WorldWideScience

Sample records for science flight 19

  1. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  2. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  3. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  4. Mars Science Laboratory Flight Software Internal Testing

    Science.gov (United States)

    Jones, Justin D.; Lam, Danny

    2011-01-01

    The Mars Science Laboratory (MSL) team is sending the rover, Curiosity, to Mars, and therefore is physically and technically complex. During my stay, I have assisted the MSL Flight Software (FSW) team in implementing functional test scripts to ensure that the FSW performs to the best of its abilities. There are a large number of FSW requirements that have been written up for implementation; however I have only been assigned a few sections of these requirements. There are many stages within testing; one of the early stages is FSW Internal Testing (FIT). The FIT team can accomplish this with simulation software and the MSL Test Automation Kit (MTAK). MTAK has the ability to integrate with the Software Simulation Equipment (SSE) and the Mission Processing and Control System (MPCS) software which makes it a powerful tool within the MSL FSW development process. The MSL team must ensure that the rover accomplishes all stages of the mission successfully. Due to the natural complexity of this project there is a strong emphasis on testing, as failure is not an option. The entire mission could be jeopardized if something is overlooked.

  5. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  6. Flight. Science Series Grades 4, 5, 6.

    Science.gov (United States)

    Frensch, Helen

    The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…

  7. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  8. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  9. Science Flight Program of the Nuclear Compton Telescope

    Science.gov (United States)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  10. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  11. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    Science.gov (United States)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  12. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  13. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    Science.gov (United States)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  14. Science Outreach at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  15. The Mars Science Laboratory Entry, Descent, and Landing Flight Software

    Science.gov (United States)

    Gostelow, Kim P.

    2013-01-01

    This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.

  16. Science Fair Report: Flight of the Split-Fingered Fastball.

    Science.gov (United States)

    Mitchell, Richard J.

    1991-01-01

    Reports on the results of an eighth grade student's experiments, conducted with a moving car, concerning the aerodynamics of a baseball in flight. Describes the peculiar diving ability of the split-fingered fastball, as well as the dancing and weaving effect of the knuckleball. (JJK)

  17. Nigerian Journal of Physiological Sciences - Vol 19, No 1 (2004)

    African Journals Online (AJOL)

    Noise-Induced Hearing Impairment As An Occupational Risk Factor Among Nigerian Traders · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. ADA Ighoroje, C Marchie, ED Nwobodo, 14-19. http://dx.doi.org/10.4314/njps.v19i1.32630 ...

  18. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  19. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Science.gov (United States)

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  20. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  1. The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science

    Science.gov (United States)

    He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.

    2010-12-01

    NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool

  2. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  3. All about Flight. Physical Science for Children[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    Up, up and away! A hot air balloon, an airplane and even the space shuttle all defy the force of gravity, but they all do it in different ways. Children will learn about the basic concepts that make flight possible. With clear demonstrations and a hands-on project, students will be able to understand more easily the basic concepts behind various…

  4. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  5. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    Science.gov (United States)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  6. International Trends in Health Science Librarianship Part 19: The Balkan States (Bulgaria and Croatia).

    Science.gov (United States)

    Kirilova, Savina; Skoric, Lea

    2016-09-01

    This is the 19th in a series of articles exploring international trends in health science librarianship in the 21st century. The focus of the present issue is the Balkan Region (Bulgaria and Croatia). The next regular feature column will investigate two other Balkan states - Serbia and Slovenia. JM. © 2016 Health Libraries Group.

  7. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    Science.gov (United States)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  8. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  9. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  10. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    Science.gov (United States)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  11. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  12. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  13. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  14. Gender and Public Understanding of Science: Darwinism in the 19th Century Brazilian Press

    Directory of Open Access Journals (Sweden)

    Moema de Rezende Vergara

    2007-05-01

    Full Text Available In the recent works about Brazilian public understanding of science, gender has been poorly used as an analytical category. This paper has as its main goal to bridge this gap by analyzing a section called ‘Letters for a Lady‘, in the journal O Vulgarizador that sought to teach all about Darwinism to women in the Brazil of the 19th century. So the notion of gender will help us understand the tension between masculinity and femininity in the text written by the literary critic Rangel S. Paio.

  15. [The politics of the self: psychological science and bourgeois subjectivity in 19th century Spain.].

    Science.gov (United States)

    Novella, Enric J

    2010-01-01

    This paper offers an analysis of the process of institutionalization of psychological knowledge in Spain following the educative reforms implemented during the second third of the 19th century, which prescribed its inclusion in the curricular program of the new secondary education. After a detailed examination of the theoretical orientation, the ideological assumptions and the socio-political connections of the contents transmitted to the students throughout the century, its militant spiritualism is interpreted as a highly significant attempt on the part of the liberal elites to articulate a pedagogy of subjectivity intended to counteract the trends toward reduction, naturalization and fragmentation of psychic life inherent to the development of modern science.

  16. From the Bronx to Bengifunda (and Other Lines of Flight): Deterritorializing Purposes and Methods in Science Education Research

    Science.gov (United States)

    Gough, Noel

    2011-01-01

    In this essay I explore a number of questions about purposes and methods in science education research prompted by my reading of Wesley Pitts' ethnographic study of interactions among four students and their teacher in a chemistry classroom in the Bronx, New York City. I commence three "lines of flight" (small acts of Deleuzo-Guattarian…

  17. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2015-06-01

    Full Text Available We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College, aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF, which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program and POES (Polar-orbiting Operational Environmental Satellites spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  18. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  19. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    Science.gov (United States)

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  20. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  1. Biospecimen Retrieval from NASA's Rodent Research-1: Maximizing Science Return from Flight Missions

    Science.gov (United States)

    Choi, Sungshin Y.; Chen, Yi-Chun; Reyes, America; Verma, Vandana; Dinh, Marie; Globus, Ruth K.

    2016-01-01

    Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed to support long duration missions on the International Space Station. After 37 days in microgravity twenty mice were euthanized and frozen on orbit. Upon return to Earth the carcasses were dissected and yielded 32 different types of tissues from each mouse and over 3200 tissue aliquots. Many tissues were distributed to the Space Life and Physical Sciences (SLPS) Biospecimen Sharing Program (BSP) Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). A second round of dissections was performed to collect additional tissues from the remaining carcasses thawed for a second time for additional BSP PIs. Tissues retrieved included vaginal walls, aorta, pelvis, brown adipose tissue, tail, spine and forearms. Although the analyses are still in progress, some of the PIs have reported that the quality of the tissues was acceptable for their study. In a separate experiment we tested the RNA quality of the tissues that were dissected from frozen carcasses that were subjected to euthanasia, freezing, first and second thaw dissections. Timelines simulated the on-orbit RR-1 procedures to assess the quality of the tissues retrieved from the second thaw dissections. We analyzed the RIN values of select tissues including kidney, brain, white adipose tissue (WAT) and brown adipose tissue (BAT). Overall the RIN values from the second thaw were lower compared to those from the first by about a half unit; however, the tissues yielded RNA that are acceptable quality for some quantitative gene expression assays. Interestingly, RIN values of brain tissues were 8.4+/-0.6 and 7.9+/-0.7 from first and second round dissections, respectively (n5). Kidney and WAT yielded RIN values less than 8 but they can still be used for qPCR. BAT yielded higher quality RNA (8.2+/-0.5) than WAT (5.2+/-20.9), possibly due to the high fat content. Together, these

  2. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    Science.gov (United States)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  3. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  4. Forgotten research from 19th century: science should not follow fashion.

    Science.gov (United States)

    Galler, Stefan

    2015-02-01

    The fine structure of cross-striated muscle and its changes during contraction were known already in considerable detail in the 19th century. This knowledge was the result of studying birefringence properties of muscle fibres under the polarization microscope, a method mainly established by Brücke (Denk Kais Akad Wiss Math Naturwiss Cl 15:69-84, 1858) in Vienna, Austria. The knowledge was seemingly forgotten in the first half of the 20th century before it was rediscovered in 1954. This rediscovery was essential for the formulation of the sliding filament theory which represents the commonly accepted concept of muscle contraction (A.F. Huxley and Niedergerke, Nature 173:971-973, 1954; H.E. Huxley and Hanson, Nature 173:973-976, 1954). The loss of knowledge was the result of prevailing views within the scientific community which could be attributed to "fashion": it was thought that the changes of cross-striations, which were observed under the microscope, were inconsequential for contraction since other types of movements like cell crawling and smooth muscle contraction were not associated with similar changes of the fine structure. The basis for this assumption was the view that all types of movements associated with life must be caused by the same mechanisms. Furthermore, it was assumed that the light microscopy was of little use, because the individual molecules that carry out life functions cannot be seen under the light microscope. This unfortunate episode of science history teaches us that the progress of science can severely be retarded by fashion.

  5. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  6. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    Science.gov (United States)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  7. The politics of the self: psychological science and bourgeois subjectivity in 19th century Spain

    Directory of Open Access Journals (Sweden)

    Novella, Enric J.

    2010-12-01

    Full Text Available This paper offers an analysis of the process of institutionalization of psychological knowledge in Spain following the educative reforms implemented during the second third of the 19th century, which prescribed its inclusion in the curricular program of the new secondary education. After a detailed examination of the theoretical orientation, the ideological assumptions and the sociopolitical connections of the contents transmitted to the students throughout the century, its militant spiritualism is interpreted as a highly significant attempt on the part of the liberal elites to articulate a pedagogy of subjectivity intended to counteract the trends toward reduction, naturalization and fragmentation of psychic life inherent to the development of modern science.

