WorldWideScience

Sample records for science foundation explore

  1. Seven propositions of the science of improvement: exploring foundations.

    Science.gov (United States)

    Perla, Rocco J; Provost, Lloyd P; Parry, Gareth J

    2013-01-01

    The phrase "Science of Improvement" or "Improvement Science" is commonly used today by a range of people and professions to mean different things, creating confusion to those trying to learn about improvement. In this article, we briefly define the concepts of improvement and science, and review the history of the consideration of "improvement" as a science. We trace key concepts and ideas in improvement to their philosophical and theoretical foundation with a focus on Deming's System of Profound Knowledge. We suggest that Deming's system has a firm association with many contemporary and historic philosophic and scientific debates and concepts. With reference to these debates and concepts, we identify 7 propositions that provide the scientific and philosophical foundation for the science of improvement. A standard view of the science of improvement does not presently exist that is grounded in the philosophical and theoretical basis of the field. The 7 propositions outlined here demonstrate the value of examining the underpinnings of improvement. This is needed to both advance the field and minimize confusion about what the phrase "science of improvement" represents. We argue that advanced scientists of improvement are those who like Deming and Shewhart can integrate ideas, concepts, and models between scientific disciplines for the purpose of developing more robust improvement models, tools, and techniques with a focus on application and problem solving in real world contexts. The epistemological foundations and theoretical basis of the science of improvement and its reasoning methods need to be critically examined to ensure its continued development and relevance. If improvement efforts and projects in health care are to be characterized under the canon of science, then health care professionals engaged in quality improvement work would benefit from a standard set of core principles, a standard lexicon, and an understanding of the evolution of the science of

  2. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  3. The map and the territory exploring the foundations of science, thought and reality

    CERN Document Server

    Doria, Francisco

    2018-01-01

    The Map/Territory distinction is a foundational part of the scientific method and, in fact, underlies all of thought, and even reality itself. This fascinating and fundamental topic is addressed here by some of the world’s leading thinkers and intellectual giants, whose accessible essays cover six and more fields of endeavor. It is imperative to distinguish the Map from the Territory when analyzing any subject, yet we often mistake the map for the territory; the meaning for the reference; a computational tool for what it computes. Representations are so handy and tempting that we often end up committing the category error of over-associating the representation with the thing it represents, so much so that the distinction between them is lost. This error, whose roots frequently lie in pedagogy, generates a plethora of paradoxes/confusions which hinder a proper understanding of the subject. What are wave functions? Fields? Forces? Numbers? Sets? Classes? Operators? Functions? Alphabets and Sentences? Are they...

  4. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  5. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  6. Peace Education: Exploring Some Philosophical Foundations

    Science.gov (United States)

    Page, James S.

    2004-01-01

    Peace education has been recognized as an important aspect of social education for the past three decades. The critical literature as well as official documents, however, have given little attention to its philosophical foundations. This essay explores these foundations in the ethics of (1) virtue, (2) consequentialism, (3) aesthetics, (4) conservative politics and (5) care. Each of these alone composes a significant element of peace education, although ultimately its solid basis can only be established through an integrative approach encouraging a culture of peace. The more complete development and articulation of the philosophical rationale of peace education is yet to be accomplished and remains a task for the future.

  7. Physical foundations of materials science

    CERN Document Server

    Gottstein, Günter

    2004-01-01

    In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them Transmission Electron Microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

  8. A new foundation for the social sciences?

    DEFF Research Database (Denmark)

    Bjerre, Jørn

    2015-01-01

    The aim of John Searle’s philosophy of society is to provide a foundation for the social sciences. Arguing that the study of social reality needs to be based on a philosophy of language, Searle claims that sociology has little to offer, since no sociologist ever took language seriously. Attacking...

  9. Exploring Science Through Polar Exploration

    Science.gov (United States)

    Pfirman, S. L.; Bell, R. E.; Zadoff, L.; Kelsey, R.

    2003-12-01

    Exploring the Poles is a First Year Seminar course taught at Barnard College, Columbia University. First Year Seminars are required of incoming students and are designed to encourage critical analysis in a small class setting with focused discussion. The class links historical polar exploration with current research in order to: introduce non-scientists to the value of environmental science through polar literature; discuss issues related to venturing into the unknown that are of relevance to any discipline: self-reliance, leadership, preparation, decisions under uncertainty; show students the human face of science; change attitudes about science and scientists; use data to engage students in exploring/understanding the environment and help them learn to draw conclusions from data; integrate research and education. These goals are met by bringing analysis of early exploration efforts together with a modern understanding of the polar environment. To date to class has followed the efforts of Nansen in the Fram, Scott and Amundsen in their race to the pole, and Shackleton's Endurance. As students read turn-of-the-century expedition journals, expedition progress is progressively revealed on an interactive map showing the environmental context. To bring the exploration process to life, students are assigned to expedition teams for specific years and the fates of the student "expeditions" are based on their own decisions. For example, in the Arctic, they navigate coastal sea ice and become frozen into the ice north of Siberia, re-creating Nansen's polar drift. Fates of the teams varied tremendously: some safely emerged at Fram Strait in 4 years, while others nearly became hopelessly lost in the Beaufort Gyre. Students thus learn about variability in the current polar environment through first hand experience, enabling them to appreciate the experiences, decisions, and, in some cases, the luck, of polar explorers. Evaluation by the Columbia Center for New Media, Teaching

  10. Plasma Physics at the National Science Foundation

    Science.gov (United States)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  11. The National Science Foundation and the History of Science

    Science.gov (United States)

    Rothenberg, Marc

    2014-01-01

    The National Science Foundation (NSF) is the major funder of the history of science in the United States. Between 1958 and 2010, the NSF program for the history of science has given 89 awards in the history of astronomy. This paper analyzes the award recipients and subject areas of the awards and notes significant shifts in the concentration of award recipients and the chronological focus of the research being funded.

  12. 45 CFR 650.2 - National Science Foundation patent policy.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false National Science Foundation patent policy. 650.2... FOUNDATION PATENTS § 650.2 National Science Foundation patent policy. As authorized by the National Science... adopted the following statement of NSF patent policy. (a) In accordance with the Bayh-Dole Act and the...

  13. Exploring science through science fiction

    CERN Document Server

    Luokkala, Barry B

    2014-01-01

    How does Einstein’s description of space and time compare with Dr. Who? Can James Bond really escape from an armor-plated railroad car by cutting through the floor with a laser concealed in a wristwatch? What would it take to create a fully-intelligent android, such as Star Trek’s Commander Data? How might we discover intelligent civilizations on other planets in the galaxy? Is human teleportation possible? Will our technological society ever reach the point at which it becomes lawful to discriminate on the basis of genetic information, as in the movie GATTACA? Exploring Science Through Science Fiction addresses these and other interesting questions, using science fiction as a springboard for discussing fundamental science concepts and cutting-edge science research. The book is designed as a primary text for a college-level course which should appeal to students in the fine arts and humanities as well as to science and engineering students. It includes references to original research papers, landmark scie...

  14. Mathematical logic foundations for information science

    CERN Document Server

    Li, Wei

    2014-01-01

    Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds...

  15. Dr. William C. Harris, Director-General, Science Foundation Ireland

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Pictured with Robert Eisenstein, former assistant director for mathematical and physical sciences (MPS) at the US National Science Foundation (NSF), who is spending a year at CERN as a member of the ATLAS collaboration.

  16. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved beyond being a sub-field of chemistry or physics and has now become an underpinning science. The Third Edition of this book incorporates extensive worked solutions, as well as details on how problem solving relevant to surface science should be performed. It contextualizes the exercises and their solutions to further explicate the methods of problem solving, application of scientific principles and to deliver a deeper understanding of the field of surface science. Solutions will be accompanied by figures and/or graphs of data, as appropriate.

  17. Logic, mathematics, and computer science modern foundations with practical applications

    CERN Document Server

    Nievergelt, Yves

    2015-01-01

    This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory.  The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and  provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...

  18. Surface Science Foundations of Catalysis and Nanoscience

    CERN Document Server

    Kolasinski, Kurt K

    2012-01-01

    Surface science has evolved from being a sub-field of chemistry or physics, and has now established itself as an interdisciplinary topic. Knowledge has developed sufficiently that we can now understand catalysis from a surface science perspective. No-where is the underpinning nature of surface science better illustrated than with nanoscience. Now in its third edition, this successful textbook aims to provide students with an understanding of chemical transformations and the formation of structures at surfaces. The chapters build from simple to more advanced principles with each featuring exerc

  19. Exploration of Science Parks

    Institute of Scientific and Technical Information of China (English)

    Xiong Huibing; Sun Nengli

    2005-01-01

    Science parks have developed gready in the world, whereas empirical researches have showed that science parks based on linear model cannot guarantee the creation of innovation. Hi-tech innovation is derived from flow and management of information. The commercial and social interactions between in-parks and off-park firms and research institutions act as the key determinant for innovation.Industrial clustering is the rational choice for further developing Chinese science parks and solving some problems such as the lack of dear major industries and strong innovation sense, etc.

  20. Commonly Shared Foundation of Mathematics, Information Science, Natural Science, Social Science, and Theology

    OpenAIRE

    Wayne, James J.

    2014-01-01

    Through a simple thought experiment, this paper shows that there must be a shared foundation of mathematics, information science, natural science, social science, and theology. The thought experiment is to ask a volunteer to write down an arbitrary real number between 0 and 1 with many digits. For example, 0.19823765010367129462…. would be one of such numbers. Then we analyze this experiment result by asking five simple questions: Is the real number a random real? Can the observed real numbe...

  1. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  2. How to compare the social foundations of science culture: A trial with five cities in Korea.

    Science.gov (United States)

    Song, Jinwoong; Chung, Minkyung; Choi, Eunjeong; Kim, Leekyoung; Cho, Sook-Kyoung

    2013-01-01

    Though there have been several indicator systems to monitor the status quo of science and technology and of scientific literacy, few are especially designed for science culture, especially for its social dimension. Furthermore there is little agreement on how to measure it. In a previous study, an indicator system, SCI (Science Culture Indicators), had been developed to monitor the status quo of the science culture of a nation at both individual and social dimensions. The purpose of this study was to explore a practical way to measure and compare local cities' social foundation of science culture by revising and standardizing the social dimension of SCI and by applying it to five metropolitan cities in Korea. Despite some limits, the results of this study appear not only to reflect the cities' current situations but also to show the strength and weakness of their social foundation of science culture.

  3. Charitable Foundation for Education and Science as a channel of funding of universities in Germany

    Directory of Open Access Journals (Sweden)

    Kadikina Anastasiia Aleksandrovna

    2013-09-01

    Full Text Available The legal, organizational and financial characteristics of charitable foundations of Germany are explored in the paper. The funds for the support of education and science as an additional channel of the financial provision of higher education are considered. Emphasizes the importance of the development of various forms and methods of financing of higher education through extra-budgetary sources.

  4. Introductory Statistics Education and the National Science Foundation

    Science.gov (United States)

    Hall, Megan R.; Rowell, Ginger Holmes

    2008-01-01

    This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…

  5. The Eugenides Foundation Interactive Exhibition of Science and Technology

    Science.gov (United States)

    Kontogiannis, Ioannis

    2010-01-01

    The Interactive Exhibition of Science and Technology is installed in an area of 1200 m2 at the Eugenides Foundation. 65 interactive exhibits, designed by the "Cites des Science et de l' Industrie" are organised in themes, stimulate the visitors' mind and provoke scientific thinking. Parallel activities take place inside the exhibition, such as live science demonstrations, performed by young scientists. Extra material such as news bulletins (short news, science comics and portraits), educational paths and treasure-hunting based games, all available online as well, are prepared on a monthly basis and provided along with the visit to the exhibition. Through these exhibits and activities, scientific facts are made simple and easy to comprehend using modern presentation tools. We present details on how this exhibition acts complementary to the science education provided by schools, making it a highly sophisticated educational tool.

  6. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  7. Fuzziness and Foundations of Exact and Inexact Sciences

    CERN Document Server

    Dompere, Kofi Kissi

    2013-01-01

    The monograph is an examination of the fuzzy rational foundations of the structure of exact and inexact sciences over the epistemological space which is distinguished from the ontological space. It is thus concerned with the demarcation problem. It examines exact science and its critique of inexact science. The role of fuzzy rationality in these examinations is presented. The driving force of the discussions is the nature of the information that connects the cognitive relational structure of the epistemological space to the ontological space for knowing. The knowing action is undertaken by decision-choice agents who must process information to derive exact-inexact or true-false conclusions. The information processing is done with a paradigm and laws of thought that constitute the input-output machine. The nature of the paradigm selected depends on the nature of the information structure that is taken as input of the thought processing. Generally, the information structure received from the ontological space i...

  8. Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, United States of America

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Peter Jenni and Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA. Photo 02: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in the ATLAS assembly hall with from left to right Randi Ruchti, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Peter Jenni. Photo 03: Dr Pierre Perrolle, Director, Office of International Science and Engineering, National Science Foundation, USA (second from right) in front of the ATLAS End-Cap Toroid vacuum vessel in the ATLAS assembly hall with from left to right Peter Jenni, Robert Eisenstein, Senior Science Advisor, National Science Foundation, USA and Randi Ruchti ________________________________

  9. Exploring the Foundations of Philosophy of Natural Education.

    Science.gov (United States)

    McGough, David J.

    This paper explores the historical and philosophical basis of naturalistic education. The exploration focuses on prominent epistemological views of the relationship between sensation and thought. Three time periods of intellectual study were considered: (1) the classical period during which Plato established the model for philosophic inquiry and…

  10. The logical foundations of forensic science: towards reliable knowledge.

    Science.gov (United States)

    Evett, Ian

    2015-08-05

    The generation of observations is a technical process and the advances that have been made in forensic science techniques over the last 50 years have been staggering. But science is about reasoning-about making sense from observations. For the forensic scientist, this is the challenge of interpreting a pattern of observations within the context of a legal trial. Here too, there have been major advances over recent years and there is a broad consensus among serious thinkers, both scientific and legal, that the logical framework is furnished by Bayesian inference (Aitken et al. Fundamentals of Probability and Statistical Evidence in Criminal Proceedings). This paper shows how the paradigm has matured, centred on the notion of the balanced scientist. Progress through the courts has not been always smooth and difficulties arising from recent judgments are discussed. Nevertheless, the future holds exciting prospects, in particular the opportunities for managing and calibrating the knowledge of the forensic scientists who assign the probabilities that are at the foundation of logical inference in the courtroom. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Better Broader Impacts through National Science Foundation Centers

    Science.gov (United States)

    Campbell, K. M.

    2010-12-01

    National Science Foundation Science and Technology Centers (STCs) play a leading role in developing and evaluating “Better Broader Impacts”; best practices for recruiting a broad spectrum of American students into STEM fields and for educating these future professionals, as well as their families, teachers and the general public. With staff devoted full time to Broader Impacts activities, over the ten year life of a Center, STCs are able to address both a broad range of audiences and a broad range of topics. Along with other NSF funded centers, such as Centers for Ocean Sciences Education Excellence, Engineering Research Centers and Materials Research Science and Engineering Centers, STCs develop both models and materials that individual researchers can adopt, as well as, in some cases, direct opportunities for individual researchers to offer their disciplinary research expertise to existing center Broader Impacts Programs. The National Center for Earth-surface Dynamics is an STC headquartered at the University of Minnesota. NCED’s disciplinary research spans the physical, biological and engineering issues associated with developing an integrative, quantitative and predictive understanding of rivers and river basins. Funded in 2002, we have had the opportunity to partner with individuals and institutions ranging from formal to informal education and from science museums to Tribal and women’s colleges. We have developed simple table top physical models, complete museum exhibitions, 3D paper maps and interactive computer based visualizations, all of which have helped us communicate with this wide variety of learners. Many of these materials themselves or plans to construct them are available online; in many cases they have also been formally evaluated. We have also listened to the formal and informal educators with whom we partner, from whom we have learned a great deal about how to design Broader Impacts activities and programs. Using NCED as a case study

  12. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    Science.gov (United States)

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  13. Space Weather Research at the National Science Foundation

    Science.gov (United States)

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  14. Mentoring Faculty: Results from National Science Foundation's ADVANCE Program

    Science.gov (United States)

    Holmes, M. A.

    2015-12-01

    Faculty mentoring programs are common components of National Science Foundation ADVANCE awards. The ADVANCE program aims to increase the number of women on the faculty in science, technology, engineering and mathematics (STEM) departments through grants to individuals and to entire institutions. These grants target a change in institutional culture so that faculty from non-majority groups will succeed and thrive. Mentoring programs are generally designed to fit the particular institution(s) or target population (e.g., meteorologists at the beginning of their careers). A successful mentoring program makes the implicit knowledge necessary for faculty success explicit: policies and practices are made transparent; routes for finding answers are clarified or generated with faculty input; faculty overcome a sense of isolation and develop a community. Mentoring programs may be formal, with assigned mentors and mentees, or informal, with opportunities for beginning, middle and advanced career STEM faculty to mingle, generally over food and sometimes with a formal speaker. The programs are formally evaluated; in general, attention to mentoring generates better outcomes for all faculty. Research indicates that most successful scientists have a network of mentors rather than relying on one person to help navigate department, institution, and profession. The University of Nebraska-Lincoln's (UNL) award, ADVANCE-Nebraska, offered opportunities for faculty to informally network over luncheons with women speakers, advanced in their careers. We also offered after-hours networking receptions. In response to faculty feedback, we shifted to a series of panel discussions entitled "Conversations". Most panels were conducted by successful UNL faculty; about one-third had an outside expert on a given topic. Topics were chosen based on faculty feedback and targeted specifically to beginning faculty (How to Start Up a Lab; How to Balance Teaching and Writing), mid-career faculty (Putting

  15. Report explores Congress' science policy

    Science.gov (United States)

    Jones, Richard

    Scientists interested in understanding how Congress develops science policy would find it useful to read a recent report by the Carnegie Commission on Science, Technology, and Government. “Science, Technology and Congress: Analysis and Advice from the Congressional Support Agencies” contains revealing insights about the often hard-pressed system that Congress uses to analyze science and technology issues.“Congress is on the front line of many battles over the directions of science and technology,” says the 70-page report. “The quality of congressional decisions on these issues often depends on the quality and usefulness of information and analysis made available to Congress.” The report describes the overwhelming amount of information received by members of Congress, few of whom have “substantial training or experience” in science and technology. Making this information understandable and useful is the role of the Office of Technology Assessment, the Congressional Research Service, the General Accounting Office, and the Congressional Budget Office.

  16. Social Justice and the Philosophical Foundations of Critical Peace Education: Exploring Nussbaum, Sen, and Freire

    Science.gov (United States)

    Snauwaert, Dale

    2011-01-01

    The purpose of this paper is to philosophically explore a "realization-focused" capabilities theory of social justice, as articulated by AmartyaSen and Martha Nussbaum, as foundational to a theory of critical peace education. Paulo Freire's philosophy of critical pedagogy has had and continues to have a profound influence on the theory and…

  17. Social Sciences and Space Exploration

    Science.gov (United States)

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  18. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  19. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  20. Social Science Boot Camp: Development and Assessment of a Foundational Course on Academic Literacy in the Social Sciences

    Science.gov (United States)

    Eaton, Judy; Long, Jennifer; Morris, David

    2018-01-01

    We developed a course, as part of our institution's core program, which provides students with a foundation in academic literacy in the social sciences: how to find, read, critically assess, and communicate about social science research. It is not a research methods course; rather, it is intended to introduce students to the social sciences and be…

  1. Theoretical foundation, goals, and methodology of a new science--biospherics

    Science.gov (United States)

    Shaffer, J A

    1994-01-01

    Scientific endeavor is motivated by mankind's needs, desires, and inherent nature to explore. The history of scientific revolutions involves paradigmatic breakthroughs that uncover previously unknown perspectives by which a phenomenon can be viewed. In this issue a noted scientist, Nickolai Pechurkin, gives a seminal brief on the theoretical foundation, goals, and methodology leading to a new science--biospherics. While biospherics has so far eluded a simple definition, it is not something taken from "whole cloth." Biospherics has many antecedents, but most noticeably arises from the global scale research and theory associated with the technological advances of the Space-Age. The Space-Age also created the need for totally closed life-support systems which involve experimentation with artificial biospheres.

  2. NEEMO 21: Tools, Techniques, Technologies and Training for Science Exploration

    Science.gov (United States)

    Graff, T.; Young, K.; Coan, D.; Merselis, D.; Bellantuono, A.; Dougan, K.; Rodriguez-Lanetty, M.; Nedimyer, K.; Chappell, S.; Beaton, K.; hide

    2017-01-01

    The 21st mission of the National Aeronautics and Space Administration (NASA) Extreme Environment Mission Operations (NEEMO) was a highly integrated operational field test and evaluation of tools, techniques, technologies, and training for science driven exploration during extravehicular activity (EVA). The mission was conducted in July 2016 from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo in the Florida Keys National Marine Sanctuary. An international crew of eight (comprised of NASA and ESA astronauts, engineers, medical personnel, and habitat technicians) lived and worked in and around Aquarius and its surrounding reef environment for 16 days. The integrated testing (both interior and exterior objectives) conducted from this unique facility continues to support current and future human space exploration endeavors. Expanding on the scientific and operational evaluations conducted during NEEMO 20, the 21st NEEMO mission further incorporated a diverse Science Team comprised of planetary geoscientists from the Astromaterials Research and Exploration Science (ARES/XI) Division from the Johnson Space Center, marine scientists from the Department of Biological Sciences at Florida International University (FIU) Integrative Marine Genomics and Symbiosis (IMaGeS) Lab, and conservationists from the Coral Restoration Foundation. The Science Team worked in close coordination with the long-standing EVA operations, planning, engineering, and research components of NEEMO in all aspects of mission planning, development, and execution.

  3. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  4. "WALLS": Providing a Firm Foundation for Progression in Science.

    Science.gov (United States)

    Willis, Jo

    1997-01-01

    Describes a means for determining student knowledge in science. Written in student-level language, WALLS contains statements about science knowledge within bricks on a worksheet. Students shade in bricks they know or activities they have done and part-shade any they are unsure about, giving a differentiated starting point that allows them to plan…

  5. On What Foundation is Africa Building its Science and Technology ...

    African Journals Online (AJOL)

    In 2003, six African countries - Ghana Egypt, Tunisia, Morocco, Botswana and South Africa - participated in an international assessment programme in science and mathematics, called the Trends in International Mathematics and Science Study (TIMSS). The study examined the performance of eighth graders in mathematics ...

  6. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.C.; Blew, R.D. [eds.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.

  7. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, R.D.; Warren, R.W. [eds.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

  8. Foundations in Science and Mathematics Program for Middle School and High School Students

    Science.gov (United States)

    Desai, Karna Mahadev; Yang, Jing; Hemann, Jason

    2016-01-01

    The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .

  9. The logical foundations of forensic science: towards reliable knowledge

    OpenAIRE

    Evett, Ian

    2015-01-01

    The generation of observations is a technical process and the advances that have been made in forensic science techniques over the last 50 years have been staggering. But science is about reasoning—about making sense from observations. For the forensic scientist, this is the challenge of interpreting a pattern of observations within the context of a legal trial. Here too, there have been major advances over recent years and there is a broad consensus among serious thinkers, both scientific an...

  10. Exploring Social Dynamics in School Science Context

    Directory of Open Access Journals (Sweden)

    Mehmet C. Ayar

    2014-09-01

    Full Text Available The purpose of this study was to explore the socio-cultural practices and interactions of learning science in a science classroom within the concept of communities of practice. Our qualitative data were collected through observing, taking field notes, and conducting interviews in a public science classroom during an entire school year. The study occurred in a seventh-grade classroom with a veteran physical science teacher, with more than 10 years teaching experience, and 22 students. For this article, we presented two classroom vignettes that reflect a sample of the participation, practice, and community that was observed in the science classroom on a daily basis. The first vignette illustrated a typical formula of Initiation–Response–Feedback (I-R-F that transfers knowledge to students through a teacher-led discussion with the entire class. The second vignette described a laboratory activity designed to allow students to apply or discover knowledge through practical experience, while taking responsibility for their learning through small-group work. The normative practices and routine behaviors of the science classroom are highlighted through the description of material resources, and different modes of participation accompanied by assigned roles and responsibilities. What we observed was that laboratory activities reproduced the epistemic authority of the I-R-F rather than creating collective cognitive responsibility where students have the independence to explore and create authentic science experiences.

  11. Laying the Foundations for Scientometric Research: A Data Science Approach

    Science.gov (United States)

    Perron, Brian E.; Victor, Bryan G.; Hodge, David R.; Salas-Wright, Christopher P.; Vaughn, Michael G.; Taylor, Robert Joseph

    2017-01-01

    Objective: Scientometric studies of social work have stagnated due to problems with the organization and structure of the disciplinary literature. This study utilized data science to produce a set of research tools to overcome these methodological challenges. Method: We constructed a comprehensive list of social work journals for a 25-year time…

  12. Informetrics needs a foundation in the theory of science

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2016-01-01

    Taking the Kuhnian revolution in the philosophy of science as its point of departure, this chapter discusses the lessening influence of logical positivism as well as how the recognition of the subjectivity of the researcher, the social and historical nature of bibliometric patterns, and the impor...

  13. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  14. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    International Nuclear Information System (INIS)

    Morris, R.C.; Blew, R.D.

    1997-01-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed

  15. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    International Nuclear Information System (INIS)

    Reynolds, R.D.; Warren, R.W.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation's mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects

  16. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  17. Educing Information - Interrogation: Science and Art, Foundations for the Future

    Science.gov (United States)

    2006-12-01

    imprisonment as an integral component of the inquisitor’s interrogation strategy…. [C]oupled if necessary, with hunger , shackles, and torture…[it...computer science with a concentration in machine intelligence and cognition, and minors in neuropsychology and developmental psychology, from The George...a solid theoretical base, then a signifi cant research investment into the underlying neuropsychological mechanisms of deception must be made before

  18. Senator Fred Harris's National Social Science Foundation proposal: Reconsidering federal science policy, natural science-social science relations, and American liberalism during the 1960s.

    Science.gov (United States)

    Solovey, Mark

    2012-03-01

    During the 1960s, a growing contingent of left-leaning voices claimed that the social sciences suffered mistreatment and undue constraints within the natural science-dominated federal science establishment. According to these critics, the entrenched scientific pecking order in Washington had an unreasonable commitment to the unity of the sciences, which reinforced unacceptable inequalities between the social and the natural sciences. The most important political figure who advanced this critique, together with a substantial legislative proposal for reform, was the Oklahoma Democratic Senator Fred Harris. Yet histories of science and social science have told us surprisingly little about Harris. Moreover, existing accounts of his effort to create a National Social Science Foundation have misunderstood crucial features of this story. This essay argues that Harris's NSSF proposal developed into a robust, historically unique, and increasingly critical liberal challenge to the post-World War II federal science establishment's treatment of the social sciences as "second-class citizens."

  19. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure

  20. Environmental Science and Research Foundation. Annual technical report, April 11, 1994--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T.D.; Morris, R.C.; Markham, O.D. [eds.

    1995-06-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office, by the Environmental Science and Research Foundation (Foundation) for work under contract DE-AC07-94ID13268. The Foundation began, on April 11, 1994, to conduct environmental surveillance near to and distant from the Idaho National Engineering Laboratory, provide environmental public relations and education related to INEL natural resource issues, and conduct ecological and radioecological research benefiting major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Infrastructure.

  1. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  2. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  3. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  4. An exploration of the experiences of recent graduates from an interprofessional foundation degree.

    Science.gov (United States)

    Norrie, Caroline; Hasselder, Alison; Manning, Chris

    2012-11-01

    This short report describes a study which aimed to explore the experiences of newly qualified assistant practitioners (APs) from an interprofessional foundation degree in long-term conditions. Interviews were carried out with one cohort of newly qualified APs and their employee mentors, 6-9 months after the APs had re-entered full-time practice. Three major themes were identified after analysis of the interview transcripts: widened AP horizons, poor AP pay and conditions and friction between APs and their colleagues. The course was highly praised by the APs and their workplace mentors. Unfortunately, the workplace infrastructure needed to support the APs was reported to be inadequate.

  5. Life after National Science Foundation fellowships: The implications for a graduate student's professional endeavors

    Science.gov (United States)

    Obarski, Kelly Josephine

    Each year, hundreds of graduate and undergraduate students, participate as Fellows in National Science Foundation GK-12 Grants throughout the U.S. These Fellowships create opportunities for university students to improve their communication skills, teaching proficiencies, and team-building skills, in addition to expanding their interest in educational endeavors in their respective communities while pursuing their college degrees. STEP (Science and Technology Enhancement Project) is one such project. University faculty, public school teachers, and community leaders collaborated together in order to bring scientists into middle and secondary classrooms to focus on increasing student interest and proficiency in science, technology, engineering, and mathematics (STEM) skills. Seventeen Fellows, in the previous four years, designed, developed, and implemented innovative, hands-on lessons in seven local schools. The evaluation team collected a tremendous amount of research evidence focused on the effect of the program on the Fellows while they were participants in the study, but there has been very little data collected about the Fellows after leaving the program. This research study, consisting of two-hour interviews, qualitatively explores how the skills learned while participating in the STEP program affected the Fellows' career and educational choices once leaving the project. This data was analyzed along with historical attitude surveys and yearly tracking documents to determine the effect that participation in the program had on their choices post-STEP. An extensive literature review has been conducted focusing on other GK-12 programs throughout the country, K-16 collaboration, Preparing Future Faculty Programs, as well as on teaching and learning literature. These bodies of literature provide the theoretical basis in which the research is framed in order to assess the impact on Fellow educational and professional choices since leaving the STEP program. This

  6. Understanding Science and Technology Interactions Through Ocean Science Exploration: A Summer Course for Science Teachers

    Science.gov (United States)

    Baldauf, J.; Denton, J.

    2003-12-01

    In order to replenish the national supply of science and mathematics educators, the National Science Foundation has supported the formation of the Center for Applications of Information Technology in the Teaching and Learning of Science (ITS) at Texas A&M University. The center staff and affiliated faculty work to change in fundamental ways the culture and relationships among scientists, educational researchers, and teachers. ITS is a partnership among the colleges of education, science, geosciences, agriculture and life science at Texas A&M University. Participants (teachers and graduate students) investigate how science is done and how science is taught and learned; how that learning is assessed, and how scholarly networks among all engaged in this work can be encouraged. While the center can offer graduate degrees most students apply as non-degree seekers. ITS participants are schooled on classroom technology applications, experience working on project teams, and access very current research work being conducted by scientists. ITS offers a certificate program consisting of two summer sessions over two years that results in 12 hours of graduate credit that can be applied to a degree. Interdisciplinary project teams spend three intense weeks connecting current research to classroom practices. During the past summer with the beginning of the two-year sequence, a course was implemented that introduced secondary teachers to Ocean Drilling Program (ODP) contributions to major earth science themes, using core and logging data, engineering (technology) tools and processes. Information Technology classroom applications were enhanced through hands-on laboratory exercises, web resources and online databases. The course was structured around the following objectives. 1. Distinguish the purpose and goals of the Ocean Drilling Program from the Integrated Ocean Drilling Program and describe the comparable science themes (ocean circulation, marine sedimentation, climate history

  7. [Funding for Division of Microbiology in 2014 by National Natural Science Foundation of China].

    Science.gov (United States)

    Qiao, Jianjun; Huang, Chenyang; Liu, Lin; Wen, Mingzhang

    2015-02-04

    In this paper, we provided an overview of proposals submitted and projects funded in 2014 at the Division of Microbiology, Department of Life Sciences, National Natural Science Foundation of China. The traits and problems in different sub-disciplines were analyzed, the background, results and analysis of internet voting before panel meetings in Microbiology discipline were also introduced. The information will provide references for Chinese researchers to apply funding in microbiology discipline in the future.

  8. Community College Economics Instruction: Results from a National Science Foundation Project

    Science.gov (United States)

    Maier, Mark; Chi, W. Edward

    2016-01-01

    The principal investigator of a National Science Foundation project, "Economics at Community Colleges," surveyed community college economics faculty and organized workshops, webinars, and regional meetings to address community college faculty isolation from new ideas in economics and economics instruction. Survey results, combined with…

  9. 76 FR 3853 - National Science Foundation Rules of Practice and Statutory Conflict-of-Interest Exemptions

    Science.gov (United States)

    2011-01-21

    ... Practice and Statutory Conflict-of-Interest Exemptions AGENCY: National Science Foundation. ACTION: Final... provisions concerning statutory conflict-of- interest exemptions. DATES: The final rule is effective on.... List of Subjects in 45 CFR Part 680 Conflict of interests. Accordingly, 45 CFR part 680 is amended as...

  10. 77 FR 12331 - Membership of National Science Foundation's Senior Executive Service Performance Review Board

    Science.gov (United States)

    2012-02-29

    ... Director, Division of Human Resource Management, National Science Foundation, Room 315, 4201 Wilson... Resource Management and Chief Human Capital Officer. Deborah F. Lockhart, Deputy Director, Division of.... Sunley, Director, Division of Human Resource Management and PRB Executive Secretary. Dated: February 21...

  11. [Analysis of projects of infectious disease epidemiology sponsored by National Natural Science Foundation of China].

    Science.gov (United States)

    Jian-Ming, Wang; Yan-Kai, Xia; Hui-Juan, Zhu; Feng, Chen; Hong-Bing, Shen

    2016-05-10

    To analyze the projects on the infectious disease epidemiology sponsored by the National Natural Science Foundation of China (NSFC), explore the hotspot and development trend, and offer a reference for researchers in this field. Based on the NSFC database, the projects on the infectious disease epidemiology (H2609) sponsored from 1987 to 2014 were analyzed. The changes of fund numbers, amounts and research fields were described. During the study period, NSFC sponsored 373 projects, including 228 general projects (61.1%), 78 youth projects (20.9%) and 67 other projects (18.0%). The average amount of the grant was 358.2 thousand Yuan (20 thousand-8 million). The main sponsored research fields were mechanisms of pathogen and immunity (36.2%) and population-based epidemiological studies (33.0%). The top three diseases were hepatitis, HIV/AIDS and tuberculosis. The amount of funding on researches of infectious disease epidemiology has increased continuously, which has played an important role in training scientific talents in the field of prevention and control of infectious diseases.

  12. 25 October 2017- Austrian, German and Swiss Science Foundations signing the guest book in the Globe of Science and Innovation

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    Austrian, German and Swiss Science Foundations in Globe: Professor Klement Tockner, Präsident, Fonds zur Förderung der wissenschaftlichen Forschung, Austria; Professor Peter, Strohschneider, Präsident, Deutsche Forschungsgemeinschaft Germany; Professor Matthias Egger, Präsident, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Switzerland

  13. The Taskforce on Conceptual Foundations of Earth System Governance: Sustainability Science

    Directory of Open Access Journals (Sweden)

    Barry Ness

    2017-02-01

    Full Text Available We are pleased to introduce the second special issue from Challenges in Sustainability, this time as a part of the Taskforce on Conceptual Foundations of Earth System Governance, an initiative by the Earth System Governance Project (ESG (http://www.earthsystemgovernance.net/conceptual-foundations/. The ESG Project is a global research alliance. It is the largest social science research network in the field of governance and global environmental change. ESG is primarily a scientific effort but is also designed to assist policy responses to pressing problems of earth system transformation.

  14. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  15. 45 CFR 630.400 - What are my responsibilities as a(n) National Science Foundation awarding official?

    Science.gov (United States)

    2010-10-01

    ....400 What are my responsibilities as a(n) National Science Foundation awarding official? As a(n... 45 Public Welfare 3 2010-10-01 2010-10-01 false What are my responsibilities as a(n) National Science Foundation awarding official? 630.400 Section 630.400 Public Welfare Regulations Relating to...

  16. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  17. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  18. The art and science of selecting graduate students in the biomedical sciences: Performance in doctoral study of the foundational sciences.

    Science.gov (United States)

    Park, Hee-Young; Berkowitz, Oren; Symes, Karen; Dasgupta, Shoumita

    2018-01-01

    The goal of this study was to investigate associations between admissions criteria and performance in Ph.D. programs at Boston University School of Medicine. The initial phase of this project examined student performance in the classroom component of a newly established curriculum named "Foundations in Biomedical Sciences (FiBS)". Quantitative measures including undergraduate grade point average (GPA), graduate record examination (GRE; a standardized, computer-based test) scores for the verbal (assessment of test takers' ability to analyze, evaluate, and synthesize information and concepts provided in writing) and quantitative (assessment of test takers' problem-solving ability) components of the examination, previous research experience, and competitiveness of previous research institution were used in the study. These criteria were compared with competencies in the program defined as students who pass the curriculum as well as students categorized as High Performers. These data indicated that there is a significant positive correlation between FiBS performance and undergraduate GPA, GRE scores, and competitiveness of undergraduate institution. No significant correlations were found between FiBS performance and research background. By taking a data-driven approach to examine admissions and performance, we hope to refine our admissions criteria to facilitate an unbiased approach to recruitment of students in the life sciences and to share our strategy to support similar goals at other institutions.

  19. Ocean FEST (Families Exploring Science Together)

    Science.gov (United States)

    Bruno, B. C.; Wiener, C. S.

    2009-12-01

    Ocean FEST (Families Exploring Science Together) exposes families to cutting-edge ocean science research and technology in a fun, engaging way. Research has shown that family involvement in science education adds significant value to the experience. Our overarching goal is to attract underrepresented students (including Native Hawaiians, Pacific Islanders and girls) to geoscience careers. A second goal is to communicate to diverse audiences that geoscience is directly relevant and applicable to their lives, and critical in solving challenges related to global climate change. Ocean FEST engages elementary school students, parents, teachers, and administrators in family science nights based on a proven model developed by Art and Rene Kimura of the Hawaii Space Grant Consortium. Our content focuses on the role of the oceans in climate change, and is based on the transformative research of the NSF Center for Microbial Oceanography: Research and Education (C-MORE) and the Hawaii Institute of Marine Biology (HIMB). Through Ocean FEST, underrepresented students and their parents and teachers learn about new knowledge being generated at Hawaii’s world-renowned ocean research institutes. In the process, they learn about fundamental geoscience concepts and career opportunities. This project is aligned with C-MORE’s goal of increasing the number of underrepresented students pursuing careers in the ocean and earth sciences, and related disciplines. Following a successful round of pilot events at elementary schools on Oahu, funding was obtained through NSF Opportunities for Enhancing Diversity in the Geosciences to implement a three-year program at minority-serving elementary schools in Hawaii. Deliverables include 20 Ocean FEST events per year (each preceded by teacher professional development training), a standards-based program that will be disseminated locally and nationally, three workshops to train educators in program delivery, and an Ocean FEST science kit. In

  20. Mars Exploration Student Data Teams: Building Foundations and Influencing Students to Pursue STEM Careers through Experiences with Authentic Research

    Science.gov (United States)

    Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.

