and exemplar studies that address key implementation science issues; and make recommendations for ways to more rapidly develop and test eHealth interventions as well as future research, policy and practice. The pace of eHealth research has generally not kept up with technological advances, and many of our designs, methods and funding mechanisms are incapable of providing the types of rapid and relevant information needed. Although there has been substantial eHealth research conducted with positive short-term results, several key implementation and dissemination issues such as representativeness, cost, unintended consequences, impact on health inequities, and sustainability have not been addressed or reported. Examples of studies in several of these areas are summarized to demonstrate this is possible. eHealth research that is intended to translate into policy and practice should be more contextual, report more on setting factors, employ more responsive and pragmatic designs and report results more transparently on issues important to potential adopting patients, clinicians and organizational decision makers. We outline an alternative development and assessment model, summarize implementation science findings that can help focus attention, and call for different types of more rapid and relevant research and funding mechanisms. Published by Elsevier Ireland Ltd.

  20. Interdisciplinarity and systems science to improve population health: a view from the NIH Office of Behavioral and Social Sciences Research.

    Science.gov (United States)

    Mabry, Patricia L; Olster, Deborah H; Morgan, Glen D; Abrams, David B

    2008-08-01

    Fueled by the rapid pace of discovery, humankind's ability to understand the ultimate causes of preventable common disease burdens and to identify solutions is now reaching a revolutionary tipping point. Achieving optimal health and well-being for all members of society lies as much in the understanding of the factors identified by the behavioral, social, and public health sciences as by the biological ones. Accumulating advances in mathematical modeling, informatics, imaging, sensor technology, and communication tools have stimulated several converging trends in science: an emerging understanding of epigenomic regulation; dramatic successes in achieving population health-behavior changes; and improved scientific rigor in behavioral, social, and economic sciences. Fostering stronger interdisciplinary partnerships to bring together the behavioral-social-ecologic models of multilevel "causes of the causes" and the molecular, cellular, and, ultimately, physiological bases of health and disease will facilitate breakthroughs to improve the public's health. The strategic vision of the Office of Behavioral and Social Sciences Research (OBSSR) at the National Institutes of Health (NIH) is rooted in a collaborative approach to addressing the complex and multidimensional issues that challenge the public's health. This paper describes OBSSR's four key programmatic directions (next-generation basic science, interdisciplinary research, systems science, and a problem-based focus for population impact) to illustrate how interdisciplinary and transdisciplinary perspectives can foster the vertical integration of research among biological, behavioral, social, and population levels of analysis over the lifespan and across generations. Interdisciplinary and multilevel approaches are critical both to the OBSSR's mission of integrating behavioral and social sciences more fully into the NIH scientific enterprise and to the overall NIH mission of utilizing science in the pursuit of

  1. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...

  2. Science Enabled by the Ares V: A Large Monolithic Telescope Placed at the Second Sun-Earth Lagrange Point

    Science.gov (United States)

    Hopkins, Randall C.; Stahl, H. Philip

    2007-01-01

    The payload mass and volume capabilities of the planned Ares V launch vehicle provide the science community with unprecedented opportunities to place large science payloads into low earth orbit and beyond. One example, the outcome of a recent study conducted at the NASA Marshall Space Flight Center, is a large, monolithic telescope with a primary mirror diameter of 6.2 meters placed into a halo orbit about the second Sun-Earth Lagrange point, or L2, approximately 1.5 million kin beyond Earth's orbit. Operating in the visible and ultraviolet regions of the electromagnetic spectrum, such a large telescope would allow astronomers to detect bio-signatures and characterize the atmospheres of transiting exoplanets, provide high resolution imaging three or more times better than the Hubble Space Telescope and the James Webb Space Telescope, and observe the ultraviolet light from warm baryonic matter.

  3. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  4. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  5. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    Science.gov (United States)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  6. Nitrogen Cascade: An Opportunity to Integrate Biogeochemistry and Policy

    Science.gov (United States)

    Galloway, J. N.; Moomaw, W. R.; Theis, T. L.

    2008-12-01

    It began with micro-organisms millions of years ago, was enhanced by the burning of fossil carbon in the last several hundred years, and was magnified by a patent filed one hundred years ago. Today, the combined actions of cultivation-induced biological nitrogen fixation, fossil fuel combustion and the Haber-Bosch process have exceeded natural terrestrial processes in converting N22 to nitrogen compounds that are biologically, chemically or physically reactive (reactive nitrogen, Nr). While the benefits of Nr are well understood, many of the adverse consequences of excessive Nr are invisible from a policy perspective. Over the past century, the fundamental knowledge on nitrogen processes has advanced to the point where we have a good understanding of nitrogen's biogeochemical cycle, the role of humans in altering the cycle, and the consequences of the alterations. This knowledge has collectively led us to two conclusions-the consequences of intensive human influence on the nitrogen cycle leads to a cascade of ecosystem and human effects which need to be managed. Secondly, the management is complicated by the facts that it not only has to be integrated, but it also has to take into account that the management should not lower the ability of managed ecosystems to produce food for the world's peoples. The framework of the nitrogen cascade provides us with a structure for better identifying intervention points, and more effective policies, technologies and measures to prevent or mitigate the adverse impacts of reactive nitrogen, while enhancing its beneficial uses. We can now begin to use our understanding of science to set priorities and craft new policy strategies. For many regions of the world, the science is strong enough to manage nitrogen and there are existing tools to do so. However, the tools are not integrated, critical tools are missing and most importantly, there are nitrogen-rich regions of the world where the science is lacking, and nitrogen-poor regions

  7. Developing a common strategy for integrative global change research and outreach: the Earth System Science Partnership (ESSP)

    NARCIS (Netherlands)

    Leemans, R.; Asrar, G.; Canadell, J.G.; Ingram, J.; Larigauderie, A.; Mooney, H.; Nobre, C.; Patwardhan, A.; Rice, M.; Schmidt, F.; Seitzinger, S.; Virji, H.; Vörösmarthy, C.; Yuoung, O.