    En este artículo se ofrece un análisis del proceso de institucionalización del conocimiento psicológico en España por obra de las reformas educativas implementadas durante el segundo tercio del siglo XIX, que prescribieron su inclusión en el programa curricular de la nueva educación secundaria. Tras un examen detenido de la orientación doctrinal, los supuestos ideológicos y la filiación sociopolítica de los contenidos transmitidos a los alumnos durante la mayor parte de la centuria, se interpreta su espiritualismo militante como un intento muy significativo por parte de las élites liberales de articular una pedagogía de la subjetividad destinada a contrarrestar las tendencias de reducción, naturalización y fragmentación del psiquismo alentadas por el desarrollo de la ciencia moderna.

  8. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    International Nuclear Information System (INIS)

    Chen, Goong; Wang, Yi-Ching; Gu, Cong; Perronnet, Alain; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O

    2017-01-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics . This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not

  9. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    Science.gov (United States)

    Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.

    2017-03-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not

  10. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  11. Life science experiments during parabolic flight: The McGill experience

    Science.gov (United States)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  12. Louis Figuier translated in Brazil: science popularizers in the last quarter of 19th century

    Directory of Open Access Journals (Sweden)

    Kaori Kodama

    2017-06-01

    Full Text Available This article aims to address aspects of the history of the divulgation of sciences in Brazil in the nineteenth century, through the analysis of the circulation of some translations into Portuguese of the works of French popularizer of science, Louis Figuier. His works, which were translated to different languages, received editions in Brazil and Portugal since late 1860. During this period, a model of popularization of science for non-specialists - working class, women and youth - with emphasis on applied science was gaining terrain. However, this model was also marked by limitations and discontinuities that reflect social issues in the passage to the twentieth century. This paper attempts to highlight the role of translators and editors, understood as mediators of science, whose projects of social reform was primarily focused in popular instruction.

  13. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  14. Spacelab Life Sciences flight experiments: an integrated approach to the study of cardiovascular deconditioning and orthostatic hypotension

    Science.gov (United States)

    Gaffney, F. A.

    1987-01-01

    The microgravity environment of spaceflight produces rapid cardiovascular changes which are adaptive and appropriate in that setting, but are associated with significant deconditioning and orthostatic hypotension on return to Earth's gravity. The rapidity with which these space flight induced changes appear and disappear provides an ideal model for studying the underlying pathophysiological mechanisms of deconditioning and orthostatic hypotension, regardless of etiology. Since significant deconditioning is seen after flights of very short duration, muscle atrophy due to inactivity plays, at most, a small role. These changes in circulatory control associated with cephalad fluid shifts, rather than inactivity per se, are probably more important factors. In order to test this hypothesis in a systematic way, a multidisciplinary approach which defines and integrates inputs and responses from a wide variety of circulatory sub-systems is required. The cardiovascular experiments selected for Spacelab Life Sciences flights 1 and 2 provide such an approach. Both human and animal models will be utilized. Pre- and post-flight characterization of the payload crew includes determination of maximal exercise capacity (bicycle ergometry), orthostatic tolerance (lower body negative pressure), alpha and beta adrenergic sensitivity (isoproterenol and phenylephrine infusions), baroreflex sensitivity (ECG-gated, stepwise changes in carotid artery transmural pressure with a pneumatic neck collar), and responses to a 24 h period of 5 deg head-down tilt. Measurements of cardiac output (CO2 and C2H2 rebreathing), cardiac chamber dimensions (phased-array 2-dimensional echocardiography), direct central venous pressure, leg volume (Thornton sock), limb blood flow and venous compliance (occlusion plethysmography), blood and plasma volumes, renal plasma flow and glomerular filtration rates, and various hormonal levels including catecholamines and atrial natriuretic factor will also be obtained

  15. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  16. East African Journal of Sciences (2008) Volume 2 (1) 19-24 ...

    African Journals Online (AJOL)

    3Haramaya University, College of Agriculture, Department of Plant Sciences, P O Box 147, Ethiopia ... cultural practices. ..... themselves belonging to the Ecuador gene pool. L4 .... We highly appreciate the financial support provided by.

  17. How Gender Shaped Science and Education: A History of Nutritional Sciences in the 19th and 20th Centuries

    Science.gov (United States)

    Apple, Rima D.

    2010-01-01

    Many societies view the world as composed of two distinct and complementary spheres: the female (domestic) sphere and the male (public) sphere. Because science was part of the male sphere, women were inhibited from pursuing a career in scientific research. However, the more limited female sphere often found within university departments of home…

  18. Development of a software interface for optical disk archival storage for a new life sciences flight experiments computer

    Science.gov (United States)

    Bartram, Peter N.

    1989-01-01

    The current Life Sciences Laboratory Equipment (LSLE) microcomputer for life sciences experiment data acquisition is now obsolete. Among the weaknesses of the current microcomputer are small memory size, relatively slow analog data sampling rates, and the lack of a bulk data storage device. While life science investigators normally prefer data to be transmitted to Earth as it is taken, this is not always possible. No down-link exists for experiments performed in the Shuttle middeck region. One important aspect of a replacement microcomputer is provision for in-flight storage of experimental data. The Write Once, Read Many (WORM) optical disk was studied because of its high storage density, data integrity, and the availability of a space-qualified unit. In keeping with the goals for a replacement microcomputer based upon commercially available components and standard interfaces, the system studied includes a Small Computer System Interface (SCSI) for interfacing the WORM drive. The system itself is designed around the STD bus, using readily available boards. Configurations examined were: (1) master processor board and slave processor board with the SCSI interface; (2) master processor with SCSI interface; (3) master processor with SCSI and Direct Memory Access (DMA); (4) master processor controlling a separate STD bus SCSI board; and (5) master processor controlling a separate STD bus SCSI board with DMA.

  19. Journal of Computer Science and Its Application - Vol 19, No 2 (2012)

    African Journals Online (AJOL)

    Enhanced E-banking system with match-on-card fingerprint authentication and multi-account ATM card · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. A Abayomi-Ali, EO Omidiora, SO Olabiyisi, JA Oja, 14-22. http://dx.doi.org/10.4314/jcsia.v19i2.2 ...

  20. Journal of Computer Science and Its Application - Vol 19, No 1 (2012)

    African Journals Online (AJOL)

    A Conceptual Trust Model for Managing E-Commerce Environment · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. OR Vincent, OE Agbola, 17-23. http://dx.doi.org/10.4314/jcsia.v19i1.3 ...

  1. In-Flight Operation of the Dawn Ion Propulsion System Through Survey Science Orbit at Ceres

    Science.gov (United States)

    Garner, Charles E.; Rayman, Marc D.

    2015-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt objects, Vesta and Ceres. The Dawn spacecraft was launched from the Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H- 9.5 (Delta-II Heavy) rocket that placed the 1218-kg spacecraft onto an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide a total delta V of 11 km/s for the heliocentric transfer to Vesta, orbit capture at Vesta, transfer between Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer between Ceres science orbits. Full-power thrusting from December 2007 through October 2008 was used to successfully target a Mars gravity assist flyby in February 2009 that provided an additional delta V of 2.6 km/s. Deterministic thrusting for the heliocentric transfer to Vesta resumed in June 2009 and concluded with orbit capture at Vesta on July 16, 2011. From July 2011 through September 2012 the IPS was used to transfer to all the different science orbits at Vesta and to escape from Vesta orbit. Cruise for a rendezvous with Ceres began in September 2012 and concluded with the start of the approach to Ceres phase on December 26, 2015, leading to orbit capture on March 6, 2015. Deterministic thrusting continued during approach to place the spacecraft in its first science orbit, called RC3, which was achieved on April 23, 2015. Following science operations at RC3 ion thrusting was resumed for twenty-five days leading to arrival to the next science orbit, called survey orbit, on June 3, 2015. The IPS will be used for all subsequent orbit transfers and trajectory correction maneuvers until completion of the primary mission in approximately June 2016. To date the IPS has been operated for over 46,774 hours, consumed approximately 393 kg of xenon, and provided

  2. H.C.Ørsted, Science and "Dannelse" in the early 19th century

    DEFF Research Database (Denmark)

    Ellebæk, Jens Jakob

    philosophers/professors in humanities in creating a new idea about school curriculum and content. An idea based on the Humboldtian movement with the concept "Algemeine bildung" in the center of reforming the educational system, but in contrast to this movement with a focus on "naturvidenskabelig almendannelse......A research into the introduction of the concept "Almendannelse" (Litteracy/Education/Culture) in the Danish discourse about reforming the educational system in the early 19th Century, reveals a time in Danish history where the world famous scientist H.C. Ørsted was working together with central...

  3. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction. The plans for the flight experiments will be described.