    2013-12-01

    The Mars Exploration Student Data Teams (MESDT) immerses diverse teams of high school and undergraduate students in an authentic research Science, Technology, Engineering and Mathematics (STEM) based experience and allows students to be direct participants in the scientific process by working with scientists to analyze data sets from NASA's Mars program, specifically from the CRISM instrument. MESDT was created by Arizona State University's Mars Education Program, and is funded through NASA's Compact Reconnaissance Imaging Spectrometer for Mars or CRISM, an instrument onboard the Mars Reconnaissance Orbiter (MRO). Students work with teacher mentors and CRISM team members to analyze data, develop hypotheses, conduct research, submit proposals, critique and revise work. All students begin the program with basic Mars curriculum lessons developed by the MESDT education team. This foundation enables the program to be inclusive of all students. Teachers have reported that populations of students with diverse academic needs and abilities have been successful in this program. The use of technology in the classroom allows the MESDT program to successfully reach a nationwide audience and funding provided by NASA's CRISM instrument allows students to participate free of charge. Recent changes to the program incorporate a partnership with United States Geological Survey (USGS) and a CRISM sponsored competitive scholarship for two teams of students to present their work at the annual USGS Planetary Mappers Meeting. Returning MESDT teachers have attributed an increase in student enrollment and interest to this scholarship opportunity. The 2013 USGS Planetary Mappers Meeting was held in Washington DC which provided an opportunity for the students to meet with their Senators at the US Capitol to explain the science work they had done throughout the year as well as the impact that the program had had on their goals for the future. This opportunity extended to the students by the

  1. The Ford Foundation and the rise of behavioralism in political science.

    Science.gov (United States)

    Hauptmann, Emily

    2012-01-01

    How did behavioralism, one of the most influential approaches to the academic study of politics in the twentieth century, become so prominent so quickly? I argue that many political scientists have either understated or ignored how the Ford Foundation's Behavioral Sciences Program gave form to behavioralism, accelerated its rise, and helped root it in political science. I then draw on archived documents from Ford as well as one of its major grantees, U. C. Berkeley, to present several examples of how Ford used its funds to encourage the behavioral approach at a time when it had few adherents among political scientists. © 2012 Wiley Periodicals, Inc.

  2. Normative ethics does not need a foundation: it needs more science.

    Science.gov (United States)

    Quintelier, Katinka; Van Speybroeck, Linda; Braeckman, Johan

    2011-03-01

    The impact of science on ethics forms since long the subject of intense debate. Although there is a growing consensus that science can describe morality and explain its evolutionary origins, there is less consensus about the ability of science to provide input to the normative domain of ethics. Whereas defenders of a scientific normative ethics appeal to naturalism, its critics either see the naturalistic fallacy committed or argue that the relevance of science to normative ethics remains undemonstrated. In this paper, we argue that current scientific normative ethicists commit no fallacy, that criticisms of scientific ethics contradict each other, and that scientific insights are relevant to normative inquiries by informing ethics about the options open to the ethical debate. Moreover, when conceiving normative ethics as being a nonfoundational ethics, science can be used to evaluate every possible norm. This stands in contrast to foundational ethics in which some norms remain beyond scientific inquiry. Finally, we state that a difference in conception of normative ethics underlies the disagreement between proponents and opponents of a scientific ethics. Our argument is based on and preceded by a reconsideration of the notions naturalistic fallacy and foundational ethics. This argument differs from previous work in scientific ethics: whereas before the philosophical project of naturalizing the normative has been stressed, here we focus on concrete consequences of biological findings for normative decisions or on the day-to-day normative relevance of these scientific insights.

  3. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  4. Exploring links between foundation phase teachers’ content knowledge and their example spaces

    Directory of Open Access Journals (Sweden)

    Samantha Morrison

    2013-12-01

    Full Text Available This paper explores two foundation phase teachers’ example spaces (a space in the mind where examples exist when teaching number-related topics in relation to snapshots of their content knowledge (CK. Data was collected during a pilot primary maths for teaching course that included assessments of teacher content knowledge (CK. An analysis of a content-knowledge focused pre-test developed for the larger study indicated a relatively high score for one teacher and a low score for the other. Using Rowland’s (2008 framework, an analysis of classroom practice showed associations between a higher CK and the extent of a teacher’s example space and more coherent connections between different representational forms. Although no hard claims or generalisations of the link between teachers’ example spaces and their level of mathematics content knowledge can be made here, this study reinforces evidence of the need to increase teachers’ CK from a pedagogic perspective in order to raise the level of mathematics teaching and learning in the South African landscape.

  5. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  6. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    Science.gov (United States)

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  7. Public science policy and administration. [cooperation of government industry, foundations, and educational institutions

    Science.gov (United States)

    Rosenthal, A. H. (Editor)

    1973-01-01

    Science, the overwhelming concern of our time, is no longer a matter of private research and development but one of public policy and administration, in which government, industry, foundations, and educational institutions must all work together as never before. Few other single tasks are of such decisive importance to the collective and individual welfare of American citizens as the formulation of public science policy and the administration of scientific programs. Eleven national authorities of varied background in science, education, and government administration contribute their experience and their judgment in an effort to deal with the major aspects of the subject. Their focus is on the meeting of actual problems; they consider the decision making process in both public and public-private organizations. Topics are grouped in three general categories: personnel needs and resources, organizational problems and techniques, and the administrative role in policy leadership.

  8. Teaching Development of Foundation Environmental Science Course Using Undergraduate Handbook of Buriram Rajabhat University

    Directory of Open Access Journals (Sweden)

    Kuntida Thammamrat

    2017-06-01

    Full Text Available The present study is an attempt to apply the handbook as a tool for teaching foundation of environmental science. The aims of this investigation were 1 to develop a course handbook that fills the standard criteria of 80/80 2 to compare mean derived from pretest and posttest scores 3 to compare student’s attitude toward environmental science from the pretest and posttest scores and 4 to compare student’s environmental scientific skills prior to and after using a study handbook. The key informants were 56 students drawn from 1st- year students of Environmental Science Department of Buriram Rajabhat University in 2558 (B.E academic year. Four instruments of data collection were constructed including 1 the course handbook 2 test of student’s basic knowledge on environmental science, 3 the test of student’s attitude toward environmental science, and 4 the test of student’s environmental scientific skills. The statistics analysis in this study comprised frequency percentage, mean, standard deviation and dependent t – test, which were of used for examining the hypothesis. The findings of this investigation revealed that 1 the efficiency of the handbook entitled “Foundation of environmental science” met the criteria of 80/80 in all aspects with value 83.93/91.81 2 the scores derived from student’s posttest is higher than pretest with .05 statistical significant difference 3 teaching through the handbook enhanced the level of student attitude toward environmental science with .05 statistical significant difference and 4 the environmental scientific skills of the students learning through the handbook are significantly higher than before, at .05 level.

  9. Moral Rationality and Intuition: An Exploration of Relationships between the Defining Issues Test and the Moral Foundations Questionnaire

    Science.gov (United States)

    Glover, Rebecca J.; Natesan, Prathiba; Wang, Jie; Rohr, Danielle; McAfee-Etheridge, Lauri; Booker, Dana D.; Bishop, James; Lee, David; Kildare, Cory; Wu, Minwei

    2014-01-01

    Explorations of relationships between Haidt's Moral Foundations Questionnaire (MFQ) and indices of moral decision-making assessed by the Defining Issues Test have been limited to correlational analyses. This study used Harm, Fairness, Ingroup, Authority and Purity to predict overall moral judgment and individual Defining Issues Test-2 (DIT-2)…

  10. BrightFocus Foundation

    Science.gov (United States)

    ... About BrightFocus Foundation Featured Content BrightFocus: Investing in Science to Save Mind and Sight We're here to help. Explore ... recognition is very important. Monday, November 6, 2017 New Diagnosis? Managing a mind and sight disease is a journey. And you’ ...

  11. An Analysison Provincial Medical Science Basic Research Competitiveness Based on the National Natural Science Foundation of China

    Directory of Open Access Journals (Sweden)

    Xing Xia

    2017-06-01

    Full Text Available [Purpose/significance] The National Natural Science Foundation of China (NSFC is one of the most important channels to support basic research in China. Competition for funding by the NSFC has been a very important indicator to measure the basic research level of various province and scientific research institutions. [Method/process] By combing and analyzing the status quo of NSFC in medical science, it is helpful to narrow the provincial gap and improve the basic research of medical science in China. Based on the project information of NSFC and previous scholars’ research, the paper update the index of basic research competitiveness, and analyzes project number and project funding of medical science during 2006-2016. At the same time, the competitiveness of medical science basic research and its changing trend in 31 provinces of China are analyzed. [Result/conclusion] The result shows that, in recent years, China’s basic scientific research has greatly improved, but there is a large gap between the provinces.

  12. Exploring Natural and Social Scientists' Views of Nature of Science

    Science.gov (United States)

    Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge

    2014-01-01

    Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…

  13. Ocean FEST: Families Exploring Science Together

    Science.gov (United States)

    Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene

    2011-01-01

    This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…

  14. Citizen Science Terminology Matters: Exploring Key Terms

    NARCIS (Netherlands)

    Eitzel, M.V.; Cappadonna, Jessica L.; Santos-Lang, Chris; Duerr, Ruth Ellen; Virapongse, Arika; West, Sarah Elizabeth; Kyba, Christopher Conrad Maximillian; Bowser, Anne; Cooper, Caren Beth; Sforzi, Andrea; Metcalfe, Anya Nova; Harris, Edward S.; Thiel, Martin; Haklay, Mordechai; Ponciano, Lesandro; Roche, Joseph; Ceccaroni, Luigi; Shilling, Fraser Mark; Dörler, Daniel; Heigl, Florian; Kiessling, Tim; Davis, Brittany Y.; Jiang, Qijun

    2017-01-01

    Much can be at stake depending on the choice of words used to describe citizen science, because terminology impacts how knowledge is developed. Citizen science is a quickly evolving field that is mobilizing people’s involvement in information development, social action and justice, and large-scale

  15. Exploring the science-policy interface.

    Science.gov (United States)

    Davies, Justine

    2010-04-30

    The sacking of David Nutt from his position as Chair of a UK government science advisory council has thrown the interface between science and policy into sharp relief. Justine Davies takes a look behind the scenes. 2010 Elsevier Inc. All rights reserved.

  16. Exploring alternative assessment strategies in science classrooms

    Directory of Open Access Journals (Sweden)

    Michèle Stears

    2010-01-01

    Full Text Available The knowledge children bring to the classroom or construct in the classroom may find expression in a variety of activities and is often not measurable with the traditional assessment instruments used in science classrooms. Different approaches to assessment are required to accommodate the various ways in which learners construct knowledge in social settings. In our research we attempted to determine the types of outcomes achieved in a Grade 6 classroom where alternative strategies such as interactive assessments were implemented. Analyses of these outcomes show that the learners learned much more than the tests indicate, although what they learnt was not necessarily science. The implications for assessment are clear: strategies that assess knowledge of science concepts, as well as assessment of outcomes other than science outcomes, are required if we wish to gain a holistic understanding of the learning that occurs in science classrooms.

  17. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  18. Eclecticism as the foundation of meta-theoretical, mixed methods and interdisciplinary research in social sciences.

    Science.gov (United States)

    Kroos, Karmo

    2012-03-01

    This article examines the value of "eclecticism" as the foundation of meta-theoretical, mixed methods and interdisciplinary research in social sciences. On the basis of the analysis of the historical background of the concept, it is first suggested that eclecticism-based theoretical scholarship in social sciences could benefit from the more systematic research method that has been developed for synthesizing theoretical works under the name metatheorizing. Second, it is suggested that the mixed methods community could base its research approach on philosophical eclecticism instead of pragmatism because the basic idea of eclecticism is much more in sync with the nature of the combined research tradition. Finally, the Kuhnian frame is used to support the argument for interdisciplinary research and, hence, eclecticism in social sciences (rather than making an argument against multiple paradigms). More particularly, it is suggested that integrating the different (inter)disciplinary traditions and schools into one is not necessarily desirable at all in social sciences because of the complexity and openness of the research field. If it is nevertheless attempted, experience in economics suggests that paradigmatic unification comes at a high price.

  19. Using Decision Tree Analysis to Understand Foundation Science Student Performance. Insight Gained at One South African University

    Science.gov (United States)

    Kirby, Nicola Frances; Dempster, Edith Roslyn

    2014-01-01

    The Foundation Programme of the Centre for Science Access at the University of KwaZulu-Natal, South Africa provides access to tertiary science studies to educationally disadvantaged students who do not meet formal faculty entrance requirements. The low number of students proceeding from the programme into mainstream is of concern, particularly…

  20. Explore a Career in Health Sciences Information

    Science.gov (United States)

    ... for a second career, working in health sciences librarianship might be the right career for you! Read ... MLA's most revered leaders speaks about the health librarianship profession Read about things of interest to a ...

  1. Projects of Earth Sciences Supported by National Natural Science Foundation of China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    information please contract: Director Song Changqing, Dr. Leng Shuying, Division of Geography, National Natural Science Foundation of China. P.O.Box 8610, Beijing, 100085, China. E-mail:Songcq@nsfc.gov.cn. Lengsy@mail.nsfc.gov.cn

  2. [Analysis of projects of schistosomiasis sponsored by National Science Foundation of China].

    Science.gov (United States)

    Wen-di, Zhou; Liang, Shi; Xue-Dan, Ke; Jie, Wang

    2017-07-27

    To summarize the present development by analysis of projects in schistosomiasis funded by National Science Foundation of China (NSFC). Based on the ISIS database of NFSC, the projects in the studies of schistosomiasis from 2005 to 2016 were analyzed. The distributions of sponsored numbers, amounts, types, agencies, disciplines and changes in research topics by means of network profiles were described. During the study period, 198 projects were funded by NSFC totally with 76.05 million yuan in which the general and youth projects were main types. The main sponsored agencies were research institutes and medical colleges. The top three fields sponsored were medical pathogenic microbes and infection, veterinary and medical immunology. The funding on schistosomiasis researches has a downward trend, but studies are continuing in depth. In this situation, innovative and interdisciplinary researches need to be encouraged to promote the development of schistosomiasis.

  3. Monitoring the southwestern Wyoming landscape—A foundation for management and science

    Science.gov (United States)

    Manier, Daniel J.; Anderson, Patrick J.; Assal, Timothy J.; Chong, Geneva W.; Melcher, Cynthia P.

    2017-08-29

    Natural resource monitoring involves repeated collections of resource condition data and analyses to detect possible changes and identify underlying causes of changes. For natural resource agencies, monitoring provides the foundation for management and science. Specifically, analyses of monitoring data allow managers to better understand effects of land-use and other changes on important natural resources and to achieve their conservation and management goals. Examples of natural resources monitored on public lands include wildlife habitats, plant productivity, animal movements and population trends, soil chemistry, and water quality and quantity. Broader definitions of monitoring also recognize the need for scientifically valid data to help support planning efforts and informed decisions, to develop adaptive management strategies, and to provide the means for evaluating management outcomes.

  4. Adults who Sext: Exploring Differences in Self-Esteem, Moral Foundations, and Personality

    OpenAIRE

    M. Crimmins, Danielle; Kathryn C. Seigfried-Spellar

    2017-01-01

    This study assessed the prevalence of sexting behaviors among adults, and the relationship between sexting and moral foundations, self-esteem, and individual differences. Additionally, this study examined differences in the methods used to send sext messages (mobile applications vs. text messages) and image content (e.g., face, masturbating). Respondents solicited through Amazon’s Mechanical Turk completed the anonymous survey measuring “attitudes toward sexting.” The final sample included 50...

  5. Emphaty as the foundation of the social sciences and of social life: a reading of Husserl's phenomenology of transcendental intersubjectivity

    Directory of Open Access Journals (Sweden)

    Frédéric Vandenberghe

    2002-12-01

    Full Text Available Starting with an overview of possible solutions to the problem of social order, the author presents a non-acritical reconstruction of Edmund Husserl's transcendental phenomenology of intersubjectivity as a sympathetic alternative to Habermas's theory of communicative action. By means of a detailed analysis of the concept of empathy (Einfühlung, he shows that Husserl's phenomenology of intersubjectivity offers a triple foundation of the sciences. As a warrant of the objectivity of the world, it grounds the natural sciences; as a presupposition of sociality, it founds the social sciences; as mediated by culture, it grounds the social sciences as human sciences.

  6. Sound and music for science explorations

    CERN Document Server

    CERN. Geneva; Vicinanza, Domenico

    2017-01-01

    Resonances, periodicity, patterns and spectra: well-known notions that play crucial roles both in science and music. This short talk will focus on analysing data and their relations by translating measurements into audible signals and using the natural capability of the ear to distinguish, characterise and analyse waveform shapes, amplitudes and relations. This process is called data sonification.

  7. Dynamics Explorer science data processing system

    International Nuclear Information System (INIS)

    Smith, P.H.; Freeman, C.H.; Hoffman, R.A.

    1981-01-01

    The Dynamics Explorer project has acquired the ground data processing system from the Atmosphere Explorer project to provide a central computer facility for the data processing, data management and data analysis activities of the investigators. Access to this system is via remote terminals at the investigators' facilities, which provide ready access to the data sets derived from groups of instruments on both spacecraft. The original system has been upgraded with both new hardware and enhanced software systems. These new systems include color and grey scale graphics terminals, an augmentation computer, micrographies facility, a versatile data base with a directory and data management system, and graphics display software packages. (orig.)

  8. Conventional Principles in Science: On the foundations and development of the relativized a priori

    Science.gov (United States)

    Ivanova, Milena; Farr, Matt

    2015-11-01

    The present volume consists of a collection of papers originally presented at the conference Conventional Principles in Science, held at the University of Bristol, August 2011, which featured contributions on the history and contemporary development of the notion of 'relativized a priori' principles in science, from Henri Poincaré's conventionalism to Michael Friedman's contemporary defence of the relativized a priori. In Science and Hypothesis, Poincaré assessed the problematic epistemic status of Euclidean geometry and Newton's laws of motion, famously arguing that each has the status of 'convention' in that their justification is neither analytic nor empirical in nature. In The Theory of Relativity and A Priori Knowledge, Hans Reichenbach, in light of the general theory of relativity, proposed an updated notion of the Kantian synthetic a priori to account for the dynamic inter-theoretic status of geometry and other non-empirical physical principles. Reichenbach noted that one may reject the 'necessarily true' aspect of the synthetic a priori whilst preserving the feature of being constitutive of the object of knowledge. Such constitutive principles are theory-relative, as illustrated by the privileged role of non-Euclidean geometry in general relativity theory. This idea of relativized a priori principles in spacetime physics has been analysed and developed at great length in the modern literature in the work of Michael Friedman, in particular the roles played by the light postulate and the equivalence principle - in special and general relativity respectively - in defining the central terms of their respective theories and connecting the abstract mathematical formalism of the theories with their empirical content. The papers in this volume guide the reader through the historical development of conventional and constitutive principles in science, from the foundational work of Poincaré, Reichenbach and others, to contemporary issues and applications of the

  9. High-Rate Laser Communications for Human Exploration and Science

    Science.gov (United States)

    Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.

    2018-02-01

    Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.

  10. Longitudinal Nanotechnology Development (1991-2002): National Science Foundation Funding and its Impact on Patents

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Yan Lijun; Roco, Mihail C.

    2005-01-01

    Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8

  11. Longitudinal Nanotechnology Development (1991-2002): National Science Foundation Funding and its Impact on Patents

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zan, E-mail: zhuang@eller.arizona.edu; Chen Hsinchun; Yan Lijun [University of Arizona, Department of Management Information Systems, Artificial Intelligence Lab, Eller College of Management (United States); Roco, Mihail C. [National Science Foundation (United States)

    2005-10-15

    Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8.

  12. Scientific foundation of regulating ionizing radiation: application of metrics for evaluation of regulatory science information.

    Science.gov (United States)

    Moghissi, A Alan; Gerraa, Vikrham Kumar; McBride, Dennis K; Swetnam, Michael

    2014-11-01

    This paper starts by describing the historical evolution of assessment of biologic effects of ionizing radiation leading to the linear non-threshold (LNT) system currently used to regulate exposure to ionizing radiation. The paper describes briefly the concept of Best Available Science (BAS) and Metrics for Evaluation of Scientific Claims (MESC) derived for BAS. It identifies three phases of regulatory science consisting of the initial phase, when the regulators had to develop regulations without having the needed scientific information; the exploratory phase, when relevant tools were developed; and the standard operating phase, when the tools were applied to regulations. Subsequently, an attempt is made to apply the BAS/MESC system to various stages of LNT. This paper then compares the exposure limits imposed by regulatory agencies and also compares them with naturally occurring radiation at several cities. Controversies about LNT are addressed, including judgments of the U.S. National Academies and their French counterpart. The paper concludes that, based on the BAS/MESC system, there is no disagreement between the two academies on the scientific foundation of LNT; instead, the disagreement is based on their judgment or speculation.

  13. [Review and analysis of transplant biological research projects funded by National Natural Science Foundation of China].

    Science.gov (United States)

    Gong, Weihua; Sun, Ruijuan; Dong, Erdan

    2015-08-01

    To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.

  14. Secret Science: Exploring Cold War Greenland

    Science.gov (United States)

    Harper, K.

    2013-12-01

    During the early Cold War - from the immediate postwar period through the 1960s - the United States military carried out extensive scientific studies and pursued technological developments in Greenland. With few exceptions, most of these were classified - sometimes because new scientific knowledge was born classified, but mostly because the reasons behind the scientific explorations were. Meteorological and climatological, ionospheric, glaciological, seismological, and geological studies were among the geophysical undertakings carried out by military and civilian scientists--some in collaboration with the Danish government, and some carried out without their knowledge. This poster will present some of the results of the Exploring Greenland Project that is coming to a conclusion at Denmark's Aarhus University.

  15. Exploring a Century of Advancements in the Science of Learning

    Science.gov (United States)

    Murphy, P. Karen; Knight, Stephanie L.

    2016-01-01

    The past century has yielded a plethora of advancements in the science of learning, from expansions in the theoretical frames that undergird education research to cultural and contextual considerations in educational practice. The overarching purpose of this chapter is to explore and document the growth and development of the science of learning…

  16. Exploring reforms while learning to teach science: Facilitating exploration of theory-practice relationships in a teacher education study group

    Science.gov (United States)

    Foster, Jacob G.

    This dissertation inserts a new view into an old problem in teacher education. The study explores the theory-practice gap, the large distance between what preservice science teachers experience in schools, are able to enact, and are told they should hold themselves to in their practice. It does so by narrowing the focus of analysis to a secondary science study group and examining how the facilitator uses sociocultural constructivism to promote discussion. The analysis surfaces key communicative moves made by the facilitator and preservice teachers that yield fruitful discussion of theory-practice relationships. Additionally, the study's use of discourse analysis as a methodology and intertextuality as a conceptual framework opens new directions for applied sociolinguistic research and scholarship in science teacher education. Findings from the study focus on what was discussed and how explorations of theory-practice relationships were facilitated. Preservice teachers in the study group engaged in meaningful conversations about constructivist theory and its application to their students and teaching of science. They discussed many science education topics such as planning science lessons that actively engage students, assessment of content understanding, and management of content-based activities. Discussions of broader science education goals, including implementation of inquiry or development of collaborative communities, were not promoted. Examination of the facilitation illuminates a number of strategies found to be helpful in supporting these explorations. This study shows that facilitation can successfully support preservice teachers to construct understanding of social constructivist assumptions underlying the National Science Education Standards (NSES), as well as a few components of the Standards themselves. The focus on the underlying assumptions suggests that science teacher education should focus on these so that preservice teachers can build a strong

  17. Exploring possible selves in a first-year physics foundation class: Engaging students by establishing relevance

    Directory of Open Access Journals (Sweden)

    Dawn Bennett

    2016-03-01

    Full Text Available Students often complain that they cannot see the relevance of what they are being taught in foundation physics classes. While revising and adjusting the curriculum and teaching are important, this study suggests it might also be useful to help students view their learning in relation to their future career aspirations. This paper reports on a study conducted with first-year students enrolled in a compulsory foundation physics unit with a history of low pass rates. Working within a “possible selves” framework, activities were designed to help students position their learning in relation to possible future lives and careers. Two cohorts of students (N=93 engaged in an intensive workshop comprising multiple activities relating to self and career. Self-reflection worksheets were analyzed using content analysis. The results indicate that students experience immediate benefits from these activities through self-reflection on the current self, future possible professional selves, and the role of current studies in narrowing the gap between the two.

  18. Advancing Earth System Science Literacy and Preparing the Future Geoscience Workforce Through Strategic Investments at the National Science Foundation (Invited)

    Science.gov (United States)

    Karsten, J. L.; Patino, L. C.; Rom, E. L.; Weiler, C. S.

    2010-12-01

    The National Science Foundation (NSF) is an independent federal agency created 60 years ago by the U.S. Congress "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" NSF is the primary funding agency in the U.S. to support basic, frontier research across all fields in science, engineering, and education, except for medical sciences. With a FY 2011 budget request of more than $955 million, the NSF Directorate for Geosciences (GEO) is the principle source of federal funding for university-based fundamental research in the geosciences and preparation of the next generation of geoscientists. Since its inception, GEO has supported the education and training of a diverse and talented pool of future scientists, engineers, and technicians in the Earth, Ocean, Atmospheric and Geospatial Sciences sub-fields, through support of graduate research assistants, post-doctoral fellows, and undergraduate research experiences. In the late 1990’s and early 2000’s, GEO initiated several programs that expanded these investments to also support improvements in pre-college and undergraduate geoscience education through a variety of mechanisms (e.g., professional development support for K-12 teachers, development of innovative undergraduate curricula, and scientist-mentored research experiences for elementary and secondary students). In addition to GEO’s Geoscience Education (GeoEd), Opportunities for Enhancing Diversity in the Geosciences (OEDG), Global Learning and Observations to Benefit the Environment (GLOBE), and Geoscience Teacher Training (GEO-Teach) programs, GEO participates in a number of cross-Foundation programs, including the Research Experiences for Undergraduates (REU), Integrative Graduate Education and Research Traineeship (IGERT), Ethics Education in Science and Engineering (EESE), NSF Graduate STEM Fellows in K-12 Education (GK-12), and Partnerships for International Research and Education

  19. Improving Undergraduate STEM Education: Pathways into Geoscience (IUSE: GEOPATHS) - A National Science Foundation Initiative

    Science.gov (United States)

    Jones, B.; Patino, L. C.

    2016-12-01

    Preparation of the future professional geoscience workforce includes increasing numbers as well as providing adequate education, exposure and training for undergraduates once they enter geoscience pathways. It is important to consider potential career trajectories for geoscience students, as these inform the types of education and skill-learning required. Recent reports have highlighted that critical thinking and problem-solving skills, spatial and temporal abilities, strong quantitative skills, and the ability to work in teams are among the priorities for many geoscience work environments. The increasing focus of geoscience work on societal issues (e.g., climate change impacts) opens the door to engaging a diverse population of students. In light of this, one challenge is to find effective strategies for "opening the world of possibilities" in the geosciences for these students and supporting them at the critical junctures where they might choose an alternative pathway to geosciences or otherwise leave altogether. To address these and related matters, The National Science Foundation's (NSF) Directorate for Geosciences (GEO) has supported two rounds of the IUSE: GEOPATHS Program, to create and support innovative and inclusive projects to build the future geoscience workforce. This program is one component in NSF's Improving Undergraduate STEM Education (IUSE) initiative, which is a comprehensive, Foundation-wide effort to accelerate the quality and effectiveness of the education of undergraduates in all of the STEM fields. The two tracks of IUSE: GEOPATHS (EXTRA and IMPACT) seek to broaden and strengthen connections and activities that will engage and retain undergraduate students in geoscience education and career pathways, and help prepare them for a variety of careers. The long-term goal of this program is to dramatically increase the number and diversity of students earning undergraduate degrees or enrolling in graduate programs in geoscience fields, as well as

  20. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  1. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  2. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  3. Explore the virtual side of earth science

    Science.gov (United States)

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  4. Exploring Identity-By-Descent Segments and Putative Functions Using Different Foundation Parents in Maize.

    Directory of Open Access Journals (Sweden)

    Xun Wu

    Full Text Available Maize foundation parents (FPs play no-alternative roles in hybrid breeding because they were widely used in the development of new lines and hybrids. The combination of different identity-by-descent (IBD segments and genes could account for the formation patterns of different FPs, and knowledge of these IBD regions would provide an extensive foundation for the development of new candidate FP lines in future maize breeding. In this paper, a panel of 304 elite lines derived from FPs, i.e., B73, 207, Mo17, and Huangzaosi (HZS, was collected and analyzed using 43,252 single nucleotide polymorphism (SNP markers. Most IBD segments specific to particular FP groups were identified, including 116 IBD segments in B73, 105 in Mo17, 111 in 207, and 190 in HZS. In these regions, 423 quantitative trait nucleotides (QTNs associated with 15 agronomic traits and 804 candidate genes were identified. Some known adaptation-related genes, e.g., dwarf8 and vgt1 in HZS, zcn8 and epc in Mo17, and ZmCCT in 207, were validated as being tightly linked to particular IBD segments. In addition, numerous new candidate genes were also identified. For example, GRMZM2G154278 in HZS, which belongs to the cell cycle control family, was closely linked to a QTN of the ear height/plant height (EH/PH trait; GRMZM2G051943 in 207, which encodes an endochitinase precursor (EP chitinase, was closely linked to a QTN for kernel density; and GRMZM2G170586 in Mo17 was closely linked to a QTN for ear diameter. Complex correlations among these genes were also found. Many IBD segments and genes were included in the formation of FP lines, and complex regulatory networks exist among them. These results provide new insights on the genetic basis of complex traits and provide new candidate IBD regions or genes for the improvement of special traits in maize production.

  5. Qualitative exploration of centralities in municipal science education networks

    DEFF Research Database (Denmark)

    von der Fehr, Ane; Sølberg, Jan

    2016-01-01

    This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education ar...... of science education, especially if they are aware of their own centrality and are able to use their position intentionally for the benefit of science education.......This article examines the social nature of educational change by conducting a social network analysis of social networks involving stakeholders of science education from teachers to political stakeholders. Social networks that comprise supportive structures for development of science education...... are diverse and in order to understand how municipal stakeholders may support such development, we explored four different municipal science education networks (MSE networks) using three different measures of centrality. The centrality measures differed in terms of what kind of stakeholder functions...

  6. Anarchist Epistemologies and the Separation of Science and State: The Critique and Relevance of Paul Feyerabend to Educational Foundations

    Science.gov (United States)

    Wolfmeyer, Mark

    2017-01-01

    This article synthesizes Paul Feyerabend's controversial contributions to 20th-century philosophy of science through the synthesis of his works and the secondary literature, with specific foci on current trends in educational foundations and the potentials and pitfalls for applying Feyerabendian logics to our work. First, I situate his strains of…

  7. 78 FR 20666 - Food and Drug Administration/National Institutes of Health/National Science Foundation Public...

    Science.gov (United States)

    2013-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0345] Food and Drug Administration/National Institutes of Health/ National Science Foundation Public Workshop... public workshop; request for comments. SUMMARY: The Food and Drug Administration (FDA) is announcing its...

  8. Historical Development and Key Issues of Data Management Plan Requirements for National Science Foundation Grants: A Review

    Science.gov (United States)

    Pasek, Judith E.

    2017-01-01

    Sharing scientific research data has become increasingly important for knowledge advancement in today's networked, digital world. This article describes the evolution of access to United States government information in relation to scientific research funded by federal grants. It analyzes the data sharing policy of the National Science Foundation,…

  9. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    Science.gov (United States)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research

  10. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  11. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    Science.gov (United States)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  12. Activities of the National Academy of Sciences in relation to the Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    Edington, C.W.

    1991-02-01

    The activities of the National Academy of Sciences (NAS), in relation to the Radiation Effects Research Foundation (RERF), has a long history and the specific time period supported by this contract is but a small piece of the long-term continuing program. As a background, in August 1945, atomic bombs were dropped on Hiroshima (6 August) and Nagasaki (9 August). Shortly after the bombings, US medical teams joined forces with their Japanese counterparts to form a Joint Commission for the Investigation of the Effects of the Atomic Bombs. As a result of the Joint Commission's investigations, it was determined that consideration should be given to the establishment of a long-term study of the potential late health effects of exposure of the survivors to radiation from the bombs. The results obtained from RERF studies contribute the vast majority of information that provides a better understanding of radiation effects on humans. This information has been used extensively by national organizations and international committees for estimating risks associated with radiation exposures. The estimated risks developed by these independent organizations are used by government agencies around the world to establish standards for protection of individuals exposed in the occupational, medical, and general environment. Some of these results are described briefly in this report

  13. Corporate Foundations

    DEFF Research Database (Denmark)

    Herlin, Heidi; Thusgaard Pedersen, Janni

    2013-01-01

    action between business and NGOs through convening, translation, collaboration, and mediation. Our study provides valuable insights into the tri-part relationship of company foundation NGO by discussing the implications of corporate foundations taking an active role in the realm of corporate social...... responsibility (CSR). The paper hence illuminates the fascinating and overlooked role of corporate foundations as potential bridges between business and civil society. It also informs theory on boundary organizations by clarifying challenges and limits of such institutions.......This paper aims to explore the potential of Danish corporate foundations as boundary organizations facilitating relationships between their founding companies and non-governmental organizations (NGOs). Hitherto, research has been silent about the role of corporate foundations in relation to cross...

  14. Exploring the Dialogic Space of Public Participation in Science

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  15. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  16. Exploration Station Brings AGU Science to Children and Parents

    Science.gov (United States)

    Cooper, Paul

    2008-08-01

    More than 20 families from the Fort Lauderdale, Fla., area attended AGU's pilot family science event, ``Exploration Station,'' held on 26 May as part of the 2008 Joint Assembly. During the event-which was organized by AGU's education staff, the Association for Astronomy Education, and the Solar Physics Division of the American Astronomical Association-children and parents had the opportunity to discuss science with researchers and to get involved with many hands-on activities.

  17. Exploring the theoretical foundations of visual art programmes for people living with dementia.

    Science.gov (United States)

    Windle, Gill; Gregory, Samantha; Howson-Griffiths, Teri; Newman, Andrew; O'Brien, Dave; Goulding, Anna

    2017-01-01

    Despite the growing international innovations for visual arts interventions in dementia care, limited attention has been paid to their theoretical basis. In response, this paper explores how and why visual art interventions in dementia care influence changes in outcomes. The theory building process consists of a realist review of primary research on visual art programmes. This aims to uncover what works, for whom, how, why and in what circumstances. We undertook a qualitative exploration of stakeholder perspectives of art programmes, and then synthesised these two pieces of work alongside broader theory to produce a conceptual framework for intervention development, further research and practice. This suggests effective programmes are realised through essential attributes of two key conditions (provocative and stimulating aesthetic experience; dynamic and responsive artistic practice). These conditions are important for cognitive, social and individual responses, leading to benefits for people with early to more advanced dementia. This work represents a starting point at identifying theories of change for arts interventions, and for further research to critically examine, refine and strengthen the evidence base for the arts in dementia care. Understanding the theoretical basis of interventions is important for service development, evaluation and implementation.

  18. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  19. The science and art of simulation I exploring, understanding, knowing

    CERN Document Server

    Kaminski, Andreas; Gehring, Petra

    2017-01-01

    The new book series “The Science and Art of Simulation” (SAS) addresses computer simulations as a scientific activity and engineering artistry (in the sense of a technē). The first volume is devoted to three topics: 1. The Art of Exploring Computer Simulations Philosophy began devoting attention to computer simulations at a relatively early stage. Since then, the unquestioned point of view has been that computer simulation is a new scientific method; the philosophy of simulation is therefore part of the philosophy of science. The first section of this volume discusses this implicit, unchallenged assumption by addressing, from different perspectives, the question of how to explore (and how not to explore) research on computer simulations. Scientists discuss what is still lacking or considered problematic, while philosophers draft new directions for research, and both examine the art of exploring computer simulations. 2. The Art of Understanding Computer Simulations The results of computer simulations are ...

  20. Reinforcing the foundations of ornithological nomenclature: Filling the gaps in Sherborn's and Richmond's historical legacy of bibliographic exploration.

    Science.gov (United States)

    Dickinson, Edward C

    2016-01-01

    Due to its public popularity, ornithology has a huge corpus of scientific publication for a relatively small number of species. Although there are global checklists of currently recognised taxa, there has been only limited, mainly individual, effort to build a nomenclatural database that the science of ornithology deserves. This is especially true in relation to concise synonymies. With the arrival of ZooBank and the Biodiversity Heritage Library, the time has come to develop synonymies and to add fuller bibliographic detail to databases. The preparation for both began at the start of the 20(th) century with extensive work by Sherborn and Richmond. I discuss their legacy, offer notes on significant work since then, and provide suggestions for what remains to be done. To make solid the foundations for ornithological nomenclature and taxonomy, especially for synonymies, ornithologists will need to collaborate much more and contribute to the digital infrastructure.

  1. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  2. Exploration of a Buried Building Foundation and a Septic Tank Plume Dispersion Using a Laboratory-fabricated Resistivity Apparatus

    Science.gov (United States)

    Lachhab, A.; Stepanik, N.; Booterbaugh, A.

    2010-12-01

    In the following study, an electrical resistivity device was built and used in both a laboratory setup and in the field to accurately identify the location of a septic tank and the foundation of Gustavus Adolphus (GA); a building that was burned at Susquehanna University in 1964. The entire apparatus, which costs a fraction of the price of a typical electrical resistivity device, was tested for accuracy in the laboratory prior to its use in the field. The electrical resistivity apparatus consists of a deep-cycle twelve volt battery, an AC to DC inverter and two multimeters to measure the potential and the current intensity from four linear electrodes via a wireless data transmission system. This apparatus was constructed by using basic inexpensive electrical and electronic equipments. The recorded potential and current values were used to calculate the apparent resistivity of different materials adopting the Wenner array for both investigations. Several tests were performed on the tabletop bench, producing consistent results when applied to find small bricks structures with different geometrical arrangement buried under a mixed sand-soil formation. The apparatus was also used to investigate a subsurface salty water plume in the same formation. The horizontal resistivity profile obtained over the vertical small brick wall matched the theoretical apparent resistivity of resistivity versus displacement on a vertical dike in a homogeneous material. In addition, the two-dimensional resistivity profile replicate the salty plume size conformably. Following the success on the small-scale laboratory tabletop bench, the electrical resistivity apparatus was implemented in the field to explore the foundation of GA in one location and the septic tank in another. An array of transects were performed, analyzed and plotted using MATLAB. The three dimensional contours of apparent resistivity depicted exactly the locations of the buried foundation walls, the septic tank and the

  3. Establishing a Robotic, LEO-to-GEO Satellite Servicing Infrastructure as an Economic Foundation for Exploration

    Science.gov (United States)

    Horsham, Gary A. P.; Schmidt, George R.; Gilland, James H.

    2010-01-01

    The strategy for accomplishing civilian exploration goals and objectives is in the process of a fundamental shift towards a potential new approach called Flexible Path. This paper suggests that a government-industry or public-private partnership in the commercial development of low Earth orbit to geostationary orbit (LEO-to-GEO (LTG)) space, following or in parallel with the commercialization of Earth-to-LEO and International Space Station (ISS) operations, could serve as a necessary, logical step that can be incorporated into the flexible path approach. A LTG satellite-servicing infrastructure and architecture concept is discussed within this new strategic context. The concept consists of a space harbor that serves as a transport facility for a fleet of specialized, fully- or semi-autonomous robotic servicing spacecraft. The baseline, conceptual system architecture is composed of a space harbor equipped with specialized servicer spacecraft; a satellite command, communication, and control system; a parts station; a fuel station or depot; and a fuel/parts replenishment transport. The commercial servicer fleet would consist of several types of spacecraft, each designed with specialized robotic manipulation subsystems to provide services such as refueling, upgrade, repair, inspection, relocation, and removal. The space harbor is conceptualized as an ISS-type, octagonal truss structure equipped with radiation tolerant subsystems. This space harbor would be primarily capable of serving as an operational platform for various commercially owned and operated servicer spacecraft positioned and docked symmetrically on four of the eight sides. Several aspects of this concept are discussed, such as: system-level feasibility in terms of ISS-truss-type infrastructure and subsystems emplacement and maintenance between LEO and GEO; infrastructure components assembly in LEO, derived from ISS assembly experience, and transfer to various higher orbital locations; the evolving Earth

  4. Generating Youth Interest in Science Careers Through 4-H Health Science Explorations

    Directory of Open Access Journals (Sweden)

    Thomas Hutson

    2012-06-01

    Full Text Available Health Science Explorations is a Maryland 4-H Program for youth ages ten and older. Hospital-based multi-day summer sessions and clubs that meet regularly, enable youth to interact with health care professionals in authentic medical settings. The program introduces youth to local health career opportunities, fosters science literacy and interest in science careers, and teaches healthy lifestyle practices. The authors share strategies to guide other educators through the process of developing their own science career exploration programs.