    2009-01-01

    The Earth System Science Partnership (ESSP) was established in 2001 by four global environmental change (GEC) research programmes: DIVERSITAS, IGBP, IHDP and WCRP. ESSP facilitates the study of the Earth's environment as an integrated system in order to understand how and why it is changing, and to

  8. 76 FR 13182 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory...

    Science.gov (United States)

    2011-03-10

    ... a Public Meeting of the Science Advisory Board Committee on Science Integration for Decision Making... Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces a public meeting of the SAB Committee on Science Integration for Decision Making. DATES: The meeting dates are March 29, 2011 from 9 a.m...

  9. Views about scientists and scientific work in the novel Deception Point by Dan Brown: possibilities to insert History and Philosophy of Science elements

    Directory of Open Access Journals (Sweden)

    Wilmo Ernesto Francisco Junior

    2015-02-01

    Full Text Available Considering the influence of literature on people lives, this study investigates elements concerning views about scientists and scientific work presented in Deception Point, a novel by Dan Brown. Multiple aspects to represent the scientist figure, life and work, emerge from the novel and problematize characteristics that can be considered as a common sense view, or others perspectives based on more contemporaneous philosophical thoughts on science. Reading and analyzing this novel could be an interesting opportunity to insert elements of history and philosophy of science under different focus. This study discusses some elements, from excerpts of the novel, which may become possibilities for debates in Science classes at schools, and in teacher education.

  10. Integrated multiscale modeling of molecular computing devices

    International Nuclear Information System (INIS)

    Cummings, Peter T; Leng Yongsheng

    2005-01-01

    Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic

  11. 78 FR 27387 - Notice of Workshop and Call for Information on Integrated Science Assessment for Oxides of Sulfur

    Science.gov (United States)

    2013-05-10

    ... periodically, and, if appropriate, to revise existing air quality criteria to reflect advances in scientific... such as chemistry and physics, sources and emissions, analytical methodology, transport and... will update the scientific assessment presented in the Integrated Science Assessment for Sulfur Oxides...

  12. Integration of ICT Methods for Teaching Science and Astronomy to Students and Teachers

    Science.gov (United States)

    Ghosh, Sumit; Chary, Naveen; Raghavender, G.; Aslam, Syed

    All children start out as scientist, full of curiosity and questions about the world, but schools eventually destroy their curiosity. In an effective teaching and learning process, the most challenging task is to motivate the students. As the science subjects are more abstract and complex, the job of teachers become even more daunting. We have devised an innovative idea of integrating ICT methods for teaching space science to students and teachers. In a third world country like India, practical demonstrations are given less importance and much emphasis is on theoretical aspects. Even the teachers are not trained or aware of the basic concepts. With the intention of providing the students and as well as the teachers more practical, real-time situations, we have incorporated innovative techniques like video presentation, animations, experimental models, do-yourself-kits etc. In addition to these we provide hands on experience on some scientific instruments like telescope, Laser. ICT has the potential to teach complex science topics to students and teachers in a safe environment and cost effective manner. The students are provided with a sense of adventure, wherein now they can manipulate parameters, contexts and environment and can try different scenarios and in the process they not only learn science but also the content and also the reasoning behind the content. The response we have obtained is very encouraging and students as well as teachers have acknowledged that they have learnt new things, which up to now they were ignorant of.

  13. Pushing the boundaries of cultural congruence pedagogy in science education towards a third space

    Science.gov (United States)

    Quigley, Cassie

    2011-09-01

    This review explores Meyers and Crawford's "Teaching science as a cultural way of knowing: Merging authentic inquiry, nature of science, and multicultural strategies" by examining how they combine the use of inquiry-based science instruction with multicultural strategies. In this conversation, I point to the need of specific discourse strategies to help teachers and students create hybrid spaces to push the boundaries of cultural congruence as described in this article. These strategies include a reflective component to the explicit instruction that encourages an integration of home and science discourses. My response to this work expands on their use of multicultural strategies to push toward a congruent Third space that asks not only what happens to the students who do not participate in science, but also what happens to science when a diverse group of people does not participate?

  14. An Innovative Infrastructure with a Universal Geo-spatiotemporal Data Representation Supporting Cost-effective Integration of Diverse Earth Science Data

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.

    2017-12-01

    Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic

  15. How the Montessori Upper Elementary and Adolescent Environment Naturally Integrates Science, Mathematics, Technology, and the Environment

    Science.gov (United States)

    McNamara, John

    2016-01-01

    John McNamara shares his wisdom and humbly credits Camillo Grazzini, Jenny Höglund, and David Kahn for his growth in Montessori. Recognizing more than what he has learned from his mentors, he shares the lessons he has learned from his students themselves. Math, science, history, and language are so integrated in the curriculum that students…

  16. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  17. The Impact of Work-Integrated Learning Experiences on Attaining Graduate Attributes for Exercise and Sports Science Students

    Science.gov (United States)

    Hall, Melinda; Pascoe, Deborah; Charity, Megan

    2017-01-01

    Exercise and Sports Science (E&SS) programs at Federation University Australia provide work-integrated learning (WIL) opportunities for students to develop, apply and consolidate theoretical knowledge in the workplace. This study aimed to determine the influence of WIL experiences on achieving common graduate attributes for E&SS students.…

  18. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  19. Assessing clinical competency in the health sciences

    Science.gov (United States)