  4. Joint Oil Analysis Program Spectrometer Standards SCP Science (Conostan) Qualification Report for D19-0, D3-100, and D12-XXX Series Standards

    Science.gov (United States)

    2015-05-20

    Joint Oil Analysis Program Spectrometer Standards SCP Science (Conostan) Qualification Report For D19-0, D3-100, and D12- XXX Series Standards NF...Candidate Type D19-0 ICP-AES Results ..................................................................... 4 Table V. Candidate Type D12- XXX ...Physical Property Results .................................................. 5 Table VI. Candidate Type D12- XXX Rotrode-AES Results

  5. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  6. Nature of Science Progression in School Year 1-9: a Case Study of Teachers' Suggestions and Rationales

    Science.gov (United States)

    Leden, Lotta; Hansson, Lena

    2017-07-01

    The inclusion of nature of science (NOS) in science education has for a long time been regarded as crucial. There is, however, a lack of research on appropriate NOS aspects for different educational levels. An even more neglected area of research is that focusing on teachers' perspectives on NOS teaching at different levels. The aim of this article is to examine NOS progression in the light of teachers' suggestions and rationales. In order to obtain teachers' informed perspectives, we chose to involve six teachers (teaching grades 1-9) in a 3-year research project. They took part in focus group discussions about NOS and NOS teaching as well as implemented jointly planned NOS teaching sessions. Data that this article builds on was collected at the end of the project. The teachers' suggestions for NOS progression often relied on adding more NOS issues at every stage, thereby creating the foundations of a broader but not necessarily deeper understanding of NOS. Five rationales, for if/when specific NOS issues are appropriate to introduce, emerged from the analysis of the teacher discussions. Some of these rationales, including practice makes perfect and increasing levels of depth can potentially accommodate room for many NOS issues in the science classroom, while maturity and experience instead has a restricting effect on NOS teaching. Also, choice of context and teaching approaches play an important role in teachers' rationales for whether specific NOS issues should be included or not at different stages. The article discusses the implications for teacher education and professional development.

  7. Future Plans in US Flight Missions: Using Laser Remote Sensing for Climate Science Observations

    Science.gov (United States)

    Callahan, Lisa W.

    2010-01-01

    Laser Remote Sensing provides critical climate science observations necessary to better measure, understand, model and predict the Earth's water, carbon and energy cycles. Laser Remote Sensing applications for studying the Earth and other planets include three dimensional mapping of surface topography, canopy height and density, atmospheric measurement of aerosols and trace gases, plume and cloud profiles, and winds measurements. Beyond the science, data from these missions will produce new data products and applications for a multitude of end users including policy makers and urban planners on local, national and global levels. NASA Missions in formulation including Ice, Cloud, and land Elevation Satellite (ICESat 2) and the Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI), and future missions such as the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS), will incorporate the next generation of LIght Detection And Ranging (lidar) instruments to measure changes in the surface elevation of the ice, quantify ecosystem carbon storage due to biomass and its change, and provide critical data on CO 2 in the atmosphere. Goddard's plans for these instruments and potential uses for the resulting data are described below. For the ICESat 2 mission, GSFC is developing a micro-pulse multi-beam lidar. This instrument will provide improved ice elevation estimates over high slope and very rough areas and result in improved lead detection for sea ice estimates. Data about the sea ice and predictions related to sea levels will continue to help inform urban planners as the changes in the polar ice accelerate. DESDynI is planned to be launched in 2017 and includes both lidar and radar instruments. GSFC is responsible for the lidar portion of the DESDynI mission and is developing a scanning laser altimeter that will measure the Earth's topography, the structure of tree canopies, biomass, and surface roughness. The DESDynI lidar will also measure and

  8. IAS Towards an HIV Cure Symposium: people focused, science driven: 18-19 July 2015, Vancouver, Canada.

    Science.gov (United States)

    Fidler, Sarah; Thornhill, John; Malatinkova, Eva; Reinhard, Robert; Lamplough, Rosanne; Ananworanich, Jintanat; Chahroudi, Ann

    2015-10-01

    The International AIDS Society (IAS) convened the Towards an HIV Cure Symposium on 18-19 July 2015 in Vancouver, Canada, bringing together researchers and community to discuss the most recent advances in our understanding of HIV latency, reservoirs and a summary of the current clinical approaches towards an HIV cure. The symposium objectives were to: (1) gather researchers and stakeholders to present, review, and discuss the latest research towards an HIV cure; (2) promote cross-disciplinary global interactions between basic, clinical and social scientists; and (3) provide a platform for sharing information among scientists, clinicians, funders, media and civil society. The symposium examined basic molecular science and animal model data, and emerging and ongoing clinical trial results to prioritise strategies and determine the viral and immune responses that could lead to HIV remission without antiretroviral therapy. This report summarises some of the major findings discussed during the symposium.

  9. Physiologists against Theology: Science as a source of Secularization in ideology of scientific materialism in the 19th century

    Directory of Open Access Journals (Sweden)

    Vladislav Razdyakonov

    2017-12-01

    Full Text Available Jacob Moleschott (1822–1893, Karl Vogt (1817–1895 and Ludwig Buchner (1824–1899 are known as most notorious German spokesmen on behalf of “Science” in the mid —19th century. They are labelled in Russian historiography as “vulgar materialists” and are contrasted with dialectical materialists in their attitude to philosophy and science. This article shows how they used scientifi c conceptions of human physiology for the validation of their socio-political views, in particular on the role of religion in society and on the gradual secularisation of society. The article proposes critical reassessment of the category “vulgar materialists”, typical of current Russian historiography. It also aims to demonstrate their attitude to theology, philosophy, science and religion as main categories of their discourse. Finally, the article analyses scientifi c arguments in favour of the evolutionary development of society as well as reasons for the rejection of revolutionary practice. Although both “scientifi c materialism” and “scientifi c naturalism” do not meet the criteria of scientifi c ideology, scientifi c activity promotes secularisation by means of the extrapolation of its results to the social and political spheres.

  10. "Science and Peace" symposium to celebrate the 60th anniversary of the first Council session | 19 September

    CERN Multimedia

    2014-01-01

    Friday 19 September 2014 In the tent behind the Globe of Science and Innovation The Convention for the Establishment of a European Organization for Nuclear Research entered into force on 29 September 1954, 60 years ago. This marks CERN's official birthday. The first session of the CERN Council, the governance of CERN, was held in Geneva on 7 and 8 October 1954, just one week later. The symposium "Science and Peace" is being held to celebrate the 60th anniversary of the first Council session. Speakers from all generations will present highlights from 60 years of the Council and various views from their own perspectives. Programme 3.00 - 3.10 p.m.: Welcome address - Agnieszka Zalewska 3.10 - 3.25 p.m.: The history of the Council: a brief selection of highlights - Jens Vigen 3.25 - 3.40 p.m.: The Council as seen by a Member State - Sijbrand De Jong 3.40 - 3.55 p.m.: The Council as seen by an outreach specialist - Steven Goldfarb 3.55 - 4.10 p.m.: The Council as seen by a young scie...

  11. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    Science.gov (United States)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  12. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  13. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    Science.gov (United States)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  14. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  15. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  16. Joint 15. biennial conference of the West African Science Association and 19. biennial conference of Ghana Science Association: Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The publication contains abstracts of the joint fifteenth biennial conference of the West African Science Association and the nineteenth biennial conference of the Ghana Science Association,held at the University of Cape Coast,Ghana in September 1995. The theme of the conference was enhancing regional economic integration through science and technology`. A total of 180 abstracts have been presented either in english or french. Subject areas covered are:science education, social sciences, policy research, botany, zoology, agriculture, chemistry, biochemistry, physics, mathematics, computer science, geology, earth and medical sciences.

  17. Joint 15. biennial conference of the West African Science Association and 19. biennial conference of Ghana Science Association: Book of abstracts

    International Nuclear Information System (INIS)

    1995-09-01

    The publication contains abstracts of the joint fifteenth biennial conference of the West African Science Association and the nineteenth biennial conference of the Ghana Science Association,held at the University of Cape Coast,Ghana in September 1995. The theme of the conference was enhancing regional economic integration through science and technology'. A total of 180 abstracts have been presented either in english or french. Subject areas covered are:science education, social sciences, policy research, botany, zoology, agriculture, chemistry, biochemistry, physics, mathematics, computer science, geology, earth and medical sciences

  18. Miracle Flights

    Science.gov (United States)

    ... a Flight Get Involved Events Shop Miles Contact Miracle Flights Blog Giving Tuesday 800-359-1711 Thousands of children have been saved, but we still have miles to go. Request a Flight Click Here to Donate - Your ...

  19. Employment of Scientists and Engineers Increased Between 1976 and 1978 but Declined in Some Science Fields. Science Resources Studies Highlights, March 19, 1980.

    Science.gov (United States)

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    The data presented in this report are estimates based on information produced by the National Science Foundation (NSF) Scientific and Technical Personnel Characteristics System (STPCS) and other systems of the Foundation, other government agencies and private organizations. Information includes: (1) the U.S. science/engineering force grew by 2%…

  20. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, Salma C.; Rachmeler, Laurel; Winebarger, Amy; Champey, Patrick; Bethge, Christian

    2018-01-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to elucidate the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in Hydrogen Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this emission line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Magnesium II h & k emission lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  1. Linearity Analysis and Efficiency Testing of The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) Science Cameras for Flight

    Science.gov (United States)

    Walker, S. C.; Rachmeler, L.; Winebarger, A. R.; Champey, P. R.; Bethge, C.

    2017-12-01

    To unveil the complexity of the solar atmosphere, measurement of the magnetic field in the upper chromosphere and transition region is fundamentally important, as this is where the forces transition from plasma to magnetic field dominated. Measurements of the field are also needed to shed light on the energy transport from the lower atmospheric regions to the corona beyond. Such an advance in heliospheric knowledge became possible with the first flight of the international solar sounding rocket mission, CLASP. For the first time, linear polarization was measured in H Lyman-Alpha at 121.60 nm in September 2015. For linear polarization measurements in this line, high sensitivity is required due to the relatively weak polarization signal compared to the intensity. To achieve this high sensitivity, a low-noise sensor is required with good knowledge of its characterization, including linearity. This work presents further refinement of the linearity characterization of the cameras flown in 2015. We compared the current from a photodiode in the light path to the digital response of the detectors. Pre-flight CCD linearity measurements were taken for all three flight cameras and calculations of the linear fits and residuals were performed. However, the previous calculations included a smearing pattern and a digital saturation region on the detectors which were not properly taken into account. The calculations have been adjusted and were repeated for manually chosen sub-regions on the detectors that were found not to be affected. We present a brief overview of the instrument, the calibration data and procedures, and a comparison of the old and new linearity results. The CLASP cameras will be reused for the successor mission, CLASP2, which will measure the Mg II h & k lines between 279.45 nm and 280.35 nm. The new approach will help to better prepare for and to improve the camera characterization for CLASP2.