  5. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus......Science education development is a field of many interests and a key interest is recruitment of students who wish to pursue an education in science. This is an urgent societal demand in Denmark as well as internationally, since highly skilled science graduates are needed for the continuous...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  6. Geothermal resources - legal foundations of exploration and exploitation; Erdwaerme - Rechtsgrundlagen der Erkundung und Gewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Nast, K [Landesbergamt Baden-Wuerttemberg, Freiburg im Breisgau (Germany)

    1997-12-01

    Exploration and exploitation of teothermal heat are subject to the German Mining Law of 1 January 1982. Geothermal heat as defined by this law is the total thermal energy contained in the earth`s interior. There are certain limitations to the application of mining law depending on the purpose of geothermal heat use. In Baden-Wuerttemberg, geothermal heat is utilized in the form of thermal water (`single borehole technique`), subject to licensing under mining law, approved plans of operation, and permits under water law. The responsible authority is the Baden-Wueerttemberg mining bureau at Freiburg. (orig.) [Deutsch] Die Erkundung und Gewinnung von Erdwaerme wird mit Inkrafttreten des Bundesberggesetzes am 1. Januar 1982 erstmals gesetzlich geregelt. Erdwaerme im Sinne dieses Gesetzes ist die gesamte im Erdinnern vorhandene thermische Energie. Fuer die Anwendung des Bergrechts gibt es gewisse Einschraenkungen, die insbesondere vom Zweck der Erdwaermeerschliessung abhaengen. - In Baden-Wuerttemberg wird Erdwaerme auf bergrechtlicher Grundlage in Form von Thermalwasser gewonnen (`Einbohlrlichverfahren`). Erforderliche Genehmigungen hierfuer sind im wesentlichen die bergrechtliche Erlaubnis bzw. Bewilligung, Betriebsplanzulassungen und wasserrrechtliche Erlaubnisse. Das Landesbergamt Baden-Wuerttemberg in Freiburg ist die fuer Erdwaermeprojekte zustaendige Genehmigungs- und Aufsichtsbehoerde. (orig.)

  7. Exploring student teachers' views of science process skills in their ...

    African Journals Online (AJOL)

    2016-08-18

    Aug 18, 2016 ... The purpose of this study was to explore the views of student teachers with regard to the importance they attach to these skills ... and purpose of practical work in science. .... students learn how to use some piece(s) of scientific.

  8. Teacher support - an exploration of how foundation-phase teachers facilitate language skills

    Directory of Open Access Journals (Sweden)

    Anna-Maria Wium

    2011-12-01

    Full Text Available The role of speech-language therapists (SLTs has been redefined by White Paper 6, which emphasises the role of support to both teachers and learners. SLTs have expert knowledge and skills pertaining to communication and language, and therefore have much to contribute to the process of learning in teaching. This article builds on a previous article published in the 2010 edition of the journal, which reported on the process of supporting teachers to facilitate listening, language and numeracy skills in semi-rural and urban (township contexts. In this follow-up article the focus is on the qualitative findings obtained from a specific section of the larger study. Where the overall study made use of a mixed methods approach to evaluate the process of providing support, and reported on the entire continued professional development (CPD programme, this article focuses specifically on the qualitative data collected when the CPD programme addressed the facilitation of language. This article explores how the strategies were used in the classrooms, and the benefits of the support provided. The data discussed in this article were obtained from questionnaires, focus groups, and critical self-evaluation by teachers, as well as a research diary used by the programme facilitator. The results show that both the participants and their learners benefited from the support provided. The participants reportedly for the first time were able to meet curriculum outcomes which previously had been omitted, and showed an increased ability to plan their lessons. Several teachers experienced changes in their teaching practices and could reflect on their practices, which contributed to their professional development. These teachers became more empowered. Learning in the classroom was enhanced through increased participation of all learners, and enjoyment of the strategies.

  9. 'The industry must be inconspicuous': Japan Tobacco's corruption of science and health policy via the Smoking Research Foundation.

    Science.gov (United States)

    Iida, Kaori; Proctor, Robert N

    2018-02-04

    To investigate how and why Japan Tobacco, Inc. (JT) in 1986 established the Smoking Research Foundation (SRF), a research-funding institution, and to explore the extent to which SRF has influenced science and health policy in Japan. We analysed documents in the Truth Tobacco Industry Documents archive, along with recent Japanese litigation documents and published documents. JT's effort to combat effective tobacco control was strengthened in the mid-1980s, following privatisation of the company. While remaining under the protection of Japan's Ministry of Finance, the semiprivatised company lost its 'access to politicos', opening up a perceived need for collaboration with global cigarette makers. One solution, arrived at through clandestine planning with American companies, was to establish a third-party organisation, SRF, with the hope of capturing scientific and medical authority for the industry. Guarded by powerful people in government and academia, SRF was launched with the covert goal of influencing tobacco policy both inside and outside Japan. Scholars funded by SRF have participated in international conferences, national advisory committees and tobacco litigation, in most instances helping the industry to maintain a favourable climate for the continued sale of cigarettes. Contrary to industry claims, SRF was never meant to be independent or neutral. With active support from foreign cigarette manufacturers, SRF represents the expansion into Asia of the denialist campaign that began in the USA in 1953. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Using Decision Tree Analysis to Understand Foundation Science Student Performance. Insight Gained at One South African University

    Science.gov (United States)

    Kirby, Nicola Frances; Dempster, Edith Roslyn

    2014-11-01

    The Foundation Programme of the Centre for Science Access at the University of KwaZulu-Natal, South Africa provides access to tertiary science studies to educationally disadvantaged students who do not meet formal faculty entrance requirements. The low number of students proceeding from the programme into mainstream is of concern, particularly given the national imperative to increase participation and levels of performance in tertiary-level science. An attempt was made to understand foundation student performance in a campus of this university, with the view to identifying challenges and opportunities for remediation in the curriculum and processes of selection into the programme. A classification and regression tree analysis was used to identify which variables best described student performance. The explanatory variables included biographical and school-history data, performance in selection tests, and socio-economic data pertaining to their year in the programme. The results illustrate the prognostic reliability of the model used to select students, raise concerns about the inefficiency of school performance indicators as a measure of students' academic potential in the Foundation Programme, and highlight the importance of accommodation arrangements and financial support for student success in their access year.

  11. Exploring inductive risk case studies of values in science

    CERN Document Server

    Richards, Ted

    2017-01-01

    Science is the most reliable means available for understanding the world around us and our place in it. But, since science draws conclusions based on limited empirical evidence, there is always a chance that a scientific inference will be incorrect. That chance, known as inductive risk, is endemic to science. Though inductive risk has always been present in scientific practice, the role of values in responding to it has only recently gained extensive attention from philosophers, scientists, and policy-makers. Exploring Inductive Risk brings together a set of eleven concrete case studies with the goals of illustrating the pervasiveness of inductive risk, assisting scientists and policymakers in responding to it, and moving theoretical discussions of this phenomenon forward. The case studies range over a wide variety of scientific contexts, including the drug approval process, high energy particle physics, dual-use research, climate science, research on gender disparities in employment, clinical trials, and to...

  12. Barbs in the Arrow: Explorations in Early Childhood Education and Care. The Bernard van Leer Foundation: 1965-1986.

    Science.gov (United States)

    Philp, Hugh

    The Bernard van Leer Foundation, now headquartered in The Hague, Netherlands, was established as a philanthropic institution in 1949. This book examines the range and complexity of the foundation's work on behalf of young disadvantaged children, and illustrates the unique character of the foundation. The book, which consists of 11 chapters,…

  13. Exploring the epididymis: a personal perspective on careers in science

    Directory of Open Access Journals (Sweden)

    Terry T Turner

    2015-01-01

    Full Text Available Science is a profession of inquiry. We ask ourselves what is it we see and why our observations happen the way they do. Answering those two question puts us in the company of those early explorers, who from Europe found the New World, and from Asia reached west to encounter Europe. Vasco Núñez de Balboa of Spain was such an explorer. He was the first European to see or "discover" the Pacific Ocean. One can imagine his amazement, his excitement when he first saw from a mountain top that vast ocean previously unknown to his culture. A career in science sends each of us seeking our own "Balboa Moments," those observations or results that surprise or even amaze us, those discoveries that open our eyes to new views of nature and medicine. Scientists aim to do what those early explorers did: discover what has previously been unknown, see what has previously been unseen, and reveal what has previously been hidden. Science requires the scientist to discover the facts from among many fictions and to separate the important facts from the trivial so that knowledge can be properly developed. It is only with knowledge that old dogmas can be challenged and corrected. Careers in science produce specific sets of knowledge. When pooled with other knowledge sets they eventually contribute to wisdom and it is wisdom, we hope, that will improve the human condition.

  14. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  15. A Cross-cultural Exploration of Children's Everyday Ideas: Implications for science teaching and learning

    Science.gov (United States)

    Wee, Bryan

    2012-03-01

    Children's everyday ideas form critical foundations for science learning yet little research has been conducted to understand and legitimize these ideas, particularly from an international perspective. This paper explores children's everyday ideas about the environment across the US, Singapore and China to understand what they reveal about children's relationship to the environment and discuss its implications for science teaching and learning. A social constructivist lens guides research, and a visual methodology is used to frame children's realities. Participants' ages range from elementary to middle school, and a total of 210 children comprized mainly of Asians and Asian Americans were sampled from urban settings. Drawings are used to elicit children's everyday ideas and analyzed inductively using open coding and categorizing of data. Several categories support existing literature about how children view the environment; however, novel categories such as affect also emerged and lend new insight into the role that language, socio-cultural norms and perhaps ethnicity play in shaping children's everyday ideas. The findings imply the need for (a) a change in the role of science teachers from knowledge providers to social developers, (b) a science curriculum that is specific to learners' experiences in different socio-cultural settings, and (c) a shift away from inter-country comparisons using international science test scores.

  16. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    Science.gov (United States)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  17. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  18. Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

  19. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

  20. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  1. Exploring Greenland: science and technology in Cold War settings.

    Science.gov (United States)

    Heymann, Matthias; Knudsen, Henrik; Lolck, Maiken L; Nielsen, Henry; Nielsen, Kristian H; Ries, Christopher J

    2010-01-01

    This paper explores a vacant spot in the Cold War history of science: the development of research activities in the physical environmental sciences and in nuclear science and technology in Greenland. In the post-war period, scientific exploration of the polar areas became a strategically important element in American and Soviet defence policy. Particularly geophysical fields like meteorology, geology, seismology, oceanography, and others profited greatly from military interest. While Denmark maintained formal sovereignty over Greenland, research activities were strongly dominated by U.S. military interests. This paper sets out to summarize the limited current state of knowledge about activities in the environmental physical sciences in Greenland and their entanglement with military, geopolitical, and colonial interests of both the USA and Denmark. We describe geophysical research in the Cold War in Greenland as a multidimensional colonial endeavour. In a period of decolonization after World War II, Greenland, being a Danish colony, became additionally colonized by the American military. Concurrently, in a period of emerging scientific internationalism, the U.S. military "colonized" geophysical research in the Arctic, which increasingly became subject to military directions, culture, and rules.

  2. Normative Ethics Does Not Need a Foundation : It Needs More Science

    NARCIS (Netherlands)

    Quintelier, Katinka; van Speybroeck, Linda; Braeckman, Johan

    2011-01-01

    The impact of science on ethics forms since long the subject of intense debate. Although there is a growing consensus that science can describe morality and explain its evolutionary origins, there is less consensus about the ability of science to provide input to the normative domain of ethics.

  3. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  4. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    Science.gov (United States)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  5. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  6. Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation.

    Science.gov (United States)

    Pokhrel, Subhash; Reidpath, Daniel; Allotey, Pascale

    2011-01-06

    The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD) control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF) - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Of 67 projects analysed, 26 projects (39%) were social science related while 41 projects (61%) were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million) went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research.

  7. Social sciences research in neglected tropical diseases 3: Investment in social science research in neglected diseases of poverty: a case study of Bill and Melinda Gates Foundation

    Directory of Open Access Journals (Sweden)

    Reidpath Daniel

    2011-01-01

    Full Text Available Abstract Background The level of funding provides a good proxy for the level of commitment or prioritisation given to a particular issue. While the need for research relevant to social, economic, cultural and behavioural aspects of neglected tropical diseases (NTD control has been acknowledged, there is limited data on the level of funding that supports NTD social science research. Method A case study was carried out in which the spending of a major independent funder, the Bill and Melinda Gates Foundation (BMGF - was analysed. A total of 67 projects funded between October 1998 and November 2008 were identified from the BMGF database. With the help of keywords within the titles of 67 grantees, they were categorised as social science or non-social science research based on available definition of social science. A descriptive analysis was conducted. Results Of 67 projects analysed, 26 projects (39% were social science related while 41 projects (61% were basic science or other translational research including drug development. A total of US$ 697 million was spent to fund the projects, of which 35% ((US$ 241 million went to social science research. Although the level of funding for social science research has generally been lower than that for non-social science research over 10 year period, social science research attracted more funding in 2004 and 2008. Conclusion The evidence presented in this case study indicates that funding on NTD social science research compared to basic and translational research is not as low as it is perceived to be. However, as there is the acute need for improved delivery and utilisation of current NTD drugs/technologies, informed by research from social science approaches, funding priorities need to reflect the need to invest significantly more in NTD social science research.

  8. Reading for meaning: The foundational knowledge every teacher of science should have

    Science.gov (United States)

    Patterson, Alexis; Roman, Diego; Friend, Michelle; Osborne, Jonathan; Donovan, Brian

    2018-02-01

    Reading is fundamental to science and not an adjunct to its practice. In other words, understanding the meaning of the various forms of written discourse employed in the creation, discussion, and communication of scientific knowledge is inherent to how science works. The language used in science, however, sets up a barrier, that in order to be overcome requires all students to have a clear understanding of the features of the multimodal informational texts employed in science and the strategies they can use to decode the scientific concepts communicated in informational texts. We argue that all teachers of science must develop a functional understanding of reading comprehension as part of their professional knowledge and skill. After describing our rationale for including knowledge about reading as a professional knowledge base every teacher of science should have, we outline the knowledge about language teachers must develop, the knowledge about the challenges that reading comprehension of science texts poses for students, and the knowledge about instructional strategies science teachers should know to support their students' reading comprehension of science texts. Implications regarding the essential role that knowledge about reading should play in the preparation of science teachers are also discussed here.

  9. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  10. Using online pedagogy to explore student experiences of Science-Technology-Society-Environment (STSE) issues in a secondary science classroom

    Science.gov (United States)

    Ayyavoo, Gabriel Roman

    With the proliferation of 21st century educational technologies, science teaching and learning with digitally acclimatized learners in secondary science education can be realized through an online Science-Technology-Society-Environment (STSE)-based issues approach. STSE-based programs can be interpreted as the exploration of socially-embedded initiatives in science (e.g., use of genetically modified foods) to promote the development of critical cognitive processes and to empower learners with responsible decision-making skills. This dissertation presents a case study examining the online environment of a grade 11 physics class in an all-girls' school, and the outcomes from those online discursive opportunities with STSE materials. The limited in-class discussion opportunities are often perceived as low-quality discussions in traditional classrooms because they originate from an inadequate introduction and facilitation of socially relevant issues in science programs. Hence, this research suggests that the science curriculum should be inclusive of STSE-based issue discussions. This study also examines the nature of students' online discourse and, their perceived benefits and challenges of learning about STSE-based issues through an online environment. Analysis of interviews, offline classroom events and online threaded discussion transcripts draws from the theoretical foundations of critical reflective thinking delineated in the Practical Inquiry (P.I.) Model. The PI model of Cognitive Presence is situated within the Community of Inquiry framework, encompassing two other core elements, Teacher Presence and Social Presence. In studying Cognitive Presence, the online STSE-based discourses were examined according to the four phases of the P.I. Model. The online discussions were measured at macro-levels to reveal patterns in student STSE-based discussions and content analysis of threaded discussions. These analyses indicated that 87% of the students participated in

  11. [The analysis on the funding of Natural Science Foundation of China for acupuncture projects from 2005 to 2015].

    Science.gov (United States)

    Deng, Hongyong; Xu, Ji

    2017-05-12

    The funding of Natural Science Foundation of China (NSFC) for acupuncture projects from 2005 to 2015 was summarized and analyzed. The results indicated during past 11 years, 711 projects regarding acupuncture were funded by NSFC, with a total of 281 million RMB, accounting for 12.39% in TCM projects. It was concluded the funding for acupuncture projects was increased year by year, but was still relatively weak; in addition, the funding was unbalanced in different areas and organizations, mainly in Beijing, Shanghai, Sichuan, Guangdong, Tianjin, and the continuity and variability both existed in research content and direction.

  12. [Characteristics and innovation in projects of ethnomedicine and ethnopharmacology funded by National Natural Science Foundation of China].

    Science.gov (United States)

    Han, Li-wei

    2015-09-01

    The overall situation of projects of ethnomedicine and ethnopharmacology funded by the National Natural Science Foundation of China (NSFC) since 2008 has been presented in this paper. The main source of characteristics and innovation of the funded projects were summarized, which may come from several aspects, such as the ethnomedical theories, the dominant diseases of ethnomedicine, special diseases in ethnic minorities inhabited areas, unique ethnomedical therapy, special methods for applying medication, endemic medicinal materials in ethnic minorities inhabited areas, same medicinal materials with different applications. Examples have been provided to give references to the applicants in the fields of ethnomedicine and ethnopharmacology.

  13. Principles and foundation: national standards on quantities and units in nuclear science field

    International Nuclear Information System (INIS)

    Chen Lishu

    1993-11-01

    The main contents of National Standards on Quantities and units of atomic and nuclear physics (GB 3102.9) and Quantities and Units of nuclear reactions and ionizing radiations (GB 310.10) are presented in which most important quantities with their symbols and definitions in the nuclear scientific field are given. The principles and foundation, including the International System of Units (SI) and its application to the nuclear scientific field, in the setting of the National Standards are explained

  14. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  15. 75 FR 9000 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Science.gov (United States)

    2010-02-26

    ... of women and minorities in science and engineering. Another major change occurred in 1986, when... directed NSF to initiate and support: Basic scientific research and research fundamental to the engineering process; Programs to strengthen scientific and engineering research potential; Science and engineering...

  16. 78 FR 9071 - Comment Request: National Science Foundation Proposal/Award Information-Grant Proposal Guide

    Science.gov (United States)

    2013-02-07

    ... activities to improve the participation of women and minorities in science and engineering. Another major... and research fundamental to the engineering process; Programs to strengthen scientific and engineering research potential; Science and engineering education programs at all levels and in all the various fields...

  17. 76 FR 4947 - Comment Request: National Science Foundation Proposal & Award Policies and Procedures Guide

    Science.gov (United States)

    2011-01-27

    ... of women and minorities in science and engineering. Another major change occurred in 1986, when... directed NSF to initiate and support: Basic scientific research and research fundamental to the engineering process; Programs to strengthen scientific and engineering research potential; Science and engineering...

  18. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    Science.gov (United States)

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and…

  19. Species Loss: Exploring Opportunities with Art-Science.

    Science.gov (United States)

    Harrower, Jennifer; Parker, Jennifer; Merson, Martha

    2018-04-25

    Human-induced global change has triggered the sixth major extinction event on earth with profound consequences for humans and other species. A scientifically literate public is necessary to find and implement approaches to prevent or slow species loss. Creating science-inspired art can increase public understanding of the current anthropogenic biodiversity crisis and help people connect emotionally to difficult concepts. In spite of the pressure to avoid advocacy and emotion, there is a rich history of scientists who make art, as well as art-science collaborations resulting in provocative work that engages public interest; however, such interdisciplinary partnerships can often be challenging to initiate and navigate. Here we explore the goals, impacts, cascading impacts and lessons learned from art-science collaborations, as well as ideas for collaborative projects. Using three case studies based on Harrower's scientific research into species interactions, we illustrate the importance of artists as a primary audience and the potential for a combination of art and science presentations to influence public understanding and concern related to species loss.

  20. SCUBAnauts International: Exploration and Discovery in the Ocean Sciences

    Science.gov (United States)

    Moses, C. S.; Palandro, D.; Coble, P.; Hu, C.

    2007-12-01

    The SCUBAnauts International program originated in 2001, as a 501(c)(3) non-profit organization designed to increase the attraction to science and technology careers in today's youth. SCUBAnauts International (SNI) consists of a diverse group of 12 to 18 year-old young men and women mentored by academic, federal, and state research scientists in an informal education environment. The program's mission is to promote interest in science and technology topics and careers by involving secondary education students as young explorers in the marine sciences and research activities, such as special environmental and undersea conservation projects that educate, promote active citizenship, and develop effective leadership skills. With help from mentors, SNI students collect and interpret research-quality data to meet the needs of ocean scientists, maintaining direct interaction between the scientists and the young men and women in the program. The science component of the program includes collection of benthic habitat, water quality, optics, and coral reef health data. During the school year, the SCUBAnauts are tasked with sharing their experiences to raise the environmental awareness of a larger audience by providing education outreach in formal and informal venues. Here we highlight results from recent SNI activities including data collection and program methodologies, and discuss future plans for the program.

  1. Exploring the Art and Science of Systems Engineering

    Science.gov (United States)

    Jansma, P. A.

    2012-01-01

    There has been much discussion of late in the NASA systems engineering community about the fact that systems engineering cannot be just about process and technical disciplines. The belief is that there is both an art and science to systems engineering, and that both aspects are necessary for designing and implementing a successful system or mission. How does one go about differentiating between and characterizing these two aspects? Some say that the art of systems engineering is about designing systems that not only function well, but that are also elegant, beautiful and engaging. What does that mean? How can you tell when a system has been designed with that holistic "art" component? This paper attempts to answer these questions by exploring various ways of looking at the Art and Science of Systems Engineering.

  2. Explorations In Theoretical Computer Science For Kids (using paper toys)

    DEFF Research Database (Denmark)

    Valente, Andrea

    2004-01-01

    The computational card (c-cards for short) project is a study and realization of an educational tool based on playing cards. C-cards are an educational tool to introduce children 8 to 10 (or older) to the concept of computation, seen as manipulation of symbols. The game provides teachers...... and learners with a physical, tangible metaphor for exploring core concepts of computer science, such as deterministic and probabilistic state machines, frequencies and probability distributions, and the central elements of Shannon's information theory, like information, communication, errors and error...... detection. Our idea is implemented both with paper cards and by an editor/simulator software (a prototype realized in javascript). We also designed the structure of a course in (theoretical) computer science, based on c-cards, and we will test it this summer....

  3. Biological Evolution and the History of the Earth Are Foundations of Science

    Science.gov (United States)

    2008-01-01

    AGU affirms the central importance of including scientific theories of Earth history and biological evolution in science education. Within the scientific community, the theory of biological evolution is not controversial, nor have ``alternative explanations'' been found. This is why no competing theories are required by the U.S. National Science Education Standards. Explanations of natural phenomena that appeal to the supernatural or are based on religious doctrine-and therefore cannot be tested through scientific inquiry-are not scientific, and have no place in the science classroom.

  4. Foundations of the Formal Sciences VI: Probabilistic reasoning and reasoning with probabilities

    NARCIS (Netherlands)

    Löwe, B.; Pacuit, E.; Romeijn, J.W.

    2009-01-01

    Probabilistic methods are increasingly becoming an important tool in a variety of disciplines including computer science, mathematics, artificial intelligence, epistemology, game and decision theory and linguistics. In addition to the discussion on applications of probabilistic methods there is an

  5. Unleashing the Power of Science in Early Childhood: A Foundation for High-Quality Interactions and Learning

    Science.gov (United States)

    Greenfield, Daryl B.; Alexander, Alexandra; Frechette, Elizabeth

    2017-01-01

    When science is integrated into early childhood learning experiences, it becomes a critical area supporting young children's development. Young children are natural scientists, curious about their world, and they engage in scientific practices to learn about and explore their world. This article describes how the K-12 Framework for Science…

  6. The autonomous system a foundational synthesis of the sciences of the mind

    CERN Document Server

    de Gyurky, Szabolcs Michael

    2013-01-01

    This book describes-in modern computer science terms-the Level II architecture of the meaning and definition of the process referred to as ""thinking."" It applies the basis of early cognitive science research to the creation of autonomous system architectures-connecting philosophical findings of the past with cutting-edge progress in artificial intelligence. Providing an in-depth introduction to the classical, philosophical theories of cognitive scientists like Immanuel Kant, Arthur Schopenhauer, and G.W.F. Hegel, the book examines the Will System, Reason System, Imagination System, and the C

  7. Developing Student Science and Information Literacy through Contributions to the Society of Exploration Geophysicists (SEG) Wiki

    Science.gov (United States)

    Guertin, L. A.; Farley, I.; Geary, A.

    2016-12-01

    Introductory-level Earth science courses provide the opportunity for science and non-science majors to expand discipline-specific content knowledge while enhancing skill sets applicable to all disciplines. The outcomes of the student work can then benefit the education and outreach efforts of an international organization - in this case, a wiki devoted exclusively to the geosciences, managed by the Society of Exploration Geophysicists (SEG). The course Environment Earth at Penn State Brandywine is a general education science course with the overarching course goal for students to understand, communicate examples, and make informed decisions relating to big ideas and fundamental concepts of Earth science. To help accomplish this goal, students carry out a semester-long digital engaged scholarship project that benefits the users of the SEG Wiki (http://wiki.seg.org/). To begin with developing the literacy of students and their ability to read, interpret, and evaluate sources of scientific news, the first assignment requires students to write an annotated bibliography on a specific topic that serves as the foundation for a new SEG Wiki article. Once students have collected and summarized information from reliable sources, students learn how writing for a wiki is different than writing a term paper and begin drafting their wiki page. Students peer review each other's work for content and clarity before publishing their work on the SEG wiki. Students respond positively to this project, reporting a better understanding of and respect towards the authors of online wiki pages, as well as an overall satisfaction of knowing their work will benefit others. Links to student-generated pages and instructional materials can be found at: http://sites.psu.edu/segwiki/.

  8. Freud, Weber, Durkheim: A Philosophical Foundation for Writing in the Humanities and Social Sciences.

    Science.gov (United States)

    LeFevre, Karen B.; Larkin, T. J.

    1983-01-01

    Proposes a continuum of lines of inquiry applicable to many of the human sciences. Illustrates the continuum by discussing the approaches of Sigmund Freud, Max Weber, and Emile Durkheim. Suggests uses of the continuum as an aid to invention and as a method of analysis. (RAE)

  9. Spatial Foundations of Science Education: The Illustrative Case of Instruction on Introductory Geological Concepts

    Science.gov (United States)

    Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.

    2011-01-01

    To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…

  10. 75 FR 65528 - Membership of National Science Foundation's Senior Executive Service Performance Review Board

    Science.gov (United States)

    2010-10-25

    ... Director, Division of Human Resource Management and Chief Human Capital Officer, National Science..., Division of Human Resource Management and Chief Human Capital Officer; Mark L. Weiss, Director, Division of... Human Resource Management and Chief Human Capital Officer. [FR Doc. 2010-26763 Filed 10-22-10; 8:45 am...

  11. The Jan Korec Foundation

    International Nuclear Information System (INIS)

    2007-01-01

    In this video-film activities of the the Jan Korec Foundation are presented. The Jan Korec Foundation supports students of technical sciences, sport activities, science and support of book publishing, humanitarian supports, the environment protection as well as support of different social projects.

  12. Science standards: The foundation of evolution education in the United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Watts

    2016-12-01

    Full Text Available Science standards and textbooks have a huge impact on the manner in which evolution is taught in American classrooms. Standards dictate how much time and what points have to be dedicated to the subject in order to prepare students for state-wide assessments, while the textbooks will largely determine how the subject is presented in the classroom. In the United States both standards and textbooks are determined at the state-level through a political process. Currently there is a tremendous amount of pressure arising from anti-evolutionists in the United States to weaken or omit the teaching of evolution despite recommendations from central institutions such as the National Academy of Science. Results from the Program for International Student Assessment (PISA showed that not only are American students performing below average, but also that their performance is declining as they scored worse in 2012 than they did in 2010. Interestingly PISA also found that the internal variation within a country is often greater than between countries with a variation of up to 300 points, which is equivalent to seven years of education pointing to the extreme heterogeneous quality of education within a country (OECD, 2012. An implementation of strong standards would not only help to increase the average performance of American students but could also alleviate the vast discrepancy between the highest and lowest scoring groups of American students. Although the Next Generation Science Standards have been in existence since 2013 and A Framework for K-12 Science Education has been available to the public since 2011 many American states still continue to create their own standards that, according to the Fordham study, are well below par (Lerner et al., 2012. Due to the political nature of the adoption procedure of standards and textbooks, there are many opportunities for interested individuals to get involved in the process of improving these fundamental elements of

  13. Information Quality as a Foundation for User Trustworthiness of Earth Science Data.

    Science.gov (United States)

    Wei, Y.; Moroni, D. F.; Ramapriyan, H.; Peng, G.

    2017-12-01

    Information quality is multidimensional. Four different aspects of information quality can be defined based on the lifecycle stages of Earth Science data products: science, product, stewardship and services. With increasing requirements on ensuring and improving information quality coming from multiple government agencies and throughout industry, there have been considerable efforts toward improving information quality during the last decade, much of which has not been well vetted in a collective sense until recently. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) in 2011, and reactivated in the summer of 2014, has been active with membership from multiple organizations. The IQC's objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are also considered vital toward improving the trustworthiness of Earth science data to a vast and interdisciplinary community of data users. During 2016, several members of the IQC have led the development and assessment of four use cases. This was followed up in 2017 with multiple panel sessions at the 2017 Winter and Summer ESIP Meetings to survey the challenges posed in the various aspects of information quality. What was discovered to be most lacking is the transparency of data lineage (i.e., provenance and maturity), uniform methods for uncertainty characterization, and uniform quality assurance data and metadata. While solutions to these types of issues exist, most data producers have little time to investigate and collaborate to arrive at and conform to a consensus approach. The IQC has positioned itself as a community platform to bring together all relevant stakeholders from data producers, repositories, program managers, and the end users. A combination of both well-vetted and "trailblazing" solutions are presented to address how data trustworthiness can

  14. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    understanding of science increases (Akkus, Gunel & Hand, 2007; Gibson, 2002; Liu, Lee & Linn, 2010). As a result, it is important to explore middle school science teachers' definition of science as inquiry because of its importance in how their understandings are reflected in their practice. Researchers must witness, first- hand, what is taking place in middle school science classrooms with respect to the teaching of scientific inquiry before recommendations for improvements can be made. We must also allow opportunities for middle school science teachers to broach, examine, explore, interpret and report implementation strategies when practicing the elements of scientific inquiry as a science content area. It then stands to reason that more research needs to be done to: (1) assess teachers' knowledge related to reform-based teaching, (2) investigate teachers' views about the goals and purposes of inquiry, and (3) investigate the processes by which teachers carry out SI and motivation for undertaking such a complex and difficult to manage form of instruction. The purpose of this study was to examine middle school science teachers' understandings and skills related to scientific inquiry; how those understandings and skills were translated into classroom practice, and the role the school district played in the development of such understandings and skills.

  15. Foundations for Science of Information: Reflection on the Method of Inquiry

    Directory of Open Access Journals (Sweden)

    Marcin J. Schroeder

    2011-10-01

    Full Text Available The paper considers necessary conditions for establishing information science as a scientific autonomous disci- pline. The lack of a commonly accepted definition of information is not as threatening as it may seem, as each study within the discipline may choose an own definition, as well as an own philosophical framework, when there are some alternatives to choose between. More important is the development of a common methodology of inquiry and some range of standard questions regarding the concept of information. Also, it is important to develop some standards of inquiry, which would make information scientific studies accessible to philosophical analysis and reflection. In turn, contributions of information science to the resolution of problems identified within philosophy will give the best measure of maturity for information sci- ence as a discipline.

  16. Exploring the classroom: Teaching science in early childhood

    Directory of Open Access Journals (Sweden)

    Peter J.N. DEJONCKHEERE

    2016-06-01

    Full Text Available This study tested and integrated the effects of an inquiry-based didactic method for preschool science in a real practical classroom setting. Four preschool classrooms participated in the experiment (N= 57 and the children were 4–6 years old. In order to assess children’s attention for causal events and their understanding at the level of scientific reasoning skills, we designed a simple task in which a need for information gain was created. Compared to controls, children in the post-test showed significant learning gains in the development of the so-called control of variables strategy. Indeed, they executed more informative and less uninformative explorations during their spontaneous play. Furthermore, the importance of such programmes was discussed in the field of STEM education.

  17. The High Energy Transient Explorer (HETE): Mission and science overview

    International Nuclear Information System (INIS)

    Ricker, G.R.; Crew, G.B.; Doty, J.P.; Vanderspek, R.; Villasenor, J.; Atteia, J.-L.; Fenimore, E.E.; Galassi, M.; Graziani, C.; Lamb, D.Q.; Hurley, K.; Jernigan, J.G.; Kawai, N.; Matsuoka, M.; Pizzichini, G.; Shirasaki, Y.; Tamagawa, T.; Vedrenne, G.; Woosley, S.E.; Yoshida, A.

    2003-01-01

    The High Energy Transient Explorer (HETE ) mission is devoted to the study of gamma-ray bursts (GRBs) using soft X-ray, medium X-ray, and gamma-ray instruments mounted on a compact spacecraft. The HETE satellite was launched into equatorial orbit on 9 October 2000. A science team from France, Japan, Brazil, India, Italy, and the US is responsible for the HETE mission, which was completed for ∼ 1/3 the cost of a NASA Small Explorer (SMEX). The HETE mission is unique in that it is entirely 'self-contained', insofar as it relies upon dedicated tracking, data acquisition, mission operations, and data analysis facilities run by members of its international Science Team. A powerful feature of HETE is its potential for localizing GRBs within seconds of the trigger with good precision (∼ 10') using medium energy X-rays and, for a subset of bright GRBs, improving the localization to ∼ 30''accuracy using low energy X-rays. Real-time GRB localizations are transmitted to ground observers within seconds via a dedicated network of 14 automated 'Burst Alert Stations', thereby allowing prompt optical, IR, and radio follow-up, leading to the identification of counterparts for a large fraction of HETE -localized GRBs. HETE is the only satellite that can provide near-real time localizations of GRBs, and that can localize GRBs that do not have X-ray, optical, and radio afterglows, during the next two years. These capabilities are the key to allowing HETE to probe further the unique physics that produces the brightest known photon sources in the universe. To date (December 2002), HETE has produced 31 GRB localizations. Localization accuracies are routinely in the 4'- 20' range; for the five GRBs with SXC localization, accuracies are ∼1-2'. In addition, HETE has detected ∼ 25 bursts from soft gamma repeaters (SGRs), and >600 X-ray bursts (XRBs)

  18. Against all odds: Tales of survival and growth of the Foundational Approaches in Science Teaching (FAST) project

    Science.gov (United States)

    Yamamoto, Karen Kina

    This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2

  19. [Applications and approved projects on traditional Chinese medicine in National Natural Science Foundation of China in 2010].

    Science.gov (United States)

    Shang, Hong-cai; Huang, Jin-ling; Han, Li-wei; Pei, Ling-peng; Guo, Lin; Lin, Na; Wang, Chang-en

    2011-10-01

    In this article, the authors firstly summarized the number of applications submitted to and projects supported by the National Natural Science Foundation of China (NSFC) in the field of traditional Chinese medicine research in 2010. Then they described the district distribution, research direction layout and allotment of the approved projects in the three primary disciplines (traditional Chinese medicine, Chinese materia medica and integrated traditional Chinese and Western medicine) and their 43 subdisciplines. The targeting suggestions for improvement were given respectively by concluding the reason of disapproved projects from the point of view of applicants and supporting institution, and by stating the common problems existing in the review process from the perspectives of fund managers and evaluation experts. Lastly, the major funding fields in the near future were predicted in the hope of providing guidance for applicants.

  20. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  1. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  2. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  3. Teacher Transformation: An Exploration of Science Teachers' Changing Professional Identities, Knowledge, and Classroom Practices

    Science.gov (United States)

    Whitacre, Michelle Phillips

    This qualitative, multiple case study examines five teachers' experiences with a National Science Foundation-funded professional development (PD) program focused on science literacy. Using a three dimensional conceptual framework combining transformative learning theory, communities of practice, and sociocultural conceptions of identity it explores: the ways the "Science Literacy through Science Journalism" (SciJourn) project built professional community and influenced teacher learning; the influence of the project on participating science teachers' professional identities, knowledge, and classroom practices; and the ways teachers were or were not transformed by participation in the project. To this end, data from surveys and phenomenological interviews were analyzed through qualitative textual analysis and narrative analysis. Four of the teachers experienced a change in their stories to live by, aka, an identity shift. Three predominant themes emerged across these cases. These included a changed conceptualization of science literacy, the importance of student engagement and authenticity, and the value of SciJourn's professional development and community. The changed conceptualization of science literacy was particularly salient as it challenged these teachers' assumptions, led them to rethink how they teach science literacy, and also influenced them to re-evaluate their teaching priorities beyond the PD. Consequently, this study concludes that PD efforts should focus as much, or more, on influencing teachers' ideas regarding what and how they teach and less on teaching strategies. A close comparison between two teachers' diverging experiences with the program showed that student engagement played a significant role in teachers' perceptions of the value of project, suggesting that whether or not teachers sustain a new practice is closely tied to their students' feedback. Additionally, this analysis showed that a teacher's individualized needs and sense of efficacy

  4. Internship training in computer science: Exploring student satisfaction levels.

    Science.gov (United States)

    Jaradat, Ghaith M

    2017-08-01

    The requirement of employability in the job market prompted universities to conduct internship training as part of their study plans. There is a need to train students on important academic and professional skills related to the workplace with an IT component. This article describes a statistical study that measures satisfaction levels among students in the faculty of Information Technology and Computer Science in Jordan. The objective of this study is to explore factors that influence student satisfaction with regards to enrolling in an internship training program. The study was conducted to gather student perceptions, opinions, preferences and satisfaction levels related to the program. Data were collected via a mixed method survey (surveys and interviews) from student-respondents. The survey collects demographic and background information from students, including their perception of faculty performance in the training poised to prepare them for the job market. Findings from this study show that students expect internship training to improve their professional and personal skills as well as to increase their workplace-related satisfaction. It is concluded that improving the internship training is crucial among the students as it is expected to enrich their experiences, knowledge and skills in the personal and professional life. It is also expected to increase their level of confidence when it comes to exploring their future job opportunities in the Jordanian market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Preliminary exploration and thought of promoting library science Indigenization

    International Nuclear Information System (INIS)

    Liu Wenping; Du Jingling

    2014-01-01

    The article explains the significance of Library Science Indigenization, Answer some misunderstanding of Library Science Indigenization,reveals express form of Library Science Indigenization, Discusses criteria of Library Science Indigenization, finally give some suggestions and methods of Library Science Indigenization. (authors)

  6. Kahua A';o--A Learning Foundation: Using Hawaiian Language Newspaper Articles for Science and Science Education

    Science.gov (United States)

    Chinn, P. W.; Businger, S.