    Panzarella, Karen Joanne

    To test the success of integrated curricula in schools of health sciences, meaningful measurements of student performance are required to assess clinical competency. This research project analyzed a new performance assessment tool, the Integrated Standardized Patient Examination (ISPE), for assessing clinical competency: specifically, to assess Doctor of Physical Therapy (DPT) students' clinical competence as the ability to integrate basic science knowledge with clinical communication skills. Thirty-four DPT students performed two ISPE cases, one of a patient who sustained a stroke and the other a patient with a herniated lumbar disc. Cases were portrayed by standardized patients (SPs) in a simulated clinical setting. Each case was scored by an expert evaluator in the exam room and then by one investigator and the students themselves via videotape. The SPs scored each student on an overall encounter rubric. Written feedback was obtained from all participants in the study. Acceptable reliability was demonstrated via inter-rater agreement as well as inter-rater correlations on items that used a dichotomous scale, whereas the items requiring the use of the 4-point rubric were somewhat less reliable. For the entire scale both cases had a significant correlation between the Expert-Investigator pair of raters, for the CVA case r = .547, p performances on the ISPE with other independent estimates of students' competence. The unique integration questions of the ISPE were judged to have good content validity from experts and students, suggestive that integration, a most crucial element of clinical competence, while done in the mind of the student, can be practiced, learned and assessed.

  20. Error Mitigation of Point-to-Point Communication for Fault-Tolerant Computing

    Science.gov (United States)

    Akamine, Robert L.; Hodson, Robert F.; LaMeres, Brock J.; Ray, Robert E.

    2011-01-01

    Fault tolerant systems require the ability to detect and recover from physical damage caused by the hardware s environment, faulty connectors, and system degradation over time. This ability applies to military, space, and industrial computing applications. The integrity of Point-to-Point (P2P) communication, between two microcontrollers for example, is an essential part of fault tolerant computing systems. In this paper, different methods of fault detection and recovery are presented and analyzed.

  1. FORMATION OF THE HUMAN CAPITAL IN MODEL OF INTEGRATION OF HIGH SCHOOL SCIENCE IN INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sergey N. Mityakov

    2013-01-01

    Full Text Available Analyzed the problems of reproduction of human resources in the scientific and educational cooperation and collaboration of university research with industry. Proposed a model integration high school science to industry of the region, including the internal and external levels. On the internal level, proposed a scheme of transfer technology in a technical university, where the formation of human capital is produced in two related areas: training of competitive labor market specialists with higher education, as well as consolidation in the universities of highly qualified personnel. On the external level, proposed creation of an integrated research and education production cluster, which brings together the personnel and technological capabilities of the industrial region.

  2. INTEGRATION OF POINT CLOUDS AND IMAGES ACQUIRED FROM A LOW-COST NIR CAMERA SENSOR FOR CULTURAL HERITAGE PURPOSES

    Directory of Open Access Journals (Sweden)

    M. Kedzierski

    2017-08-01

    Full Text Available Terrestrial Laser Scanning is currently one of the most common techniques for modelling and documenting structures of cultural heritage. However, only geometric information on its own, without the addition of imagery data is insufficient when formulating a precise statement about the status of studies structure, for feature extraction or indicating the sites to be restored. Therefore, the Authors propose the integration of spatial data from terrestrial laser scanning with imaging data from low-cost cameras. The use of images from low-cost cameras makes it possible to limit the costs needed to complete such a study, and thus, increasing the possibility of intensifying the frequency of photographing and monitoring of the given structure. As a result, the analysed cultural heritage structures can be monitored more closely and in more detail, meaning that the technical documentation concerning this structure is also more precise. To supplement the laser scanning information, the Authors propose using both images taken both in the near-infrared range and in the visible range. This choice is motivated by the fact that not all important features of historical structures are always visible RGB, but they can be identified in NIR imagery, which, with the additional merging with a three-dimensional point cloud, gives full spatial information about the cultural heritage structure in question. The Authors proposed an algorithm that automates the process of integrating NIR images with a point cloud using parameters, which had been calculated during the transformation of RGB images. A number of conditions affecting the accuracy of the texturing had been studies, in particular, the impact of the geometry of the distribution of adjustment points and their amount on the accuracy of the integration process, the correlation between the intensity value and the error on specific points using images in different ranges of the electromagnetic spectrum and the selection

  3. Integration of Point Clouds and Images Acquired from a Low-Cost NIR Camera Sensor for Cultural Heritage Purposes

    Science.gov (United States)

    Kedzierski, M.; Walczykowski, P.; Wojtkowska, M.; Fryskowska, A.

    2017-08-01

    Terrestrial Laser Scanning is currently one of the most common techniques for modelling and documenting structures of cultural heritage. However, only geometric information on its own, without the addition of imagery data is insufficient when formulating a precise statement about the status of studies structure, for feature extraction or indicating the sites to be restored. Therefore, the Authors propose the integration of spatial data from terrestrial laser scanning with imaging data from low-cost cameras. The use of images from low-cost cameras makes it possible to limit the costs needed to complete such a study, and thus, increasing the possibility of intensifying the frequency of photographing and monitoring of the given structure. As a result, the analysed cultural heritage structures can be monitored more closely and in more detail, meaning that the technical documentation concerning this structure is also more precise. To supplement the laser scanning information, the Authors propose using both images taken both in the near-infrared range and in the visible range. This choice is motivated by the fact that not all important features of historical structures are always visible RGB, but they can be identified in NIR imagery, which, with the additional merging with a three-dimensional point cloud, gives full spatial information about the cultural heritage structure in question. The Authors proposed an algorithm that automates the process of integrating NIR images with a point cloud using parameters, which had been calculated during the transformation of RGB images. A number of conditions affecting the accuracy of the texturing had been studies, in particular, the impact of the geometry of the distribution of adjustment points and their amount on the accuracy of the integration process, the correlation between the intensity value and the error on specific points using images in different ranges of the electromagnetic spectrum and the selection of the optimal