  2. Conference Proceedings for 1997 IEEE 24th International Conference on Plasma Sciences, 19 - 22 May 1997, San Diego, California

    National Research Council Canada - National Science Library

    Hyman, Julius

    1997-01-01

    This 360 page softbound publication includes the following major sections, An invitation to ICOPS'97, Catamaran Resort Hotel Floor Pinas, Officers of the IEEE Nuclear and Plasma Sciences Society, Conference Information...

  3. IEEE Conference Record - Abstracts. 1997 IEEE International Conference on Plasma Science, 19 - 22 May 1997 San Diego, California

    National Research Council Canada - National Science Library

    Hyman, Julius

    1997-01-01

    This 360 page softbound publication includes the following major sections. An invitation to ICOPS'97, Catamaran Resort Hotel Floor Pinas, Officers of the IEEE Nuclear and Plasma Sciences Society, Conference Information...

  4. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    Science.gov (United States)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  5. Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science

    Directory of Open Access Journals (Sweden)

    Winfried Kockelmann

    2018-02-01

    Full Text Available The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example.

  6. Flight Determination of the Longitudinal Stability Characteristics of a 0.133-Scale Rocket-Powered Model of the Consolidated Vultee XFY-1 Airplane without Propellers at Mach Numbers from 0.73 to 1.19, TED No. NACA DE 369

    Science.gov (United States)

    Hastings, Earl E., Jr.; Mitcham, Grady L.

    1954-01-01

    A flight test has been conducted to determine the longitudinal stability and control,characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane without propellers for the Mach number range between 0.73 and 1.19.

  7. Development of brewing science in (and since) the late 19th century: molecular profiles of 110-130 year old beers

    DEFF Research Database (Denmark)

    Walther, Andrea; Ravasio, Davide; Qin, Fen

    2015-01-01

    The 19th century witnessed many advances in scientific enzymology and microbiology that laid the foundations for modern biotechnological industries. In the current study, we analyze the content of original lager beer samples from the 1880s, 1890s and 1900s with emphasis on the carbohydrate content......, with decreasing contamination by enzymatic and microbial activities over this time span. Samples are sufficiently well preserved to allow comparisons to present-day references, thus yielding molecular signatures of the effects of 20th century science on beer production. Opposite to rather stable carbohydrate...

  8. Astronautics and aeronautics, 1973: Chronology of science, technology and policy. [including artificial satellites, space probes, and manned space flights

    Science.gov (United States)

    1975-01-01

    A brief chronological account is presented of key events of the year in aerospace sciences. Dates, actions, hardware, persons, scientific discoveries are recorded along with plans, decisions, achievements and preliminary evaluations of results. Samples of public reaction and social impact are included. Sources are identified and an index is provided to aid in tracing related events through the year. The index also serves as a glossary of acronyms and abbreviations.

  9. Marine Science Teaching at the University Level. Report of the Unesco Workshop on University Curricula. Unesco Technical Papers in Marine Science No. 19.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.

    A group of marine science education educators from several countries were requested to provide guidelines for the education and training of marine scientists and formulate recommended curricula in the following disciplines: marine biology (including fisheries biology), physical oceanography, and marine geology. Included in the report are: (1)…

  10. The Science of Birth: Visions of the Female Body in the Making of Scientific Obstetrics in the 19th Century

    Directory of Open Access Journals (Sweden)

    Ana Paula Vosne Martins

    2005-01-01

    Full Text Available This article deals with the production of specialized knowledge about the female body between the 19th and 20th centuries. Its main goal is to analyze the production of images displayed in obstetrics treatises and manuals published in Europe and used by Brazilian medical students and doctors. It seeks to understand the realism of the medical-scientific images of the female body as a means of expression of a new relationship between doctors and women, resulting from the investigation methods used in anatomy-pathology laboratories and in the clinical examination of pregnant women.

  11. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  12. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, James F.; Godber, A.; McNair, S.; Caplinger, M.A.; Maki, J.N.; Lemmon, M.T.; Van Beek, J.; Malin, M.C.; Wellington, D.; Kinch, K.M.; Madsen, M.B.; Hardgrove, C.; Ravine, M.A.; Jensen, E.; Harker, D.; Anderson, Ryan; Herkenhoff, Kenneth E.; Morris, R.V.; Cisneros, E.; Deen, R.G.

    2017-01-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted ~2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) “true color” images, multispectral images in nine additional bands spanning ~400–1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration

  13. The Mars Science Laboratory Curiosity rover Mastcam instruments: Preflight and in-flight calibration, validation, and data archiving

    Science.gov (United States)

    Bell, J. F.; Godber, A.; McNair, S.; Caplinger, M. A.; Maki, J. N.; Lemmon, M. T.; Van Beek, J.; Malin, M. C.; Wellington, D.; Kinch, K. M.; Madsen, M. B.; Hardgrove, C.; Ravine, M. A.; Jensen, E.; Harker, D.; Anderson, R. B.; Herkenhoff, K. E.; Morris, R. V.; Cisneros, E.; Deen, R. G.

    2017-07-01

    The NASA Curiosity rover Mast Camera (Mastcam) system is a pair of fixed-focal length, multispectral, color CCD imagers mounted 2 m above the surface on the rover's remote sensing mast, along with associated electronics and an onboard calibration target. The left Mastcam (M-34) has a 34 mm focal length, an instantaneous field of view (IFOV) of 0.22 mrad, and a FOV of 20° × 15° over the full 1648 × 1200 pixel span of its Kodak KAI-2020 CCD. The right Mastcam (M-100) has a 100 mm focal length, an IFOV of 0.074 mrad, and a FOV of 6.8° × 5.1° using the same detector. The cameras are separated by 24.2 cm on the mast, allowing stereo images to be obtained at the resolution of the M-34 camera. Each camera has an eight-position filter wheel, enabling it to take Bayer pattern red, green, and blue (RGB) "true color" images, multispectral images in nine additional bands spanning 400-1100 nm, and images of the Sun in two colors through neutral density-coated filters. An associated Digital Electronics Assembly provides command and data interfaces to the rover, 8 Gb of image storage per camera, 11 bit to 8 bit companding, JPEG compression, and acquisition of high-definition video. Here we describe the preflight and in-flight calibration of Mastcam images, the ways that they are being archived in the NASA Planetary Data System, and the ways that calibration refinements are being developed as the investigation progresses on Mars. We also provide some examples of data sets and analyses that help to validate the accuracy and precision of the calibration.

  14. From facial expressions to bodily gestures: Passions, photography and movement in French 19th-century sciences.

    Science.gov (United States)

    Pichel, Beatriz

    2016-02-01

    This article aims to determine to what extent photographic practices in psychology, psychiatry and physiology contributed to the definition of the external bodily signs of passions and emotions in the second half of the 19 th century in France. Bridging the gap between recent research in the history of emotions and photographic history, the following analyses focus on the photographic production of scientists and photographers who made significant contributions to the study of expressions and gestures, namely Duchenne de Boulogne, Charles Darwin, Paul Richer and Albert Londe. This article argues that photography became a key technology in their works due to the adequateness of the exposure time of different cameras to the duration of the bodily manifestations to be recorded, and that these uses constituted facial expressions and bodily gestures as particular objects for the scientific study.

  15. Radioastron flight operations

    Science.gov (United States)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  16. Physics Of, and Science With, the X-Ray Free-Electron Laser: 19th Advanced ICFA Beam Dynamics Workshop

    International Nuclear Information System (INIS)

    Sutton, M.

    2003-01-01

    The workshop brought together scientists working on the development of x-ray free-electron lasers, and its applications. X-ray free-electron lasers produce high intensity, subpicosecond long, coherent, X-ray pulses, and will open a new frontier to study the structure of matter at the molecular and atomic levels. Some fields of interest are structural changes in chemical reactions, single biological molecule, warm plasmas, nanosystems. Summary of discussions and conclusions of Group 1: Physics and Technology of the XFEL - The main issues that were discussed by the 50 participants in this group were the photo-injector, the production of ultra-short pulses, the effects of wake-fields induced by the electron bunch, the operation at lower charge and emittance, the possibility of harmonic generation and the diagnostics in the undulator. The following is a short summary of the discussions and their conclusions. Summary of discussions and conclusions of Group 2: Science with the XFEL - About 25 people attended sessions to discuss the possible scientific applications of a x-ray FEL. Because of the recent focus on the first experiments with the proposed Linac Coherent Light Source at Stanford, the discussions were mainly focussed on these proposals. The extension of the characteristics beyond the initial stage and the further developments of the source were also part of the program. Six scientific areas were discussed: Atomic Physics, Warm Dense Matter, Femtosecond Chemistry, Imaging/Holography, Bio-molecular Structures and X-Ray Fluctuations Spectroscopy.

  17. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  18. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  19. J-GLOBAL MeSH Dictionary: 19‐ノルテストステロン [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term 19‐ノルテストステロン 名詞 一般 * * * * 19‐ノルテストステロン ... MeSH D009277 200906021255569620 C LS44 UNKNOWN_2 1 9 ‐ ノルテストステロン

  20. Nikkaji Dictionary: 7α-メチル-19-ノルテストステロン [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term 7α-メチル-19-ノルテストステロン 名詞 一般 * * * * 7α-メチル-19-ノルテスト...ステロン ... Nikkaji J8.246E 200906045798862022 C CA06 UNKNOWN_2 7 α - メチル - 1 9 - ノルテストステロン

  1. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  2. Science Policy at the Wrong Scale and Without Adequate Political Institutions: Parallels between the U.S. 19th Century and the 21st Century Global Contexts

    Science.gov (United States)

    McCurdy, K. M.