    2013-12-01

    Kahua A';o, an NSF OEDG project, utilizes Hawaiian language newspaper articles written between 1843 and 1948 in lessons and professional development intended to increase participation of underrepresented Native Hawaiian students in earth science. Guided by sociocultural theories that view learning as experiential and culturally situated, geoscientists (Steven Businger, Scott Rowland, Floyd McCoy, UG student Kelly Lance); Hawaiian translators (M. Puakea Nogelmeier, GRAs Kapomaikai Stone and Iasona Ellinwood); science educators (Pauline Chinn, graduate student Lindsey Spencer), utilize articles to develop place-based meteorology and geology curricula for middle school teachers. Articles are valuable to science and science education: Native Hawaiians are citizen scientists who recorded, interpreted, and communicated findings to potentially critical audiences, while dated, descriptive, eye witness reports provide data on events unrecorded by westerners. Articles reveal Hawaiian intellectual tradition placed great value on environmental knowledge. Moolelo (traditional stories) e.g., Kuapākaa (Nakuina, 1905), translated as The Wind Gourd of Laamaomao, tells of Kuapākaa controlling all the winds of Hawai';i by chanting their names--a metaphor for the power of knowledge of winds, rains and their patterns. In the moolelo of Kalapana, a boy hero challenges and defeats the king of Kauai to a life-and-death riddling contest (Nakuina, 1902). Maly's (2001) translation of a riddle involving 22 zones spanning mountaintop to deep-sea underscores the knowledge base informing sustainable practices. Articles provide insight into indigenous maps (Nogelmeier, personal communication) while riddling contests (Beckwith, 1940/1970) establish demonstrations of knowledge as central to power, identity, and status. Eight field-based lessons have been presented to formal and informal science educators, with teachers adapting lessons for 3rd-12th grade students. Graduate students Spencer, Stone

  7. New Age of Exploration: A View from a Science Writer

    Science.gov (United States)

    Urban, Z.

    2012-09-01

    We present an auxiliary frame for planetary science outreach, based especially on historical parallels and analogues. The general aim is to create and further cultivate a broader public support for integrated planetary exploration (i.e., one which uses both interplanetary probes/orbital observatories and ground instruments). The main approach consist of a series of a quite limited units of information, consisting of a unifying background narration and short stories illustrating specific points. These units could come in two versions, one emphasizing the visual side (static photos, static drawings, animations, videos), something as movie-like trailers for a wide use, including their upload to YouTube, the other emphasizing the narration itself in voice or textual form. These presentations should be scientifically rigorous, both factually and contextually, but will make use of "showbusiness" and "marketing" features, in a better sense of these terms. Both versions will support interactiveness. The main point stressed is an extensive set of similarities between The Age of Exploration here on Earth (15th-19th century) on the one side and the present era of direct and indirect solar system exploration and a new dimension introduced by exoplanet discoveries on the other. The parallel/analogue approach is developed step by step, from early Portuguese explorers of the coast of West Africa (with mentions of ancient cases, represented, for example, by Phoenician and Greek colonisations of the Mediterranean. The consequences of the Age of Exploration benefited Europe enormously. The same could be expected form its modern space counterpart, as it has been demonstrated by a number of industrial outcomes from the Apollo Project. The relevant storytelling will highlight also mysteries and riddles (preserving sciece approach), like martian methane and probable ocean on Europa. The information units will be oriented towards the members of public, but keeping in mind psychology and

  8. Common foundations of optimal control across the sciences: evidence of a free lunch

    Science.gov (United States)

    Russell, Benjamin; Rabitz, Herschel

    2017-03-01

    A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue 'Horizons of cybernetical physics'.

  9. A case study exploring science competence and science confidence of middle school girls from marginalized backgrounds

    Science.gov (United States)

    Garcia, Yeni Violeta

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is known about the components these experiences should have and what types of transformations participants undergo as a result of these experiences. This dissertation explored the systemic creation of an intervention purposely designed to serve middle school girls from underrepresented backgrounds, the implementation of such intervention, and effect on the girls' science competence and science confidence. El Espejo, Spanish for "The Mirror," was an ongoing field ecology research program for middle schools girls founded in 2009 at a local interdisciplinary learning center. Girls from all walks of life had the opportunity to be apprentice researchers and to work with scientists and science educators from the local community. All activities were strategically designed to promote student-led inquiry, career awareness, cultural awareness, and opportunities for research and mentorship for girls from underrepresented backgrounds. An increased understanding of if, how, and why this experience was perceived by the girls to be life changing was of importance to add to the conversations that seek ways to inspire and prepare this generation of students to be the next generation of scientists. The study built on systems theory, and on theories that were embedded in the participants' system: critical race theory, identity theory, and experiential learning theory, grounded in the context of the lived experiences of girls from underrepresented backgrounds. The girls' experiences were captured through journals, observer participant notes, photo-documentation, artifacts (posters, videos) created by the girls, and by using science perception

  10. [Analysis on Research Projects Supported by the National Natural Science Foundation of China at the National Institute of Parasitic Diseases during 2003-2013].

    Science.gov (United States)

    Zhou, Xiao-jun; Zheng, Bin; Yi, Feng-yun; Xiong, Yan-hong; Zhang, Min-qi

    2015-04-01

    The data of the National Natural Science Foundation (NSFC) projests obtained by the National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) during 2003-2013 were collected from internet-based science information system of NSFC, and NSFC search tool of Dingxiang Garden (http://nsfc.biomart.cn/). The number of funded projects, their subject classification and approved amount were analyzed, and compared with the other institutes of China CDC. Furthermore, the rationalization proposals were given in order to enhance the level of foundation management in the future.

  11. Kahua A'o—A Learning Foundation: Using Hawaiian Language Newspaper Articles for Earth Science Professional Development

    Science.gov (United States)

    Chinn, P. W.

    2012-12-01

    Kahua A'o, an NSF OEDG project, utilizes Hawaiian language newspaper articles written between 1843 and 1948 as a foundation for culturally responsive geoscience curriculum and professional development. In Hawaii, a lack of qualified teachers limits students' awareness of Earth Science in their lives, as careers and a way to understand past, present, and future. This particularly impacts Native Hawaiians, 28% of students in Hawaii''s public schools but underrepresented in STEM majors and careers. Guided by sociocultural theories that view learning as experiential and culturally situated, geoscientists, Hawaiian translators, and science educators utilize articles to develop meteorology and geology modules for middle school teachers. Articles provide insights about living sustainably on islands exposed to volcanic eruptions, earthquakes, tsunami, drought, and storms. Hawaii's remoteness and diverse topography supported the development of mountain-to-sea, sustainable, social ecosystems called ahupuaa. Hawaiians recognized each ahupuaa's unique winds, rains, fauna, flora, cultivars, and geologic features. The story of Pele chanting the winds of Kauai to prove she was not a stranger grounds identity and status in environmental knowledge. The story is culturally congruent with science explanations of how the Hawaiian Islands' diverse shapes and topography interact with heating, cooling, and large scale wind systems to create hundreds of local winds and rains. This presentation reports on "Local Winds and Rains of Hawaii, I Kamaāina i Na Makani a Me Nā Ua and "Weather Maps and Hazardous Storms in Hawaii, Nā 'Ino Ma Hawaii Nei." Highly detailed observations of an 1871 severe wind event enable students to estimate winds speeds using the Beaufort Scale, determine the storm's path and decide if it was the first recorded hurricane on the island of Hawaii. A visit to NOAA's National Weather Service triggered discussions about Hawaiian language weather reports. A Hawaiian

  12. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that connects students to their communities and their world. Therefore, teachers are in need of instructional support for science teaching that can enable them to achieve these higher expectations. This dissertation explored whether implementing a Project-Based Learning (PBL)-centered science specialist changed classroom teachers' frequency of science instruction and use of instructional strategies that support NGSS science delivery. In addition, this study examined how providing a PBL science specialist supported teachers in their comfort with using these more rigorous instructional strategies. Five elementary teachers participated in an action research project conducted over the course of a school year. The frequency with which teachers used the following instructional strategies was analyzed: connecting science to real world phenomena, accessing community resources, integrating science into other subject areas, and using inquiry in science instruction. Quantitative and qualitative data revealed that a PBL science specialist does support classroom teachers in implementing teaching practices aligned to the conceptual shifts implicated by the NGSS; however, individual growth rates varied by instructional strategy. The results of this study provide a foundation for the legitimacy of utilizing a PBL-focused science specialist to support teachers in shifting their instructional practices in order to achieve the Next Generation Science Standards.

  13. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Science.gov (United States)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-02-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice

  14. National Science Foundation Grant Implementation: Perceptions of Teachers and Graduate Fellows in One School Regarding the Barriers and Successes

    Science.gov (United States)

    Pickering, Sharon Durham

    The purpose of this qualitative case study was to examine the perceptions of partner teachers and graduate fellows in 1 school regarding the barriers and successes made during their participation in a National Science Foundation Grant. This study included 9 partner teachers and 7 graduate fellows who participated in the Science First! NSF GK-12 Grant. There were 16 participants in this study. This study was conducted at North Side Elementary and East Tennessee State University. Partner teachers and graduate fellows were interviewed to gain perceptions of the barriers and successes of their participation in the implementation of the Science First! grant at North Side and East Tennessee State University from 2008-2013. A list of possible participants in the study was provided from the grant leadership team. The 16 participants in the study were chosen through purposeful sampling. During data analysis, 4 themes arose as successes and 4 themes arose as barriers. The success themes were (a) relationships, (b) mutual appreciation, (c) increased academic depth, and (d) professional growth. The barriers were (a) communication, (b) time, (c) expectations, and (d) preparation. Based on the research, the following conclusions were presented. The coordination of a major NSF-GK12 grant can provide STEM support and academic rigor for a high poverty school with leadership. Positive relationships between the graduate fellows and partner teachers as well as the 2 participating institutions are critical in fostering successful grant implementation. Professional growth through the grant partnerships was obtained. The participants gained a mutual appreciation for the roles and responsibilities of each other. There are ups and downs in implementing a large grant at 1 elementary school with a university, but the rewards of the potential to influence teacher practices in STEM and student learning are great. Recommendations from the study findings may assist future grant award winners or

  15. Of Responsible Research--Exploring the Science-Society Dialogue in Undergraduate Training within the Life Sciences

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-01

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in…

  16. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    Science.gov (United States)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  17. Science Enabling Exploration: Using LRO to Prepare for Future Missions

    Science.gov (United States)

    Lawrence, S.; Jolliff, B. L.; Stopar, J.; Speyerer, E. J.; Petro, N. E.

    2016-12-01

    Discoveries from LRO have transformed our understanding of the Moon (e. g., [1],[2],[3]), but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration [3]. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis [4]. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites [5]. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism ([6], [7]). If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions. References: [1] M. S. Robinson et al., Icarus, 252, 229-235, 2015. [2] S. E. Braden et al. Nat. Geosci., 7, 11, 787-791, 2014. [3] J. W. Keller et al. Icarus, 273, 2-24, 2016. [4] LEAG, Lunar Exploration Roadmap, 2011. [5] S. J. Lawrence et al., LPI

  18. From the NSF: The National Science Foundation's Investments in Broadening Participation in Science, Technology, Engineering, and Mathematics Education through Research and Capacity Building.

    Science.gov (United States)

    James, Sylvia M; Singer, Susan R

    The National Science Foundation (NSF) has a long history of investment in broadening participation (BP) in science, technology, engineering, and mathematics (STEM) education. A review of past NSF BP efforts provides insights into how the portfolio of programs and activities has evolved and the broad array of innovative strategies that has been used to increase the participation of groups underrepresented in STEM, including women, minorities, and persons with disabilities. While many are familiar with these long-standing programmatic efforts, BP is also a key component of NSF's strategic plans, has been highlighted in National Science Board reports, and is the focus of ongoing outreach efforts. The majority of familiar BP programs, such as the Louis Stokes Alliances for Minority Participation (now 25 years old), are housed in the Directorate for Education and Human Resources. However, fellowship programs such as the Graduate Research Fellowships and Postdoctoral Research Fellowships under the Directorate for Biological Sciences (and parallel directorates in other STEM disciplines) are frequently used to address underrepresentation in STEM disciplines. The FY2016 and FY2017 budget requests incorporate funding for NSF INCLUDES, a new cross-agency BP initiative that will build on prior successes while addressing national BP challenges. NSF INCLUDES invites the use of innovative approaches for taking evidence-based best practices to scale, ushering in a new era in NSF BP advancement. © 2016 S. M. James and S. R. Singer. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Exploring the theological foundation of Corporate Social Responsibility in Islam, Christianity and Judaism for Strengthening Compliance and Reporting: An Eclectic Approach

    Directory of Open Access Journals (Sweden)

    Lukman Raimi

    2013-12-01

    religions play direct and indirect role in corporate governance and people‘s lifestyle. This paper explores eclectic sources to provide answer to the questions: Does CSR have theological foundation in Islam Christianity and Judaism? Can religions strengthen CSR and fortify compliance and reporting? The authors sourced the required qualitative data from journal articles, Islamic jurisprudence, Judaic sources and Biblical texts as well as relevant online resources on the subject. The extractions from eclectic sources were subjected to content analysis from which conclusions on the two questions were established. The findings indicate that CSR has theological foundation in the three religions, and religious ethics and values could be potent drivers for strengthening CSR and reporting.

  20. Data and Science: GES DISC Users' Data Usage and Science Exploration

    Science.gov (United States)

    Shie, C. L.; Greene, M.; Acker, J. G.; Lei, G. D.; Al-Jazrawi, A. F.; Meyer, D. J.

    2017-12-01

    Motivation: Recall the arguably most renowned anecdote in the history of science: the young Isaac Newton was hit on his head by a falling apple (the data!) when he sat in his garden, which inspired Newton's brilliant insight and his eventually understanding and demonstrating of gravitational force (the science!). This well-known "coupling" of "data" and "science" can be considered as the trigger for this study (as well as its title). The NASA Goddard Earth Sciences Data and Information Service Center (GES DISC) has provided massive amounts of Earth science data, information, and services to diverse research communities and the general public for decades. How much those data products from different missions or projects have been used by diverse user communities, as well as how they have been used by our various user categories (such as research scientists, applications scientists, general public, and students) for different science research or/and applications are the primary focus of this study. We have performed an integrated analysis on "data usage" vs. "science research/application" by investigating three different, yet related, groups of records, i.e., user Help Tickets (the questions and feedback from the users), user publications (info acquired especially via users' acknowledgments of using Giovanni, our powerful in-house visualization tool, in their papers), and user metrics (the collected information of data and service usage by the users) in recent years (2013-2017). For example, precipitation, hydrology, and atmospheric chemistry have been found as frequently applied science variables or/and science areas that have been exploited or/and explored by the users based on the user tickets we have analyzed so far. With regard to Giovanni, a significant minority of the users are applications users (air quality, water quality, agriculture, natural disasters, etc.) in contrast to the majority of basic research users. More users employ Giovanni as an adjunct data

  1. Women of science, technology, engineering, and mathematics: A qualitative exploration into factors of success

    Science.gov (United States)

    Olund, Jeanine K.

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the number of women declines even further and the attrition rate is high. Studies to explain this phenomenon abound and remedial action has been taken in many institutions. Nonetheless, the problem remains. There are women who have entered this environment, however, who are not only surviving but thriving. Through the lens of positive scholarship, this qualitative study explores characteristics of twelve high-achieving women of STEM to discover if there are common factors that have contributed to their success. The data show that successful women of STEM are enterprising, relational, self-aware, and have a positive perspective. These results suggest that the four factors, particularly through their juxtaposition, are foundational to the success of STEM women within the current culture of science. Furthermore, the behaviors, responses, and values of these women have likely contributed to systemic changes within their immediate environments and perhaps even beyond. Research has shown that positive behaviors and values can be adopted by others and integrated deeply into their psyches. Therefore, the women of this study, and others like them, could serve as role models for colleagues and peers to support the development of these factors of success in others. Women, and men, of STEM may thereby learn new ways to approach difficulties, to create new avenues for success, and to bring forth positive change within themselves and their environments.

  2. Sparking connections: An exploration of adolescent girls' relationships with science

    Science.gov (United States)

    Wheeler, Kathryn A.

    Despite progress in narrowing the gender gap, fewer women than men pursue science careers. Adolescence is a critical age when girls' science interest is sparked or smothered. Prior research provides data on who drops out of the "science pipeline" and when, but few studies examine why and how girls disconnect from science. This thesis is an in-depth exploratory study of adolescent girls' relationships with science based on a series of interviews with four middle-class Caucasian girls---two from public schools, two homeschooled. The girls' stones about their experiences with, feelings about, and perspectives on science, the science process, and their science learning environments are examined with a theoretical and analytic approach grounded in relational psychology. The potential link between girls' voices and their involvement in science is investigated. Results indicate that girls' relationships with science are multitiered. Science is engaging and familiar in the sense that girls are curious about the world, enjoy learning about scientific phenomena, and informally use science in their everyday fives. However, the girls in this study differentiated between the science they do and the field of science, which they view as a mostly male endeavor (often despite real life experiences to the contrary) that uses rather rigid methods to investigate questions of limited scope and interest. In essence, how these girls defined science defined their relationship with science: those with narrow conceptions of science felt distant from it. Adolescent girls' decreased involvement in science activities may be a relational act---a move away from a patriarchical process, pedagogy, and institution that does not resonate with their experiences, questions, and learning styles. Girls often feel like outsiders to science; they resist considering science careers when they have concerns that implicitly or explicitly, doing so would involve sacrificing their knowledge, creativity, or

  3. The Animal Kingdom Is Also a Bioengineering Field: Exploring the Art and Science of Vetinary Medicine [Retrospectroscope].

    Science.gov (United States)

    Valentinuzzi, Max E

    2017-01-01

    Medical science developed in tandem with the evolution of biological species and their associated diseases. Because of the close interaction between humans and other animals, even those in the wild, taking care of the former also means caring for the latter. Several scientific forerunners delved into animals' anatomical and physiological secrets in their quest to better understand animal biology and functions, thereby laying the foundation for animal medicine. Here, I briefly explore the long and complex road that led to the current state of veterinary science and provide a few examples of its present standing. (Contributions from the ancient world and eastern countries are not considered, as they represent a different area of interest.).

  4. The Preparation of Students from National Science Foundation-Funded and Commercially Developed High School Mathematics Curricula for their First University Mathematics Course

    Science.gov (United States)

    Harwell, Michael; Post, Thomas R.; Cutler, Arnie; Maeda, Yukiko; Anderson, Edwin; Norman, Ke Wu; Medhanie, Amanuel

    2009-01-01

    The selection of K-12 mathematics curricula has become a polarizing issue for schools, teachers, parents, and other educators and has raised important questions about the long-term influence of these curricula. This study examined the impact of participation in either a National Science Foundation-funded or commercially developed mathematics…

  5. 76 FR 26721 - Re-Issuance of a General Permit to the National Science Foundation for the Ocean Disposal of Man...

    Science.gov (United States)

    2011-05-09

    ...EPA proposes to re-issue a permit authorizing the National Science Foundation (NSF) to dispose of ice piers in ocean waters. Permit re-issuance is necessary because the current permit has expired. EPA does not propose changes to the content of the permit because ocean disposal under the terms of the previous permit will continue to meet the ocean disposal criteria.

  6. Stimulating Public Interest in Lunar Exploration and Enhancing Science Literacy Through Library Programs

    Science.gov (United States)

    Shipp, S.; Nelson, B.; Stockman, S.; Weir, H.; Carter, B.; Bleacher, L.

    2008-07-01

    Libraries are vibrant learning places, seeking partners in science programming. LPI's Explore! program offers a model for public engagement in lunar exploration in libraries, as shown by materials created collaboratively with the LRO E/PO team.

  7. Extending the Pathway: Building on a National Science Foundation Workforce Development Project for Underserved k-12 Students

    Science.gov (United States)

    Slattery, W.; Smith, T.

    2014-12-01

    With new career openings in the geosciences expected and a large number of presently employed geoscientists retiring in the next decade there is a critical need for a new cadre of geoscientists to fill these positions. A project funded by the National Science Foundation titled K-12 Students, Teachers, Parents, Administrators and Higher Education Faculty: Partners Helping Rural Disadvantaged Students Stay on the Pathway to a Geoscience Career involving Wright State University and the Ripley, Lewis, Union, Huntington k-12 school district in Appalachian Ohio took led to dozens of seventh and eighth grade students traveling to Sandy Hook, New Jersey for a one week field experience to study oceanography with staff of the New Jersey Sea Grant Consortium. Teachers, parent chaperones, administrators and university faculty accompanied the students in the field. Teachers worked alongside their students in targeted professional development during the weeklong field experience. During the two academic years of the project, both middle school and high school teachers received professional development in Earth system science so that all students, not just those that were on the summer field experience could receive enhanced science learning. All ninth grade high school students were given the opportunity to take a high school/college dual credit Earth system science course. Community outreach provided widespread knowledge of the project and interest among parents to have their children participate. In addition, ninth grade students raised money themselves to fund a trip to the International Field Studies Forfar Field Station on Andros Island, Bahamas to study a tropical aquatic system. Students who before this project had never traveled outside of Ohio are currently discussing ways that they can continue on the pathway to a geoscience career by applying for internships for the summer between their junior and senior years. These are positive steps towards taking charge of their

  8. PolarTREC-Teachers and Researchers Exploring and Collaborating: Science Education from the Poles to the World

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)--funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences, working closely with IPY scientists as a pathway to improving science education. PolarTREC has developed a successful internet-based platform for teachers and researchers to interact and share their diverse experiences and expertise by creating interdisciplinary educational tools including online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific topics. These highly relevant, adaptable, and accessible resources are available to educators across the globe and have connected thousands of students and citizens to the excitement of polar science. By fostering the integration of research and education and infusing education with the thrill of discovery, PolarTREC will produce a legacy of long-term teacher-researcher collaborations and increased student knowledge of and interest in the polar regions well beyond the IPY time period. Educator and student feedback from preliminary evaluations has shown that PolarTREC's comprehensive program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes in key areas including amount of time spent in school exploring research activities, importance of understanding science for future work, importance of understanding the polar regions as a person in today's world, as well as increased self-reported knowledge and interest in Science, Technology, Engineering, and Mathematics content areas. PolarTREC provides a tested approach and a clear route for researcher participation in the education community

  9. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use

    Science.gov (United States)

    Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese

    2016-01-01

    Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other’s knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty. PMID:27556175

  10. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use [corrected].

    Directory of Open Access Journals (Sweden)

    Caroline Schill

    Full Text Available Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.

  11. Cooperation Is Not Enough—Exploring Social-Ecological Micro-Foundations for Sustainable Common-Pool Resource Use [corrected].

    Science.gov (United States)

    Schill, Caroline; Wijermans, Nanda; Schlüter, Maja; Lindahl, Therese

    2016-01-01

    Cooperation amongst resource users holds the key to overcoming the social dilemma that characterizes community-based common-pool resource management. But is cooperation alone enough to achieve sustainable resource use? The short answer is no. Developing management strategies in a complex social-ecological environment also requires ecological knowledge and approaches to deal with perceived environmental uncertainty. Recent behavioral experimental research indicates variation in the degree to which a group of users can identify a sustainable exploitation level. In this paper, we identify social-ecological micro-foundations that facilitate cooperative sustainable common-pool resource use. We do so by using an agent-based model (ABM) that is informed by behavioral common-pool resource experiments. In these experiments, groups that cooperate do not necessarily manage the resource sustainably, but also over- or underexploit. By reproducing the patterns of the behavioral experiments in a qualitative way, the ABM represents a social-ecological explanation for the experimental observations. We find that the ecological knowledge of each group member cannot sufficiently explain the relationship between cooperation and sustainable resource use. Instead, the development of a sustainable exploitation level depends on the distribution of ecological knowledge among the group members, their influence on each other's knowledge, and the environmental uncertainty the individuals perceive. The study provides insights about critical social-ecological micro-foundations underpinning collective action and sustainable resource management. These insights may inform policy-making, but also point to future research needs regarding the mechanisms of social learning, the development of shared management strategies and the interplay of social and ecological uncertainty.

  12. An Investigation of How Black STEM Faculty at Historically Black Colleges and Universities Approach the National Science Foundation Merit Review Process

    Science.gov (United States)

    Rankins, Falcon

    This qualitative inquiry explored the ways in which US-born, Black faculty member participants in science, technology, engineering, and mathematics (STEM) disciplines at Historically Black Colleges and Universities (HBCUs) interact with the National Science Foundation (NSF). Eight Black HBCU STEM faculty members with a range of involvement in NSF-related activities were individually interviewed. Topics of discussion with participants included their prior experiences with NSF, their understanding of the merit review process, and their understanding of their personal and institutional relationships with NSF and the STEM community. Two broad findings emerged from the conversations. The first was that issues of communities and social identity were important to the participants' work as research scientists. Participants prioritized advancing people and communities over advancing the knowledge of ambiguous, disembodied scientific disciplines, and some participants were motivated by interests in social justice. However, participants maintained strong identities as scientists and the discussions provided no evidence that other social factors influenced their application of the scientific method. The second major finding dealt with the role participants perceived their institutions playing in their involvement with NSF. All participants described challenges associated with pursuing research in HBCU environments and, in some cases, the institutional challenges served as the motivation for participants' projects, with varying consequences. The participants' discussions about their institutions also raised important questions about how well-aligned participants' visions are with the visions of their institutional leadership, regarding how research should be incorporated into the HBCU mission. Finally, this study developed and refined a theoretical framework for explaining the underrepresentation of HBCUs in NSF funding streams. In developing this framework, a brief history of

  13. Life sciences - On the critical path for missions of exploration

    Science.gov (United States)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  14. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  15. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  16. Foundations for Critical Thinking

    Science.gov (United States)

    Bers, Trudy; Chun, Marc; Daly, William T.; Harrington, Christine; Tobolowsky, Barbara F.

    2015-01-01

    "Foundations for Critical Thinking" explores the landscape of critical-thinking skill development and pedagogy through foundational chapters and institutional case studies involving a range of students in diverse settings. By establishing a link between active learning and improved critical thinking, this resource encourages all higher…

  17. Student Contributions to Citizen Science Programs As a Foundation for Independent and Classroom-Based Undergraduate Research in the Earth Sciences

    Science.gov (United States)

    Guertin, L. A.

    2014-12-01

    Environmental monitoring projects on the grounds of a campus can serve as data collection sites for undergraduate research. Penn State Brandywine has utilized students in independent study projects to establish two citizen science programs and to begin collecting data, with the data sets serving as a foundation for authentic inquiry-based exercises in introductory-level Earth science courses. The first citizen science program is The Smithsonian Institution's Global Tree Banding Project, which contributes to research about tree biomass by tracking how trees respond to climate. We are going beyond the requirements of the Smithsonian project. Instead of only taking two measurements each in the spring and fall, undergraduate researchers are taking measurements every two weeks throughout the year. We started taking measurements of ten trees on campus in 2012 will continue until each tree outgrows its tree band. The data is available for download in Google Spreadsheets for students to examine changes in tree diameter within one or between growing seasons, supplemented with temperature and precipitation data (see http://sites.psu.edu/treebanding/). A second citizen science program we have begun on campus is the NASA-funded Digital Earth Watch (DEW) Picture Post Project, allowing students to monitor the environment and share observations through digital photography. We established four Picture Post sites on campus, with students taking weekly photos to establish an environmental baseline of the campus landscape and to document future environmental changes pre- and post-construction. We started taking digital photos on campus in 2014 will continue well past the completion of construction to continue to look for changes. The image database is less than a year old, but the images provide enough information for some early analyses, such as the variations in "greenness" over the seasons. We have created a website that shares the purpose of our participation in the Picture Post

  18. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  19. Technology under Astrbiology Science and Technology for Exploring Planets (ASTEP)

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrobiological research associated with Human and robotic solar system exploration requires the development of astrobiologically relevant, miniaturized...

  20. Exploring persistence in science in CEGEP: Toward a motivational model

    Science.gov (United States)

    Simon, Rebecca A.

    There is currently a shortage of science teachers in North America and continually decreasing rates of enrollment in science programs. Science continues to be the academic domain that sees the highest attrition rates, particularly for women. The purpose of the present study was to examine male and female students' experiences in mathematics and science courses during a crucial time in their academic development in an attempt to explain the high attrition rates in science between the last year of high school and the first year of CEGEP (junior college). In line with self-determination theory (Deci & Ryan, 1985), as well as achievement-goal theory (Pintrich & Schunk, 1996) and research on academic emotions, the study examined the relation between a set of motivational variables (i.e., perceptions of autonomy-support, self-efficacy, achievement goals, and intrinsic motivation), affect, achievement, and persistence. A secondary objective was to test a motivational model of student persistence in science using structural equation modeling (SEM). The sample consisted of 603 male and 706 female students from four English-language CEGEPs in the greater Montreal area. Just prior to beginning CEGEP, participants completed a questionnaire that asked about the learning environment in high school mathematics and science classes as well as student characteristics including sources of motivation, personal achievement goals, and feelings of competence. All students expressed an initial interest in pursuing a career in science by enrolling in optional advanced mathematics and science courses during high school. Multivariate analysis of variance was used to examine differences among male and female students across the variables measured. Structural equation modeling was used to test the validity of a questionnaire designed specifically to gather information about CEGEP students' experiences with mathematics and science, and to evaluate the fit of a model designed to reflect the

  1. Exploring Social Learning through Upstream Engagement in Science and Technology

    DEFF Research Database (Denmark)

    Mortensen, Jonas Egmose

    This discussion paper deliberates on how the concept of social learning can be used for evaluating upstream engagement initiatives in science and technology.  The paper briefly introduces to the concept of upstream engagement and a concrete case, the UK Citizen Science for Sustainability project...... (SuScit), as an outset for discussing how the concept of social learning can be used for analysing and understanding relations between citizen participation, Science and research, and sustainability. A number of relevant research questions and methodological considerations are distilled...

  2. [Research progresses of the completed pediatrics projects funded by National Natural Science Foundation of China from 2002 to 2006].

    Science.gov (United States)

    Xu, Ling; Hao, Jie; Deng, Min; Xu, Yan-ying

    2009-05-01

    To understand the projects completion and research progresses in pediatrics which were funded by the National Natural Science Foundation of China (NSFC), and evaluate the accomplishment objectively and justly. The completion status of projects in pediatrics funded by department of clinical medicine II from 2002 to 2006 was analysed retrospectively, and important research achievement and outstanding development in some projects were reported. During the period between 2002 and 2006, 420 articles were published, and the average was 8.1 papers per project, which included 56 papers that were published in journals indexed by SCI (the average was 1.1 papers per project). The completion of general project was better than that of "the Young Researchers Fund" and small grant project. Ten post-doctors, 102 doctors and 109 masters were trained. Two projects were awarded with the first grade prize and another 2 with the second grade prize at the provincial and ministerial level, 4 items applied for patent and 1 was granted. These completed projects, which were mainly related to 7 of 12 subspecialties in the field of pediatrics, such as the respiratory disease, nephrology, neurology, cardiology, endocrinology, hematology, neonatology, are the major portion of the application projects and subsidized projects funded by NSFC, and achieved great research progresses. During the period between 2002 and 2006, the 52 completed projects in pediatrics showed difference in the distribution and quality of accomplishment among subspecialties and among types of supported projects; there are some gaps between pediatrics and some other clinical basic subspecialties II, this situation released the research status and problems in development of pediatrics in China. The general projects completion was good, and many projects obtained research achievements, which reflect the leading function of NSFC in pediatric research.

  3. Risk assessment of student performance in the International Foundations of Medicine Clinical Science Examination by the use of statistical modeling.

    Science.gov (United States)

    David, Michael C; Eley, Diann S; Schafer, Jennifer; Davies, Leo

    2016-01-01

    The primary aim of this study was to assess the predictive validity of cumulative grade point average (GPA) for performance in the International Foundations of Medicine (IFOM) Clinical Science Examination (CSE). A secondary aim was to develop a strategy for identifying students at risk of performing poorly in the IFOM CSE as determined by the National Board of Medical Examiners' International Standard of Competence. Final year medical students from an Australian university medical school took the IFOM CSE as a formative assessment. Measures included overall IFOM CSE score as the dependent variable, cumulative GPA as the predictor, and the factors age, gender, year of enrollment, international or domestic status of student, and language spoken at home as covariates. Multivariable linear regression was used to measure predictor and covariate effects. Optimal thresholds of risk assessment were based on receiver-operating characteristic (ROC) curves. Cumulative GPA (nonstandardized regression coefficient [B]: 81.83; 95% confidence interval [CI]: 68.13 to 95.53) and international status (B: -37.40; 95% CI: -57.85 to -16.96) from 427 students were found to be statistically associated with increased IFOM CSE performance. Cumulative GPAs of 5.30 (area under ROC [AROC]: 0.77; 95% CI: 0.72 to 0.82) and 4.90 (AROC: 0.72; 95% CI: 0.66 to 0.78) were identified as being thresholds of significant risk for domestic and international students, respectively. Using cumulative GPA as a predictor of IFOM CSE performance and accommodating for differences in international status, it is possible to identify students who are at risk of failing to satisfy the National Board of Medical Examiners' International Standard of Competence.

  4. ABIM Foundation

    Science.gov (United States)

    ... In conjunction with the… mailchi.mp View on Facebook ABIM Foundation shared Business Radio Powered by The Wharton School's post. 2 days ago View on Facebook ABIM Foundation 2 days ago The Android version ...

  5. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  6. Midwest Science Festival: Exploring Students' and Parents' Participation in and Attitudes Toward Science.

    Science.gov (United States)

    Dippel, Elizabeth A; Mechels, Keegan B; Griese, Emily R; Laufmann, Rachel N; Weimer, Jill M

    2016-08-01

    Compared to national numbers, South Dakota has a higher proportion of students interested in science, technology, engineering, and mathematics (STEM) fields. Interest in science can be influenced by exposure to science through formal and informal learning. Informal science activities (including exposures and participation) have been found to elicit higher levels of interest in science, likely impacting one's attitude towards science overall. The current study goal is to better understand the levels and relationships of attitude, exposure, and participation in science that were present among students and parents attending a free science festival. The project collected survey data from 65 students and 79 parents attending a science festival ranging from age 6 to 65. Informal science participation is significantly related to science attitudes in students and informal science exposure is not. No relationship was found for parents between science attitudes and participation. Students who indicated high levels of informal science participation (i.e., reading science-themed books) were positively related to their attitudes regarding science. However, informal science exposures, such as attending the zoo or independently visiting a science lab, was not significantly associated with positive attitudes towards science.

  7. Progress in 11th Five Year and the geneal idea for 12th Five Year of uranium exploration and geological science and technology

    International Nuclear Information System (INIS)

    Zhang Jindai; Jian Xiaofei; Li Youliang; Du Jiannong; Guo Qinggen; Zhang Qiuying

    2011-01-01

    Since the 11th-Five Year, uranium exploration in China has retrieved obviously and some new resources have been identified. More detailed uranium exploration has been carried out in about 1 000 000 km 2 , exploration in large uranium resource bases, old orefields and focusing prospect areas has achieved important progress, several middle-large and extral-large deposits have been discovered, and one super-large deposit was submitted for the first time in China. In the science and technology of uranium exploration, the capability and platform of research has been reinforced, a number of key projects have been carried out such as national uranium potential evaluation, study of 'four types of uranium deposit', research for the enlargement of uranium resource bases, research of application foundation of uranium geology, research on exploratin techniques and method and technological standard. All these projects have obtained fruitful result and significantly raised the creative level in uranium science and technology. In the coming 12th Five Year, uranium exploration will follow the strategy of 'foundation research first with focus on resource base,systematical exploration and integral evaluation second' under the guideline of 'domestic foothold and oversea development' and set up large uranium resource bases, four major geological preosecting programs will be commence in the exploration for large uranium resource base, national uranium survey, regional evaluation of potential uranium resource and science and technology innovation of uranium geology, Ideas of 'Great uranium exploration system' should be set up to widely unite the localized prospecting teams and cooperate with the geologic research organization such as domestic and foreign university and college so as to make corespondent contribution to raise the supporting capability of uranium resources in China. (authors)

  8. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    Science.gov (United States)

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  9. Comments from the Science Education Directorate, National Science Foundation: CAUSE, ISEP, and LOCI: Three-Program Approach to College-Level Science Improvement. II. Patterns and Problems.

    Science.gov (United States)

    Erickson, Judith B.; And Others

    1980-01-01

    Discusses patterns resulting from the monitor of science education proposals which may reflect problems or differing perceptions of NSF. Discusses these areas: proposal submissions from two-year institutions and social and behavioral scientists, trends in project content at the academic-industrial interface and in computer technology, and…

  10. Eighth-grade science teachers use of instructional time: Examining questions from the Third International Mathematics and Science Study (TIMSS) and comparing TIMSS and National Science Foundation questionnaires

    Science.gov (United States)

    Davidson, Anne Burgess

    Did the Third International Mathematics and Science Study (TIMSS) ask science teachers the right questions about their use of instructional time? Part I of this 2-part study used the TIMSS database to answer the question: Do 8th grade science teachers in the U.S., Czech Republic, Hungary, Japan, and Korea differ significantly in their perceived use of instructional time? Using the instructional activities in the TIMSS teacher question "How did the lesson proceed?" the teacher-reported times were analyzed using a repeated measures multivariate analysis. Significant differences were found between teacher-reported times in the U.S. and the other 4 TIMSS countries, whose 8th grade students outperformed U.S. students on TIMSS achievement tests. Post-hoc analysis indicated that TIMSS U.S. 8th grade science teachers report spending more time on homework in class, on group activities, and on lab activities, but less time on topic development, than TIMSS teachers from some or all of the other countries. Part II of this study further examined the question "How did the lesson proceed?" by videotaping 6 classes of 8th grade science in Alabama and Virginia and comparing observer coding of the video to the teachers' recalled descriptions of the same class. The difference between observer and teacher responses using TIMSS categories was not significant; however, 43% of the total variance was explained by whether the teacher or the observer reported the times for the instructional activities. The teachers also responded to questions from the NSF Local Systemic Change Through Teacher Enhancement K--8 Teacher Questionnaire to describe the same class. The difference found between the teacher and the observer coding was not significant, but the amount of variance explained by the data source (observer or teacher) dropped to 33% when using NSF student activity categories and to 26% when using NSF teacher activity categories. The conclusion of this study was that questionnaires to

  11. Exploring Emotions, Aesthetics and Wellbeing in Science Education Research

    DEFF Research Database (Denmark)

    they contribute to our understanding of science education. In this collection, the authors provide accounts of the underlying ontological, epistemological, methodological perspectives and theoretical assumptions that inform their work and that of others. Each chapter provides a perspective on the study of emotion...

  12. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    Science.gov (United States)

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  13. Exploring Theoretical Computer Science Using Paper Toys (for kids)

    DEFF Research Database (Denmark)

    Valente, Andrea

    2004-01-01

    In this paper we propose the structure of an exploratory course in theoretical computer science intended for a broad range of students (and especially kids). The course is built on computational cards, a simple paper toy, in which playing cards are computational elements; computing machines can...

  14. College of Science Magazine explores genetic medicine, cancer therapies

    OpenAIRE

    Doss, Catherine

    2010-01-01

    The newest issue of the College of Science Magazine features a host of scientific research projects underway at Virginia Tech. New avenues in genetic medicine, environmental links to breast cancer, and resistance training for diabetics are just a few of the topics.

  15. Science Fiction in Social Education: Exploring Consequences of Technology

    Science.gov (United States)

    Mason, Lance E.

    2013-01-01

    An NCSS Technology Position Statement and Guidelines, published in 2006 (an updated version is published in this issue of "Social Education"), affirms that social studies students should critically examine relations between technology and society. This article describes how teachers can use science fiction to introduce critical questions…

  16. Measuring the Value of AI in Space Science and Exploration

    Science.gov (United States)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  17. Exploring the Intersections of Science and History Learning

    Science.gov (United States)

    Hughes, Catherine; Cosbey, Allison

    2016-01-01

    How can history museums incorporate Science, Technology, Engineering and Math (STEM) activities while preserving their missions and identities? How do interdisciplinary experiences lead to learning? A cross-institutional exhibit development and evaluation team wrestled with these ideas as they developed "Create.Connect," an National…

  18. Exploring Pulses through Math, Science, and Nutrition Activities

    Science.gov (United States)

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  19. Cyber warfare building the scientific foundation

    CERN Document Server

    Jajodia, Sushil; Subrahmanian, VS; Swarup, Vipin; Wang, Cliff

    2015-01-01

    This book features a wide spectrum of the latest computer science research relating to cyber warfare, including military and policy dimensions. It is the first book to explore the scientific foundation of cyber warfare and features research from the areas of artificial intelligence, game theory, programming languages, graph theory and more. The high-level approach and emphasis on scientific rigor provides insights on ways to improve cyber warfare defense worldwide. Cyber Warfare: Building the Scientific Foundation targets researchers and practitioners working in cyber security, especially gove

  20. Exploring Instructional Strategies and Learning Theoretical Foundations of eHealth and mHealth Education Interventions.