  4. History and Philosophy of Science as a Guide to Understanding Nature of Science

    Directory of Open Access Journals (Sweden)

    Mansoor Niaz

    2016-06-01

    Full Text Available Nature of science (NOS is considered to be a controversial topic by historians, philosophers of science and science educators. It is paradoxical that we all teach science and still have difficulties in understanding what science is and how it develops and progresses. A major obstacle in understanding NOS is that science is primarily ‘unnatural’, that is it cannot be learned by a simple observation of phenomena. In most parts of the world history and philosophy of science are ‘inside’ science content and as such can guide our understanding of NOS. However, some science educators consider the ‘historical turn’ as dated and hence neglect the historical approach and instead emphasize the model based naturalist view of science. The objective of this presentation is to show that the historical approach is very much a part of teaching science and actually complements naturalism. Understanding NOS generally requires two aspects of science: Domain general and domain specific. In the classroom this can be illustrated by discussing the atomic models developed in the early 20th century which constitute the domain specific aspect of NOS. This can then lead to an understanding of the tentative nature of science that is a domain general aspect of NOS. A review of the literature in science education reveals three views (among others of understanding NOS: a Consensus view: It attempts to include only those domain-general NOS aspects that are the least controversial (Lederman, Abd-El-Khalick; b Family resemblance view: Based on the ideas of Wittgenstein, this view promotes science as a cognitive system (Irzik, Nola; c Integrated view: this view postulates that both domain general and domain specific aspects of NOS are not dichotomous but rather need to be integrated and are essential if we want students to understand ‘science in the making’ (Niaz. The following framework helps to facilitate integration: i Elaboration of a theoretical framework

  5. Research priorities for grassland science: the need of long term integrated experiments networks

    Directory of Open Access Journals (Sweden)

    G. Lemaire

    2007-07-01

    Full Text Available Grasslands have to be considered not only as a mean for providing foods for domestic herbivore but also as an important biome of terrestrial biosphere. This function of grasslands as an active component of our environment requires specific studies on the role and impact of this ecosystem on soil erosion and soil quality, quality and quantity of water resources, atmosphere composition and greenhouse gas emission or sequestration, biodiversity dynamics at different scales from field plot to landscape. All these functions have to be evaluated in conjunction with the function of providing animal products for increasing human population. So multifunctionality of grasslands become a new paradigm for grassland science. Environmental and biodiversity outputs require long term studies, being the long term retro-active processes within soil, vegetation and micro-organism communities in relation to changes in management programme. So grassland science needs to carry on long term integrated experimentation for studying all the environmental outputs and ecological services associated to grassland management systems.

  6. Critical Need for Family-Based, Quasi-Experimental Designs in Integrating Genetic and Social Science Research

    Science.gov (United States)

    Lahey, Benjamin B.; Turkheimer, Eric; Lichtenstein, Paul

    2013-01-01

    Researchers have identified environmental risks that predict subsequent psychological and medical problems. Based on these correlational findings, researchers have developed and tested complex developmental models and have examined biological moderating factors (e.g., gene–environment interactions). In this context, we stress the critical need for researchers to use family-based, quasi-experimental designs when trying to integrate genetic and social science research involving environmental variables because these designs rigorously examine causal inferences by testing competing hypotheses. We argue that sibling comparison, offspring of twins or siblings, in vitro fertilization designs, and other genetically informed approaches play a unique role in bridging gaps between basic biological and social science research. We use studies on maternal smoking during pregnancy to exemplify these principles. PMID:23927516

  7. USGS Gulf Coast Science Conference and Florida Integrated Science Center Meeting: Proceedings with abstracts, October 20-23, 2008, Orlando, Florida

    Science.gov (United States)

    Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee; Lavoie, Dawn L.; Rosen, Barry H.; Sumner, Dave; Haag, Kim H.; Tihansky, Ann B.; Boynton, Betsy; Koenig, Renee

    2008-01-01

    Welcome! The USGS is the Nation's premier source of information in support of science-based decision making for resource management. We are excited to have the opportunity to bring together a diverse array of USGS scientists, managers, specialists, and others from science centers around the Gulf working on biologic, geologic, and hydrologic issues related to the Gulf of Mexico and the State of Florida. We've organized the meeting around the major themes outlined in the USGS Circular 1309, Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017. USGS senior leadership will provide a panel discussion about the Gulf of Mexico and Integrated Science. Capstone talks will summarize major topics and key issues. Interactive poster sessions each evening will provide the opportunity for you to present your results and talk with your peers. We hope that discussions and interactions at this meeting will help USGS scientists working in Florida and the Gulf Coast region find common interests, forge scientific collaborations and chart a direction for the future. We hope that the meeting environment will encourage interaction, innovation and stimulate ideas among the many scientists working throughout the region. We'd like to create a community of practice across disciplines and specialties that will help us address complex scientific and societal issues. Please take advantage of this opportunity to visit with colleagues, get to know new ones, share ideas and brainstorm about future possibilities. It is our pleasure to provide this opportunity. We are glad you're here.

  8. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation

    Science.gov (United States)

    Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong

    2015-03-01

    A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.