    2012-12-01

    The Constitution of the United States is a document for economic development written by people wary of government failure at the extremes, whether too heavy handed a central government or too loose a confederation. The strong central government favored by Hamilton, Industrialists and later by forward thinking men of the 19th century created a discontinuity wherein government institutions designed to facilitate agriculture were incapable of regulating corporations operating on a national scale, which made mineral and other natural resource exploitation needed to support industrialization enormously profitable. At the same time, Agriculturalists and other conservative citizens sought to control the economy by protecting their rural interests and power. The political institutional power remained with states as agriculturalists and industrialists struggled for economic superiority in the 19th century. As Agriculture moved west, Science warned of the dangers of extending Homesteading regulations into arid regions to no avail. The west was settled in townships without concern for watersheds, carrying capacity, or climatic variability. Gold seekers ignored the consequences of massive hydraulic mining techniques. The tension resident in the Constitution between strong local control of government (states' rights) and a strong central government (nationalism) provided no institutional context to resolve mining problems or other 19th century policy problems linked to rapid population expansion and industrialization. Environmental protection in the late 20th century has been the last wave of nationalized policy solutions following the institution-building blueprint provided by electoral successes in the Progressive, New Deal, and Great Society eras. Suddenly in the 21st century, scientific warnings of dangers again go unheeded, this time as evidence of global warming mounts. Again, tension in policy making exists in all political arenas (executive, legislative and judicial at

  3. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  4. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    Science.gov (United States)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  5. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  6. [Historical sketch of modern pharmaceutical science and technology (Part 3). From the second half of the 19th century to World War II].

    Science.gov (United States)

    Yamakawa, K

    1995-01-01

    The history of modern pharmaceutical science and technology, from the second half of the 19th century to the end of World War II, is divided into nine sections for the purpose of discussion. 1. The European medical and pharmaceutical science and technology at the end of the 19th century is reviewed. Pharmacology, bacteriology and biochemistry were built in this period. 2. The Meiji Government accepted Western medicine and medical law and regulations in 1883. Consequently, the Japanese physician changed from Eastern (Kanpooi) to Western (Seiyooi). 3. Modern scientific and engineering education had been accepted in America, England, Germany, and France etc. Foreign scientists and engineers (Oyatoi-gai-kokujin) were educated by practice and theory. The Faculty of Engineering was established in the universities in Japan. This fact is one of the differences in the history of universities in Europe and America. 4. Pharmaceutical education in the Meiji period (1873-1911). Twenty-nine schools of pharmacy were built in this period. However, 20 schools of pharmacy had been closed. Pharmacy and pharmaceutical industry was not established in the Meiji era. 5. The profession of pharmacist in 1873-1944. The policy of medicine was changed by the Meiji Government in 1889, when Western physicians were allowed to prepare medicines for patients, and this practice continues today. Political and technological power of Japanese pharmacists was weak, so their role was not estimated. 6. Consequences of world War I, and the establishment of the pharmaceutical industry. The Sino-Japanese War (1894-95) and Russo-Japanese War (1904-05) were won fortunately. The first pharmaceutical company was established in 1885. At this times, many pharmaceutical manufacturing companies, which were converted from whole sale merchants, were built. Then started the manufacturing of commercial drugs. 7. Hygienic chemistry and some problems of public hygiene. The causes of diseses unique to Japan, such as

  7. Base pressure and heat transfer tests of the 0.0225-scale space shuttle plume simulation model (19-OTS) in yawed flight conditions in the NASA-Lewis 10x10-foot supersonic wind tunnel (test IH83)

    Science.gov (United States)

    Foust, J. W.

    1979-01-01

    Wind tunnel tests were performed to determine pressures, heat transfer rates, and gas recovery temperatures in the base region of a rocket firing model of the space shuttle integrated vehicle during simulated yawed flight conditions. First and second stage flight of the space shuttle were simulated by firing the main engines in conjunction with the SRB rocket motors or only the SSME's into the continuous tunnel airstream. For the correct rocket plume environment, the simulated altitude pressures were halved to maintain the rocket chamber/altitude pressure ratio. Tunnel freestream Mach numbers from 2.2 to 3.5 were simulated over an altitude range of 60 to 130 thousand feet with varying angle of attack, yaw angle, nozzle gimbal angle and SRB chamber pressure. Gas recovery temperature data derived from nine gas temperature probe runs are presented. The model configuration, instrumentation, test procedures, and data reduction are described.

  8. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  9. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This viewgraph presentation reviews the architectural description of the Mission Data Processing and Control System (MPCS). MPCS is an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is designed with these factors (1) Enabling plug and play architecture (2) MPCS has strong inheritance from GDS components that have been developed for other Flight Projects (MER, MRO, DAWN, MSAP), and are currently being used in operations and ATLO, and (3) MPCS components are Java-based, platform independent, and are designed to consume and produce XML-formatted data

  10. The Science and Applications of Ultrafast, Ultraintense Lasers: Opportunities in science and technology using the brightest light known to man. A report on the SAUUL workshop held June 17-19, 2002

    International Nuclear Information System (INIS)

    Todd Ditmire; Louis DiMauro

    2002-01-01

    This report is the result of a workshop held during June 17-19, 2002 in Washington, DC where many of the leaders in the field met to assess the scientific opportunities presented by research with ultrafast pulse, ultrahigh intensity lasers. This workshop and report were supported by the Department of Energy Office of Basic Energy Science (BES), the Office of Fusion Energy Science (OFES), the National Nuclear Security Agency Office of Defense Programs (NNSA DP) and the National Science Foundation Division of Physics (NSF). The workshop highlighted many exciting research areas using ultrahigh intensity lasers, ranging from plasma physics and fusion energy to astrophysics to ultrafast chemistry to structural biology. Recent progress in high intensity laser technology has made possible applications with light pulses unthinkable only ten years ago. Spectacular advances are now possible with the newest generation of petawatt lasers (lasers with peak power of one quadrillion watts) and unprecedented temporal structure. The central finding of the workshop and this report is that ultra-high intensity laser research offers a wide range of exciting opportunities, and that the continued growth and current leadership of the USA in this field should be aggressively maintained. This report isolates five areas where opportunities for major breakthroughs exist with ultrafast, ultraintense lasers (UUL): Fusion energy using UULs to ignite an inertial fusion capsule; Compact, high gradient particle accelerators; Ultrafast x-ray generation and time resolved structural studies of solids and molecules; The creation of extreme states of matter and their application to puzzles in astrophysics; and The generation of attosecond bursts of radiation and the study of electron dynamics. After assessing the state of these areas, this report has come to four central conclusions: (1) Science studied with UULs is presently one of the fastest growing subfields of basic and applied research in the

  11. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  12. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  13. Aerodynamic Simulation of Indoor Flight

    Science.gov (United States)

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  14. Looking Up: Multimedia about Space and Flight.

    Science.gov (United States)

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  15. Identification of gaps for implementation science in the HIV prevention, care and treatment cascade; a qualitative study in 19 districts in Uganda.

    Science.gov (United States)

    Bajunirwe, Francis; Tumwebaze, Flora; Abongomera, George; Akakimpa, Denis; Kityo, Cissy; Mugyenyi, Peter N

    2016-04-14

    Over the last 20 years, countries in sub Saharan Africa have made significant strides in the implementation of programs for HIV prevention, care and treatment. Despite, the significant progress made, many targets set by the United Nations have not been met. There remains a large gap between the ideal and what has been achieved. There are several operational issues that may be responsible for this gap, and these need to be addressed in order to achieve the targets. Therefore, the aim of this study was to identify gaps in the HIV prevention, care and treatment cascade, in a large district based HIV implementation program. We aimed to identify gaps that are amenable for evaluation using implementation science, in order to improve the delivery of HIV programs in rural Uganda. We conducted key informant (KI) interviews with 60 district health officers and managers of HIV/AIDS clinics and organizations and 32 focus group discussions with exit clients seeking care and treatment for HIV in the 19 districts. The data analysis process was guided using a framework approach. The recordings were transcribed verbatim. Transcripts were read back and forth and codes generated based on the framework. Nine emerging themes that comprise the gaps were identified and these were referral mechanisms indicating several loop holes, low levels of integration of HIV/TB services, low uptake of services for PMTCT services by pregnant women, low coverage of services for most at risk populations (MARPs), poor HIV coordination structures in the districts, poor continuity in the delivery of pediatric HIV/AIDS services, limited community support for orphans and vulnerable (OVC's), inadequate home based care services and HIV services and support for discordant couples. The themes indicate there are plenty of gaps that need to be covered and have been ignored by current programs. Our study has identified several gaps and suggested several interventions that should be tested before large scale

  16. Bowhead whale aerial abundance survey conducted by Alaska Fisheries Science Center, National Marine Mammal Laboratory from 2011-04-19 to 2011-06-11 (NCEI Accession 0133937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial photographic surveys for bowhead whales were conducted near Point Barrow, Alaska, from 19 April to 6 June in 2011. Approximately 4,594 photographs containing...

  17. SpaceCubeX: A Hybrid Multi-core CPU/FPGA/DSP Flight Architecture for Next Generation Earth Science Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASAs Earth Science missions and climate architecture plan and its underlying needs for high performance, modular, and scalable on-board...