    Science.gov (United States)

    Tamim, Suha R; Grant, Michael M

    2016-05-19

    This qualitative study aimed at exploring how health professionals use theories and models from the field of education to create ehealth and mhealth education interventions in an effort to provide insights for future research and practice on the development and implementation of health promotion initiatives. A purposeful sample of 12 participants was selected, using criterion and snowballing sampling strategies. Data were collected and analyzed from semistructured interviews, planning materials, and artifacts. The findings revealed that none of the participants used a specific learning theory or an instructional model in their interventions. However, based on participants' description, three themes emerged: (1) connections to behaviorist approaches to learning, (2) connections to cognitivist approaches to learning, and (3) connections to constructivist approaches to learning. Suggested implications for practice are (1) the design of a guidebook on the interplay of learning theories, instructional models, and health education and (2) the establishment of communities of practice. Further research can (1) investigate how learning theories and models intertwine with health behavior theories and models, (2) evaluate how the different instructional strategies presented in this study affect learning outcomes and health behavior change processes, and (3) investigate factors behind the instructional strategies choices made by health professionals. © 2016 Society for Public Health Education.

  1. Risk assessment of student performance in the International Foundations of Medicine Clinical Science Examination by the use of statistical modeling

    Directory of Open Access Journals (Sweden)

    David MC

    2016-12-01

    Full Text Available Michael C David,1 Diann S Eley,2 Jennifer Schafer,2 Leo Davies,3 1School of Public Health, 2School of Medicine, The University of Queensland, Herston, QLD, 3Sydney Medical School, The University of Sydney, NSW, Australia Purpose: The primary aim of this study was to assess the predictive validity of cumulative grade point average (GPA for performance in the International Foundations of Medicine (IFOM Clinical Science Examination (CSE. A secondary aim was to develop a strategy for identifying students at risk of performing poorly in the IFOM CSE as determined by the National Board of Medical Examiners’ International Standard of Competence. Methods: Final year medical students from an Australian university medical school took the IFOM CSE as a formative assessment. Measures included overall IFOM CSE score as the dependent variable, cumulative GPA as the predictor, and the factors age, gender, year of enrollment, international or domestic status of student, and language spoken at home as covariates. Multivariable linear regression was used to measure predictor and covariate effects. Optimal thresholds of risk assessment were based on receiver-operating characteristic (ROC curves. Results: Cumulative GPA (nonstandardized regression coefficient [B]: 81.83; 95% confidence interval [CI]: 68.13 to 95.53 and international status (B: –37.40; 95% CI: –57.85 to –16.96 from 427 students were found to be statistically associated with increased IFOM CSE ­performance. Cumulative GPAs of 5.30 (area under ROC [AROC]: 0.77; 95% CI: 0.72 to 0.82 and 4.90 (AROC: 0.72; 95% CI: 0.66 to 0.78 were identified as being thresholds of significant risk for domestic and international students, respectively. Conclusion: Using cumulative GPA as a predictor of IFOM CSE performance and accommodating for differences in international status, it is possible to identify students who are at risk of failing to satisfy the National Board of Medical Examiners’ International

  2. Information Foraging and Change Detection for Automated Science Exploration

    Science.gov (United States)

    Furlong, P. Michael; Dille, Michael

    2016-01-01

    This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective is to free remote scientists from possibly-infeasible extensive preliminary site investigation prior to sending robotic agents. We simulate a common exploration task for an autonomous robot sampling the environment at various locations and compare performance against simpler control strategies. An extension is proposed and evaluated that further permits operation in the presence of environmental variability in which the robot encounters a change in the distribution underlying sampling targets. Experimental results indicate a strong improvement in performance across varied parameter choices for the scenario.

  3. Oral traditions: a contextual framework for complex science concepts—laying the foundation for a paradigm of promise in rural science education

    Science.gov (United States)

    Avery, Leanne M.; Hains, Bryan J.

    2017-03-01

    The overarching goal of this paper is to bring a diverse educational context—rural sayings and oral traditions situated in ecological habitats—to light and emphasize that they need to be taken into consideration regarding twenty-first century science education. The rural sayings or tenets presented here are also considered alternative ways of learning and knowing that rural people (elders and children) acquire outside of school in rural places of home and habitat. Throughout this paper we explore the complex nature of rural sayings or tenets that have been shared by community elders and examine their historic scientific roots. In so doing, we uncover a wealth of information regarding the diverse rural sociocultural and ecological connections and the situated macro and micro-contexts from which these tenets arise. We argue for a preservation and educational revitalization of these tenets for current and future generations. We show how this knowledge both augments and differs from traditional western science and science curricula by illuminating the ways in which oral traditions are embedded in place, people, memory and culture. We close by presenting an alternative paradigm for science education that incorporates pluralism as a means to enrich current place-based pedagogies and practices. We suggest that in order to tackle the complex problems in this new age of the Anthropocene, revitalizing elders' wisdom as well as valuing rural children's diverse knowledge and the inherent connectivity to their habitats needs be cultivated and not expunged by the current trends that standardize learning. As stated in the call for this special issue, "rurality has a real positionality" and much can be learned from individual and unique rural contexts.

  4. Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration

    Science.gov (United States)

    Clark, P. E.

    2010-07-01

    The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.

  5. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  6. Exploring the positional identities of high school science teachers

    Science.gov (United States)

    Blackwell, Edith Lavonne

    The identity of the teacher has been determined to influence classroom practices. Positional identity is defined as one's perception of self relative to others. This qualitative research study investigates the positional identity of five high school science teachers of different ethnicities and how their positional identities influence their classroom practices. Positional identity is thought to be determined by one's perception of how one's race, ethnicity, gender, age, religion and socioeconomic status position one relative to others. The methods of data collection included classroom observations, structured and semi-structured interviews, book club meetings, teacher journals, and researcher journals, demographic and online questionnaires. The teachers that overcame stereotypes based on race/ethnicity, gender and socioeconomic status felt empowered in their positional identities and were able to empower their students. The data also identified those teachers that struggle the most with finding their power within their positional identities were the immigrants that were not able to merge their personal identities within the pre-determined social positions they encountered in this society. The empowerment or powerlessness of the science teachers' positional identities impacted instruction and practices within the science classroom.

  7. WindBots: persistent in-situ science explorers for gas giants

    Data.gov (United States)

    National Aeronautics and Space Administration — We envision persistent exploration of the gas giants with robots powered by locally harvested energy, performing in-situ observational atmospheric science. Riding...

  8. The Athena Science Payload for the 2003 Mars Exploration Rovers

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2001-01-01

    The Athena Mars rover payload is a suite of scientific instruments and tools for geologic exploration of the martian surface. It is designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials, including soils, rock surfaces, and rock interiors. (3) Determine the fine-scale textural properties of these materials. Two identical copies of the Athena payload will be flown in 2003 on the two Mars Exploration Rovers. The payload is at a high state of maturity, and first copies of several of the instruments have already been built and tested for flight.

  9. Exploration and Exploitation of Victorian Science in Darwin's Reading Notebooks

    OpenAIRE

    Murdock, Jaimie; Allen, Colin; DeDeo, Simon

    2015-01-01

    Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized r...

  10. Implementing a Science-driven Mars Exploration Program

    Science.gov (United States)

    Garvin, J. B.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) was developed on the basis of the goals, objectives, investigations, and prioritizations established by the Mars Exploration Payload Analysis Group (as summarized previously by Greeley et al., 2001). The underlying scientific strategy is linked to common threads which include the many roles water has played on and within Mars as a "system". The implementation strategy that has been adopted relies heavily on an ever-sharpening program of reconnaissance, beginning with the legacy of the Mars Global Surveyor, continuing with the multispectral and compositional observations of the Mars Odyssey orbiter, and extending to a first step in surface-based reconnaissance with the 2003 Mars Exploration Rovers. The results of MGS and Odyssey will serve to focus the trade space of localities where the record, for example, of persistent surface water may have been preserved in a mineralogical sense. The 2005 Mars Reconnaissance Orbiter will further downselect the subset of sites on Mars where evidence of depositional patterns and aqueous mineralogies (i.e., diagenetic minerals) are most striking at scales as fine as tens to hundreds of meters. Reconnaissance will move to the surface and shallow subsurface in 2007 with the Mars "Smart Lander" (MSL), at which time an extensive array of mobile scientific exploration tools will be used to examine a locality at 10km traverse scales, ultimately asking scientific questions which can be classed as paleobiological (i.e., life inference). Further orbital reconnaissance may be undertaken in 2009, perhaps involving targeted multi-wavelength SAR imaging, in anticipation of a precisely targeted Mars Sample Return mission as early as 2011. This sequence of core program MEP missions will be amplified by the selection of PI-led SCOUT missions, starting in 2007, and continuing every other Mars launch opportunity.

  11. A hyperspectral image data exploration workbench for environmental science applications

    International Nuclear Information System (INIS)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-01-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects

  12. A hyperspectral image data exploration workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-08-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects.

  13. Exploring the consequences of combining medical students with and without a background in biomedical sciences.

    Science.gov (United States)

    Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa

    2014-07-01

    Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all

  14. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  15. Exploring Elementary Teachers' Perceptions about the Developmental Appropriateness and Importance of Nature of Science Aspects

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan

    2016-01-01

    This study explored how four elementary teachers assessed the developmental appropriateness and importance of nine nature of science (NOS) aspects after participating in a yearlong professional development program. A multiple-embedded case study design was employed. The primary data sources included (a) Views of Nature of Science Elementary School…

  16. Stem Cells and Society: An Undergraduate Course Exploring the Intersections among Science, Religion, and Law

    Science.gov (United States)

    Pierret, Chris; Friedrichsen, Patricia

    2009-01-01

    The intersection of science and our society has led to legal and ethical issues in which we all play a part. To support development of scientific literacy, college science courses need to engage students in difficult dialogues around ethical issues. We describe a new course, Stem Cells and Society, in which students explore the basic biology of…

  17. Uncovering Students' Environmental Identity: An Exploration of Activities in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica

    2014-01-01

    This study at a public high school in the Northeastern United States explores how students' environmental identities are affected by various activities in an Environmental Science course. Data was collected as part of an ethnographic study involving an Environmental Science teacher and her tenth-twelfth grade students. The results focus on…

  18. The Historical Development of Vaccine Technology: Exploring the Relationship between Science and Technology

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2017-01-01

    This paper examines the feasibility of using historical case studies to contextualise the learning of the nature of science and technology in a biology lesson. Through exploring the historical development of vaccine technology, students were expected to understand the complexity of the relationships between technology and science beyond the…

  19. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  20. Environmental Science and Research Foundation annual technical report to DOE-ID, January , 1995--December 31, 1995

    International Nuclear Information System (INIS)

    1996-06-01

    The foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain and provide environmental education and support services related to INEL natural resource issues. Also, the foundation, with its university affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including waste management, environmental restoration, spent nuclear fuels, and land management issues. Major accomplishments during CY1995 can be divided into five categories: environmental surveillance program, environmental education, environmental services and support, ecological risk assessment, and research benefitting the DOE-ID mission

  1. Environmental Science and Research Foundation annual technical report to DOE-ID, January , 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain and provide environmental education and support services related to INEL natural resource issues. Also, the foundation, with its university affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including waste management, environmental restoration, spent nuclear fuels, and land management issues. Major accomplishments during CY1995 can be divided into five categories: environmental surveillance program, environmental education, environmental services and support, ecological risk assessment, and research benefitting the DOE-ID mission.

  2. Exploring the universe through Discovery Science on NIF

    Science.gov (United States)

    Remington, Bruce

    2017-10-01

    New regimes of science are being experimentally studied at high energy density facilities around the world, spanning drive energies from microjoules to megajoules, and time scales from femtoseconds to microseconds. The ability to shock and ramp compress samples to very high pressures and densities allows new states of matter relevant to planetary and stellar interiors to be studied. Shock driven hydrodynamic instabilities evolving into turbulent flows relevant to the dynamics of exploding stars (such as supernovae), accreting compact objects (such as white dwarfs, neutron stars, and black holes), and planetary formation dynamics (relevant to the exoplanets) are being probed. The dynamics of magnetized plasmas relevant to astrophysics, both in collisional and collisionless systems, are starting to be studied. High temperature, high velocity interacting flows are being probed for evidence of astrophysical collisionless shock formation, the turbulent magnetic dynamo effect, magnetic reconnection, and particle acceleration. And new results from thermonuclear reactions in hot dense plasmas relevant to stellar and big bang nucleosynthesis are starting to emerge. A selection of examples of frontier research through NIF Discovery Science in the coming decade will be presented. This work was performed under the auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  3. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    Science.gov (United States)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  4. Exploring Marine Science through the University of Delaware's TIDE camp

    Science.gov (United States)

    Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.

    2012-12-01

    For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named TIDE (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former TIDE participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 Tide Camp - Salt marsh in southern Delaware 2012 Tide Camp - Field trip on a small boat

  5. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  6. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    Science.gov (United States)

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  7. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  8. HSC Foundation

    Science.gov (United States)

    ... in disability information or services and that add value to our existing programs. The Foundation also works to bring additional support to initiatives by serving as funding partners on projects that have local impact and national relevance. Supporting a Continuum of Care The HSC Foundation ...

  9. Exploration and exploitation of Victorian science in Darwin's reading notebooks.

    Science.gov (United States)

    Murdock, Jaimie; Allen, Colin; DeDeo, Simon

    2017-02-01

    Search in an environment with an uncertain distribution of resources involves a trade-off between exploitation of past discoveries and further exploration. This extends to information foraging, where a knowledge-seeker shifts between reading in depth and studying new domains. To study this decision-making process, we examine the reading choices made by one of the most celebrated scientists of the modern era: Charles Darwin. From the full-text of books listed in his chronologically-organized reading journals, we generate topic models to quantify his local (text-to-text) and global (text-to-past) reading decisions using Kullback-Liebler Divergence, a cognitively-validated, information-theoretic measure of relative surprise. Rather than a pattern of surprise-minimization, corresponding to a pure exploitation strategy, Darwin's behavior shifts from early exploitation to later exploration, seeking unusually high levels of cognitive surprise relative to previous eras. These shifts, detected by an unsupervised Bayesian model, correlate with major intellectual epochs of his career as identified both by qualitative scholarship and Darwin's own self-commentary. Our methods allow us to compare his consumption of texts with their publication order. We find Darwin's consumption more exploratory than the culture's production, suggesting that underneath gradual societal changes are the explorations of individual synthesis and discovery. Our quantitative methods advance the study of cognitive search through a framework for testing interactions between individual and collective behavior and between short- and long-term consumption choices. This novel application of topic modeling to characterize individual reading complements widespread studies of collective scientific behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Explorations in computing an introduction to computer science

    CERN Document Server

    Conery, John S

    2010-01-01

    Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin

  11. JESTR: Jupiter Exploration Science in the Time Regime

    Science.gov (United States)

    Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.

    2012-01-01

    Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.

  12. Representing the nature of science in a science textbook: Exploring author-editor-publisher interactions

    Science.gov (United States)

    Digiuseppe, Maurizio

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science---a process in which learning materials like science textbooks play a significant role. This dissertation reports on a case study of the development of representations of the nature of science in one unit of a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of the nature of science; squared these understandings with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing; and developed and incorporated into the textbook representations of the nature of science they believed were the most suitable. Analyses of the data in this study indicate that a number of factors significantly influenced the development of representations of the nature of science, including representational accuracy (the degree to which suggested representations of the nature of science conformed to what the developers believed were contemporary understandings of the nature of science), representational consistency (the degree to which similar representations of the nature of science in different parts of the textbook conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level suitability of the suggested nature of science representations), representational alignment (the degree to which suggested representations of the nature of science addressed the requirements of mandated curricula), representational marketability (the degree to which textbook developers believed suggested representations of the nature of science would affect sales of the textbook in the marketplace), and a number of "Workplace Resources" factors such as the availability of time, relevant expertise

  13. Explore: An Action to Bring Science and Technology Closer to Secondary School

    Science.gov (United States)

    Torras-Melenchon, Nuria; Grau, M. Dolors; Font-Soldevila, Josep; Freixas, Josep

    2015-01-01

    This paper presents the experience of an initiative, the EXPLORE courses, designed to bring science and technology closer to secondary school. The EXPLORE courses, organised by "EXPLORATORI: Natural Resources" project, are particularly addressed to secondary school teachers and are conducted at Catalonia (North East of Spain). The main…

  14. Pedagogical Content Knowledge and Educational Cases in Computer Science: an Exploration

    NARCIS (Netherlands)

    Koppelman, Hermannus

    2008-01-01

    The concept of pedagogical content knowledge has been explored in the context of several disciplines, such as mathematics, medicine and chemistry. In this paper the concept is explored and applied to the subject matter of computer science, in particular to the sub domain of building UML class

  15. Exploring new frontiers of electronic publishing in biomedical science.

    Science.gov (United States)

    Ng, K H

    2009-03-01

    Publishing is a hallmark of good scientific research. The aim of publishing is to disseminate new research knowledge and findings as widely as possible in a timely and efficient manner. Scientific publishing has evolved over the years with the advent of new technologies and demands. This paper presents a brief discussion on the history and status of electronic publishing. The Open Access Initiative was created with the aim of overcoming various limitations faced by traditional publishing access models. Innovations have opened up possibilities for electronic publishing to increase the accessibility, visibility, interactivity and usability of research. A glimpse of the future publishing landscape has revealed that scientific communication and research will not remain the same. The internet and advances in information technology will have an impact on the research landscape, scholarly publishing, research policy and funding, dissemination of knowledge, and the progress of science as a whole.

  16. Learning Science Process Through Data Exploration and Writing

    Science.gov (United States)

    Prothero, W. A.

    2007-12-01

    One of the most effective ways of teaching science process is to have students take part in the same activities that practicing scientists engage in. These activities include studying the current research in the field, discussing ideas with colleagues, formulating a research problem, making a proposal defining the problem and plan of attack, presenting and writing about the results of the study, and critically reviewing the work of others. An inquiry curriculum can use these activities to guide the scaffolding of assignments and learning experiences that help students learn science process. At UCSB, students in a large general education oceanography class use real Earth data to study plate tectonics, the Indian Monsoon, climate change, and the health of the world fisheries. The end product for each subject has been a science paper based on Earth data. Over a period of approximately 15 years, the scaffolding of activities to prepare each student for the written assignments has been modified and improved, in response to student feedback and their success with the assignments. I have found that the following resources and sequence of activities help the oceanography students write good science papers. 1. Lecture: motivation and the opportunity for feedback and questions. 2. Textbook: background information. It is also possible to get the information from the internet, but unless the scope of reading is strictly defined, students don't know when to stop reading and become unhappy. 3. Online assignments: automatically graded assignments that force the student to keep up with reading. 4. Questions of the day: in-class handouts, with diagrams that the students either complete, or answer questions about. They are handed in and tallied, but not graded. They also inform the instructor of misconceptions. 5. Thought questions: student answers are posted on a threaded discussion list, and are due prior to lecture. The answers provide instructor feedback and guide the lecture

  17. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  18. Exploring uncertainty in the Earth Sciences - the potential field perspective

    Science.gov (United States)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  19. Bryological exploration: field-trip based learning to develop competencies of science teacher candidate

    Science.gov (United States)

    Wisanti; Astriani, D.

    2018-04-01

    The purpose of this study was analyze the competencies of science teacher candidate after the bryological exploration. The intended competence of science teacher candidate was the ability to apply the concept and science ability to explore plant diversity that could be found around the environment.This field trip was conducted by exploring liverworts, hornworts, and mosses as well. This descriptive research was conducted during March until April 2017 at Universitas Negeri Surabaya (UNESA) and Sumber Brantas Arboretum in Malang, as the location of exploration. The subjects of this study were 76 candidate of teachers from science educations department, which is divided into three classes. The competences observed on this study were describing, identifying, collecting specimens, furthermore. The research instruments were observation sheets, product assessment sheets, and response questionnaire. The data were analyzed descriptive-quantitatively, in percentage and then categorized. The results of this study indicated that: the describing skill was categorized as ‘good’ identifying skill and collecting bryophytes was categorized as ‘very good’ and communicating skills was categorized ‘good’. In addition, the teacher candidates gave a very good response to field-trip-based learning. It can be concluded that the bryological exploration can develop the competences of science teacher candidates of Science Education Department of UNESA.

  20. Exploring the story, science, and adventure of small worlds

    Science.gov (United States)

    Swann, J. L.; Elkins-Tanton, L. T.; Anbar, A. D.; Klug Boonstra, S.; Tamer, A. J.; Mead, C.; Hunsley, D.

    2017-12-01

    Small worlds are a strategic focus at NASA, reflected by missions such as Osiris Rex and Psyche among others. The Infiniscope project, with funding from NASA SMD, is building on this scientific and public interest to teach formal and informal learners about asteroids and other small worlds. The digital learning experience, "Where are the small worlds?", and future Infiniscope experiences, incorporate a design theory that we describe as "education through exploration" (ETX) which is provided through an adaptive e-learning platform. This design ensures that learners actively engage in exploration and discovery, while receiving targeted feedback to push through challenges. To ensure that this and future experiences reach and meet the needs of as many educators as possible, Infiniscope includes a digital teaching network to host the experiences and support the reuse and adaptation of digital resources in new lessons. "Where are the small worlds?" puts learners in an interactive simulation of the solar system and provides a mission structure in which they hunt for "astrocaches" on near earth objects, main belt asteroids, and Kuiper-belt objects. These activities allow the learner to discover the locations of the small worlds in the solar system and develop an intuitive understanding for the relative motion of objects at various distances from the Sun. The experience is NGSS-aligned and accompanied by a lesson plan for integration into the classroom. In testing with more than 500 middle-school students, 83% of participants said they wanted to do more experiences like "Where are the small worlds?" They also found the experience both "fun" and "interesting" while being moderately difficult. "Where are the small worlds?" is one of many visualizations and lessons that is available within the Infiniscope teaching network. The network already has hundreds of members and is expected to grow in both numbers and engagement over time. Currently, educators can search and use pre

  1. 10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

  2. Cooperation Agreement between the European Organization for Nuclear Research (CERN) and The Qatar Foundation for Education, Science and Community Development concerning Scientific and Technical Co-operation in High Energy Physics

    CERN Document Server

    2016-01-01

    Cooperation Agreement between the European Organization for Nuclear Research (CERN) and The Qatar Foundation for Education, Science and Community Development concerning Scientific and Technical Co-operation in High Energy Physics

  3. The Planetary Science Archive (PSA): Exploration and discovery of scientific datasets from ESA's planetary missions

    Science.gov (United States)

    Vallat, C.; Besse, S.; Barbarisi, I.; Arviset, C.; De Marchi, G.; Barthelemy, M.; Coia, D.; Costa, M.; Docasal, R.; Fraga, D.; Heather, D. J.; Lim, T.; Macfarlane, A.; Martinez, S.; Rios, C.; Vallejo, F.; Said, J.

    2017-09-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA has started to implement a number of significant improvements, mostly driven by the evolution of the PDS standards, and the growing need for better interfaces and advanced applications to support science exploitation.

  4. Foundation Structure

    DEFF Research Database (Denmark)

    2009-01-01

    Method of installing a bucket foundation structure comprising one, two, three or more skirts, into soils in a controlled manner. The method comprises two stages: a first stage being a design phase and the second stage being an installation phase. In the first stage, design parameters are determined...... relating to the loads on the finished foundation structure; soil profile on the location; allowable installation tolerances, which parameters are used to estimate the minimum diameter and length of the skirts of the bucket. The bucket size is used to simulate load situations and penetration into foundation...

  5. EX1205L1: Exploration, Blake Plateau on NOAA Ship Okeanos Explorer between 20120705 and 20120724

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The EX-12-05 Leg 1 cruise represents a partnership between NOAA Okeanos Explorer Program, National Science Foundation (NSF) and Woods Hole Oceanographic Institution...

  6. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  7. Vasculitis Foundation

    Science.gov (United States)

    ... Our Board Our Team Anniversary Vasculitis Foundation Newsletters Annual Reports Press Page Literature Order Form Join Contact Us Dream Big Donate Donate Support the VF Through the Amazon Smile Program United Way Giving Ways to Give ...

  8. Marfan Foundation

    Science.gov (United States)

    ... The Marfan Foundation Marfan & Related Disorders What is Marfan Syndrome? What are Related Disorders? What are the Signs? ... Click to see what's happening around the country! Marfan syndrome is a life-threatening genetic disorder, and an ...

  9. CARES Foundation

    Science.gov (United States)

    ... Foundation Video Get Involved EMS and Newborn Screening campaigns Clincal trials Fundraisers Support groups Connect and promote with Social Media: Facebook , Twitter , Instagram and LinkedIn News & Notes from ...

  10. Creative Cognition in Secondary Science: An Exploration of Divergent Thinking in Science among Adolescents

    Science.gov (United States)

    Antink-Meyer, Allison; Lederman, Norman G.

    2015-01-01

    The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM)…

  11. Exploring science teachers' perceptions of experimentation: implications for restructuring school practical work

    Science.gov (United States)

    Wei, Bing; Li, Xiaoxiao

    2017-09-01

    It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for the purpose of restructuring school practical work in view of science practice. Qualitative interviews were conducted with 87 science teachers at the secondary school level. In the interviews, science teachers were asked to make a comparison between students' experiments and scientific experiments. Eight dimensions of experimentation were generated from the qualitative data analysis, and the distributions of these eight dimensions between the two types of experiments were compared and analysed. An ideal model of practical work was suggested for restructuring practical work at the secondary school level, and some issues related to the effective enactment of practical work were discussed.

  12. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  13. Antithetic Foundations of Economics

    OpenAIRE

    Marin DINU

    2011-01-01

    This paper aims at decrypting the manner in which the foundations of Economics as a science and the meanings of the relevant explanatory formulas are being shaped. My analytical endeavor focuses on understanding the peculiarities of what is referred to as the object of study of the science known as Economics, an academic synthesis of concept-related breakthroughs regarding economicity. The explicit purpose of this analysis is to identify perennial benchmarks in economic c...

  14. Engaging Students, Teachers, and the Public with NASA Astromaterials Research and Exploration Science (ARES) Assets

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Kascak, A.; Luckey, M. K.; Mcinturff, B.; Runco, S.; Willis, K. J.

    2016-01-01

    Engaging students, teachers, and the public with NASA Astromaterials Research and Exploration Science (ARES) assets, including Science, Technology, Engineering and Mathematics (STEM) experts and NASA curation astromaterial samples, provides an extraordinary opportunity to connect citizens with authentic aspects unique to our nation's space program. Effective engagement can occur through both virtual connections such as webcasts and in-person connections at educator workshops and public outreach events. Access to NASA ARES assets combined with adaptable resources and techniques that engage and promote scientific thinking helps translate the science and research being facilitated through NASA exploration, elicits a curiosity that aims to carry over even after a given engagement, and prepares our next generation of scientific explorers.

  15. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  16. Building confidence: an exploration of nurses undertaking a postgraduate biological science course.

    Science.gov (United States)

    Van Wissen, Kim; McBride-Henry, Karen

    2010-01-01

    This study aimed to explore the impact of studying biological science at a postgraduate level and how this impacted on nursing practice. The term biological sciences in this research encompasses elements of physiology, genetics, biochemistry and pathophysiology. A qualitative research study was designed, that involved the dissemination of a pre- and post-course semi-structured questionnaire for a biological science course, as part of a Master of Nursing programme at a New Zealand University, thus exploring the impact of undertaking a postgraduate biological sciences course. The responses were analysed into themes, based on interpretive concepts. The primary themes revealed improvement in confidence as: confidence in communication, confidence in linking nursing theoretical knowledge to practice and confidence in clinical nursing knowledge. This study highlights the need to privilege clinically-derived nursing knowledge, and that confidence in this nursing knowledge and clinical practice can be instilled through employing the model of theory-guided practice.

  17. Exploring the effects of developing collaboration in a primary science teacher community

    DEFF Research Database (Denmark)

    Sillasen, Martin Krabbe

    2010-01-01

    This paper presents findings from a qualitative study to explore factors that may facilitate sustainable changes of collaboration in a primary science teacher community in one school. The context for this study is a development project aimed at improving science teaching by changing teacher......’s collective work in schools and developing network between schools. The objective is to improve the collaboration within primary science teacher communities on sharing best practice and developing new ways of teaching. This study represents an in-depth approach to explore possibilities and constraints for how...... a development project can facilitate sustainable change in primary science teachers’ collaboration. The purpose of the research project introduced here is to examine closer, why many development projects fail to produce sustainable results. The framework of McLaughlin and Talbert (2006) on building teacher...

  18. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  19. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    Science.gov (United States)

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  20. [Continuous funding of National Natural Science Foundation of China has boosted the development of the discipline of ophthalmology over the past 25 years].

    Science.gov (United States)

    Jia, Ren-bing; Fan, Xian-qun; Xu, Yan-ying; Dong, Er-dan

    2012-02-01

    To analyze the role of National Natural Science Foundation of China (NSFC) on the development of the discipline of Ophthalmology from 1986 to 2010. Data on the total number of projects and funding of NSFC allocated to Ophthalmology, as well as papers published, awards, personnel training, subject construction were collected, and the role of NSFC on other sources of funding was evaluated. From 1986 to 2010, NSFC supported a total of 593 scientific research projects of Ophthalmology, funding a total amount of 152.44 million Yuan, among which were 371 free application projects, 156 Young Scientist Funds, 9 Key Programs, 5 National Science Fund for Distinguished Young Scholars, 3 Major international (regional) joint research programs, 1 Science Fund for Creative Research Group and 48 other projects. Over the past 25 years, the number of NSFC projects received by Ophthalmology has been an overall upward trend in the share in the Department of Life (Health) Sciences. Take the projects (186 of 292, 63.7%) as examples completed between 2002 and 2010, a total 262 papers were published in Science Citation Index (SCI) included journals and 442 papers were published in Chinese journals. Meanwhile, 8 Second prizes of National Science and Technology Progress Award and 1 State Technological Invention Award were received. As of 2010, the training of a total of more than 40 postdoctoral, more than 400 doctoral students and more than 600 graduate students have been completed. 5 national key disciplines and 1 national key laboratory have been built. Moreover, 2 "973" programs from Ministry of Science and Technology and 1 project of special fund in the public interest from Ministry of Public Health were obtained. 2 scholars were among the list of Yangtze Fund Scholars granted by Ministry of Education. Over the past 25 years, a full range of continuous funding from NSFC has led to fruitful results and a strong impetus to the progress of discipline of Ophthalmology.

  1. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  2. Improving Health with Science: Exploring Community-Driven Science Education in Kenya

    Science.gov (United States)

    Leak, Anne Emerson

    This study examines the role of place-based science education in fostering student-driven health interventions. While literature shows the need to connect science with students' place and community, there is limited understanding of strategies for doing so. Making such connections is important for underrepresented students who tend to perceive learning science in school as disconnected to their experiences out of school (Aikenhead, Calabrese-Barton, & Chinn, 2006). To better understand how students can learn to connect place and community with science and engineering practices in a village in Kenya, I worked with community leaders, teachers, and students to develop and study an education program (a school-based health club) with the goal of improving knowledge of health and sanitation in a Kenyan village. While students selected the health topics and problems they hoped to address through participating in the club, the topics were taught with a focus on providing opportunities for students to learn the practices of science and health applications of these practices. Students learned chemistry, physics, environmental science, and engineering to help them address the health problems they had identified in their community. Surveys, student artifacts, ethnographic field notes, and interview data from six months of field research were used to examine the following questions: (1) In what ways were learning opportunities planned for using science and engineering practices to improve community health? (2) In what ways did students apply science and engineering practices and knowledge learned from the health club in their school, homes, and community? and (3) What factors seemed to influence whether students applied or intended to apply what they learned in the health club? Drawing on place-based science education theory and community-engagement models of health, process and structural coding (Saldana, 2013) were used to determine patterns in students' applications of their

  3. Exploring teacher's perceptions of concept mapping as a teaching strategy in science: An action research approach

    Science.gov (United States)

    Marks Krpan, Catherine Anne

    In order to promote science literacy in the classroom, students need opportunities in which they can personalize their understanding of the concepts they are learning. Current literature supports the use of concept maps in enabling students to make personal connections in their learning of science. Because they involve creating explicit connections between concepts, concept maps can assist students in developing metacognitive strategies and assist educators in identifying misconceptions in students' thinking. The literature also notes that concept maps can improve student achievement and recall. Much of the current literature focuses primarily on concept mapping at the secondary and university levels, with limited focus on the elementary panel. The research rarely considers teachers' thoughts and ideas about the concept mapping process. In order to effectively explore concept mapping from the perspective of elementary teachers, I felt that an action research approach would be appropriate. Action research enabled educators to debate issues about concept mapping and test out ideas in their classrooms. It also afforded the participants opportunities to explore their own thinking, reflect on their personal journeys as educators and play an active role in their professional development. In an effort to explore concept mapping from the perspective of elementary educators, an action research group of 5 educators and myself was established and met regularly from September 1999 until June 2000. All of the educators taught in the Toronto area. These teachers were interested in exploring how concept mapping could be used as a learning tool in their science classrooms. In summary, this study explores the journey of five educators and myself as we engaged in collaborative action research. This study sets out to: (1) Explore how educators believe concept mapping can facilitate teaching and student learning in the science classroom. (2) Explore how educators implement concept

  4. Foundations of data-intensive science: Technology and practice for high throughput, widely distributed, data management and analysis systems

    Science.gov (United States)

    Johnston, William; Ernst, M.; Dart, E.; Tierney, B.

    2014-04-01

    Today's large-scale science projects involve world-wide collaborations depend on moving massive amounts of data from an instrument to potentially thousands of computing and storage systems at hundreds of collaborating institutions to accomplish their science. This is true for ATLAS and CMS at the LHC, and it is true for the climate sciences, Belle-II at the KEK collider, genome sciences, the SKA radio telescope, and ITER, the international fusion energy experiment. DOE's Office of Science has been collecting science discipline and instrument requirements for network based data management and analysis for more than a decade. As a result of this certain key issues are seen across essentially all science disciplines that rely on the network for significant data transfer, even if the data quantities are modest compared to projects like the LHC experiments. These issues are what this talk will address; to wit: 1. Optical signal transport advances enabling 100 Gb/s circuits that span the globe on optical fiber with each carrying 100 such channels; 2. Network router and switch requirements to support high-speed international data transfer; 3. Data transport (TCP is still the norm) requirements to support high-speed international data transfer (e.g. error-free transmission); 4. Network monitoring and testing techniques and infrastructure to maintain the required error-free operation of the many R&E networks involved in international collaborations; 5. Operating system evolution to support very high-speed network I/O; 6. New network architectures and services in the LAN (campus) and WAN networks to support data-intensive science; 7. Data movement and management techniques and software that can maximize the throughput on the network connections between distributed data handling systems, and; 8. New approaches to widely distributed workflow systems that can support the data movement and analysis required by the science. All of these areas must be addressed to enable large

  5. Creative Cognition in Secondary Science: An exploration of divergent thinking in science among adolescents

    Science.gov (United States)

    Antink-Meyer, Allison; Lederman, Norman G.

    2015-07-01

    The divergent thinking skills in science of 282 US high school students were investigated across 16 weeks of instruction in order to determine whether typical academic time periods can significantly influence changes in thinking skills. Students' from 6 high school science classrooms completed the Scientific Structures Creativity Measure (SSCM) before and after a semester of instruction. Even the short time frame of a typical academic term was found to be sufficient to promote both improvements in divergent thinking skills as well as declining divergent thinking. Declining divergent thinking skills were more common in this time frame than were improvements. The nature of student performance on the SSCM and implications are discussed.

  6. Of responsible research-Exploring the science-society dialogue in undergraduate training within the life sciences.

    Science.gov (United States)

    Almeida, Maria Strecht; Quintanilha, Alexandre

    2017-01-02

    We explore the integration of societal issues in undergraduate training within the life sciences. Skills in thinking about science, scientific knowledge production and the place of science in society are crucial in the context of the idea of responsible research and innovation. This idea became institutionalized and it is currently well-present in the scientific agenda. Developing abilities in this regard seems particularly relevant to training in the life sciences, as new developments in this area somehow evoke the involvement of all of us citizens, our engagement to debate and take part in processes of change. The present analysis draws from the implementation of a curricular unit focused on science-society dialogue, an optional course included in the Biochemistry Degree study plan offered at the University of Porto. This curricular unit was designed to be mostly an exploratory activity for the students, enabling them to undertake in-depth study in areas/topics of their specific interest. Mapping topics from students' final papers provided a means of analysis and became a useful tool in the exploratory collaborative construction of the course. We discuss both the relevance and the opportunity of thinking and questioning the science-society dialogue. As part of undergraduate training, this pedagogical practice was deemed successful. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):46-52, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  7. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  8. Exploring culture, language and the perception of the nature of science

    Science.gov (United States)

    Sutherland, Dawn

    2002-01-01

    One dimension of early Canadian education is the attempt of the government to use the education system as an assimilative tool to integrate the First Nations and Me´tis people into Euro-Canadian society. Despite these attempts, many First Nations and Me´tis people retained their culture and their indigenous language. Few science educators have examined First Nations and Western scientific worldviews and the impact they may have on science learning. This study explored the views some First Nations (Cree) and Euro-Canadian Grade-7-level students in Manitoba had about the nature of science. Both qualitative (open-ended questions and interviews) and quantitative (a Likert-scale questionnaire) instruments were used to explore student views. A central hypothesis to this research programme is the possibility that the different world-views of two student populations, Cree and Euro-Canadian, are likely to influence their perceptions of science. This preliminary study explored a range of methodologies to probe the perceptions of the nature of science in these two student populations. It was found that the two cultural groups differed significantly between some of the tenets in a Nature of Scientific Knowledge Scale (NSKS). Cree students significantly differed from Euro-Canadian students on the developmental, testable and unified tenets of the nature of scientific knowledge scale. No significant differences were found in NSKS scores between language groups (Cree students who speak English in the home and those who speak English and Cree or Cree only). The differences found between language groups were primarily in the open-ended questions where preformulated responses were absent. Interviews about critical incidents provided more detailed accounts of the Cree students' perception of the nature of science. The implications of the findings of this study are discussed in relation to the challenges related to research methodology, further areas for investigation, science

  9. Arthritis Foundation

    Science.gov (United States)

    ... Vision Leadership News Partners & Sponsors Careers Code of Ethics Financials Annual Report Contact Us Privacy Policy Terms & Conditions Donate Press Store Blog Community Local Offices Kids Get Arthritis Too Español Arthritis Today Social Media Newsletters Sign Up for E-Newsletters Arthritis Foundation ...

  10. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    Science.gov (United States)

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  11. NOAA Ocean Exploration: Science, Education and Ocean Literacy Online and in Social Media

    Science.gov (United States)

    Keener-Chavis, P.