  9. Cognitive poetics and biocultural (configurations of life, cognition and language. Towards a theory of socially integrated science

    Directory of Open Access Journals (Sweden)

    Juani Guerra

    2013-07-01

    Full Text Available Based on the biocultural dynamics of Greek poiesis and autopoiesis as evolutionary processes of meaning evaluative (configuration, Cognitive Poetics proposes key methodological adjustments, mainly at the philological, ontological and cultural levels. The aim is to improve our understanding of cognitive and conceptual activity and the social foundations of individual language. From its new status as a fundamental metacognitive theory, it searches for a theory of socially integrated sciences from a new alliance as that discerned in current Cognitive Sciences: from Linguistics or Psychology, through Anthropology, Neurophilosophy or Literary Studies, to Neurobiology or Artificial Life Sciences. From a realist turn to a view of cognition as (social action, it provides new unforeseen accounts of the complex dynamics of human understanding processes studying and analyzing all form of texts as active data

  10. Web-Enabled Mechanistic Case Diagramming: A Novel Tool for Assessing Students' Ability to Integrate Foundational and Clinical Sciences.

    Science.gov (United States)

    Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R

    2018-02-20

    As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.

  11. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  12. Redefining Neuromarketing as an Integrated Science of Influence

    Directory of Open Access Journals (Sweden)

    Hans C. Breiter

    2015-02-01

    Full Text Available Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging, or to look at large aggregations of decisions (i.e., big data. There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as ‘neuromarketing’. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make ‘choices’, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or ‘influenced’, which can occur at multiple ‘scales’ of behavior (e.g., individual, group, or market/society. Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

  13. Redefining neuromarketing as an integrated science of influence.

    Science.gov (United States)

    Breiter, Hans C; Block, Martin; Blood, Anne J; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J; Raman, Kalyan; Schultz, Don; Stern, Daniel B; Viswanathan, Vijay; Zhang, Fengqing Zoe

    2014-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as "neuromarketing". There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make "choices", and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or "influenced", which can occur at multiple "scales" of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

  14. Redefining neuromarketing as an integrated science of influence

    Science.gov (United States)

    Breiter, Hans C.; Block, Martin; Blood, Anne J.; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J.; Raman, Kalyan; Schultz, Don; Stern, Daniel B.; Viswanathan, Vijay; Zhang, Fengqing (Zoe)

    2015-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats. PMID:25709573

  15. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change

    Science.gov (United States)

    Charles L. Redman; J. Morgan Grove; Lauren H. Kuby; Lauren H. Kuby

    2004-01-01

    The integration of the social sciences into long-term ecological research is an urgent priority. To address this need, a group of social, earth, and life scientists associated with the National Science Foundation's (NSF) Long-Term Ecological Research (LTER) Network have articulated a conceptual framework for understanding the human dimensions of ecological change...

  16. Some further analytical results on the solid angle subtended at a point by a circular disk using elliptic integrals

    International Nuclear Information System (INIS)

    Timus, D.M.; Prata, M.J.; Kalla, S.L.; Abbas, M.I.; Oner, F.; Galiano, E.

    2007-01-01

    A series formulation involving complete elliptic integrals of the first and second kinds for the solid angle subtended at a point by a circular disk is presented. Results from the present model were tested against data sets obtained with previous treatments for the solid angle in order to determine the degree of simplicity and speed of our calculations. 3-D graphs are presented

  17. A general reduction method for one-loop N-point integrals

    International Nuclear Information System (INIS)

    Heinrich, G.; Binoth, T.

    2000-01-01

    In order to calculate cross sections with a large number of particles/jets in the final state at next-to-leading order, one has to reduce the occurring scalar and tensor one-loop integrals to a small set of known integrals. In massless theories, this reduction procedure is complicated by the presence of infrared divergences. Working in n = 4 - 2ε dimensions, it will be outlined how to achieve such a reduction for diagrams with an arbitrary number of external legs. As a result, any integral with more than four propagators and generic 4-dimensional external momenta can be reduced to box integrals

  18. Popular Science Writing Bringing New Perspectives into Science Students' Theses

    Science.gov (United States)

    Pelger, Susanne

    2018-01-01

    This study analyses which perspectives occur in science students' texts at different points in time during the process of writing a popular science article. The intention is, thus, to explore how popular science writing can help students discover and discuss different perspectives on science matter. For this purpose, texts written by 12 bachelor…

  19. The Hydrograph Analyst, an Arcview GIS Extension That Integrates Point, Spatial, and Temporal Data Provides A Graphical User Interface for Hydrograph Analysis

    International Nuclear Information System (INIS)

    Jones, M.L.; O'Brien, G.M.; Jones, M.L.

    2000-01-01

    The Hydrograph Analyst (HA) is an ArcView GIS 3.2 extension developed by the authors to analyze hydrographs from a network of ground-water wells and springs in a regional ground-water flow model. ArcView GIS integrates geographic, hydrologic, and descriptive information and provides the base functionality needed for hydrograph analysis. The HA extends ArcView's base functionality by automating data integration procedures and by adding capabilities to visualize and analyze hydrologic data. Data integration procedures were automated by adding functionality to the View document's Document Graphical User Interface (DocGUI). A menu allows the user to query a relational database and select sites which are displayed as a point theme in a View document. An ''Identify One to Many'' tool is provided within the View DocGUI to retrieve all hydrologic information for a selected site and display it in a simple and concise tabular format. For example, the display could contain various records from many tables storing data for one site. Another HA menu allows the user to generate a hydrograph for sites selected from the point theme. Hydrographs generated by the HA are added as hydrograph documents and accessed by the user with the Hydrograph DocGUI, which contains tools and buttons for hydrograph analysis. The Hydrograph DocGUI has a ''Select By Polygon'' tool used for isolating particular points on the hydrograph inside a user-drawn polygon or the user could isolate the same points by constructing a logical expression with the ArcView GIS ''Query Builder'' dialog that is also accessible in the Hydrograph DocGUI. Other buttons can be selected to alter the query applied to the active hydrograph. The selected points on the active hydrograph can be attributed (or flagged) individually or as a group using the ''Flag'' tool found on the Hydrograph DocGUI. The ''Flag'' tool activates a dialog box that prompts the user to select an attribute and ''methods'' or ''conditions'' that qualify

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    National Engineering Research Center for Integrated Utilization of Salt Lake Resource, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China; Van 't Hoff Institute for Molecular Sciences & Amsterdam Center for Multiscale Modeling, University of Amsterdam, 1098 XH Amsterdam, ...