  18. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  19. A kinematically complete, interdisciplinary, and co-institutional measurement of the 19F(α,n) cross section for nuclear safeguards science

    Energy Technology Data Exchange (ETDEWEB)

    Peters, W. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Smith, M. S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pittman, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, S. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clement, R. R. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cizewski, J. A. [Rutgers Univ., New Brunswick, NJ (United States); Pain, S. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Febbraro, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States); Chipps, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burcher, S. [Rutgers Univ., New Brunswick, NJ (United States); Manning, B. [Rutgers Univ., New Brunswick, NJ (United States); Reingold, C. [Rutgers Univ., New Brunswick, NJ (United States); Avetisyan, R. [Univ. of Notre Dame, IN (United States); Battaglia, A. [Univ. of Notre Dame, IN (United States); Chen, Y. [Univ. of Notre Dame, IN (United States); Long, A. [Univ. of Notre Dame, IN (United States); Lyons, S. [Univ. of Notre Dame, IN (United States); Marley, S. T. [Univ. of Notre Dame, IN (United States); Seymour, C. [Univ. of Notre Dame, IN (United States); Siegl, K. T. [Univ. of Notre Dame, IN (United States); Smith, M. K. [Univ. of Notre Dame, IN (United States); Strauss, S. [Univ. of Notre Dame, IN (United States); Talwar, R. [Univ. of Notre Dame, IN (United States); Bardayan, D. W. [Univ. of Notre Dame, IN (United States); Gyurjinyan, A. [Univ. of Notre Dame, IN (United States); Smith, K. [Univ. of Tennessee, Knoxville, TN (United States); Thornsberry, C.; Thompson, P.; Madurga, M. [Univ. of Tennessee, Knoxville, TN (United States); Stech, E. [Univ. of Notre Dame, IN (United States); Tan, W. P. [Univ. of Notre Dame, IN (United States); Wiescher, M. [Univ. of Notre Dame, IN (United States); Ilyushkin, S. [Colorado School of Mines, Golden, CO (United States); Tully, Z. [Tennessee Technological Univ., Cookeville, TN (United States); Grinder, M. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-05-01

    Alpha particles emitted from the decay of uranium in a UF6 matrix can interact with fluorine and generate neutrons via the 19F(α,n)22Na reaction. These neutrons can be used to determine the uranium content in a UF6 storage cylinder. The accuracy of this self-interrogating, non-destructive assay (NDA) technique is, however, limited by the uncertainty of the 19F(α,n)22Na cross section. We have performed complementary measurements of the 19F(α,n)22Na reaction with both 4He and 19F beams to improve the precision of the 19F(α,n)22Na cross section over the alpha energy range that encompasses common actinide alpha decay needed for NDA studies. We have determined an absolute cross section for the 19F(α,n)22Na reaction to an average precision of 7.6% over the alpha energy range of 3.9 – 6.7 MeV. We utilized this cross section in a simulation of a 100 g spherical UF6 assembly and obtained a change in neutron emission rate values of approximately 10-12%, and a significant (factor of 3.6) decrease in the neutron emission rate uncertainty (from 50-51% to 13-14%), compared to simulations using the old cross section. Our new absolute cross section enables improved interpretations of NDAs of containers of arbitrary size and configuration.

  20. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  1. Life Sciences Data Archive (LSDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Life Sciences Data Archive (LSDA) is an active archive that provides information and data from 1961 (Mercury Project) through current flight and flight analog...

  2. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  3. Dilemmas of 19th-century Liberalism among German Academic Chemists: Shaping a National Science Policy from Hofmann to Fischer, 1865-1919.

    Science.gov (United States)

    Johnson, Jeffrey Allan

    2015-04-01

    This paper's primary goal is to compare the personalities, values, and influence of August Wilhelm Hofmann and Emil Fischer as exemplars and acknowledged leaders of successive generations of the German chemical profession and as scientists sharing a 19th-century liberal, internationalist outlook from the German wars of unification in the 1860s to Fischer's death in 1919 in the aftermath of German defeat in World War I. The paper will consider the influence of Hofmann and Fischer on the shaping of national scientific institutions in Germany, from founding of the German Chemical Society in 1867 to the first institutes of the Kaiser Wilhelm Society founded in 1911, their academic leadership in other areas including the shaping of a successful academic-industrial symbiosis in organic chemistry, and finally their response to war as a force disruptive of scientific internationalism. All of these developments posed serious dilemmas, exacerbated by emerging strains of nationalism and anti-Semitism in German society. Whereas Hofmann's lifework came to a relatively successful end in 1892, Fischer was not so fortunate, as the war brought him heavy responsibilities and terrible personal losses, but with no German victory and no peace of reconciliation--a bleak end for Fischer and the 19th-century liberal ideals that had inspired him.

  4. 14 CFR 65.19 - Retesting after failure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Retesting after failure. 65.19 Section 65.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS General § 65.19 Retesting after failure. An...

  5. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  6. Gregory Merkel Tours Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1972-01-01

    Gregory A. Merkel (left), high school student from Springfield, Massachusetts, is pictured here with Harry Coons of the Marshall Space Flight Center (MSFC) during a visit to the center. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  7. ALICE Time of Flight Module

    CERN Multimedia

    The Time-Of-Flight system of ALICE consists of 90 such modules, each containing 15 or 19 Multigap Resistive Plate Chamber (MRPC) strips. This detector is used for identification of charged particles. It measures with high precision (50 ps) the time of flight of charged particles and therefore their velocity. The curvature of the particle trajectory inside the magnetic field gives the momentum, thus the particle mass is calculated and the particle is identified The MRPC is a stack of resistive glass plates, separated from each other by nylon fishing line. The mass production of the chambers (~1600, covering a surface of 150 m2) was done at INFN Bologna, while the first prototypes were bult at CERN.

  8. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  9. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  10. X-36 during First Flight

    Science.gov (United States)

    1997-01-01

    The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft climbs out from Rogers Dry Lake at the Dryden Flight Research Center on its first flight in May 1997. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19

  11. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  12. 19 CFR 19.47 - Security.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Security. 19.47 Section 19.47 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Container Stations § 19.47 Security. The...

  13. 19 CFR 210.19 - Intervention.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Intervention. 210.19 Section 210.19 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.19 Intervention. Any person desiring to intervene in an...

  14. 19 CFR 19.34 - Customs supervision.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Customs supervision. 19.34 Section 19.34 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Space Bonded for the Storage of Wheat § 19.34 Customs supervision. Port...

  15. Insect flight muscle metabolism

    NARCIS (Netherlands)

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is

  16. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  17. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  18. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  19. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  20. News Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

    Science.gov (United States)

    2012-05-01

    Education: Physics Education Networks meeting has global scale Competition: Competition seeks the next Brian Cox Experiment: New measurement of neutrino time-of-flight consistent with the speed of light Event: A day for all those who teach physics Conference: Students attend first Anglo-Japanese international science conference Celebration: Will 2015 be the 'Year of Light'? Teachers: Challenging our intuition in spectacular fashion: the fascinating world of quantum physics awaits Research: Science sharpens up sport Learning: Kittinger and Baumgartner: on a mission to the edge of space International: London International Youth Science Forum calls for leading young scientists Competition: Physics paralympian challenge needs inquisitive, analytical, artistic and eloquent pupils Forthcoming events

  1. 19 CFR 19.46 - Employee lists.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Employee lists. 19.46 Section 19.46 Customs Duties... Employee lists. A permit shall not be granted to an operator to transfer a container or containers to a... new employees. The operator shall, within 10 calendar days, advise the port director if the employment...

  2. 19 CFR 19.10 - Examination packages.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Examination packages. 19.10 Section 19.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY... Examination packages. Merchandise sent from a bonded warehouse to the appraiser's stores for examination shall...

  3. The Wright Brothers and their First Flight

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 12. The Wright Brothers and their First Flight. O N Ramesh. Article-in-a-Box Volume 8 Issue 12 December 2003 pp 3-4. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/008/12/0003-0004 ...

  4. Revalidation of the Selection Instrument for Flight Training

    Science.gov (United States)

    2017-07-01

    flight training . ( Technical Report No. 1195). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. Department of...Research Report 2002 Revalidation of the Selection Instrument for Flight Training Victor Ingurgio U.S. Army Research...MICHELLE SAMS, Ph.D. Director Research accomplished for the Department of the Army. Technical Review by Dr. William Bickley

  5. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  6. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  7. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  8. OZ: An Innovative Primary Flight Display, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed SBIR project will develop OZ, an innovative primary flight display for aircraft. The OZ display, designed from "first principles" of vision science,...

  9. Capital Flight from Russia

    OpenAIRE

    Prakash Loungani; Paolo Mauro

    2000-01-01

    This paper documents the scale of capital flight from Russia, compares it with that observed in other countries, and reviews policy options. The evidence from other countries suggests that capital flight can be reversed once reforms take hold. The paper argues that capital flight from Russia can only be curbed through a medium-term reform strategy aimed at improving governance and macroeconomic performance, and strengthening the banking system. Capital controls result in costly distortions an...

  10. Altitude-Wind-Tunnel Investigation of the 19B-2, 19B-8 and 19XB-1 Jet- Propulsion Engines. 4; Analysis of Compressor Performance

    Science.gov (United States)

    Dietz, Robert O.; Kuenzig, John K.