    2012-12-01

    "Engagement" in ocean science initially might seem like a simple concept, however within an agency like NOAA, with a broad mission and a wide variety of stakeholders, the concept of engagement becomes quite complex. Several years ago, a Kellogg Commission Report was submitted to NOAA's Science Advisory Board to assist the Agency with more closely defining-and refining-how it could more effectively engage with the multiple audiences with which it works. For NOAA, engagement is a two-way relationship that unfolds in a commitment of service to society. It is an Enterprise-wide capability represented in NOAA's Next Generation Strategic Plan and carries the same weight across the Agency as science and technology. NOAA's Office of Ocean Exploration and Research (OER) engages scientists, educators and the public through a variety of online and social media offerings explicitly tied to the exploration science of its expeditions. The principle platform for this engagement is the Ocean Explorer website (http://oceanexplorer.noaa.gov). It is the single point of entry for formal and informal educators and the public to chronicled OER expeditions to little known regions of the world ocean. The site also enables access to live streaming video and audio from the United States' first ship solely dedicated to ocean exploration, the NOAA Ship Okeanos Explorer and the Institute for Exploration's E/V Nautilus. Video includes footage from the remotely operated vehicles, sonar displays, navigation displays, and mapping data displays. Through telepresence technologies and other online communication tools, scientists at remote locations around the world, including Exploration Command Centers, collaborate in deep-sea exploration conducted by the Okeanos Explorer. Those wanting access to the ship's track, oceanographic data, daily updates, web logs, and imagery during an expedition can access the online Okeanos Explorer Digital Atlas. Information on archived expeditions can be accessed

  12. Sandia National Laboratories: Research: Research Foundations: Engineering

    Science.gov (United States)

    Foundations Bioscience Computing & Information Science Electromagnetics Engineering Science Geoscience Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community Library Events Careers View All Jobs Students & Postdocs Internships & Co-ops Fellowships

  13. Optimization Foundations and Applications

    CERN Document Server

    Miller, H Ronald

    2011-01-01

    A thorough and highly accessible resource for analysts in a broad range of social sciences. Optimization: Foundations and Applications presents a series of approaches to the challenges faced by analysts who must find the best way to accomplish particular objectives, usually with the added complication of constraints on the available choices. Award-winning educator Ronald E. Miller provides detailed coverage of both classical, calculus-based approaches and newer, computer-based iterative methods. Dr. Miller lays a solid foundation for both linear and nonlinear models and quickly moves on to dis

  14. Exploring the Associations among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum

    Science.gov (United States)

    Stage, Virginia C.; Kolasa, Kathryn M.; Díaz, Sebastián R.; Duffrin, Melani W.

    2018-01-01

    Background: Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Methods: Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across…

  15. Designing Philadelphia Land Science as a Game to Promote Identity Exploration

    Science.gov (United States)

    Barany, Amanda; Shah, Mamta; Cellitti, Jessica; Duka, Migela; Swiecki, Zachari; Evenstone, Amanda; Kinley, Hannah; Quigley, Peter; Shaffer, David Williamson; Foster, Aroutis

    2017-01-01

    Few digital tools are designed to support identity exploration around careers in science, technology, engineering, and mathematics (STEM) that may help close existing representation gaps in STEM fields. The aim of this project is to inform the design of games that facilitate learning as identity change as defined by the Projective Reflection…

  16. Three education modules using EnviroAtlas-Exploration and Discovery Through Maps: Teaching Science with Technology

    Science.gov (United States)

    Session #1: Exploration and Discovery through Maps: Teaching Science with Technology (elementary school) - EnviroAtlas is a tool developed by the U.S. Environmental Protection Agency and its partners that empowers anyone with the internet to be a highly informed local decision-ma...

  17. Exploring the Impact of Culture- and Language-Influenced Physics on Science Attitude Enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2016-01-01

    "Culture," a set of principles that trace and familiarize human beings within their existential realities, may provide an invisible lens through which reality could be discerned. Critically explored in this study is how culture- and language-sensitive curriculum materials in physics improve Pangasinan learners' attitude toward science.…

  18. Inventing Creativity: An Exploration of the Pedagogy of Ingenuity in Science Classrooms

    Science.gov (United States)

    Meyer, Allison Antink; Lederman, Norman G.

    2013-01-01

    Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the…

  19. Science and Religion on the Blackboard: Exploring Schoolmasters' Beliefs and Practices in Senegal

    Science.gov (United States)

    Croché, Sarah

    2015-01-01

    This article treats the various forms of adjustment between scientific and religious discourses at school. It aims to analyse the beliefs and practices of schoolmasters and to explore how the oppositions between the "dominant" discourses of Western science and those of religion are addressed in secondary education in Senegal. The…

  20. Exploring Environmental Identity and Behavioral Change in an Environmental Science Course

    Science.gov (United States)

    Blatt, Erica N.

    2013-01-01

    This ethnographic study at a public high school in the Northeastern United States investigates the process of change in students' environmental identity and proenvironmental behaviors during an Environmental Science course. The study explores how sociocultural factors, such as students' background, social interactions, and classroom structures,…

  1. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    Science.gov (United States)

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  2. Enabling Laser and Lidar Technologies for NASA's Science and Exploration Mission's Applications

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA s Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  3. Advances in Laser/Lidar Technologies for NASA's Science and Exploration Mission's Applications

    Science.gov (United States)

    Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    NASA's Laser Risk Reduction Program, begun in 2002, has achieved many technology advances in only 3.5 years. The recent selection of several lidar proposals for Science and Exploration applications indicates that the LRRP goal of enabling future space-based missions by lowering the technology risk has already begun to be met.

  4. Exploring ideation: Knowledge development in science through the lens of semantic and social networks

    NARCIS (Netherlands)

    Moser, C.; Birkholz, J.M.; Deichmann, D.; Hellsten, I.; Wang, S.

    2013-01-01

    In this paper, we explore changes in both structural and semantic characteristics of a scientific social network. We trace the emergence of knowledge, what we refer to as ideation, through publication data from two conferences in a sub-field of Computer Science. Social network analysis is used to

  5. The Black Cultural Ethos and science teachers' practices: A case study exploring how four high school science teachers meet their African American students' needs in science

    Science.gov (United States)

    Strachan, Samantha L.

    The underachievement of African American students in science has been a persistent problem in science education. The achievement patterns of African American students indicate that researchers must take a closer look at the types of practices that are being used to meet these students' needs in science classrooms. Determining why science teachers decide to employ certain practices in their classrooms begins with a careful examination of teachers' beliefs as well as their instructional approaches. The purpose of this study was to explore four urban high school science teachers' beliefs about their African American students' learning needs and to investigate how these teachers go about addressing students' needs in science classrooms. This research study also explored the extent to which teachers' practices aligned with the nine dimensions of an established cultural instructional theory, namely the Black Cultural Ethos. Qualitative research methods were employed to gather data from the four teachers. Artifact data were collected from the teachers and they were interviewed and observed. Believing that their students had academic-related needs as well as needs tied to their learning preferences, the four science teachers employed a variety of instructional strategies to meet their students where they were in learning. Overall, the instructional strategies that the teachers employed to meet their students' needs aligned with five of the nine tenets of the Black Cultural Ethos theory.

  6. An Exploration of Teachers' Efforts to Understand Identity Work and its Relevance to Science Instruction

    Science.gov (United States)

    Smith, M. Cecil; Darfler, Anne

    2012-06-01

    US educators express concern that students are turning away from the study of science and have little interest in pursuing science careers. Nationally, science achievement scores for 8th graders are unchanged since 1996, but 12th graders' scores have significantly decreased. A shortcoming of education reform efforts is lack of attention to students' developmental needs. Science study should enable students to learn about themselves—to develop and refine their skills, define their values, explore personal interests, and understand the importance of science to themselves and others. Effective secondary science instruction requires attention to students' identity development—the key developmental task of adolescence. Secondary science teachers participated in an 8-week course focused on understanding adolescent identity development and methods for addressing identity. Transcripts of the teachers' online discussions of salient issues were analyzed to determine their perceptions regarding classroom identity work. Teachers identified several assets and obstacles to identity work that were organized into two broad categories: teacher knowledge, training opportunities, and administrative support, or lack of these; and, presence of inflexible curricula, standardized testing regimes, and increased teacher accountability. Implications for student growth and science teacher professional development are discussed.

  7. The Science of Serious Gaming: Exploring the Benefits of Science-Based Games in the Classroom

    Science.gov (United States)

    Kurtz, N.

    2016-02-01

    Finding ways to connect scientists with the classroom is an important part of sharing enthusiasm for science with the public. Utilizing the visual arts and serious gaming techniques has benefits for all participants including the engagement of multiple learning sectors and the involvement of whole-brain teaching methods. The activities in this presentation draw from real-world events that require higher level thinking strategies to discover and differential naturally occurring patterns.

  8. Representing Nature of Science in a Science Textbook: Exploring author-editor-publisher interactions

    Science.gov (United States)

    DiGiuseppe, Maurice

    2014-05-01

    Current reforms in elementary and secondary science education call for students and teachers to develop more informed views of the nature of science (NOS)-a process in which science textbooks play a significant role. This paper reports on a case study of the development of representations of the NOS in a senior high school chemistry textbook by the book's author, editor, and publisher. The study examines the multiple discourses that arose as the developers reflected on their personal and shared understandings of NOS; squared these with mandated curricula, the educational needs of chemistry students and teachers, and the exigencies of large-scale commercial textbook publishing. As a result, the team developed and incorporated, in the textbook, representations of NOS they believed were the most pedagogically suitable. Analysis of the data in this study indicates that a number of factors significantly influenced the development of representations of NOS, including representational accuracy (the degree to which representations of NOS conformed to informed views of the NOS), representational consistency (the degree to which representations of NOS in different parts of the book conveyed the same meaning), representational appropriateness (the age-, grade-, and reading-level appropriateness of the NOS representations), representational alignment (the degree to which NOS representations aligned with mandated curriculum), representational marketability (the degree to which NOS representations would affect sales of the textbook), and 'Workplace Resources' factors including availability of time, relevant expertise, and opportunities for professional development.

  9. [Overview of research projects funding in traditional Chinese medicine oncology field supported by National Natural Science Foundation of China].

    Science.gov (United States)

    Tang, Dong-Xin; Chen, Lian-Yu; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu

    2017-05-01

    In this paper, the funding situation of traditional Chinese medicine oncology research projects supported by National Natural Science Fund from 1986-2016 was reviewed. The characteristics of funded projects were summarized from funding amount, funding expenses, funding category, and the main research contents of projects, etc. At the same time, the main problems in the projects were analyzed in this paper, in order to provide reference for the relevant fund applicants. Copyright© by the Chinese Pharmaceutical Association.

  10. a History of Funding for WOMEN’S Programs at the National Science Foundation: from Individual Powre Approaches to the Advance of Institutional Approaches

    Science.gov (United States)

    Rosser, Sue V.; Lane, Eliesh O'neil

    The biennial reports on women, minorities, and persons with disabilities produced by the National Science Foundation (NSF) because of congressional mandate laid the statistical foundation for NSF initiatives to redress the underrepresentation of these groups. Programs established in the 1980s such as Research Opportunities for Women, Visiting Professorships for Women, Graduate Fellowships for Women, and Career Advancement Awards provided support to individual women for their research. In the 1990s, the NSF also began to focus on systemic initiatives, creating the Program for Women and Girls, although it continued to address the problem through support of individual researchers in the newly created Professional Opportunities for Women in Research and Education (POWRE) initiative. The responses from more than 400 awardees during the 4 years of POWRE provide insights into the current issues these women perceive surrounding their grants, funding, and interactions with NSF bureaucracy and staff members. The results of the POWRE survey support the institutional, systemic thrust of the NSF’s new ADVANCE initiative to attempt to solve problems such as balancing career and family that cannot be addressed solely by supporting research projects of individual female scientists and engineers.

  11. The integration of Mathematics, Science and Technology in early childhood education and the foundation phase: The role of the formation of the professional identities of beginner teachers

    Directory of Open Access Journals (Sweden)

    Marie Botha

    2015-02-01

    Full Text Available This article focuses on the professional identity formation of six beginner teachers (three in early childhood education and three in the foundation phase, involved in the teaching of Mathematics, Science and Technology (MST. Attention is in particular being paid to the role of professional identity in how they applied innovative teaching methods such as enquiry-based teaching. The study is based on the personal narratives of the six teachers, regarding their own learning experiences in MST, the impact of their professional training at an institution of higher education, as well as their first experiences as MST teachers in the workplace. A qualitative research design was applied and data was obtained through visual (photo collages and written stories, observation and interviews. Whilst all the teachers held negative attitudes towards Mathematics, this situation was turned around during their university training. The three teachers in early childhood education experienced their entrance to the profession as positive, due mainly to the support of colleagues in their application of innovative teaching methods. Two teachers in the foundation phase, however, experienced the opposite. The findings emphasise the complex processes in the moulding of a professional teacher identity and how teaching practices are influenced by these processes.

  12. Unlocking Resources: Self-Guided Student Explorations of Science Museum and Aquarium Exhibits

    Science.gov (United States)

    Kirkby, K. C.; Phipps, M.; Hamilton, P.

    2010-12-01

    Remarkably few undergraduate programs take full advantage of the rich resources provided by science museums, aquariums and other informal science education institutions. This is not surprising considering the logistical hurdles of class trips, but an even more fundamental barrier is that these institutions’ exhibit text seldom explicitly convey their information at a level suitable for undergraduate curriculum. Traditionally, this left the burden of interpretation on individual instructors, who rarely have the time to undertake it. To overcome these hurdles, the University of Minnesota has partnered with the Science Museum of Minnesota and Underwater Adventures Aquarium to test the efficacy of self-guided student explorations in revealing the rich data encoded in museum and aquarium exhibits. An initial module at the Science Museum of Minnesota focused on interpreting animal designs, specifically exploring how differences in dinosaur skeletal features reflected variations in the animals’ lifestyles. Students learn to interpret diet and lifestyle not only from characteristics of the skull and teeth, but also from variations in vertebrae and rib design or the relative proportion of limb elements. A follow-up module, based on exhibits at Underwater Adventures Aquarium focuses on interpreting energy flow through ecosystems from the behavior of living organisms. Students explore the information on lifestyle and diet that is encoded in a sturgeon’s ceaseless glide or a muskellunge’s poised stillness. These modules proved to be immensely popular with students. In classes with up to 500 students, half to two-thirds of the students volunteered to complete the modules, despite the additional expense and distances of up to 13 miles between the University and partner institutions. More importantly, quantitative assessment with pre-instruction and post-instruction surveys demonstrate that these ungraded, self-guided explorations match or exceed the efficacy of

  13. [Analysis of the application and funding projects of National Natural Science Foundation of China in the field of burns and plastic surgery from 2010 to 2016].

    Science.gov (United States)

    Zhang, Z C; Dou, D; Wang, X Y; Xie, D H; Yan, Z C

    2017-02-20

    We analyzed the data of application and funding projects of the National Natural Science Foundation of China (NSFC) during 2010-2016 in the field of burns and plastic surgery and summarized the NSFC funding pattern, the research hotspots, and weaknesses in this field. The NSFC has funded 460 projects in the field of burns and plastic surgery, with total funding of RMB 227.96 million. The scientific issues involved in the funding projects include orthotherapy against malformations, wound repair, basic research of burns, skin grafting, scars prevention, and regeneration of hair follicle and sweat glands. The research techniques involved in the funding projects are diversified. NSFC plays an important role in the scientific research and talents training in the field of burns and plastic surgery.

  14. [Analysis of hot spots and trend of molecular pharmacognosy research based on project supported by National Natural Science Foundation of 1995-2014].

    Science.gov (United States)

    Wang, Jun-Wen; Liu, Yang; Tong, Yuan-Yuan; Yang, Ce; Li, Hai-Yan

    2016-05-01

    This study collected 1995-2014 molecular pharmacognosy study, a total of 595 items, funded by Natural Science Foundation of China (NSFC). TDA and Excel software were used to analyze the data of the projects about general situation, hot spots of research with rank analytic and correlation analytic methods. Supported by NSFC molecular pharmacognosy projects and funding a gradual increase in the number of, the proportion of funds for pharmaceutical research funding tends to be stable; mainly supported by molecular biology methods of genuine medicinal materials, secondary metabolism and Germplasm Resources Research; hot drugs including Radix Salviae Miltiorrhizae, Radix Rehmanniae, Cordyceps sinensis, hot contents including tanshinone biosynthesis, Rehmannia glutinosa continuous cropping obstacle. Copyright© by the Chinese Pharmaceutical Association.

  15. Exploring multiple intelligences theory in the context of science education: An action research approach

    Science.gov (United States)

    Goodnough, Karen Catherine

    2000-10-01

    Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a

  16. Science, technology, and pedagogy: Exploring secondary science teachers' effective uses of technology

    Science.gov (United States)

    Guzey, Siddika Selcen

    Technology has become a vital part of our professional and personal lives. Today we cannot imagine living without many technological tools such as computers. For the last two decades technology has become inseparable from several areas, such as science. However, it has not been fully integrated into the field of education. The integration of technology in teaching and learning is still challenging even though there has been a historical growth of Internet access and available technology tools in schools (U.S. Department of Education, National Center for Education Statistics, 2006). Most teachers have not incorporated technology into their teaching for various reasons such as lack of knowledge of educational technology tools and having unfavorable beliefs about the effectiveness of technology on student learning. In this study, three beginning science teachers who have achieved successful technology integration were followed to investigate how their beliefs, knowledge, and identity contribute to their uses of technology in their classroom instruction. Extensive classroom observations and interviews were conducted. The findings demonstrate that the participating teachers are all intrinsically motivated to use technology in their teaching and this motivation allows them to enjoy using technology in their instruction and keeps them engaged in technology use. These teachers use a variety of technology tools in their instruction while also allowing students to use them, and they posit a belief set in favor of technology. The major findings of the study are displayed in a model which indicates that teachers' use of technology in classroom instruction was constructed jointly by their technology, pedagogy, and content knowledge; identity; beliefs; and the resources that are available to them and that the internalization of the technology use comes from reflection. The study has implications for teachers, teacher educators, and school administrators for successful technology

  17. Exploring the contexts of urban science classrooms: Cogenerative dialogues, coteaching, and cosmopolitanism

    Science.gov (United States)

    Emdin, Christopher

    The body of work presented in this dissertation is a response to the reported association between poor outcomes in science achievement and students of color in urban schools. By presenting counterexamples to the cultural motif that urban students of color perform poorly in science, I argue that poor achievement cannot be traced to a group of people but can be linked to institutions promoting subject delivery methods that instill distaste for science and compel students to display an illusion of disinterest in school. There are two major goals of this study. First, I plan to demonstrate how plans of action generated by coteachers and cogenerative dialogue groups can coalesce under the ethos of making science and schooling accessible to populations that are traditionally marginalized from science achievement. My second aim is to develop mechanisms for transforming science learning contexts into cosmopolitan learning communities that develop student success in science. Through a three-year ethnographic study of physics and chemistry classrooms in a high school in New York City, I present explorations of the culture and context of the urban classroom as a chief means to meet my goals. In my research, I find that obstacles to identity development around science can be tied to corporate understandings of teaching and learning that are amenable to local efforts toward change. This change is facilitated through the use of transformative tools like cogenerative dialogues, coteaching, and cosmopolitanism. Through the application of these research tools, I uncover and investigate how various misalignments that present themselves in physics and chemistry classrooms serve as signifiers of macro issues that permeate science classrooms from larger fields. By utilizing cogenerative dialogues as a tool for investigating both micro enactments within classrooms and the macro structures that generate these enactments, I show how students and teachers can work together as co

  18. Teaching and Learning Science Through Song: Exploring the experiences of students and teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-12-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.

  19. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  20. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  1. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  2. Qualitative exploration of the career aspirations of rural origin health science students in South Africa.

    Science.gov (United States)

    Diab, Paula N; Flack, Penny S; Mabuza, Langalibalele H; Reid, Stephen J Y

    2012-01-01

    There is evidence in the literature that rural background significantly encourages eventual rural practice. Given the shortage of healthcare providers in rural areas, we need to explore ways of ensuring throughput and success of rural-origin students in health sciences. It is therefore important to understand who these students are, what motivates them and the factors involved in the formation of their career choices. The aim of this study is to understand the aspirations of undergraduate health science students of rural origin with regard to their future career plans. The objectives of the study include to explore and identify the key issues facing rural-origin students with regard to their future career plans. Individual interviews were conducted with 15 health science students from two South African universities. Transcriptions were analyzed with the aid of Nvivo v8 (www.qsrinternational.com). The findings suggest health science students of rural origin studying at universities in the South African context face specific challenges related to the nature of the contrast between rural and urban life, in addition to the more generic adaptations that confront all students on entering tertiary education. In order to support rural students in their studies, academic, financial, emotional and social stressors need to be addressed. Universities should strengthen existing support structures as well as aid the development of further support that may be required.Key words: career plan, health science, rural background, South Africa.

  3. Exploring Science Teachers' Affective States: Pedagogical Discontentment, Self-efficacy, Intentions to Reform, and Their Relationships

    Science.gov (United States)

    Kahveci, Ajda; Kahveci, Murat; Mansour, Nasser; Alarfaj, Maher Mohammed

    2017-06-01

    Teachers play a key role in moving reform-based science education practices into the classroom. Based on research that emphasizes the importance of teachers' affective states, this study aimed to explore the constructs pedagogical discontentment, science teaching self-efficacy, intentions to reform, and their correlations. Also, it aimed to provide empirical evidence in light of a previously proposed theoretical model while focusing on an entirely new context in Middle East. Data were collected in Saudi Arabia with a total of randomly selected 994 science teachers, 656 of whom were females and 338 were males. To collect the data, the Arabic versions of the Science Teachers' Pedagogical Discontentment scale, the Science Teaching Efficacy Beliefs Instrument and the Intentions to Reform Science Teaching scale were developed. For assuring the validity of the instruments in a non-Western context, rigorous cross-cultural validations procedures were followed. Factor analyses were conducted for construct validation and descriptive statistical analyses were performed including frequency distributions and normality checks. Univariate analyses of variance were run to explore statistically significant differences between groups of teachers. Cross-tabulation and correlation analyses were conducted to explore relationships. The findings suggest effect of teacher characteristics such as age and professional development program attendance on the affective states. The results demonstrate that teachers who attended a relatively higher number of programs had lower level of intentions to reform raising issues regarding the conduct and outcomes of professional development. Some of the findings concerning interrelationships among the three constructs challenge and serve to expand the previously proposed theoretical model.

  4. William James on a phenomenological psychology of immediate experience: the true foundation for a science of consciousness?

    Science.gov (United States)

    Taylor, Eugene

    2010-01-01

    Throughout his career, William James defended personal consciousness. In his "Principles of Psychology" (1890), he declared that psychology is the scientific study of states of consciousness as such and that he intended to presume from the outset that the thinker was the thought. But while writing it, he had been investigating a dynamic psychology of the subconscious, which found a major place in his Gifford Lectures, published as "The Varieties of Religious Experience" in 1902. This was the clearest statement James was able to make before he died with regard to his developing tripartite metaphysics of pragmatism, pluralism and radical empiricism, which essentially asked "Is a science of consciousness actually possible?" James's lineage in this regard, was inherited from an intuitive psychology of character formation that had been cast within a context of spiritual self-realization by the Swedenborgians and Transcendentalists of New England. Chief among these was his father, Henry James, Sr., and his godfather, Ralph Waldo Emerson. However, james was forced to square these ideas with the more rigorous scientific dictates of his day, which have endured to the present. As such, his ideas remain alive and vibrant, particularly among those arguing for the fusion of phenomenology, embodiment and cognitive neuroscience in the renewed search for a science of consciousness.

  5. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    Science.gov (United States)

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-01-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  6. Earth sciences: Uranium geology, exploration and mining, hydrology, 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with earth sciences and issued during the period of 1986-1996. These topics are mainly in the field of uranium geology, exploration and mining, isotope applications in hydrology, IAEA Yearbook 1996 on the developments in nuclear science and technology and meetings on atomic energy. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English but all of these papers have English abstracts. The prices of books are quoted in Austrian Schillings

  7. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    Science.gov (United States)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  8. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  9. Exploring the use of lesson study with six Canadian middle-school science teachers

    Science.gov (United States)

    Bridges, Terry James

    This qualitative case study explores the use of lesson study over a ten-week period with six Ontario middle school science teachers. The research questions guiding this study were: (1) How does participation in science-based lesson study influence these teachers': (a) science subject matter knowledge (science SMK), (b) science pedagogical content knowledge (science PCK), and (c) confidence in teaching science?, and (2) What benefits and challenges do they associate with lesson study? Data sources for this study were: teacher questionnaires, surveys, reflections, pre- and post- interviews, and follow-up emails; researcher field notes and reflections; pre- and post- administration of the Science Teaching Efficacy Belief Instrument; and audio recordings of group meetings. The teachers demonstrated limited gains in science SMK. There was evidence for an overall improvement in teacher knowledge of forces and simple machines, and two teachers demonstrated improvement in over half of the five scenarios assessing teacher science SMK. Modest gains in teacher science PCK were found. One teacher expressed more accurate understanding of students' knowledge of forces and a better knowledge of effective science teaching strategies. The majority of teachers reported that they would be using three-part lessons and hands-on activities more in their science teaching. Gains in teacher pedagogical knowledge (PK) were found in four areas: greater emphasis on anticipation of student thinking and responses, recognition of the importance of observing students, more intentional teaching, and anticipated future use of student video data. Most teachers reported feeling more confident in teaching structures and mechanisms, and attributed this increase in confidence to collaboration and seeing evidence of student learning and engagement during the lesson teachings. Teacher benefits included: learning how to increase student engagement and collaboration, observing students, including video data

  10. The methodological foundations of mutual integration of scientific knowledge in the field of physical education and sports and related sciences.

    Directory of Open Access Journals (Sweden)

    Kozina Zh.L.

    2012-02-01

    Full Text Available Possibilities of application of scientific knowledge in physical education and sport in contiguous scientific directions are considered. The advanced studies of leading specialists in area of physical education and sport are analysed. It is rotined that on the modern stage scientific developments in area of physical education and sport attained a level, when can be utillized in fundamental and applied sciences. Scientific researches in area of physical education and sport to the application scientific areas, such as pedagogics, psychology, design, programming et al are related. One of examples of mutual integration of scientific knowledge in area of physical education and sport there is theoretical conception of individualization of preparation of sportsmen.

  11. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  12. Pedagogical Content Knowledge (PCK): Exploring its Usefulness for Science Lecturers in Higher Education

    Science.gov (United States)

    Fraser, Sharon P.

    2016-02-01

    In the past 30 years, pedagogical content knowledge (PCK) frameworks have become important constructs in educational research undertaken in the school education system and a focus for research for curriculum and teacher education researchers. As regards science, PCK research has been plentiful, but thus far, the concept of PCK (significantly enhanced since its proposal) has only been validated in the school context (Kindergarten to Grade 12). Within this environment, however, it has proven to be a very useful construct for understanding teacher practice and contributing to the improvement of teacher education courses. Knowledge about whether PCK is useful as a conceptual framework for science lecturers (teachers) working in higher education is as yet unknown and represents a gap in the research literature; the research outlined here is a first step in exploring its usefulness in this context. This paper provides an analysis of data obtained from semi-structured interviews conducted with nine Australian science university lecturers from various disciplines and levels of seniority and experience of tertiary teaching, as well as an academic developer skilled in facilitating science academics' understanding of pedagogy in higher education. The research aimed to investigate the extent to which one version of a school-based science PCK framework resonated with the pedagogical thinking of university science lecturers and the ways in which it could influence their teaching practice.

  13. Oral Traditions: A Contextual Framework for Complex Science Concepts--Laying the Foundation for a Paradigm of Promise in Rural Science Education

    Science.gov (United States)

    Avery, Leanne M.; Hains, Bryan J.

    2017-01-01

    The overarching goal of this paper is to bring a diverse educational context--rural sayings and oral traditions situated in ecological habitats--to light and emphasize that they need to be taken into consideration regarding twenty-first century science education. The rural sayings or tenets presented here are also considered alternative ways of…

  14. MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media

    Science.gov (United States)

    Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.

    2009-12-01

    NASA’s new scientific exploration of the Moon, coupled with the public’s interest in the Moon and innovative social networking approaches, is being leveraged to engage a fresh adult audience in lunar science and exploration. In July 2009 the Lunar and Planetary Institute (LPI) launched a lunar education new media portal, MyMoon. LPI is collaborating with lunar scientists, educators, artists - and the public - to populate the site with science content, diverse media exhibits, events, and opportunities for involvement. Through MyMoon, the general public interacts with lunar content that informs them about lunar science research and missions, and engages them in future plans for lunar exploration and eventual habitation. MyMoon’s objectives are to: 1) develop a dynamic, new media learning portal that will enable the general public, with a focus on adults ages 18-35; 2) host a growing, active audience that becomes further involved in NASA’s lunar exploration by sharing their ideas about lunar topics, creating their own materials, and participating in events and experiences; 3) build a community of enthusiasts through social networking media; 4) create a model for online engagement of audiences 18 to 35, and provide detailed evaluation data on best practices and strategies for success. Immersive new media technologies are changing the way that people interact, work, learn, and teach. These provide potentially high-impact opportunities for reaching an audience of young adults, age 18 to 35, that largely is not accessed by, or accessing, NASA (Dittmar, 2004). MyMoon strives to engage - and involve - this audience to build a community of enthusiasts for lunar scientific exploration through social networks and current and emerging new media platforms, including posting videos on YouTube, photo contests on Flickr, and sharing events and challenges on Facebook and Twitter. MyMoon features interactive exhibits that are audience driven and added on a quarterly basis

  15. Science and Reconnaissance from the Europa Clipper Mission Concept: Exploring Europa's Habitability

    Science.gov (United States)

    Pappalardo, Robert; Senske, David; Prockter, Louise; Paczkowski, Brian; Vance, Steve; Goldstein, Barry; Magner, Thomas; Cooke, Brian

    2015-04-01

    Europa is recognized by the Planetary Science De-cadal Survey as a prime candidate to search for a pre-sent-day habitable environment in our solar system. As such, NASA has pursued a series of studies, facilitated by a Europa Science Definition Team (SDT), to define a strategy to best advance our scientific understanding of this icy world with the science goal: Explore Europa to investigate its habitability. (In June of 2014, the SDT completed its task of identifying the overarching science objectives and investigations.) Working in concert with a technical team, a set of mission archi-tectures were evaluated to determine the best way to achieve the SDT defined science objectives. The fa-vored architecture would consist of a spacecraft in Ju-piter orbit making many close flybys of Europa, con-centrating on remote sensing to explore the moon. In-novative mission design would use gravitational per-turbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of Europa's sur-face, with nominally 45 close flybys, typically at alti-tudes from 25 to 100 km. This concept has become known as the Europa Clipper. The Europa SDT recommended three science ob-jectives for the Europa Clipper: Ice Shell and Ocean: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; Composition: Understand the habitability of Europa's ocean through composition and chemistry; and Geology: Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. The Europa SDT also considered implications of the Hubble Space Telescope detection of possible plumes at Europa. To feed forward to potential subsequent future ex-ploration that could be enabled by a lander, it was deemed that the Europa Clipper mission concept should provide the

  16. A systems theory approach to career development: Exploring factors that affect science as a career choice

    Science.gov (United States)

    Liskey, Brian K.

    This research project was designed to examine the factors that affect students' choice in a career. Specifically, the factors of (a) achievement, (b) interest, (c) self-efficacy, (d) perceived preparation for a career, and (e) being informed about a career will be under investigation. Of key importance to the study is how these factors can affect a student's perception about choosing a science career. A quantitative analysis of secondary data from the 2006 and 2009 Program for International Student Assessment (PISA) international assessment and attitudinal questionnaire provided data on student perceptions and aptitude in science. The sample from PISA included over 400,000 15 year-old students from 57 countries. From the 57 countries, 30 countries, comprised by Organization for Economic and Cooperative Development (OECD), were isolated for analysis. Within this group of 30, 11 were selected for comparison based on their questionnaire response to expectations for a career in science at age 30. The Institute for Educational Science's, International Data Explorer was utilized to acquire and analyze data from the 2006 and 2009 PISA international tests and questionnaires to determine significance between scaled scores and PISA indices. Variables were chosen as factors affecting student's perception on various systems outlined by the Systems Theory of Career Development (Patton & McMahon, 1997) and the Systems Theory of Career Development Framework (Patton & McMahon, 1999). Four country groups were established based on student responses to question 30a from the 2006 PISA attitudinal questionnaire, which asks what career students expected to have at age 30. The results from comparing country groups showed that countries in Group A, which showed the highest values for students expecting a career in science, also had the highest average values for achievement on the PISA science literacy assessment. Likewise, countries that had the lowest values for expecting a career in

  17. Web-Enabled Mechanistic Case Diagramming: A Novel Tool for Assessing Students' Ability to Integrate Foundational and Clinical Sciences.

    Science.gov (United States)

    Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R

    2018-02-20

    As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.

  18. "Socratic Circles are a Luxury": Exploring the Conceptualization of a Dialogic Tool in Three Science Classrooms

    Science.gov (United States)

    Copelin, Michelle Renee

    Research has shown that dialogic instruction promotes learning in students. Secondary science has traditionally been taught from an authoritative stance, reinforced in recent years by testing policies requiring coverage. Socratic Circles are a framework for student-led dialogic discourse, which have been successfully used in English language arts and social studies classrooms. The purpose of this research was to explore the implementation process of Socratic Circles in secondary science classes where they have been perceived to be more difficult. Focusing on two physical science classes and one chemistry class, this study described the nature and characteristics of Socratic Circles, teachers' dispositions toward dialogic instruction, the nature and characteristics of student discussion, and student motivation. Socratic Circles were found to be a dialogic support that influenced classroom climate, social skills, content connections, and student participation. Teachers experienced conflict between using traditional test driven scripted teaching, and exploring innovation through dialogic instruction. Students experienced opportunities for peer interaction, participation, and deeper discussions in a framework designed to improve dialogic skills. Students in two of the classrooms showed evidence of motivation for engaging in peer-led discussion, and students in one class did not. The class that did not show evidence of motivation had not been given the same scaffolding as the other two classes. Two physical science teachers and one chemistry teacher found that Socratic Circles required more scaffolding than was indicated by their peers in other disciplines such as English and social studies. The teachers felt that student's general lack of background knowledge for any given topic in physical science or chemistry necessitated the building of a knowledge platform before work on a discussion could begin. All three of the teachers indicated that Socratic Circles were a

  19. Exploring pre-service science teachers' pedagogical capacity for formative assessment through analyses of student answers

    Science.gov (United States)

    Aydeniz, Mehmet; Dogan, Alev

    2016-05-01

    Background: There has been an increasing emphasis on empowering pre-service and in-service science teachers to attend student reasoning and use formative assessments to guide student learning in recent years. Purpose: The purpose of this study was to explore pre-service science teachers' pedagogical capacity for formative assessment. Sample: This study took place in Turkey. The participants include 53 pre-service science teachers in their final year of schooling. All but two of the participants are female. Design and methods: We used a mixed-methods methodology in pursing this inquiry. Participants analyzed 28 responses to seven two-tiered questions given by four students of different ability levels. We explored their ability to identify the strengths and weaknesses in students' answers. We paid particular attention to the things that the pre-service science teachers noticed in students' explanations, the types of inferences they made about students' conceptual understanding, and the affordances of pedagogical decisions they made. Results: The results show that the majority of participants made an evaluative judgment (i.e. the answer is correct or incorrect) in their analyses of students' answers. Similarly, the majority of the participants recognized the type of mistake that the students made. However, they failed to successfully elaborate on fallacies, limitations, or strengths in student reasoning. We also asked the participants to make pedagogical decisions related to what needs to be done next in order to help the students to achieve academic objectives. Results show that 8% of the recommended instructional strategies were of no affordance, 64% of low-affordance, and 28% were of high affordance in terms of helping students achieve the academic objectives. Conclusion: If our goal is to improve pre-service science teachers' noticing skills, and the affordance of feedback that they provide, engaging them in activities that asks them to attend to students' ideas

  20. Protecting Information: The Role of Community Colleges in Cybersecurity Education. A Report from a Workshop Sponsored by the National Science Foundation and the American Association of Community Colleges (Washington, DC, June 26-28, 2002).

    Science.gov (United States)

    American Association of Community Colleges, Washington, DC.

    The education and training of the cybersecurity workforce is an essential element in protecting the nation's computer and information systems. On June 26-28, 2002, the National Science Foundation supported a cybersecurity education workshop hosted by the American Association of Community Colleges. The goals of the workshop were to map out the role…

  1. Making connections: Exploring student agency in a science classroom in India

    Science.gov (United States)

    Sharma, Ajay

    India has been a free country for more than half a century now. In this time, the state has succeeded to a large extent in providing universal access to at least elementary education to all the citizens. However, the quality of education provided in state-run schools remains far removed from the ideals endorsed in policy documents. The vast majority of Indian poor, especially in rural areas, depend upon state-run schools for access to education. However, the low quality of education provided in these schools militates against their hopes and efforts for securing a better future through education. Undergirded by concerns over the raw deal students of government run schools get in rural India, this study is an ethnographic exploration of science learning in a rural middle school classroom in India. The study was conducted in the government middle school at the village Rajkheda, in the Hoshangabad district of the state of Madhya Pradesh, India. The study focused on the nature and scope of student participation in a middle school science classroom of rural school in India. Taking a socio-cultural perspective, it explored student participation in science classroom as engagement in a socioculturally mediated dialogue with the natural and the social world. Thus, two parallel yet intersecting themes run through the narrative this study presents. On one hand, it focuses on students' efforts to both learn and survive science as taught in that school. While on the other, it details the nature of their engagement with and knowledge of their immediate material world. The study shows that through active engagement with their local material and social world, students of the 8th grade had acquired an extensive, useful and situated funds of experiential knowledge that enabled them to enact their agency in the material world around them. This knowledge revealed itself differently in different contexts. Their knowledge representations about school science and the material world were

  2. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions. The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  3. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  4. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long

    2017-01-01

    Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  5. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  6. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  7. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  8. Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science

    Science.gov (United States)

    Graves, S. J.; Maskey, M.

    2015-12-01

    With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.

  9. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  10. The quantum universe: philosophical foundations and oriental medicine.

    Science.gov (United States)

    Kafatos, Menas C; Yang, Keun-Hang

    2016-12-01

    The existence of universal principles in both science and medicine implies that one can explore their common applicability. Here we explore what we have learned from quantum mechanics, phenomena such as entanglement and nonlocality, the role of participation of the observer, and how these may apply to oriental medicine. The universal principles of integrated polarity, recursion, and creative interactivity apply to all levels of existence and all human activities, including healing and medicine. This review examines the possibility that what we have learned from quantum mechanics may provide clues to better understand the operational principles of oriental medicine in an integrated way. Common to both is the assertion that Consciousness is at the foundation of the universe and the inner core of all human beings. This view goes beyond both science and medicine and has strong philosophical foundations in Western philosophy as well as monistic systems of the East.

  11. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  12. A critical exploration of science doctoral programs: Counterstories from underrepresented women of color

    Science.gov (United States)

    Bancroft, Senetta F.

    Most studies exploring the experiences of underrepresented doctoral students of color in science fields focus on their socialization into predominantly white institutions. While the socialization process is fundamental to doctoral success and consequently deserves attention, it is critical to inquire into how the widespread and lasting perception of people of color as socioculturally deficient shapes underrepresented students` socialization into science doctoral programs. Further, the existing research literature and educational policies addressing the persistent underrepresentation of students of color in science doctorates remain fixated on increasing racial diversity for U.S. economic security rather than racial equity. In view of the limitation of existing research literature, in this study, drawing from critical race theories, fictive-kinship, and forms of capital, I use counterstorytelling to recast racial inequities in the education of science doctorates as a problem of social justice, not as an issue of the students' sociocultural deficits or as a matter of economic security. Through interviews I examined the experiences, from elementary school to current careers, of three women of color who were science doctoral students. Participants' counterstories revealed institutionalized racism embedded in doctoral programs exploited their identities and dismissed their lived experiences, thereby, relegating them to outsiders-within academe. This marginalization precluded the inclusive socialization of participants into their doctoral programs and ultimately set up barriers to their pursuit of scientific careers. This study divulges the academic and career consequences of the sustained privilege disparities between underrepresented students of color's experience and the experiences of their white and Asian counterparts. In light of the participants' experiences, I recommend that, in order to change the existing policy of socially integrating students into oppressive

  13. Global benchmarking of medical student learning outcomes? Implementation and pilot results of the International Foundations of Medicine Clinical Sciences Exam at The University of Queensland, Australia.