  1. Science and Scientific Curiosity in Pre-School--The Teacher's Point of View

    Science.gov (United States)

    Spektor-Levy, Ornit; Baruch, Yael Kesner; Mevarech, Zemira

    2013-01-01

    Nowadays, early science education is well-accepted by researchers, education professionals and policy makers. Overall, teachers' attitudes and conceptions toward the science subject domain and science education influence their ways of teaching and engagement. However, there is a lack of research regarding factors that affect this engagement in…

  2. Integrating Science into Management of Ecosystems in the Greater Blue Mountains

    Science.gov (United States)

    Chapple, Rosalie S.; Ramp, Daniel; Bradstock, Ross A.; Kingsford, Richard T.; Merson, John A.; Auld, Tony D.; Fleming, Peter J. S.; Mulley, Robert C.

    2011-10-01

    Effective management of large protected conservation areas is challenged by political, institutional and environmental complexity and inconsistency. Knowledge generation and its uptake into management are crucial to address these challenges. We reflect on practice at the interface between science and management of the Greater Blue Mountains World Heritage Area (GBMWHA), which covers approximately 1 million hectares west of Sydney, Australia. Multiple government agencies and other stakeholders are involved in its management, and decision-making is confounded by numerous plans of management and competing values and goals, reflecting the different objectives and responsibilities of stakeholders. To highlight the complexities of the decision-making process for this large area, we draw on the outcomes of a recent collaborative research project and focus on fire regimes and wild-dog control as examples of how existing knowledge is integrated into management. The collaborative research project achieved the objectives of collating and synthesizing biological data for the region; however, transfer of the project's outcomes to management has proved problematic. Reasons attributed to this include lack of clearly defined management objectives to guide research directions and uptake, and scientific information not being made more understandable and accessible. A key role of a local bridging organisation (e.g., the Blue Mountains World Heritage Institute) in linking science and management is ensuring that research results with management significance can be effectively transmitted to agencies and that outcomes are explained for nonspecialists as well as more widely distributed. We conclude that improved links between science, policy, and management within an adaptive learning-by-doing framework for the GBMWHA would assist the usefulness and uptake of future research.

  3. Beginning SharePoint Designer 2010

    CERN Document Server

    Windischman, Woodrow W; Rehmani, Asif

    2010-01-01

    Teaching Web designers, developers, and IT professionals how to use the new version of SharePoint Designer. Covering both the design and business applications of SharePoint Designer, this complete Wrox guide brings readers thoroughly up to speed on how to use SharePoint Designer in an enterprise. You'll learn to create and modify web pages, use CSS editing tools to modify themes, use Data View to create interactivity with SharePoint and other data, and much more. Coverage includes integration points with Visual Studio, Visio, and InfoPath.: Shows web designers, developers, and IT professionals

  4. Cognitive science, psychoanalysis and neuroscience: A Brief History of a current trend (Part II

    Directory of Open Access Journals (Sweden)

    Antonio Imbasciati

    2015-10-01

    Full Text Available For decades, cognitive sciences and psychoanalysis have been ignored each other for a mutual distrust, producing in scholars of both disciplines a progressive mutual ignorance and misunderstanding about their developments. The latest studies of cognitive sciences on the role of emotions have allowed a partial approach to psychoanalysis. But above all, recent studies in neuroscience on the emotional basis of all mental processes, about the formation of the subjectivity, about identity and sense of self (neuro psychoanalysis, are opening up a horizon of integration between the three different sciences. In this perspective the epigenetics is playing a fundamental role, that the Author hopes will produce significant developments from a social and anthropological point of view. 

  5. Cognitive science, psychoanalysis and neuroscience: A Brief History of a current trend (Part I

    Directory of Open Access Journals (Sweden)

    Antonio Imbasciati

    2015-05-01

    Full Text Available For decades, cognitive sciences and psychoanalysis have been ignored each other for a mutual distrust, producing in scholars of both disciplines a progressive mutual ignorance and misunderstanding about their developments. The latest studies of cognitive sciences on the role of emotions have allowed a partial approach to psychoanalysis. But above all, recent studies in neuroscience on the emotional basis of all mental processes, about the formation of the subjectivity, about identity and sense of self (neuro psychoanalysis, are opening up a horizon of integration between the three different sciences. In this perspective the epigenetics is playing a fundamental role, that the Author hopes will produce significant developments from a social and anthropological point of view. 

  6. Young African American children constructing identities in an urban integrated science-literacy classroom

    Science.gov (United States)

    Kane, Justine M.