    1947-01-01

    Investigations were conducted in the Cleveland altitude wind tunnel to determine the performance and operational characteristics of the 19B-2, 19B-8, and 19XS-1 turbojet engines. One objective was to determine the effect of altitude, flight Mach number, and tail-pipe-nozzle area on the performance characteristics of the six-stage and ten-stage axial-flow compressors of the 19B-8 and 19XB-1 engines, respectively, The data were obtained over a range of simulated altitudes and flight Mach numbers. At each simulated flight condition the engine was run over its full operable range of speeds. Performance characteristics of the 19B-8 and 19XB-1 compressors for the range of operation obtainable in the turboJet-engine installation are presented. Compressor characteristics are presented as functions of air flow corrected to sea-level conditions, compressor Mach number, and compressor load coefficient. For the range of compressor operation investigated, changes in Reynolds number had no measurable effect on the relations among compressor Mach number, corrected air flow, compressor load coefficient, compressor pressure ratio, and compressor efficiency. The operating lines for the 19B-8 compressor lay on the low-air-flow side of the region of maximum compressor efficiency; the 19B-8 compressor operated at higher average pressure coefficients per stage and produced a lower over-all pressure ratio than did the 19XB-1 compressor.

  11. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  12. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  13. [Study on relationship between emotional stability in flight and nerve system excitability].

    Science.gov (United States)

    Liu, Fang; Huang, Wei-fen; Jing, Xiao-lu; Zhang, Ping

    2003-06-01

    To study the related factors of emotional stability in flight. Based on the operable definition of emotional stability in flight and the related literature review, 63 experienced pilots and flight coaches were investigated and the other-rating questionnaire of emotional stability in flight was established. To test the senior nerve system, Uchida Kraeplin (UK) test was administrated on 153 19-21 years old male student pilots of the second grade in the department of flight technique in China Civil Aviation College, who were selected through 13 h flight, 35 h solo flight, and acted as the standardization group. In the end, the correlation was explored between the testing results and their emotional behavioral characteristics in flight. Significant positive correlation was found between emotional feature indexes of emotional stability in flight and excitability in UK test. The excitability in UK test are good predictors for emotional stability in flight.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  15. Electrically Driven Thermal Management: Flight Validation, Experiment Development, Future Technologies

    Science.gov (United States)

    Didion, Jeffrey R.

    2018-01-01

    Electrically Driven Thermal Management is an active research and technology development initiative incorporating ISS technology flight demonstrations (STP-H5), development of Microgravity Science Glovebox (MSG) flight experiment, and laboratory-based investigations of electrically based thermal management techniques. The program targets integrated thermal management for future generations of RF electronics and power electronic devices. This presentation reviews four program elements: i.) results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched in February 2017 ii.) development of the Electrically Driven Liquid Film Boiling Experiment iii.) two University based research efforts iv.) development of Oscillating Heat Pipe evaluation at Goddard Space Flight Center.

  16. Los Alamos Science, Number 19, 1990

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1990-01-01

    This article explores the physics of various neutron-scattering processes, introduces the experimental techniques and instruments that make neutron scattering so versatile, and discusses the single equation that unifies the interpretation of neutron scattering data. The history of the field, its successes around the world, its present problems in the United States, and the plans for opening it to a wide spectrum of users from academia and industry. This articles traces neutrons from their ''birth'' in the spallation target through beam-tailoring devices and scattering samples to their ''death'' in neutron detectors. Samll-angle neutron-scattering experiments provide evidence that calmodulin, a protein that mediates calcium regulation of biological processes, is flexible in solution. Neutron scattering can detect subtle structures beneath the disorder that give advanced materials their extraordinary combinations of strength, elasticity, and low density. Recent neutron-scattering experiments on model systems are revealing how metal atoms loosen the bonds of hydrogen molecules, and essential first step in hydrogenation reactions. Combining data from neutron and x-ray diffraction is the only way to resolve ambiguities in the crystal structure of various materials, including high-temperature superconductors. Although the Bose condensate cannot be observed directly, an interpretation of neutron-scattering data according to a new first-principles theory of final-state effects has at last confirmed its existence in superfluid helium. The maximum entropy method has been applied successfully to neutron-scattering data and could even influence the design of neutron-scattering instruments

  17. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  18. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  19. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Science.gov (United States)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  20. 19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

  1. 19 January 2011 - Korean Vice Minister II of Education, Science and Technology K.Chang-Kyung with Adviser R. Voss, Director-General R. Heuer and head of International Relations F. Pauss; in the LHC tunnel at Point 5 and CMS experimental cavern with Collaboration Spokesperson G. Tonelli.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    Korean vice-minister II of education, science and technology, Kim Chang-Kyung, visiting the CMS experimental area at CERN on 19 January. He also had the opportunity to view part of the LHC tunnel, as well as to visit the CERN Control Centre.

  2. 19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

    CERN Multimedia

    2011-01-01

    19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

  3. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  4. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  5. HUMAN SPACE FLIGHTS: FACTS AND DREAMS

    Directory of Open Access Journals (Sweden)

    Mariano Bizzarri

    2011-12-01

    Full Text Available Manned space flight has been the great human and technological adventure of the past half-century. By putting people into places and situations unprecedented in history, it has stirred the imagination while expanding and redefining the human experience. However, space exploration obliges men to confront a hostile environment of cosmic radiation, microgravity, isolation and changes in the magnetic field. Any space traveler is therefore submitted to relevant health threats. In the twenty-first century, human space flight will continue, but it will change in the ways that science and technology have changed on Earth: it will become more networked, more global, and more oriented toward primary objectives. A new international human space flight policy can help achieve these objectives by clarifying the rationales, the ethics of acceptable risk, the role of remote presence, and the need for balance between funding and ambition to justify the risk of human lives.

  6. Core Flight Software

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Core Flight Software (CFS) project purpose is to analyze applicability, and evolve and extend the reusability of the CFS system originally developed by...

  7. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  8. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  9. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  10. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  11. Job stress and risk of menstrual duration disorder in female civilian flight attendants in Indonesia

    Directory of Open Access Journals (Sweden)

    Melissa Audry Rampen

    2016-03-01

    disorder in female flight attendants.Methods: A cross-sectional study with convenient sampling was conducted on civilian female flightattendants age 19–50 years who underwent routine medical examination at Civil Aviation Medical Centerand Garuda Sentra Medika, Jakarta on May 18-29 2015. Menstrual duration disorder is menstruation morethan 8 days and/or shorter than usual perid (3-5 days. Stress was identified by usingcriteria of NationalInstitute for Occupational Safety and Health Generic Job Stress Questionnaire Mental Demands FormNumber 11. Relative risk was analyzed usng Cox regression.Results: Among 521 female civilian flight attendants, 393 were willing to participate in this study. Nineteensubjects were excluded, leaving 374 subjects for this analysis, and 35.8% of subjects had menstrualduration disorder. Job stress, flight type and age were dominant risk factors for menstrual duration disorder.Subjects with job stress and long haul flight within three months had higher risk for having menstrualduration disorder by 58% [adjusted relative risk (RRa = 1.58; confidence interval (CI = 0.96-2.62; P =0.071] and 69% (RRa = 1.69; CI = 1.17-2.43 respectively. Those between aged 30-39 years had 50% hadless risk of having menstrual duration disorder (RRa=0.50; 95% CI = 0.22-1.02; P = 0.057.Conclusion: Female civilian flight attendants with job stress, long haul flight within three months and youngerage had higher risk to be menstrual duration disorder. (Health Science Journal of Indonesia 2015;6:87-91Key words: menstrual duration, job stress, female civilian flight attendant, Indonesia

  12. STS-95 Post Flight Presentation

    Science.gov (United States)

    1998-01-01

    The STS-95 flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video mission over-view of their space flight. Images include prelaunch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew can be seen being readied in the "whiteroom" for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. The primary objectives, which include the conducting of a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the HST Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads are discussed in both the video and still photo presentation.

  13. "Cartas a uma senhora": questões de gênero e a divulgação do darwinismo no Brasil Gender and public understanding of science: darwinism in the 19th century Brazilian press

    Directory of Open Access Journals (Sweden)

    Moema de Rezende Vergara

    2007-08-01

    Full Text Available Os recentes trabalhos sobre a história da divulgação científica no Brasil têm praticamente ignorado a categoria de gênero em suas análises. Assim, este artigo pretende fazer uma contribuição ao se constituir num estudo sobre uma prática específica de divulgação científica dos oitocentos, como as "cartas a uma senhora" escritas por Rangel S. Paio e publicadas n'O Vulgarizador. Nesse sentido, o conceito de gênero auxiliaria na compreensão das tensões entre o masculino e o feminino numa série de cartas de divulgação científica, na qual o conteúdo de gênero foi dado de antemão pelo próprio autor, ao direcionar sua atenção para o público de senhoras no Brasil do Segundo Reinado.In the recent works about Brazilian public understanding of science, gender has been poorly used as an analytical category. This paper has as its main goal to bridge this gap by analyzing a section called 'Letters for a Lady', in the journal O Vulgarizador that sought to teach all about Darwinism to women in the Brazil of the 19th century. So the notion of gender will help us understand the tension between masculinity and femininity in the text written by the literary critic Rangel S. Paio.