    Science.gov (United States)

    Wilkinson, David; Schafer, Jennifer; Hewett, David; Eley, Diann; Swanson, Dave

    2014-01-01

    To report pilot results for international benchmarking of learning outcomes among 426 final year medical students at the University of Queensland (UQ), Australia. Students took the International Foundations of Medicine (IFOM) Clinical Sciences Exam (CSE) developed by the National Board of Medical Examiners, USA, as a required formative assessment. IFOM CSE comprises 160 multiple-choice questions in medicine, surgery, obstetrics, paediatrics and mental health, taken over 4.5 hours. Significant implementation issues; IFOM scores and benchmarking with International Comparison Group (ICG) scores and United States Medical Licensing Exam (USMLE) Step 2 Clinical Knowledge (CK) scores; and correlation with UQ medical degree cumulative grade point average (GPA). Implementation as an online exam, under university-mandated conditions was successful. Mean IFOM score was 531.3 (maximum 779-minimum 200). The UQ cohort performed better (31% scored below 500) than the ICG (55% below 500). However 49% of the UQ cohort did not meet the USMLE Step 2 CK minimum score. Correlation between IFOM scores and UQ cumulative GPA was reasonable at 0.552 (p benchmarking is feasible and provides a variety of useful benchmarking opportunities.

  14. Study of the National Science Foundation's South Pole Station as an analogous data base for the logistical support of a Moon laboratory

    Science.gov (United States)

    Hickam, H. H., Jr.

    1993-01-01

    The day will come when the United States will want to return to the Earth's Moon. When that occurs, NASA may look to the Apollo program for technical and inspirational guidance. The Apollo program, however, was designed to be an end to itself--the landing of a man on the Moon and his return safely within the decade of the 1960's. When that was accomplished, the program folded because it was not self-sustaining. The next time we return to the Moon, we should base our planning on a program that is designed to be a sustained effort for an indefinite period. It is the thrust of this report that the South Pole Station of the National Science Foundation can be used to develop analogs for the construction, funding, and logistical support of a lunar base. Other analogs include transportation and national efforts versus international cooperation. A recommended lunar base using the South Pole Station as inspiration is provided, as well as details concerning economical construction of the base over a 22-year period.

  15. Use of international foundations of medicine clinical sciences examination to evaluate students' performance in the local examination at the University of Sharjah, United Arab Emirates.

    Science.gov (United States)

    Dash, Nihar Ranjan; Abdalla, Mohamed Elhassan; Hussein, Amal

    2017-01-01

    Several medical schools around the world are moving away from isolated, locally developed in-house assessments to the introduction of external examinations into their curriculum. Although the objective varies, it is typically done to evaluate, audit, and compare students' performance to international standards. Similarly, the International Foundations of Medicine-Clinical Sciences Examination (IFOM-CSE) was introduced in the College of Medicine at the University of Sharjah as an external assessment criterion in addition to the existing in-house assessments. The aim of this study was to compare the student performance in this newly introduced IFOM-CSE examination and the existing in-house final examination in the college. The scores of three consecutive final-year undergraduate medical student batches (2013-2015) who took both the IFOM-CSE and the existing in-house final examination were analyzed. Pearson correlation and one-way analysis of variance test were conducted using SPSS 22. The students' scores in the IFOM-CSE and in the final examination prepared locally were highly correlated with Pearson correlation coefficients of 0.787 for batch 2013, 0.827 for batch 2014, and 0.830 for batch 2015 (P correlated with their scores in the IFOM-CSE over all the three batches. Thus, introduction of external examination can be an important evaluation tool to a comprehensive internal assessment system providing evidence of external validity.

  16. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    Science.gov (United States)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  17. `Opening up' a science task: an exploration of shifting embodied participation of a multilingual primary student

    Science.gov (United States)

    Gómez Fernández, Roberto; Siry, Christina

    2018-05-01

    Culturally and linguistically diverse (CLD) students have different home languages and cultures from many of their peers, In our context, these students suffer from higher school drop-out rates than their peers and are far behind their peers in sciences. This study investigates the interactions of a nine-year-old child whose home language is Portuguese and who learns science in this specific case in a diglossic environment in the Luxembourgish school system, in which his teacher used German for written tasks and Luxembourgish for oral communication. We examine, moment-by-moment, the interactions around a task regarding environmental protection. The role of this Lusoburguês (Luxembourgish and Portuguese identities and nationalities combined) student and his embodiment and participation changes when his group is confronted with an activity that requires an increased amount of manipulation. His identity evolves in interaction, as he becomes the leader in his group, and through a playful stance, manages to open the task so that his peers can further explore. Implications include the value of including more open-ended investigations in the teaching and learning of science as well as implications for further study concerning practice-based approaches in science classrooms with CLD students, particularly in increasingly multilingual/cultural and/or diglossic or heteroglossic school contexts.

  18. Exploring the Self-Reported ICT Skill Levels of Undergraduate Science Students

    Directory of Open Access Journals (Sweden)

    Jef C. Verhoeven

    2015-12-01

    Full Text Available Computers have taken an important place in the training of science students and in the professional life of scientists. It is often taken for granted that most students have mastered basic Information and Communication Technologies (ICT skills; however, it has been shown that not all students are equally proficient in this regard. Starting from theories of socialization and technology acceptance we report how we constructed a structural equation model (SEM to explore the variance in the basic ICT skill levels of science students. We also present the results of a test of this model with university bachelor’s science students. Basic ICT skills were measured using a new, elaborate instrument allowing students to rate their skills in detail. Our results show that science students score high on basic ICT skills and that our SEM explains a large part of the variation in the ICT skill levels of these students. The most explanatory power is coming from four variables: the perceived ease of use and the perceived usefulness of a personal computer, the anxiety for using a personal computer, and students’ belief that ICT is necessary for scientific research.

  19. Exploring the Impact of Culture- and Language-Influenced Physics on Science Attitude Enhancement

    Science.gov (United States)

    Morales, Marie Paz E.

    2016-02-01

    "Culture," a set of principles that trace and familiarize human beings within their existential realities, may provide an invisible lens through which reality could be discerned. Critically explored in this study is how culture- and language-sensitive curriculum materials in physics improve Pangasinan learners' attitude toward science. Their cultural preference or profile defined their cultural dimensions, epistemological beliefs, and views on integration of culture and language in the teaching and learning processes. The culture- and language-influenced curriculum materials in physics were heavily influenced by Pangasinan learners' cultural preference or profile. Results of the experimental participants' pretest and posttest on science attitude measure, when compared, showed significant statistical difference. Assessment of science attitude enhancement favored the experimental group over the control group. Qualitative data gathered from postimplementation interviews, focus group discussions, and journal log entries indicated the same trend in favor of the experimental participants. The study yielded that culture and language integration in the teaching and learning processes of physics concepts allowed students to develop positive attitude to science, their culture, and native language.

  20. Exploring the Influence of Nature Relatedness and Perceived Science Knowledge on Proenvironmental Behavior

    Directory of Open Access Journals (Sweden)

    Amanda Obery

    2017-01-01

    Full Text Available This study was undertaken to investigate the factors influencing proenvironmental behavior of individuals residing in the Northern Rocky Mountains (N = 267. Measures of relatedness to nature and perceived science knowledge were collected through a convenience sample approach using multiple avenues such as city email lists, organizational newsletters, and social media channels. Analysis of the data was conducted using both partial least squares and covariance based structural equation modeling to explore the relationships between the constructs. Additionally, qualitative definitions of proenvironmental behavior were investigated in order to address potential gaps between self-reported and observed behaviors. Quantitative findings show a renewed positive connection between science education, nature relatedness, and proenvironmental behaviors. Furthermore, qualitative findings suggest positive relationships between how publicly people are willing to share their passion for the outdoors and their willingness to engage in proenvironmental behaviors.

  1. Polish Foundation for Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  2. Bridging the language gap: Exploring science teachers' dual role as teachers of content and English literacy

    Science.gov (United States)

    Arnold, Suzanne C.

    Responsibility for educating English language learners is increasingly falling on the shoulders of content specialists at the secondary level, as students are mainstreamed into classes. Therefore, providing these students an opportunity to achieve academic success depends largely on the quality of mainstream instruction (Cornell, 1995). Most teachers receive little or no preparation in how to work with English language learners. In my study, I address the instructional issues confronting three white, monolingual English-speaking middle school science teachers who must meet the demands of an increasing English language learner population. Specifically, this study explores teacher beliefs and enactment of reform-oriented science and sheltered instructional approaches to develop English language learners scientific and English literacy skills. I also explore the relationships that exist between these two dynamics in an effort to determine the extent to which teachers take on a dual role as teachers promoting English language and science proficiency. Using a participant observation case study method and my adaptation of Schwab's commonplaces heuristic, I analyzed the relationship between teacher beliefs, milieu, subject matter, and enactment in bridging the language gap in the science classroom for English language learners. The most noteworthy finding of this study was the significant role of milieu in enacting lessons that bridge the language gap and foster the development of English language learners science and English literacy skills. The findings suggest that greater attention be given to helping teachers establish a relationship-driven classroom milieu. You can provide all kinds of courses or professional learning experiences to improve teachers' instructional practices, but they must also recognize the importance of establishing relationships with their students; the coursework they take will not supplant the need to foster a warm and safe environment for all

  3. Molecular Energy and Environmental Science: A Workshop Sponsored by The National Science Foundation and The Department of Energy May 26-27, 1999 in Rosemont, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Stair, Peter C [Northwestern Univ., Evanston, IL (United States); DeSimone, Joseph M. [University of North Carolina Chapel Hill; Frost, John W. [Michigan State Univ., East Lansing, MI (United States)

    1999-05-26

    Energy and the environment pose major scientific and technological challenges for the 21st century. New technologies for increasing the efficiency of harvesting and utilizing energy resources are essential to the nation’s economic competitiveness. At the same time, the quality of life in the United States depends inherently on the environmental impact of energy production and utilization. This interdependence makes it imperative to develop a better understanding of the environment and new strategies for minimizing the impact of energy-related activities. Recent advances in techniques for the synthesis and characterization of chemicals and materials and for the molecular control of biological organisms make it possible, for the first time, to address this imperative. Chemistry, with its focus on the molecular level, plays a central role in addressing the needs for fundamental understanding and technology development in both the energy and environmental fields. Understanding environmental processes and consequences requires studying natural systems, rather than focussing exclusively on laboratory models. Natural systems and their complexity pose an enormous, perhaps the ultimate, challenge to chemists, and will provide them with varied and exciting new problems for years to come. In addition, the complexity of the underlying systems and processes often requires multi-disciplinary programs that bridge the interfaces between chemistry and other disciplines. (See Figure 1) This has ramifications in the approach to funding research and suggests needs for broadening the educational training of future scientists and engineers in these programs. Figure 1. NSF and DOE should consider sponsoring research centers and focused research groups organized to optimize their impact on Technological Challenges of national interest. The research will have significant impact if it addresses issues of fundamental molecular science in one or more Enabling Research Areas. Approximately 7

  4. Science and Exploration in the Classroom & Beyond: An Interdisciplinary STEAM Curriculum Developed by SSERVI Educators & Scientists

    Science.gov (United States)

    Becker, Tracy M.; Runyon, Cassandra; Cynthia, Hall; Britt, Daniel; Tracy Becker

    2017-10-01

    Through NASA’s Solar System Exploration Research Virtual Institute (SSERVI), the Center for Lunar and Asteroid Surface Science (CLASS) and the SSERVI Evolution and Environment of Exploration Destinations (SEEED) nodes have developed an interdisciplinary formal and informal hands-on curriculum to bring the excitement of space exploration directly to the students.With a focus on exploring asteroids, this 5-year effort has infused art with traditional STEM practices (creating STEAM) and provides teachers with learning materials to incorporate art, social studies, English language arts, and other courses into the lesson plans. The formal curricula being developed follows Next Generation Standards and incorporates effective and engaging pedagogical strategies, such as problem-based learning (PBL), design thinking, and document based questions, using authentic data and articles, some of which are produced by the SSERVI scientists. From the materials developed for the formal education component, we have built up a collection of informal activities of varying lengths (minutes to weeks-long programs) to be used by museums, girl and boy scouts, science camps, etc.The curricula are being developed by formal and informal educators, artists, storytellers, and scientists. The continual feedback between the educators, artists, and scientists enables the program to evolve and mature such that the material will be accessible to the students without losing scientific merit. Online components will allow students to interact with SSERVI scientists and will ultimately infuse ongoing, exciting research into the student’s lessons.Our Education & Public Engagement (EPE) program makes a strong effort to make educational material accessible to all learners, including those with visual or hearing impairments. Specific activities have been included or independently developed to give all students an opportunity to experience the excitement of the universe.

  5. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  6. Exploring Interdisciplinarity: a theoretical consideration of Bioethics at the interface between Theology, Philosophy and Life Sciences

    Directory of Open Access Journals (Sweden)

    Leentie de Lange

    2009-04-01

    Full Text Available Complex ethical problems resulting from research and advances in biotechnologies increasingly confront Christian ministers and theologians with difficult and complex moral dilemmas. Where do they turn to in order to give guidance and answer questions concerning practical bioethical problems? This article argues that Bioethics as the systematic study of specific moral dilemmas implies conjoining a variety of ethical methodologies in an interdisciplinary framework. In trying to clarify this complex nature of Bioethics when practiced specifically from a Christian Theological viewpoint, the article examines theoretical considerations regarding the interface between three contributing disciplines, viz. Theology, Philosophy and Life Sciences. This is done by investigating three questions: What is the place of Bioethics in the hierarchy of disciplines? In what way do Philosophy, Theology, and Life Sciences contribute to the theoretical foundations of interdisciplinary Bioethics?, and How do different methodologies relate to one another in order to show the true interdisciplinary character of Bioethics? The article concludes that it is vital to re-examine the theoretical basis of Bioethics as a philosophical grounding or methodology in order to place moral knowledge within a meta-theoretical and epistemological framework. It is clear that Bioethics is a complex endeavour served by many disciplines, as well as a complex interdisciplinary form of knowledge. Scholars, scientists and theologians must all learn to transcend the barriers between the multitude of interrogational disciplines and endeavour to work towards designing a well- founded and meaningful framework within which the methodological assumptions and theoretical grounding have been clarified, and one which also recognizes the complex interdisciplinary nature of Bioethics.

  7. [Analysis of funding of projects on obstetrics and gynecology supported by National Natural Science Foundation of China from 2007 to 2016].

    Science.gov (United States)

    Qin, S H; Huang, Q S; Yao, S Z

    2017-04-25

    Objective: To summarize the funding of scientific research projects on obstetrics and gynecology by National Natural Science Foundation of China (NSFC) from 2007 to 2016 and to display the hotspots of scientific research on obstetrics and gynecology. Methods: A systemic search was performed for the information of projects supported by NSFC from 2007 to 2016. The indicators for analysis included the number of projects, total investment, project categories, research units and research field. The research direction of each project was decided based on title, summary and key words provided by the profile of each project. Results: The total investment on obstetrics and gynecology by NSFC was 23.214 million with a total of 82 projects in 2007. It increased year by year and reached the peak in 2014 (359 projects 208.990 million). The investment and number of projects remained stable after 2014. General projects (1 109 projects 608.000 million) formed the majority of projects. Youth science fund projects (1 035 projects 214.976 million) increased steadily and the number was nearly equal to general projects. There were only a small amount of key projects (20 projects 54.720 million) and major projects (7 projects 38.400 million). The investment varied in different research units. The greatest 10 units (less than 6% of total), including 7 comprehensive universities, 2 medical universities and 1 institute of medicine, got 1 113 projects invested (43.84% of total, 1 113/2 539). The hot areas like gynecological tumor (920 projects 350.615 million), hypertensive disorders complicating pregnancy (91 projects 37.470 million) and polycystic ovarian syndrome (77 projects 29.540 million) were more likely to receive investment, while some interdisciplinary science like maternal and child health (28 projects 12.050 million), imaging and biomedicine (37 projects 14.770 million) began to achieve attention in recent years. Conclusions: The number of researches invested will be increased

  8. Exploration

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  9. Mathematical foundation of computer science

    CERN Document Server

    Singh, YN

    2005-01-01

    The interesting feature of this book is its organization and structure. That consists of systematizing of the definitions, methods, and results that something resembling a theory. Simplicity, clarity, and precision of mathematical language makes theoretical topics more appealing to the readers who are of mathematical or non-mathematical background. For quick references and immediate attentions¾concepts and definitions, methods and theorems, and key notes are presented through highlighted points from beginning to end. Whenever, necessary and probable a visual approach of presentation is used. The amalgamation of text and figures make mathematical rigors easier to understand. Each chapter begins with the detailed contents, which are discussed inside the chapter and conclude with a summary of the material covered in the chapter. Summary provides a brief overview of all the topics covered in the chapter. To demonstrate the principles better, the applicability of the concepts discussed in each topic are illustrat...

  10. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

  11. Exploring the Use of Lesson Study to Develop Elementary Preservice Teachers' Pedagogical Content Knowledge for Teaching Nature of Science

    Science.gov (United States)

    Akerson, Valarie L.; Pongsanon, Khemmawadee; Park Rogers, Meredith A.; Carter, Ingrid; Galindo, Enrique

    2017-01-01

    This study explored a modified version of Japanese Lesson Study to determine whether and how it influenced preservice elementary teachers in their abilities to deliver science lessons that included nature of science (NOS) to their own students. We used a case study approach that focused on one subset of a cohort of preservice elementary teachers…

  12. NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration

    Science.gov (United States)

    Bell, Mary S.

    2014-01-01

    The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.

  13. Practice and Exploration of New Rural Construction in West Bank of Taiwan Strait Led by Spark Science and Technology

    OpenAIRE

    Li, Chaocan

    2013-01-01

    According to practice and exploration of spark program for 26 years in Quanzhou, the main model and their effects of new rural construction in west bank of Taiwan Strait led by spark science and technology were expounded. Six spark program systems were established, consisting of policy support guide, science and technology project lead, experts’ intelligence support, spark science and technology training, sci-tech information service and spark program demonstration. Five spark projects were...

  14. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    Science.gov (United States)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  15. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  16. Exploring culture in the world of international nutrition and nutrition sciences.

    Science.gov (United States)

    Centrone Stefani, Monique; Humphries, Debbie L

    2013-09-01

    This symposium was organized to bring insights from the social sciences into the awareness of nutrition scientists committed to developing and implementing effective nutrition interventions internationally. The symposium explored three different areas in the field where a more precise analysis of culture could enhance the effectiveness of nutrition science: 1) in the implementation of nutrition science research in the field; 2) in the collaboration of multiple stakeholders working to enhance nutrition in a national setting; and 3) in the language and discussions used to frame proposed changes in large scale food and nutrition security policy transnationally. Three social scientists, Monique Centrone Stefani, Lucy Jarosz, and David Pelletier were invited to share insights from their respective disciplines and respondents from within the field of nutrition provided initial reflections to better understand such perspectives. The symposium's interdisciplinary nature was designed to illustrate the challenge of multiple perspectives and methodologies and to advance understanding that could derive from such an exchange for those in the field of international nutrition seeking to decrease global hunger and malnutrition.

  17. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  18. Exploring professional development needs of educators in the health sciences professions.

    Science.gov (United States)

    Schönwetter, Dieter J; Hamilton, Joanne; Sawatzky, Jo-Ann V

    2015-02-01

    An increasing number of institutions of higher education are clustering their health sciences schools into a common unit. Therefore, it is imperative that the individual faculty development units assume new mandates to meet faculty development needs for stakeholders across these disciplines. Critical to providing current and relevant professional development activities is an awareness of the needs of academicians, including common as well as discipline-specific needs. Hence, the aim of this study was to explore the extent to which factors such as discipline, rank, gender, education, and years as an academician impact on perceived needs for faculty development. In February 2012, a cross-sectional survey of the perceived faculty development needs of academicians in the health sciences unit of a Canadian university was conducted using an online assessment tool. A total of 133 out of 1,409 potential participants completed the survey, for a response rate of 9.4%. The findings revealed more similarities than differences in terms of perceived faculty development needs. In addition, differences were found across all health professions schools and in factors such as discipline, academic rank, education, gender, and years as an academician. These findings suggest that faculty development and educational specialists should understand the shared as well as the unique needs of the individual health sciences schools in planning their professional development services.

  19. A Case Study Exploring the Identity of an In-Service Elementary Science Teacher: a Language Teacher First

    Science.gov (United States)

    Marco-Bujosa, Lisa; Levy, Abigail Jurist; McNeill, Katherine

    2018-01-01

    Teachers are central to providing high-quality science learning experiences called for in recent reform efforts, as their understanding of science impacts both what they teach and how they teach it. Yet, most elementary teachers do not enter the profession with a particular interest in science or expertise in science teaching. Research also indicates elementary schools present unique barriers that may inhibit science teaching. This case study utilizes the framework of identity to explore how one elementary classroom teacher's understandings of herself as a science specialist were shaped by the bilingual elementary school context as she planned for and provided reform-based science instruction. Utilizing Gee's (2000) sociocultural framework, identity was defined as consisting of four interrelated dimensions that served as analytic frames for examining how this teacher understood her new role through social positioning within her school. Findings describe the ways in which this teacher's identity as a science teacher was influenced by the school context. The case study reveals two important implications for teacher identity. First, collaboration for science teaching is essential for elementary teachers to change their practice. It can be challenging for teachers to form an identity as a science teacher in isolation. In addition, elementary teachers new to science teaching negotiate their emerging science practice with their prior experiences and the school context. For example, in the context of a bilingual school, this teacher adapted the reform-based science curriculum to better meet the unique linguistic needs of her students.

  20. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has

  1. NASA's Space Launch System: A New Capability for Science and Exploration

    Science.gov (United States)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  2. An exploration of the science teaching orientations of Indian science teachers in the context of curriculum reform

    Science.gov (United States)

    Nargund-Joshi, Vanashri

    This study explores the concepts and behaviors, otherwise referred to as orientations, of six Indian science teachers and the alignment of these orientations to the 2005 India National Curriculum Framework (NCF-2005). Differences in teachers' orientations across grade bands (elementary, middle, and secondary) and school types (public versus private) are also examined to determine how contextual factors may influence this alignment. First, a content analysis of the NCF-2005 was completed to identify the overarching principles of the NCF-2005 and goals specific to the teaching and learning of science. Interviews with school principals were also analyzed to understand how the goals of NCF-2005 were communicated to schools and teachers. Together, these data sources served to answer research question one. Next, profiles were created based on three interviews with each teacher and several observations of their teaching. These profiles provide a point of reference for answering the remaining three research questions. Findings include teacher's orientations falling along a continuum from traditionalist in nature to inquiry/constructivist in nature. Stark contrasts were found between traditionalist orientations and the goals of NCF-2005, with much of this contrast due to the limited pedagogical content knowledge these teachers have regarding students' scientific thinking, curriculum design, instructional strategies, and assessment. Inquiry/constructivist teachers' orientations, while more in line with reform, still have a few key areas of pedagogical content knowledge needing attention (e.g., knowledge of assessment and a variety of purposes for constructivist instructional strategies). In response to the final research question, several contextual factors contributed to teachers' orientations including environmental constraints, such as limited resources and large class sizes, cultural testing pressures, and limited accessibility to professional development. Suggestions

  3. Exploring knowledge perceptions and attitudes about generic medicines among finalyear health science students

    Directory of Open Access Journals (Sweden)

    Varsha Bangalee

    2016-05-01

    Full Text Available Background. The use of generic medicines to reduce healthcare costs has become a mandated policy in South Africa. An increase in the use of generics can be achieved through improved knowledge, attitudes and perceptions of generic medicine among healthcare professionals. Objective. To explore knowledge, attitudes and perceptions among final-year health science students on generic medication. Methods. A cross-sectional survey was carried out among the final-year audiology, dental therapy, pharmacy, physiotherapy, occupational therapy, optometry, speech-language and sport science students enrolled at the University of KwaZulu-Natal. A questionnaire was used as the study tool, developed using information adapted from literature reviews. Data analysis was completed using Statistical Package for the Social Sciences (SPSS version 21, and computed using descriptive statistics. Results. Total number of participants was 211, as follows: audiology (n=14, dental therapy (n=15, pharmacy (n=81, physiotherapy (n=41, occupational therapy (n=6, optometry (n=25, speech-language (n=6 and sport science (n=23. A total of 90.0% of students had heard of generic medicines, with 20.9% of them agreeing that generic medicines are less effective than brand-name medicines. Concerning safety, 30.4% believed that brand-name medicines are required to meet higher safety standards than generic medicines. Regarding the need for information on issues pertaining to safety and efficacy of medicines, 53.3% of participants felt that this need was not being met. Conclusion. All groups had knowledge deficits about the safety, quality and efficacy of generic medicines. The dissemination of information about generic medicines may strengthen future knowledge, attitudes and perceptions.

  4. [Statistics and analysis on acupuncture and moxibustion projects of the National Natural Science Foundation of China of traditional Chinese medicine universities and colleges in recent 10 years: taking the General Program and National Science Fund for Young Scholars as examples].

    Science.gov (United States)

    Li, Qingling; Ma, Qiang; Li, Dan; Liu, Nana; Yang, Jiahui; Sun, Chun; Cheng, Cheng; Jia, Xuezhao; Wang, Jing; Zeng, Yonglei

    2018-03-12

    To analyze statistically the situation of the National Natural Science Foundation of China (NSFC) from 2007 to 2016 in the field of acupuncture and moxibustion for supporting the national Universities colleges of traditional Chinese medicine on the General Program (GP) and the National Science Fund for Young Scholars (NSFYS). In view of five aspects, named fund, supporting units, key words, method, disorder and signal path, the differences were compared between GP and NSFYS, the following characteristics were summarized. ① The fund aid was increased from 2007 through 2013 and down-regulated from 2013 through 2016. In recent ten years, the funding condition was fluctuated, but increasing in tendency generally. ② The relevant projects of the same research direction had been approved continuously for over 3 years in a part of TCM universities, in which, the research continuity was the hot topic. ③ Regarding the therapeutic methods, acupuncture was the chief therapy; electroacupuncture, moxibustion and acupoints were involved as well. ④ The disorders involved in the research were cerebral ischemia, myocardial ischemia and reperfusion injury. It is suggested that the ischemic disorder is predominated in the research. ⑤ The signal path occupied the main research index system, including cell proliferation, metabolism, immune, apoptosis and autophagy. The researches on the other aspects were less.

  5. Conceptual Change in Psychology Students' Acceptance of the Scientific Foundation of the Discipline

    Science.gov (United States)

    Amsel, Eric; Ashley, Aaron; Baird, Todd; Johnston, Adam

    2014-01-01

    Two studies explored conceptual change in undergraduate psychology students' acceptance of the scientific foundations of the discipline. In Study 1, Introductory Psychology students completed the Psychology as Science questionnaire (PAS) at the beginning and end of the semester and did so from their own (Self Condition) and their instructors'…

  6. Exploring the Cognitive Foundations of the Shared Attention Mechanism: Evidence for a Relationship between Self-Categorization and Shared Attention across the Autism Spectrum

    Science.gov (United States)

    Skorich, Daniel P.; Gash, Tahlia B.; Stalker, Katie L.; Zheng, Lidan; Haslam, S. Alexander

    2017-01-01

    The social difficulties of autism spectrum disorder (ASD) are typically explained as a disruption in the Shared Attention Mechanism (SAM) sub-component of the theory of mind (ToM) system. In the current paper, we explore the hypothesis that SAM's capacity to construct the self-other-object relations necessary for shared-attention arises from a…

  7. SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL ...

    Indian Academy of Sciences (India)

    SCIENCE WHERE CULTURE MATTERS: A NEO-CLASSICAL APPROACH TO EXPLORE UNTAPPED BACTERIAL DIVERSITY. MILIND WATVE; Dept of Microbiology, Abasaheb Garware College, Pune. www.culturematters.org; * Life Research Foundation, Pune; * Evolvus Biotech Pvt. Ltd.,Pune ...

  8. A preliminary exploration of Advanced Molecular Bio-Sciences Research Center

    International Nuclear Information System (INIS)

    Yamada, Yutaka; Yanai, Takanori; Onodera, Jun'ichi; Yamagami, Mutsumi; Sakata, Hiroshi; Sota, Masahiro; Takemura, Tatsuo; Koyama, Kenji; Sato, Fumiaki

    2000-01-01

    Low-dose and low-dose-rate radiation effects on life-span, pathological changes, hemopoiesis and cytokine production in experimental animals have been investigated in our laboratory. In the intermediate period of the investigation, an expert committee on radiation biology, which was composed of two task groups, was organized. The purposes of the committee were to assess of previous studies and plan future research for Advanced Molecular Bio-Sciences Research Center (AMBIC). In its report, the committee emphasized the necessity of molecular research in radiation biology and ecology, and proposed six subjects for the research: 1) Molecular carcinogenesis of low-dose radiation; 2) Radiation effects on the immune system and hemopoietic system; 3) Molecular mechanisms of hereditary effect; 4) Non cancer effect of low-dose radiation; 5) Gene targeting for ion transport system in plants; 6) Bioremediation with transgenic plant and bacteria. Exploration of the AMBIC project will continue under the committee's direction. (author)

  9. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  10. Mesothelioma Applied Research Foundation

    Science.gov (United States)

    ... Foundation Experts Can Answer Your Questions! The Mesothelioma Applied Research Foundation's team of experts is available to answer ... a law firm. Read more about the Mesothelioma Applied Research Foundation . TO GET HELP CALL: (877) End-Meso ...

  11. Rover exploration on the lunar surface; a science proposal for SELENE-B mission

    Science.gov (United States)

    Sasaki, S.; Kubota, T.; Akiyama, H.; Hirata, N.; Kunii, Y.; Matsumoto, K.; Okada, T.; Otake, M.; Saiki, K.; Sugihara, T.

    LUNARSURFACE:ASCIENCES. Sasaki (1), T. Kubota (2) , H. Akiyama (1) , N. Hirata (3), Y. Kunii (4), K. Matsumoto (5), T. Okada (2), M. Otake (3), K. Saiki (6), T. Sugihara (3) (1) Department of Earth and Planetary Science, Univ. Tokyo, (2) Institute of Space and Astronautical Sciences, (3) National Space Development Agency of Japan, (4) Department of Electrical and Electronic Engineering, Chuo Univ., (5) National Aerospace Laboratory of Japan, (6) Research Institute of Materials and Resources, Akita Univ. sho@eps.s.u -tokyo.ac.jp/Fax:+81-3-5841-4569 A new lunar landing mission (SELENE-B) is now in consideration in Japan. Scientific investigation plans using a rover are proposed. To clarify the origin and evolution of the moon, the early crustal formation and later mare volcanic processes are still unveiled. We proposed two geological investigation plans: exploration of a crater central peak to discover subsurface materials and exploration of dome-cone structures on young mare region. We propose multi-band macro/micro camera using AOTF, X-ray spectrometer/diffractometer and gamma ray spectrometer. Since observation of rock fragments in brecciaed rocks is necessary, the rover should have cutting or scraping mechanism of rocks. In our current scenario, landing should be performed about 500m from the main target (foot of a crater central peak or a cone/dome). After the spectral survey by multi-band camera on the lander, the rover should be deployed for geological investigation. The rover should make a short (a few tens meter) round trip at first, then it should perform traverse observation toward the main target. Some technological investigations on SELENE-B project will be also presented.

  12. Foundations of resilience thinking.

    Science.gov (United States)

    Curtin, Charles G; Parker, Jessica P

    2014-08-01

    Through 3 broad and interconnected streams of thought, resilience thinking has influenced the science of ecology and natural resource management by generating new multidisciplinary approaches to environmental problem solving. Resilience science, adaptive management (AM), and ecological policy design (EPD) contributed to an internationally unified paradigm built around the realization that change is inevitable and that science and management must approach the world with this assumption, rather than one of stability. Resilience thinking treats actions as experiments to be learned from, rather than intellectual propositions to be defended or mistakes to be ignored. It asks what is novel and innovative and strives to capture the overall behavior of a system, rather than seeking static, precise outcomes from discrete action steps. Understanding the foundations of resilience thinking is an important building block for developing more holistic and adaptive approaches to conservation. We conducted a comprehensive review of the history of resilience thinking because resilience thinking provides a working context upon which more effective, synergistic, and systems-based conservation action can be taken in light of rapid and unpredictable change. Together, resilience science, AM, and EPD bridge the gaps between systems analysis, ecology, and resource management to provide an interdisciplinary approach to solving wicked problems. © 2014 Society for Conservation Biology.

  13. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  14. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  15. Dilemmas of reform: An exploration of science teachers' collective sensemaking of formative assessment practices

    Science.gov (United States)

    Heredia, Sara Catherine

    Current reform efforts in science education call for significant shifts in how science is taught and learned. Teachers are important gatekeepers for reform, as they must enact these changes with students in their own classrooms. As such, professional development approaches need to be developed and studied to understand how teachers interpret and make instructional plans to implement these reforms. However, traditional approaches to studying implementation of reforms often draw on metrics such as time allotted to new activities, rather than exploring the ways in which teachers make sense of these reforms. In this dissertation I draw upon a body of work called sensemaking that has focused on locating learning in teachers' conversations in departmental work groups. I developed a conceptual and analytic framework to analyze how teachers make sense of reform given their local contexts and then used this framework to perform a case study of one group of teachers that participated in larger professional development project that examined the impact of a learning progression on science teachers' formative assessment practices. I draw upon videotapes of three years of monthly professional development meetings as my primary source of data, and used an ethnographic approach to identify dilemmas surfaced by teachers, sources of ambiguity and uncertainty, and patterns of and resources for teacher sensemaking. The case study reveals relationships between the type of dilemma surfaced by the teachers and different patterns of sensemaking for modification of teaching practices. When teachers expressed concerns about district or administrative requirements, they aligned their work in the professional development to those external forces. In contrast, teachers were able to develop and try out new practices when they perceived coherence between the professional development and school or district initiatives. These results underscore the importance of coherence between various

  16. Development of NASA's Small Fission Power System for Science and Human Exploration

    Science.gov (United States)

    Gibson, Marc A.; Mason, Lee S.; Bowman, Cheryl L.; Poston, David I.; McClure, Patrick R.; Creasy, John; Robinson, Chris

    2015-01-01

    Exploration of our solar system has brought many exciting challenges to our nations scientific and engineering community over the past several decades. As we expand our visions to explore new, more challenging destinations, we must also expand our technology base to support these new missions. NASAs Space Technology Mission Directorate is tasked with developing these technologies for future mission infusion and continues to seek answers to many existing technology gaps. One such technology gap is related to compact power systems (1 kWe) that provide abundant power for several years where solar energy is unavailable or inadequate. Below 1 kWe, Radioisotope Power Systems have been the workhorse for NASA and will continue to be used for lower power applications similar to the successful missions of Voyager, Ulysses, New Horizons, Cassini, and Curiosity. Above 1 kWe, fission power systems become an attractive technology offering a scalable modular design of the reactor, shield, power conversion, and heat transport subsystems. Near term emphasis has been placed in the 1-10kWe range that lies outside realistic radioisotope power levels and fills a promising technology gap capable of enabling both science and human exploration missions. History has shown that development of space reactors is technically, politically, and financially challenging and requires a new approach to their design and development. A small team of NASA and DOE experts are providing a solution to these enabling FPS technologies starting with the lowest power and most cost effective reactor series named Kilopower that is scalable from approximately 1-10 kWe.

  17. Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data

    Science.gov (United States)

    Bernhard, Germar; Booth, Charles R.; Ehramjian, James C.; Stone, Robert; Dutton, Ellsworth G.

    2007-05-01

    Spectral ultraviolet (UV) and visible irradiance has been measured near Barrow, Alaska (71°N, 157°W), between 1991 and 2005 with a SUV-100 spectroradiometer. The instrument is part of the U.S. National Science Foundation's UV Monitoring Network. Here we present results based on the recently produced "version 2" data release, which supersedes published "version 0" data. Cosine error and wavelength-shift corrections applied to the new version increased biologically effective UV dose rates by 0-10%. Corrected clear-sky measurements of different years are typically consistent to within ±3%. Measurements were complemented with radiative transfer model calculations to retrieve total ozone and surface albedo from measured spectra and for the separation of the different factors influencing UV and visible radiation. A climatology of UV and visible radiation was established, focusing on annual cycles, trends, and the effect of clouds. During several episodes in spring of abnormally low total ozone, the daily UV dose at 305 nm exceeded the climatological mean by up to a factor of 2.6. Typical noontime UV Indices during summer vary between 2 and 4; the highest UV Index measured was 5.0 and occurred when surface albedo was unusually high. Radiation levels in the UV-A and visible exhibit a strong spring-autumn asymmetry. Irradiance at 345 nm peaks on approximately 20 May, 1 month before the solstice. This asymmetry is caused by increased cloudiness in autumn and high albedo in spring, when the snow covered surface enhances downwelling UV irradiance by up to 57%. Clouds reduce UV radiation at 345 nm on average by 4% in March and by more than 40% in August. Aerosols reduce UV by typically 5%, but larger reductions were observed during Arctic haze events. Stratospheric aerosols from the Pinatubo eruption in 1991 enhanced spectral irradiance at 305 nm for large solar zenith angles. The year-to-year variations of spectral irradiance at 305 nm and of the UV Index are mostly caused

  18. Exploring Europa's Habitability: Science achieved from the Europa Orbiter and Clipper Mission Concepts

    Science.gov (United States)

    Senske, D. A.; Prockter, L. M.; Pappalardo, R. T.; Patterson, G. W.; Vance, S.

    2012-12-01

    Europa is a prime candidate in the search for present-day habitable environments in our solar system. Europa is unique among the large icy satellites because it probably has a saltwater ocean today beneath an ice shell that is geodynamically active. The combination of irradiation of its surface and tidal heating of its interior could make Europa a rich source of chemical energy for life. Perhaps most importantly, Europa's ocean is believed to be in direct contact with its rocky mantle, where conditions could be similar to those on Earth's biologically rich sea floor. Hydrothermal zones on Earth's seafloor are known to be rich with life, powered by energy and nutrients that result from reactions between the seawater and the warm rocky ocean floor. Life as we know it depends on three principal "ingredients": 1) a sustained liquid water environment; 2) essential chemical elements that are critical for building life; and 3) a source of energy that could be utilized by life. Europa's habitability requires understanding whether it possesses these three ingredients. NASA has enlisted a study team to consider Europa mission options feasible over the next decade, compatible with NASA's projected planetary science budget and addressing Planetary Decadal Survey priorities. Two Europa mission concepts (Orbiter and multiple flyby—call the "Clipper") are undergoing continued study with the goal to "Explore Europa to investigate its habitability." Each mission would address this goal in complementary ways, with high science value of its own. The Orbiter and Clipper architectures lend themselves to specific types of scientific measurements. The Orbiter concept is tailored to the unique geophysical science that requires being in orbit at Europa. This includes confirming the existence of an ocean and characterizing that ocean through geophysical measurements of Europa's gravitational tides and magnetic induction response. It also includes mapping of the global morphology and

  19. Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland

    Science.gov (United States)

    Mthethwa-Kunene, Khetsiwe Eunice Faith

    Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of

  20. `Hard science': a career option for socially and societally interested students? Grade 12 students' vocational interest gap explored

    Science.gov (United States)

    Struyf, Annemie; Boeve-de Pauw, Jelle; Van Petegem, Peter

    2017-11-01

    A key theme in science education research concerns the decline in young peoples' interest in science and the need for professionals in hard science. Goal Congruity Theory posits that an important aspect of the decision whether to pursue hard science for study or as a career is the perception that hard science careers do not fulfil social (working with people) and societal (serving or helping others) interests. In this qualitative study, we explore grade 12 students' perceptions about the social and societal orientation of hard science careers. Furthermore, we investigate the variation in students' social and societal interests. Six focus groups were conducted with 58 grade 12 students in Flanders. Our results indicate that a number of students hold stereotypical views about hard science careers' social orientation, while others believe cooperation with others is an important aspect of hard science careers nowadays. Furthermore, our results show that students believe hard science careers can be societally oriented in the sense that they often associate them with innovation or societal progress. Finally, our results indicate that students may differentiate direct versus indirect societal orientation. These findings contribute to literature regarding social and societal interests and students' perceptions of hard science careers.