    This is a qualitative study of identities constructed and enacted by four 3rd-grade African American children (two girls and two boys) in an urban classroom that engaged in a year-long, integrated science-literacy project. Juxtaposing narrative and discursive identity lenses, coupled with race and gender perspectives, I examined the ways in which the four children saw and performed themselves as students and as science students in their classroom. Interview data were used for the narrative analysis and classroom Discourse and artifacts were used for the discursive analysis. A constructivist grounded theory framework was adopted for both analyses. The findings highlight the diversity and richness of perspectives and forms of engagement these young children shared and enacted, and help us see African American children as knowers, doers, and talkers of science individually and collectively. In their stories about themselves, all the children identified themselves as smart but they associated with smartness different characteristics and practices depending on their strengths and preferences. Drawing on the children's social, cultural, and ethnolinguistic resources, the dialogic and multimodal learning spaces facilitated by their teacher allowed the children to explore, negotiate, question, and learn science ideas. The children in this study brought their understandings and ways of being into the "lived-in" spaces co-created with classmates and teacher and influenced how these spaces were created. At the same time, each child's ways of being and understandings were shaped by the words, actions, behaviors, and feelings of peers and teacher. Moreover, as these four children engaged with science-literacy activities, they came to see themselves as competent, creative, active participants in science learning. Although their stories of "studenting" seemed dominated by following rules and being well-behaved, their stories of "sciencing" were filled with exploration, ingenuity

  7. One-point functions in defect CFT and integrability

    Energy Technology Data Exchange (ETDEWEB)

    Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 08 (Sweden)

    2015-08-19

    We calculate planar tree level one-point functions of non-protected operators in the defect conformal field theory dual to the D3-D5 brane system with k units of the world volume flux. Working in the operator basis of Bethe eigenstates of the Heisenberg XXX{sub 1/2} spin chain we express the one-point functions as overlaps of these eigenstates with a matrix product state. For k=2 we obtain a closed expression of determinant form for any number of excitations, and in the case of half-filling we find a relation with the Néel state. In addition, we present a number of results for the limiting case k→∞.

  8. SDN-NGenIA, a software defined next generation integrated architecture for HEP and data intensive science

    Science.gov (United States)

    Balcas, J.; Hendricks, T. W.; Kcira, D.; Mughal, A.; Newman, H.; Spiropulu, M.; Vlimant, J. R.

    2017-10-01

    The SDN Next Generation Integrated Architecture (SDN-NGeNIA) project addresses some of the key challenges facing the present and next generations of science programs in HEP, astrophysics, and other fields, whose potential discoveries depend on their ability to distribute, process and analyze globally distributed Petascale to Exascale datasets. The SDN-NGenIA system under development by Caltech and partner HEP and network teams is focused on the coordinated use of network, computing and storage infrastructures, through a set of developments that build on the experience gained in recently completed and previous projects that use dynamic circuits with bandwidth guarantees to support major network flows, as demonstrated across LHC Open Network Environment [1] and in large scale demonstrations over the last three years, and recently integrated with PhEDEx and Asynchronous Stage Out data management applications of the CMS experiment at the Large Hadron Collider. In addition to the general program goals of supporting the network needs of the LHC and other science programs with similar needs, a recent focus is the use of the Leadership HPC facility at Argonne National Lab (ALCF) for data intensive applications.

  9. The Influence of Sub-Block Position on Performing Integrated Sensor Orientation Using In Situ Camera Calibration and Lidar Control Points

    Directory of Open Access Journals (Sweden)

    Felipe A. L. Costa

    2018-02-01

    Full Text Available The accuracy of photogrammetric and Lidar dataset integration is dependent on the quality of a group of parameters that models accurately the conditions of the system at the moment of the survey. In this sense, this paper aims to study the effect of the sub-block position in the entire image block to estimate the interior orientation parameters (IOP in flight conditions to be used in integrated sensor orientation (ISO. For this purpose, five sub-blocks were extracted in different regions of the entire block. Then, in situ camera calibrations were performed using sub-blocks and sets of Lidar control points (LCPs, computed by a three planes’ intersection extracted from the Lidar point cloud on building roofs. The ISO experiments were performed using IOPs from in situ calibrations, the entire image block, and the exterior orientation parameters (EOP from the direct sensor orientation (DSO. Analysis of the results obtained from the ISO experiments performed show that the IOP from the sub-block positioned at the center of the entire image block can be recommended.

  10. Development of Integrated Natural Science Teaching Materials Webbed Type with Applying Discourse Analysis on Students Grade VIII in Physics Class

    Science.gov (United States)

    Sukariasih, Luh

    2017-05-01

    This study aims to produce teaching materials integrated natural science (IPA) webbed type of handout types are eligible for use in integrated science teaching. This type of research IS a kind of research and development / Research and Development (R & D) with reference to the 4D development model that is (define, design, develop, and disseminate). Data analysis techniques used to process data from the results of the assessment by the validator expert, and the results of the assessment by teachers and learners while testing is limited (12 students of class VIII SMPN 10 Kendari) using quantitative descriptive data analysis techniques disclosed in the distribution of scores on the scale of five categories grading scale that has been determined. The results of due diligence material gain votes validator material in the category of “very good” and “good”, of the data generated in the feasibility test presentation obtained the category of “good” and “excellent”, from the data generated in the feasibility of graphic test obtained the category of “very good “and” good “, as well as of the data generated in the test the feasibility of using words and language obtained the category of“very good “and” good “, so with qualifications gained the teaching materials IPA integrated type webbed by applying discourse analysis on the theme of energy and food for Junior High School (SMP) grade VIII suitable as teaching materials. In limited testing, data generated in response to a science teacher at SMPN 10 Kendari to product instructional materials as “excellent”, and from the data generated while testing is limited by the 12 students of class VIII SMPN 10 Kendari are more students who score indicates category “very good”, so that the qualification obtained by the natural science (IPA) teaching material integrated type webbed by applying discourse analysis on the theme of energy and food for SMP / class VIII fit for use as teaching material.

  11. Discriminant analysis of essay, mathematics/science type of essay, college scholastic ability test, and grade point average as predictors of acceptance to a pre-med course at a Korean medical school.