  1. Oceans and Human Health (OHH): a European perspective from the Marine Board of the European Science Foundation (Marine Board-ESF).

    Science.gov (United States)

    Moore, Michael N; Depledge, Michael H; Fleming, Lora; Hess, Philipp; Lees, David; Leonard, Paul; Madsen, Lise; Owen, Richard; Pirlet, Hans; Seys, Jan; Vasconcelos, Vitor; Viarengo, Aldo

    2013-05-01

    will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.

  2. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  3. Exploring the Cognitive Foundations of the Shared Attention Mechanism: Evidence for a Relationship Between Self-Categorization and Shared Attention Across the Autism Spectrum.

    Science.gov (United States)

    Skorich, Daniel P; Gash, Tahlia B; Stalker, Katie L; Zheng, Lidan; Haslam, S Alexander

    2017-05-01

    The social difficulties of autism spectrum disorder (ASD) are typically explained as a disruption in the Shared Attention Mechanism (SAM) sub-component of the theory of mind (ToM) system. In the current paper, we explore the hypothesis that SAM's capacity to construct the self-other-object relations necessary for shared-attention arises from a self-categorization process, which is weaker among those with more autistic-like traits. We present participants with self-categorization and shared-attention tasks, and measure their autism-spectrum quotient (AQ). Results reveal a negative relationship between AQ and shared-attention, via self-categorization, suggesting a role for self-categorization in the disruption in SAM seen in ASD. Implications for intervention, and for a ToM model in which weak central coherence plays a role are discussed.

  4. Exploring the possible reasons why the UK Government commended the EFQM (European Foundation for Quality Management) excellence model as the framework for delivering governance in the new NHS.

    Science.gov (United States)

    Jackson, S

    1999-01-01

    A brief introduction into recent developments of the EFQM Excellence Model and the United Kingdom (UK) Government's agenda for ensuring that quality is at the heart of all decision making is given. In view of the Government explicitly commending the use of the EFQM Excellence Model to all organisations within the National Health Service, the author decides to explore the possible reasons behind the commendation. When comparing the EFQM Excellence Model with the Government's vision for quality, the former emerges as a more than ideal tool for any organisation wishing to commence or strengthen their journey on the road to quality and/or excellence; particularly as the EFQM Excellence Model is based on the principles of self-assessment, continuous improvement, learning and innovation, teamwork and a culture totally focused on the customer. Finally, ten possible reasons behind the Government commending the use of the Model are given.

  5. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  6. Foundations of combinatorics with applications

    CERN Document Server

    Bender, Edward A

    2006-01-01

    This introduction to combinatorics, the foundation of the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics.The four-part treatment begins with a section on counting and listing that covers basic counting, functions, decision trees, and sieving methods. The following section addresses fundamental concepts in graph theory and a sampler of graph topics. The third part examines a variety of applications relevant to computer science and mathematics, including induction and recursion, sorti

  7. Teaching health science students foundation motivational interviewing skills: use of motivational interviewing treatment integrity and self-reflection to approach transformative learning.

    Science.gov (United States)

    M, Schoo A; S, Lawn; E, Rudnik; C, Litt J

    2015-12-21

    Many undergraduate and graduate-entry health science curricula have incorporated training in motivational interviewing (MI). However, to effectively teach skills that will remain with students after they graduate is challenging. The aims of this study were to find out self-assessed MI skills of health students and whether reflecting on the results can promote transformative learning. Thirty-six Australian occupational therapy and physiotherapy students were taught the principles of MI, asked to conduct a motivational interview, transcribe it, self-rate it using the Motivational Interviewing Treatment Integrity (MITI) tool and reflect on the experience. Student MI skills were measured using the reported MITI subscores. Student assignments and a focus group discussion were analysed to explore the student experience using the MITI tool and self-reflection to improve their understanding of MI principles. Students found MI challenging, although identified the MITI tool as useful for promoting self-reflection and to isolate MI skills. Students self-assessed their MI skills as competent and higher than scores expected from beginners. The results inform educational programs on how MI skills can be developed for health professional students and can result in transformative learning. Students may over-state their MI skills and strategies to reduce this, including peer review, are discussed. Structured self-reflection, using tools such as the MITI can promote awareness of MI skills and compliment didactic teaching methods.

  8. Exploring Our World with Dr. Ryan: an adventure-science video series

    Science.gov (United States)

    vachon, R. W.; Kramer, N.

    2011-12-01

    Science is embedded in all that we do and experience. It brings perspective to the simplest and most complex systems: A rocket breaking free of the Earth's gravitational field to single stream recycling of waste. Everything! To many of us, these concepts are acknowledged as a part of our lives, but remain at arm's length because we don't understand the fundamental principles that make them all possible. However individuals, armed with information, make wise decisions about their lives and the world that we share. The adults of tomorrow are quickly growing up, which makes effective science outreach to youth all the more important, even urgent. In this presentation we shall describe the infrastructure behind the exciting Exploring Our World with Dr. Ryan series. These stirring, web-based videos (~4 min) are designed to educate audiences (with a target age of 8-12 years old) about various aspects of the world in which we live. Currently we are working on a Climate Change sub-series. The well-produced films are designed to be placed into the hands of educators but are appealing to youth outside of the classroom. The short vignettes are concise descriptions of fascinating and timely scientific topics, making them ideal multimodal teaching tools, introductions to topics of discussion and alternative perspectives to textbook-based curriculum. The series leverages enthusiastic hosting, otherwise inaccessible scientific expertise and authentic illustrations of experimentation. Additionally, each episode is strengthened by a carefully conceived work-flow that not only emphasizes the desired content but encourages critical thinking, models scientific methodology, humanizes scientists and celebrates collaborations that lead to clearer understandings of the Big Picture. Robust social networking is the capsicum to the series successful outreach. Example episode: http://vimeo.com/22397380

  9. Exploring the Relationships between Self-Efficacy and Preference for Teacher Authority among Computer Science Majors

    Science.gov (United States)

    Lin, Che-Li; Liang, Jyh-Chong; Su, Yi-Ching; Tsai, Chin-Chung

    2013-01-01

    Teacher-centered instruction has been widely adopted in college computer science classrooms and has some benefits in training computer science undergraduates. Meanwhile, student-centered contexts have been advocated to promote computer science education. How computer science learners respond to or prefer the two types of teacher authority,…

  10. Psychological foundations of xenophilia: the role of major personality traits in predicting favorable attitudes toward cross-cultural contact and exploration.

    Science.gov (United States)

    Stürmer, Stefan; Benbow, Alison E F; Siem, Birte; Barth, Markus; Bodansky, Alexander N; Lotz-Schmitt, Katharina

    2013-11-01

    Building on an integration of research findings on intergroup behavior from multiple fields of scientific inquiry (biological and cultural paleoanthropology, social psychology), as well as research on the HEXACO personality framework (e.g., Ashton & Lee, 2007), 3 independent studies (total N = 1,007) were conducted to introduce and test a fresh personality perspective on human xenophilia. Even though the studies focused on different criteria (Study 1: favorable attitudes toward contact with immigrants, Study 2: habitual cross-cultural exploration, Study 3: favorable attitudes toward contact with indigenous people) and employed different operationalizations of major personality traits (the HEXACO Personality Inventory-Revised [HEXACO-PI-R], the 10-item Big Five Inventory [BFI-10]) results were remarkably similar. First, path analyses confirmed that major personality traits were significant and direct predictors of xenophilia that were independent of the contributions of individual differences commonly predicting xenophobic reactions across studies. Second, and in line with the authors' more specific hypotheses, hierarchical regression analyses also corroborated that individual differences in the levels of endeavor-related personality traits (i.e., eXtraversion, Openness, and Conscientiousness) had a substantially greater power in predicting individual differences in xenophilia than individual differences in levels of altruism/cooperation-related traits (i.e., Honesty-Humility, Emotionality, and Agreeableness). The implications of these findings for more general psychological theorizing on human sociality are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved

  11. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  12. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    Science.gov (United States)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  13. Lunar Flashlight: Exploration and Science at the Moon with a 6U Cubesat

    Science.gov (United States)

    Cohen, B. A.; Hayne, P. O.; Greenhagen, B. T.; Paige, D. A.

    2015-12-01

    Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system. In order to address NASA's SKGs, the Lunar Flashlight mission was selected as a secondary payload on the first test flight (EM1) of the Space Launch System (SLS), currently scheduled for 2018. Recent reflectance data from LRO instruments suggest volatiles may be present on the surface, though the detection is not yet definitive. The goal of Lunar Flashlight is to determine the presence or absence of exposed water ice and map its concentration at the 1-2 kilometer scale within the PSRs. After being ejected in cislunar space by SLS, Lunar Flashlight maneuvers into a low-energy transfer to lunar orbit and then an elliptical polar orbit, spiraling down to a perilune of 10-30 km above the south pole for data collection. Lunar Flashlight will illuminate permanently shadowed regions, measuring surface albedo with point spectrometer at 1.1, 1.5 1.9, and 2.0 mm. Water ice will be distinguished from dry regolith in two ways: 1) spatial variations in absolute reflectance (water ice is much brighter in the continuum channels), and 2) reflectance ratios between absorption and continuum channels. Derived reflectance and water ice band depths will be mapped onto the lunar surface in order to distinguish the composition of the PSRs from that of the sunlit terrain, and to compare with lunar datasets such as LRO and Moon Mineralogy Mapper. Lunar Flashlight enables a low-cost path to science and in-situ resource utilization (ISRU) by identifying ice deposits (if there are any), which would be a game-changing result for expanded human exploration.

  14. The TMT International Observatory: A quick overview of future opportunities for planetary science exploration

    Science.gov (United States)

    Dumas, Christophe; Dawson, Sandra; Otarola, Angel; Skidmore, Warren; Squires, Gordon; Travouillon, Tony; Greathouse, Thomas K.; Li, Jian-Yang; Lu, Junjun; Marchis, Frank; Meech, Karen J.; Wong, Michael H.

    2015-11-01

    The construction of the Thirty-Meter-Telescope International Observatory (TIO) is scheduled to take about eight years, with first-light currently planned for the horizon 2023/24, and start of science operations soon after. Its innovative design, the unequalled astronomical quality of its location, and the scientific capabilities that will be offered by its suite of instruments, all contribute to position TIO as a major ground-based facility of the next decade.In this talk, we will review the expected observing performances of the facility, which will combine adaptive-optics corrected wavefronts with powerful imaging and spectroscopic capabilities. TMT will enable ground-based exploration of our solar system - and planetary systems at large - at a dramatically enhanced sensitivity and spatial resolution across the visible and near-/thermal- infrared regimes. This sharpened vision, spanning the study of planetary atmospheres, ring systems, (cryo-)volcanic activity, small body populations (asteroids, comets, trans-Neptunian objects), and exoplanets, will shed new lights on the processes involved in the formation and evolution of our solar system, including the search for life outside the Earth, and will expand our understanding of the physical and chemical properties of extra-solar planets, complementing TIO's direct studies of planetary systems around other stars.TIO operations will meet a wide range of observing needs. Observing support associated with "classical" and "queue" modes will be offered (including some flavors of remote observing). The TIO schedule will integrate observing programs so as to optimize scientific outputs and take into account the stringent observing time constraints often encountered for observations of our solar system such as, for instance, the scheduling of target-of-oportunity observations, the implementation of short observing runs, or the support of long-term "key-science" programmes.Complementary information about TIO, and the

  15. Playful Invention and Exploration. Final Evaluation Report: Executive Summary

    Science.gov (United States)

    St. John; Mark; Carroll, Becky; Helms, Jen; Smith, Anita

    2008-01-01

    PIE (Playful Invention and Exploration) is a unique approach to learning that centers on the use of technology and design challenges to create powerful learning experiences in informal education settings. The Playful Invention and Exploration (PIE) Institute project was funded in 2005 by the National Science Foundation (NSF). Overall, 150…

  16. Exploring the nature of science through courage and purpose: a case study of Nikolai Vavilov and plant biodiversity.

    Science.gov (United States)

    Cohen, Joel I; Loskutov, Igor G

    2016-01-01

    Historical biographies facilitate teaching the 'nature of science'. This case study focuses on how Nikolai Vavilov's unrelenting sense of purpose, courage, and charismatic personality was maintained during violent revolutionary change in Russia. The rediscovery of Gregor Mendel's laws of inheritance provided Vavilov with a scientific foundation for crop improvement, this foundation was later bolstered by Vavilov's personal drive to conserve plant biodiversity. As he advanced theories and pragmatic approaches for genetic improvement and conservation of plants, political leaders in Russian came to reject Mendel's principles and eventually Vavilov's work. This rejection occurred because Joseph Stalin was desperate for a quick remedy to the famine and suffering from forced collective agriculture. Vavilov's work continued, modernizing Russian crop research while inspiring other scientists to save seeds stored in the world's first gene bank. Three themes illustrating the nature of science help examine Vavilov's life: explaining natural phenomena, uncompromising human endeavor, and revising scientific knowledge. The case study concludes with four questions to stimulate student inquiry and self-guided research. They also deepen student understanding of Vavilov's personal sacrifices to ensure use and conservation of plant biodiversity.

  17. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods

    NARCIS (Netherlands)

    Waltman, L.R.; Van, Raan A.F.J.; Smart, S.

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach

  18. Research Award: Foundations for Innovation | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-09-07

    Sep 7, 2016 ... The Foundations for Innovation program wishes to better ... disciplines: science, technology and innovation policy; development studies; or economics. ... research to local, national, and/or regional policy debates in Africa.

  19. Natural sciences in the focus IV. Foundations of atomistics, quantum mechanics, and chemistry; Naturwissenschaften im Fokus IV. Grundlagen der Atomistik, Quantenmechanik und Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Christian

    2017-07-01

    The following topics are dealt with: The electronic structure of the atom, the structure of the atomic nucleus together with radioactive decays, fission, and fusion, the elementary particles together with the standard model, the atomistic foundations of chemistrytogether with the binding types, and inorganic and organic chemistry. (HSI)

  20. Exploration of the lived experiences of undergraduate science, technology, engineering, and mathematics minority students

    Science.gov (United States)

    Snead-McDaniel, Kimberly

    An expanding ethnicity gap exists in the number of students pursuing science, technology, engineering, and mathematics (STEM) careers in the United States. The National Action Council for Minorities in Engineering revealed that the number of minorities pursuing STEM degrees and careers has declined over the past few years. The specific origins of this trend are not quite evident; one variable to consider is that undergraduate minority students are failing in STEM disciplines at various levels of education from elementary to postsecondary. The failure of female and minority students to enter STEM disciplines in higher education have led various initiatives to establish programs to promote STEM disciplines among these groups. Additional funding for minority STEM programs have led to a increase in undergraduate minority students entering STEM disciplines, but the minority students' graduation rate in STEM disciplines is approximately 7% lower than the graduation of nonminority students in STEM disciplines. This phenomenological qualitative research study explores the lived experiences of underrepresented minority undergraduate college students participating in an undergraduate minority-mentoring program. The following nine themes emerged from the study: (a) competitiveness, (b) public perception, (c) dedication, (d) self-perception, (e) program activities, (f) time management, (g) exposure to career and graduate opportunities, (h) rigor in the curriculum, and (i) peer mentoring. The themes provided answers and outcomes to better support a stronger minority representation in STEM disciplines.

  1. Light and dark an exploration in science, nature, art and technology

    CERN Document Server

    Greene, David

    2002-01-01

    An entertaining, instructive, diverse, and unusual book, Light and Dark: An Exploration in Science, Nature, Art and Technology encompasses a wide range of topics not normally found in one book.With more than 100 diagrams, graphs, and figures, the subjects discussed include the history of artificial lighting, eclipse cycles, light-sensitive eyeglasses, rainbows, art, bioluminescence, the clock setting at the South Pole, zebra stripe patterns, lighthouses, color perception, the harvest moon, and how information and speech can be conveyed by light from the sun or a laser.The book encourages readers to take a more careful look at many familiar phenomena, such as the variations in the duration of twilight through the year and the ability of human vision to misinterpret patterns of lines under certain conditions. It describes the anatomical peculiarities of four-eyed fish and explains how the Jewish calendar contrives to follow both solar and lunar cycles. It also presents the reasons why tortoise shell cats are al...

  2. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Science.gov (United States)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  3. Foundations of quantum gravity

    CERN Document Server

    Lindesay, James

    2013-01-01

    Exploring how the subtleties of quantum coherence can be consistently incorporated into Einstein’s theory of gravitation, this book is ideal for researchers interested in the foundations of relativity and quantum physics. The book examines those properties of coherent gravitating systems that are most closely connected to experimental observations. Examples of consistent co-gravitating quantum systems whose overall effects upon the geometry are independent of the coherence state of each constituent are provided, and the properties of the trapping regions of non-singular black objects, black holes, and a dynamic de Sitter cosmology are discussed analytically, numerically, and diagrammatically. The extensive use of diagrams to summarise the results of the mathematics enables readers to bypass the need for a detailed understanding of the steps involved. Assuming some knowledge of quantum physics and relativity, the book provides textboxes featuring supplementary information for readers particularly interested ...

  4. In science communication, why does the idea of the public deficit always return? Exploring key influences.

    Science.gov (United States)

    Suldovsky, Brianne

    2016-05-01

    Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.

  5. How Science Texts and Hands-on Explorations Facilitate Meaning Making: Learning from Latina/o Third Graders

    Science.gov (United States)

    Varelas, Maria; Pieper, Lynne; Arsenault, Amy; Pappas, Christine C.; Keblawe-Shamah, Neveen

    2014-01-01

    In this study, we examined opportunities for reasoning and meaning making that read-alouds of children's literature science information books and related hands-on explorations offered to young Latina/o students in an urban public school. Using a qualitative, interpretative framework, we analyzed classroom discourse and children's writing…

  6. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    Science.gov (United States)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these

  7. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    Science.gov (United States)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  8. Not All Skepticism Is Equal: Exploring the Ideological Antecedents of Science Acceptance and Rejection

    Science.gov (United States)

    Rutjens, Bastiaan T.; Sutton, Robbie M.; van der Lee, Romy

    2017-01-01

    Many topics that scientists investigate speak to people’s ideological worldviews. We report three studies—including an analysis of large-scale survey data—in which we systematically investigate the ideological antecedents of general faith in science and willingness to support science, as well as of science skepticism of climate change, vaccination, and genetic modification (GM). The main predictors are religiosity and political orientation, morality, and science understanding. Overall, science understanding is associated with vaccine and GM food acceptance, but not climate change acceptance. Importantly, different ideological predictors are related to the acceptance of different scientific findings. Political conservatism best predicts climate change skepticism. Religiosity, alongside moral purity concerns, best predicts vaccination skepticism. GM food skepticism is not fueled by religious or political ideology. Finally, religious conservatives consistently display a low faith in science and an unwillingness to support science. Thus, science acceptance and rejection have different ideological roots, depending on the topic of investigation. PMID:29191107

  9. Prioritizing Active Learning: An Exploration of Gateway Courses in Political Science

    Science.gov (United States)

    Archer, Candace C.; Miller, Melissa K.

    2011-01-01

    Prior research in political science and other disciplines demonstrates the pedagogical and practical benefits of active learning. Less is known, however, about the extent to which active learning is used in political science classrooms. This study assesses the prioritization of active learning in "gateway" political science courses, paying…

  10. Exploring Science Teaching Efficacy of CASE Curriculum Teachers: A Post-Then-Pre Assessment

    Science.gov (United States)

    Ulmer, Jonathan D.; Velez, Jonathan J.; Lambert, Misty D.; Thompson, Greg W.; Burris, Scott; Witt, Phillip A.

    2013-01-01

    This descriptive-correlational study sought to investigate teachers' levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included all teachers completing a CASE Institute training session during summer 2010. Assessments…

  11. To Customize or Not to Customize? Exploring Science Teacher Customization in an Online Lesson Portal

    Science.gov (United States)

    Littenberg-Tobias, Joshua; Beheshti, Elham; Staudt, Carolyn

    2016-01-01

    New technologies are increasingly giving science teachers the ability to access and customize science lessons. However, there is substantial debate in the literature about whether and under what conditions teacher customization benefit student learning. In this study, we examined teacher customization of inquiry-based science lessons from an…

  12. A Computational Study of Commonsense Science: An Exploration in the Automated Analysis of Clinical Interview Data

    Science.gov (United States)

    Sherin, Bruce

    2013-01-01

    A large body of research in the learning sciences has focused on students' commonsense science knowledge--the everyday knowledge of the natural world that is gained outside of formal instruction. Although researchers studying commonsense science have employed a variety of methods, 1-on-1 clinical interviews have played a unique role. The data…

  13. It's Easier than You Think! Exploring an Outdoor Pedagogy for Teaching Science

    Science.gov (United States)

    Hainsworth, Mark

    2018-01-01

    As well as providing a valuable and enjoyable experience for pupils, outdoor learning also enhances and contextualises learning in science by helping pupils understand science concepts. Teachers' lack of confidence in which aspects of the science curriculum they can actually teach outdoors deters them from venturing outside the classroom for…

  14. Exploring the government society and science interfaces in integrated water resource management in South Africa

    CSIR Research Space (South Africa)

    Ashton, PJ

    2006-12-01

    Full Text Available water are inextricably linked via the hydrological cycle, it is also logical for water resource managers to seek to manage all forms of water as a single resource within the management unit. These two technical principles form the foundation...

  15. The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results

    Science.gov (United States)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.

    2014-01-01

    On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, dur-ing the government shutdown. The spacecraft impact-ed the lunar surface on April 18, 2014, following a completely successful mission. LADEE's science objectives were twofold: (1) De-termine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for parti-cles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exo-spheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) ac-quired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wave-length range. UVS also performed dust extinction measurements via a separate solar viewer optic. The following are preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longi-tudes. (4) The sodium abundance varies with both lu-nar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization process-es. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent "shroud" of small dust particles

  16. Implications of Wind-Assisted Aerial Navigation for Titan Mission Planning and Science Exploration

    Science.gov (United States)

    Elfes, A.; Reh, K.; Beauchamp, P.; Fathpour, N.; Blackmore, L.; Newman, C.; Kuwata, Y.; Wolf, M.; Assad, C.

    2010-01-01

    The recent Titan Saturn System Mission (TSSM) proposal incorporates a montgolfiere (hot air balloon) as part of its architecture. Standard montgolfiere balloons generate lift through heating of the atmospheric gases inside the envelope, and use a vent valve for altitude control. A Titan aerobot (robotic aerial vehicle) would have to use radioisotope thermoelectric generators (RTGs) for electric power, and the excess heat generated can be used to provide thermal lift for a montgolfiere. A hybrid montgolfiere design could have propellers mounted on the gondola to generate horizontal thrust; in spite of the unfavorable aerodynamic drag caused by the shape of the balloon, a limited amount of lateral controllability could be achieved. In planning an aerial mission at Titan, it is extremely important to assess how the moon-wide wind field can be used to extend the navigation capabilities of an aerobot and thereby enhance the scientific return of the mission. In this paper we explore what guidance, navigation and control capabilities can be achieved by a vehicle that uses the Titan wind field. The control planning approach is based on passive wind field riding. The aerobot would use vertical control to select wind layers that would lead it towards a predefined science target, adding horizontal propulsion if available. The work presented in this paper is based on aerodynamic models that characterize balloon performance at Titan, and on TitanWRF (Weather Research and Forecasting), a model that incorporates heat convection, circulation, radiation, Titan haze properties, Saturn's tidal forcing, and other planetary phenomena. Our results show that a simple unpropelled montgolfiere without horizontal actuation will be able to reach a broad array of science targets within the constraints of the wind field. The study also indicates that even a small amount of horizontal thrust allows the balloon to reach any area of interest on Titan, and to do so in a fraction of the time needed

  17. Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation

    Science.gov (United States)

    Banerjee, N.; Van Loon, L.; Flynn, T.

    2017-12-01

    Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and

  18. Foundations for renewables

    Energy Technology Data Exchange (ETDEWEB)

    Neidlein, H.C. [German Agency Scherer Schnell Walser und Partner (Germany)

    2007-07-01

    In Germany, 77 foundations promote renewable energy technology with around Euro 25 million annually. The most important internationally active foundations, however, can be found in the Anglo-Saxon countries. (orig.)

  19. Toxicology Education Foundation

    Science.gov (United States)

    ... bodies and our world. Welcome to the Toxicology Education Foundation! Our mission is to enhance public understanding ... In with us, follow our Tweets, choose Toxicology Education Foundation as your preferred charity through Smile.Amazon. ...

  20. Skin Cancer Foundation

    Science.gov (United States)

    ... Host a Fundraising Event | About Us | Store The Skin Cancer Foundation The Skin Cancer Foundation is the ... Handbook A "Sunscreen Gene"? Skin Cancer Facts & Statistics Skin Cancer Treatment Glossary Information on medications and procedures ...

  1. Robert Wood Johnson Foundation

    Science.gov (United States)

    Robert Wood Johnson Foundation Search How We Work Our Focus Areas About RWJF Search Menu How We Work Grants ... Learn more For Grantees and Grantseekers The Robert Wood Johnson Foundation funds a wide array of programs ...

  2. Exploring the Effects of Communication Framed by Environmental Concern in Informal Science Education Contexts

    Science.gov (United States)

    Yocco, Victor S.

    Informal science education (ISE) venues such as zoos, nature centers, parks, and natural history museums play a critical role in allowing the general public to learn scientific concepts (National Research Council, 2009; 2010). Most adult learning of scientific concepts takes place outside of classrooms and away from work (Rennie and Williams, 2006). It is also true that zoos and natural history museums have stated missions regarding conveying concepts related to the conservation of our natural resources (Krishtalka and Humphrey, 2000; Patrick, Mathews, Ayers, and Tunicliffe, 2007). Theoretically, the successful communication of the desired message of these ISE institutions would inspire a more informed citizenry on the use and conservation of our natural resources. Framing communication is to present a topic in a manner that promote a specific view of the information. Effectively framing information can be an avenue to achieving the goal of ISE institutions (Chong & Druckman, 2007; Nisbet, 2009). Shultz and Zelezny (2003) posit that messages framed by egoistic concerns, concerns which focus on the individual, will be better received by the general public, leading to a greater likelihood for them to become engaged. This dissertation reports on a series of descriptive mixed methods studies conducted at a zoo, a natural history museum, and a science center, exploring the framing effects of communications framed by environmental concern (Schultz, 2001). In two of the studies the researcher examined the relationship between individuals' perceptions of the overlap between their lives and nature, their levels of environmental concern, and their preferences for statements designed to align with the types of environmental concern (i.e. egoistic, social-altruistic, and biospheric). Two studies were conducted using a quasi-experimental design in which the researcher randomly assigned messages framed by environmental concern while also taking measurements of prior involvement

  3. Cognitive Foundations for Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Greitzer, Frank L.; Noonan, Christine F.; Franklin, Lyndsey

    2011-02-25

    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions.

  4. Antithetic Foundations of Economics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2011-03-01

    Full Text Available This paper aims at decrypting the manner in which the foundations of Economics as a science and the meanings of the relevant explanatory formulas are being shaped. My analytical endeavor focuses on understanding the peculiarities of what is referred to as the object of study of the science known as Economics, an academic synthesis of concept-related breakthroughs regarding economicity. The explicit purpose of this analysis is to identify perennial benchmarks in economic cognition whereby this ensures its consistency. The implicit purpose is to shape a cognitive model in line with the specifics of the conceptual universe of Economics, as well as with the sources of the economic realities that are subject to a sui-generis relativism. The primary benefit of this endeavor consists in systemizing the conceptual prospects with an antithetic nature that allow for the explanations of the state of economic rationality and generate the understanding of what the source of economicity is and how it behaves. As such, the conclusions are marked by the stringent need of more precisely defining economic knowledge in order to match the changing nature of economic reality, as an expression that embraces the meeting point of two ontological vistas that are methodologically separated by some theories: human nature and human condition. Economics as a science thus features, apart from a conceptual substrate that needs to be spotted, an ontological background that needs to be revealed. The role played by this background appears to be most frequently ignored. The joint identification of both direct and contextual determinants for a sensitive area of humankind, i.e. the economy, is a direction to be followed by the royal path of rational knowledge.

  5. Perceptions versus Realities: Exploring Needs and Science Learning Outcomes In the Mississippi Delta

    Science.gov (United States)

    Fitts, Lacey S.

    The Mississippi Delta (MS Delta) is a high-poverty region in northwestern Mississippi located between the Mississippi and Yazoo rivers. The Delta is home to sixteen rural counties with over seventy failing or underperforming schools. Many of these schools lack the resources necessary to ensure adequate opportunities for all students. Learning outcomes for the state are among the lowest in the nation, and scores in the rural Delta are far below the state average. Graduating seniors take the ACT college entrance exam, with about 10% of Mississippi seniors scoring as "college-ready" in science. The region has a critical shortage of science teachers, and many schools do not offer advanced science courses. This study assessed teachers' needs, identified key characteristics of the secondary science programs in which they teach, and sought to understand conditions affecting science learning outcomes. An inventory of science teachers' needs was administered to teachers in the region. The greatest needs were material resources, high quality training, and strategies for improving poor reading and problem-solving skills of students. Of the factors examined, the percentage of students receiving free lunch had the strongest correlation with science learning outcomes in the school, higher than access to resources, number of science courses offered, and level of self-reported teacher need. A three-tiered approach to improving science learning outcomes has been developed, emphasizing community relationships, targeted professional development, and relevant science curriculum.

  6. The Danish Industrial Foundations

    DEFF Research Database (Denmark)

    Thomsen, Steen

    and governed, what role it plays in the Danish economy, and how industrial foundation-owned companies perform. The book is the result of a large collaborative research project, led by the author, on industrial foundations. Some global companies such as IKEA, Robert Bosch or the Tata Group are foundation...

  7. Solar panel foundation device

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1983-03-29

    A transportable solar panel foundation device which has a bottom member, at least one upstanding side member, and an essentially open top. The side members are angled to permit nesting of a plurality of the foundation devices, and reinforcement pads are carried by the foundation device to support legs for one or more solar panels.

  8. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    Energy Technology Data Exchange (ETDEWEB)

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  9. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  10. Exploring the development of a cultural care framework for European caring science.

    Science.gov (United States)

    Albarran, John; Rosser, Elizabeth; Bach, Shirley; Uhrenfeldt, Lisbeth; Lundberg, Pranee; Law, Kate

    2011-01-01

    The aim of this paper is to discuss the development of a cultural care framework that seeks to inform and embrace the philosophical ideals of caring science. Following a review of the literature that identified a lack of evidence of an explicit relationship between caring science and cultural care, a number of well-established transcultural care frameworks were reviewed. Our purpose was to select one that would resonate with underpinning philosophical values of caring science and that drew on criteria generated by the European Academy of Caring Science members. A modified framework based on the work of Giger and Davidhizar was developed as it embraced many of the values such as humanism that are core to caring science practice. The proposed caring science framework integrates determinants of cultural lifeworld-led care and seeks to provide clear directions for humanizing the care of individuals. The framework is offered to open up debate and act as a platform for further academic enquiry.

  11. An exploration of the impact of reform-based science instruction on second graders' academic achievement

    Science.gov (United States)

    Ellis, Valeisha Michelle

    The purpose of this study was to examine whether possible relationships might exist between the quality of reform-based science instruction and science and reading achievement in second grade. The study also examined separately possible interactions between quality of instruction and gender and race. The study involved an analysis of data previously collected in a larger one-group pre/post test study of a science instructional intervention (ISI Science) (Connor et al., 2010). In the original study, six teachers and two graduate assistants taught two science units designed based upon constructivist principles and reform-based practices. Using the 5-E Learning Cycle (Bybee, 1997), reading and science were integrated into each lesson. Videotapes were made of all lessons and science and reading achievement data were collected. For the current study, dependent achievement variables were science achievement measured by the Iowa Science Test; reading comprehension, by the Woodcock Passage Comprehension; and vocabulary, by the Iowa Vocabulary. Pre- and post-tests scores on the dependent measures were available for 96 children from the original study. Quality of instruction was measured using the Reformed Teaching Observation Protocol (RTOP) (Sawanda & Piburn, 2000). Videotapes of 24 science lessons from the larger study were analyzed using the RTOP. Reliability of ratings for the RTOP in the study was determined to be .96. No significant results were found for relations between instructional quality (RTOP) and any of the achievement variables although significant pre to post increases on all three measures were observed. No differences by race or gender were found. This latter finding was noteworthy given the research in science identifying both gender and race differences in science achievement. Recommendations for future research and teacher education are discussed.

  12. The Reflective Foundation

    DEFF Research Database (Denmark)

    Lunde Jørgensen, Ida

    Private foundations and cultural philanthropy by élites is viewed with increasing skepticism in recent years, begging the question of the extent to which foundations reflect on their role vis a vis wider societal norms. Through the prism of the New Carlsberg Foundation, financed by the brewery...... Carlsberg A/S, the paper seeks to elucidate the way in which one culturally significant foundation from Denmark has reflected on - and legitimated - its work and investments at critical moments in the past decades. The paper indicates a foundation with a high degree of reflection on the wider societal...

  13. Exploring the Solar System Activities Outline: Hands-On Planetary Science for Formal Education K-14 and Informal Settings

    Science.gov (United States)

    Allen, J. S.; Tobola, K. W.; Lindstrom, M. L.

    2003-01-01

    Activities by NASA scientists and teachers focus on integrating Planetary Science activities with existing Earth science, math, and language arts curriculum. The wealth of activities that highlight missions and research pertaining to the exploring the solar system allows educators to choose activities that fit a particular concept or theme within their curriculum. Most of the activities use simple, inexpensive techniques that help students understand the how and why of what scientists are learning about comets, asteroids, meteorites, moons and planets. With these NASA developed activities students experience recent mission information about our solar system such as Mars geology and the search for life using Mars meteorites and robotic data. The Johnson Space Center ARES Education team has compiled a variety of NASA solar system activities to produce an annotated thematic outline useful to classroom educators and informal educators as they teach space science. An important aspect of the outline annotation is that it highlights appropriate science content information and key science and math concepts so educators can easily identify activities that will enhance curriculum development. The outline contains URLs for the activities and NASA educator guides as well as links to NASA mission science and technology. In the informal setting educators can use solar system exploration activities to reinforce learning in association with thematic displays, planetarium programs, youth group gatherings, or community events. Within formal education at the primary level some of the activities are appropriately designed to excite interest and arouse curiosity. Middle school educators will find activities that enhance thematic science and encourage students to think about the scientific process of investigation. Some of the activities offered are appropriate for the upper levels of high school and early college in that they require students to use and analyze data.

  14. Essays on the Foundations of Mathematics by Moritz Pasch

    CERN Document Server

    Pollard, Stephen

    2010-01-01

    Moritz Pasch (1843-1930) is justly celebrated as a key figure in the history of axiomatic geometry. Less well known are his contributions to other areas of foundational research. This volume features English translations of 14 papers Pasch published in the decade 1917-1926. In them, Pasch argues that geometry and, more surprisingly, number theory are branches of empirical science; he provides axioms for the combinatorial reasoning essential to Hilbert's program of consistency proofs; he explores 'implicit definition' (a generalization of definition by abstraction) and indicates how this techni

  15. From Proposal Writing to Data Collection to Presentation: Physical Oceanography Laboratory Class Students Explore the Fundamentals of Science

    Science.gov (United States)

    Buijsman, M. C.; Church, I.; Haydel, J.; Martin, K. M.; Shiller, A. M.; Wallace, D. J.; Blancher, J.; Foltz, A.; Griffis, A. M.; Kosciuch, T. J.; Kincketootle, A.; Pierce, E.; Young, V. A.

    2016-02-01

    To better prepare first-year Department of Marine Science MSc students of the University of Southern Mississippi for their science careers, we plan to execute a semester-long Physical Oceanography laboratory class that exposes the enrolled students to all aspects of interdisciplinary research: writing a proposal, planning a cruise, collecting and analyzing data, and presenting their results. Although some of these aspects may be taught in any such class, the incorporation of all these aspects makes this class unique.The fieldwork will be conducted by boat in the Rigolets in Louisiana, a 13-km long tidal strait up to 1 km wide connecting the Mississippi Sound with Lake Pontchartrain. The students have the opportunity to collect ADCP, CTD, multibeam sonar, sediment and water samples.A second novel characteristic of this class is that the instructor partnered with the Lake Pontchartrain Basin Foundation, a not for profit environmental advocacy group. The foundation will give an hour-long seminar on the natural history of the study area and its environmental problems. This information provides context for the students' research proposals and allows them to formulate research questions and hypotheses that connect their research objectives to societally relevant issues, such as coastal erosion, salt water intrusion, and water quality. The proposal writing and cruise planning is done in the first month of the 3.5-month long semester. In the second month two surveys are conducted. The remainder of the semester is spent on analysis and reporting. Whenever possible we teach Matlab for the students to use in their data analysis. In this presentation, we will report on the successes and difficulties associated with teaching such a multi-faceted class.

  16. Environmental Foundations in Germany

    Directory of Open Access Journals (Sweden)

    Thomas Krikser

    2015-05-01

    Full Text Available Foundations in Germany were examined in the context of environmental issues. Data from environmental foundations show that there is huge difference between private and public foundations concerning financial settings. Furthermore, environment is often not the only objective and sometimes not even processed. Our analysis shows that there are different types of foundations with regard to environmental scopes and activities. Although “attractive topics” such as biodiversity and landscape conservation seem to be more important to foundations, less visible topics such as pollution prevention remain merely a “blind spot.” Together, these findings suggest that there is only a limited potential of private foundations compared with public foundations. Nevertheless, there might be an impact on environmental awareness and local sustainability.

  17. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    Inquiry has been one of the most prominent terms of the contemporary science education reform movement (Buck, Latta, & Leslie-Pelecky, 2007; Colburn, 2006; Settlage, 2007). Practicing classroom inquiry has maintained its central position in science education for several decades because science education reform documents promote classroom inquiry as the potential savior of science education from its current problems. Likewise, having the capabilities of teaching science through inquiry has been considered by National Board for Professional Teaching Standards [NBPTS] as one of the essential elements of being an accomplished science teacher. Successful completion of National Board Certification [NBC] assessment process involves presenting a clear evidence of enacting inquiry with students. Despite the high-profile of the word inquiry in the reform documents, the same is not true in schools (Crawford, 2007). Most of the science teachers do not embrace this type of approach in their everyday teaching practices of science (Johnson, 2006; Luera, Moyer, & Everett, 2005; Smolleck, Zembal-Saul, & Yoder, 2006; Trumbull, Scarano, & Bonney, 2006). And the specific meanings attributed to inquiry by science teachers do not necessarily match with the original intentions of science education reform documents (Matson & Parsons, 2006; Wheeler, 2000; Windschitl, 2003). Unveiling the various meanings held by science teachers is important in developing better strategies for the future success of science education reform efforts (Jones & Eick, 2007; Keys & Bryan, 2001). Due to the potential influences of National Board Certified Science Teachers [NBCSTs] on inexperienced science teachers as their mentors, examining inquiry conceptions of NBCSTs is called for. How do these accomplished practitioners understand and enact inquiry? The purpose of this dissertation research study was twofold. First, it investigated the role of NBC performance assessment process on the professional development

  18. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    Science.gov (United States)

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  19. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  20. Open Science Strategies in Research Policies: A Comparative Exploration of Canada, the US and the UK

    Science.gov (United States)

    Lasthiotakis, Helen; Kretz, Andrew; Sá, Creso

    2015-01-01

    Several movements have emerged related to the general idea of promoting "openness" in science. Research councils are key institutions in bringing about changes proposed by these movements, as sponsors and facilitators of research. In this paper we identify the approaches used in Canada, the US and the UK to advance open science, as a…