    Science.gov (United States)

    Jeong, Geum-Hee

    2008-01-01

    A discriminant analysis was conducted to investigate how an essay, a mathematics/science type of essay, a college scholastic ability test, and grade point average affect acceptance to a pre-med course at a Korean medical school. Subjects included 122 and 385 applicants for, respectively, early and regular admission to a medical school in Korea. The early admission examination was conducted in October 2007, and the regular admission examination was conducted in January 2008. The analysis of early admission data revealed significant F values for the mathematics/science type of essay (51.64; Pgrade point average (10.66; P=0.0014). The analysis of regular admission data revealed the following F values: 28.81 (Pgrade point average, 27.47 (P<0.0001) for college scholastic ability test, 10.67 (P=0.0012) for the essay, and 216.74 (P<0.0001) for the mathematics/science type of essay. Since the mathematics/science type of essay had a strong effect on acceptance, an emphasis on this requirement and exclusion of other kinds of essays would be effective in subsequent entrance examinations for this premed course.

  12. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  13. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  14. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  15. Constructing "Authentic" Science: Results from a University/High School Collaboration Integrating Digital Storytelling and Social Networking

    Science.gov (United States)

    Olitsky, Stacy; Becker, Elizabeth A.; Jayo, Ignacio; Vinogradov, Philip; Montcalmo, Joseph

    2018-02-01

    This study explores the implications of a redesign of a college course that entailed a new partnership between a college neuroscience classroom and a high school. In this course, the college students engaged in original research projects which included conducting brain surgery and behavioural tests on rats. They used digital storytelling and social networking to communicate with high school students and were visited by the students during the semester. The aims of the redesign were to align the course with science conducted in the field and to provide opportunities to disseminate scientific knowledge through emerging technologies. This study investigates the impact of these innovations on the college and high school students' perceptions of authentic science, including their relationship with science-centred communities. We found that these collaborative tools increased college students' perceptions that authentic science entailed communication with the general public, in addition to supporting prior perceptions of the importance of conducting experiments and presenting results to experts. In addition, the view of science as high-status knowledge was attenuated as students integrated non-formal communication practices into presentations, showing the backstage process of learning, incorporating music and youth discourse styles, and displaying emotional engagement. An impact of these hybrid presentation approaches was an increase in the high school students' perceptions of the accessibility of laboratory science. We discuss how the use of technologies that are familiar to youth, such as iPads, social networking sites, and multimedia presentations, has the potential to prioritize students' voices and promote a more inclusive view of science.

  16. Emotion malleability beliefs, emotion regulation, and psychopathology: Integrating affective and clinical science.

    Science.gov (United States)

    Kneeland, Elizabeth T; Dovidio, John F; Joormann, Jutta; Clark, Margaret S

    2016-04-01

    Beliefs that individuals hold about whether emotions are malleable or fixed, also referred to as emotion malleability beliefs, may play a crucial role in individuals' emotional experiences and their engagement in changing their emotions. The current review integrates affective science and clinical science perspectives to provide a comprehensive review of how emotion malleability beliefs relate to emotionality, emotion regulation, and specific clinical disorders and treatment. Specifically, we discuss how holding more malleable views of emotion could be associated with more active emotion regulation efforts, greater motivation to engage in active regulatory efforts, more effort expended regulating emotions, and lower levels of pathological distress. In addition, we explain how extending emotion malleability beliefs into the clinical domain can complement and extend current conceptualizations of major depressive disorder, social anxiety disorder, and generalized anxiety disorder. This may prove important given the increasingly central role emotion dysregulation has been given in conceptualization and intervention for these psychiatric conditions. Additionally, discussion focuses on how emotion beliefs could be more explicitly addressed in existing cognitive therapies. Promising future directions for research are identified throughout the review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Publication point indicators

    DEFF Research Database (Denmark)

    Elleby, Anita; Ingwersen, Peter

    2010-01-01

    The paper presents comparative analyses of two publication point systems, The Norwegian and the in-house system from the interdiscplinary Danish Institute for International Studies (DIIS), used as case in the study for publications published 2006, and compares central citation-based indicators...... with novel publication point indicators (PPIs) that are formalized and exemplified. Two diachronic citation windows are applied: 2006-07 and 2006-08. Web of Science (WoS) as well as Google Scholar (GS) are applied to observe the cite delay and citedness for the different document types published by DIIS...... for all document types. Statistical significant correlations were only found between WoS and GS and the two publication point systems in between, respectively. The study demonstrates how the nCPPI can be applied to institutions as evaluation tools supplementary to JCI in various combinations...

  18. 75 FR 20843 - Notice of Workshop To Discuss Policy-Relevant Science to Inform EPA's Integrated Plan for the...

    Science.gov (United States)

    2010-04-21

    ... Policy-Relevant Science to Inform EPA's Integrated Plan for the Review of the Lead National Ambient Air.... Environmental Protection Agency (EPA) is announcing that a workshop entitled, ``Workshop to Discuss Policy... workshop will be open to attendance by interested public observers on a first-come, first-served basis up...

  19. The Integrated Rangeland Fire Management Strategy Actionable Science Plan: U.S. Department of the Interior, Washington D.C.

    Science.gov (United States)

    Integrated Rangeland Fire Management Strategy Actionable Science Plan Team

    2016-01-01

    The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit...

  20. Towards extending IFC with point cloud data

    NARCIS (Netherlands)

    Krijnen, T.F.; Beetz, J.; Ochmann, S.; Vock, R.; Wessel, R.

    2015-01-01

    In this paper we suggest an extension to the Industry Foundation Classes model to integrate point cloud datasets. The proposal includes a schema extension to the core model allowing the storage of points either as Cartesian coordinates, points in parametric space of a surface associated with a