  14. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  15. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  16. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  17. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  18. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  19. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  20. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  1. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  2. ALOFT Flight Test Report

    Science.gov (United States)

    1977-10-01

    wmmmmmmmmmmmm i ifmu.immM\\]i\\ ßinimm^mmmmviwmmiwui »vimtm twfjmmmmmmi c-f—rmSmn NWC TP 5954 ALOFT Flight Test Report by James D. Ross anrJ I.. M...responsible i"- u conducting the ALOFT Flight Test Program and made contributions to this report: J. Basden , R. ".estbrook, L. Thompson, J. Willians...REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM 7. AUTMORC«; <oss James D./Xo L. M.y&ohnson IZATION NAME AND ADDRESS Naval

  3. 19th Polish Control Conference

    CERN Document Server

    Kacprzyk, Janusz; Oprzędkiewicz, Krzysztof; Skruch, Paweł

    2017-01-01

    This volume contains the proceedings of the KKA 2017 – the 19th Polish Control Conference, organized by the Department of Automatics and Biomedical Engineering, AGH University of Science and Technology in Kraków, Poland on June 18–21, 2017, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences, and the Commission for Engineering Sciences of the Polish Academy of Arts and Sciences. Part 1 deals with general issues of modeling and control, notably flow modeling and control, sliding mode, predictive, dual, etc. control. In turn, Part 2 focuses on optimization, estimation and prediction for control. Part 3 is concerned with autonomous vehicles, while Part 4 addresses applications. Part 5 discusses computer methods in control, and Part 6 examines fractional order calculus in the modeling and control of dynamic systems. Part 7 focuses on modern robotics. Part 8 deals with modeling and identification, while Part 9 deals with problems related to security, fault ...

  4. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Science.gov (United States)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  5. Perseus A in Flight with Moon

    Science.gov (United States)

    1994-01-01

    The Perseus A, a remotely-piloted, high-altitude research aircraft, is seen here framed against the moon and sky during a research mission at the Dryden Flight Research Center, Edwards, California in August 1994. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft

  6. Science Smiles

    Indian Academy of Sciences (India)

    Page 1. Science Smiles. RKLaxman. I bought the plot to build my office. But the activists would not let me touch anything lest it should upset the ecological balance here. R -E-SO-N-A-N-C-E -, -Fe-b-ru-ary-19-9-S -----~-------------

  7. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the

  8. Salivary Mucin 19 Glycoproteins

    Science.gov (United States)

    Culp, David J.; Robinson, Bently; Cash, Melanie N.; Bhattacharyya, Indraneel; Stewart, Carol; Cuadra-Saenz, Giancarlo

    2015-01-01

    Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19−/− mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19−/− mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19−/− mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19−/− mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed. PMID:25512380

  9. Range Flight Safety Requirements

    Science.gov (United States)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  10. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  11. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  12. Flight telerobotic servicer legacy

    Science.gov (United States)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  13. Stroke in Commercial Flights.

    Science.gov (United States)

    Álvarez-Velasco, Rodrigo; Masjuan, Jaime; DeFelipe, Alicia; Corral, Iñigo; Estévez-Fraga, Carlos; Crespo, Leticia; Alonso-Cánovas, Araceli

    2016-04-01

    Stroke on board aircraft has been reported in retrospective case series, mainly focusing on economy class stroke syndrome. Data on the actual incidence, pathogenesis, and prognosis of stroke in commercial flights are lacking. A prospective registry was designed to include all consecutive patients referred from an international airport (40 million passengers a year) to our hospital with a diagnosis of ischemic stroke or transient ischemic attack and onset of symptoms during a flight or immediately after landing. Forty-four patients (32 ischemic strokes and 12 transient ischemic attacks) were included over a 76-month period (January 2008 to April 2014). The estimated incidence of stroke was 1 stroke in 35 000 flights. Pathogeneses of stroke or transient ischemic attack were atherothrombotic in 16 (36%), economy class stroke syndrome in 8 (18%), cardioembolic in 7 (16%), arterial dissection in 4 (9%), lacunar stroke in 4 (9%), and undetermined in 5 (12%) patients. Carotid stenosis >70% was found in 12 (27%) of the patients. Overall prognosis was good, and thrombolysis was applied in 44% of the cases. The most common reason for not treating patients who had experienced stroke onset midflight was the delay in reaching the hospital. Only 1 patient with symptom onset during the flight prompted a flight diversion. We found a low incidence of stroke in the setting of air travel. Economy class stroke syndrome and arterial dissection were well represented in our sample. However, the main pathogenesis was atherothrombosis with a high proportion of patients with high carotid stenosis. © 2016 American Heart Association, Inc.

  14. Archives: Nigerian Journal of Physiological Sciences

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Nigerian Journal of Physiological Sciences. Journal Home > Archives: Nigerian Journal of Physiological Sciences. Log in or Register to get access to full text downloads.

  15. Retrieving Balloon Data in Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Ultra Long Duration Balloon (ULDB) program will soon make flights lasting up to 100 days. Some flights may generate high data rates and retrieving this data...

  16. Space Flight and Re-Entry Trajectories : International Symposium

    CERN Document Server

    Libby, Paul A

    1962-01-01

    In this and a following issue (Vol. VIII, 1962, Fasc. 2-3) of "Astronautica Acta" there will appear the papers presented at the first international symposium sponsored by the International Academy of Astronautics of the International Astronautical Federation. The theme of the meeting was "Space Flight and Re-Entry Trajectories." It was held at Louveciennes outside of Paris on June 19-21, 1961. Sixteen papers by authors from nine countries were presented; attendees numbered from 80 to 100. The organizing committee for the symposium was as follows: Prof. PAUL A. LIBBY, Polytechnic Institute of Brooklyn, U.S.A., Chairman; Prof. LuiGI BROGLIO, University of Rome, Italy; Prof. B. FRAEIJS DE VEUBEKE, University of Liege, Belgium; Dr. D. G. KING-HELE, Royal Aircraft Establishment, Farnborough, Rants, United Kingdom; Prof. J. M. J. KooY, Royal Military School, Breda, Netherlands; Prof. JEAN KovALEVSKY, Bureau des Longitudes, Paris, France; Prof. RuDOLF PESEK, Academy of Sciences, Prague, Czechoslovakia. The detailed ...

  17. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; hide

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  18. The Flight of Birds and Other Animals

    Directory of Open Access Journals (Sweden)

    Colin J. Pennycuick

    2015-09-01

    Full Text Available Methods of observing birds in flight now include training them to fly under known conditions in wind tunnels, and fitting free-flying birds with data loggers, that are either retrieved or read remotely via satellite links. The performance that comes to light depends on the known limitations of the materials from which they are made, and the conditions in which the birds live. Bird glide polars can be obtained by training birds to glide in a tilting wind tunnel. Translating these curves to power required from the flight muscles in level flight requires drag coefficients to be measured, which unfortunately does not work with bird bodies, because the flow is always fully detached. The drag of bodies in level flight can be determined by observing wingbeat frequency, and shows CD values around 0.08 in small birds, down to 0.06 in small waders specialised for efficient migration. Lift coefficients are up to 1.6 in gliding, or 1.8 for short, temporary glides. In-flight measurements can be used to calculate power curves for birds in level flight, and this has been applied to migrating geese in detail. These typically achieve lift:drag ratios around 15, including allowances for stops, as against 19 for continuous powered flight. The same calculations, applied to Pacific Black-tailed Godwits which start with fat fractions up to 0.55 at departure, show that such birds not only cross the Pacific to New Zealand, but have enough fuel in hand to reach the South Pole if that were necessary. This performance depends on the “dual fuel” arrangements of these migrants, whereby they use fat as their main fuel, and supplement this by extra fuel from burning the engine (flight muscles, as less power is needed later in the flight. The accuracy of these power curves has never been checked, although provision for stopping the bird, and making these checks at regular intervals during a simulated flight was built into the original design of the Lund wind tunnel. The

  19. X-36 Taking off During First Flight

    Science.gov (United States)

    1997-01-01

    The X-36 remotely piloted aircraft lifts off on its first flight, May 17, 1997, at NASA's Dryden Flight Research Center, Edwards, California. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet

  20. R and T report: Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor)

    1993-01-01

    The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.

  1. Review on flight simulators (today and tomorrow); Flight simulatior no genjo to kongo

    Energy Technology Data Exchange (ETDEWEB)

    Komura, T. [Mitsubishi Precision Company Limited, Tokyo (Japan)

    2000-04-05

    This paper presents various flight simulators. A flight simulator is classified into that for R and D on aircraft and that for flight training according to its usage. As an example of the former, the general-purpose flight simulation test facility of National Aerospace Laboratory, Science and Technology Agency is in use for development of the STOL experimental aircraft 'Asuka' and simulation experiments for space development. A civil aircraft simulator simulating the interior of a cockpit, operation feeling of piloting devices, flight performance, dynamic characteristics, an engine system and a hydraulic system like a real aircraft is in wide use for training pilots. A fighter simulator for air force is used for training detection of enemy's aircraft by radar, and missile shooting. An antisubmarine patrol aircraft simulator is used for training detection of submarines by sonic detector and magnetic detector, and torpedo air-launching. For both simulators, real simulation of detection sensors or battle environment is required. (NEDO)

  2. Daedalus - Last Dryden flight

    Science.gov (United States)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  3. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  4. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  5. Parvovirus B19.

    Science.gov (United States)

    Landry, Marie Louise

    2016-06-01

    Primary parvovirus B19 infection is an infrequent, but serious and treatable, cause of chronic anemia in immunocompromised hosts. Many compromised hosts have preexisting antibody to B19 and are not at risk. However, upon primary infection, some patients may be able to mount a sufficient immune response to terminate active parvovirus B19 infection of erythroid precursors. The most common consequence of B19 infection in the compromised host is pure red-cell aplasia, resulting in chronic or recurrent anemia with reticulocytopenia. Anemia persists until neutralizing antibody is either produced by the host or passively administered. Parvovirus B19 should be suspected in compromised hosts with unexplained or severe anemia and reticulocytopenia, or when bone-marrow examination shows either giant pronormoblasts or absence of red-cell precursors. Diagnosis is established by detection of B19 DNA in serum in the absence of IgG antibody to B19. In some cases, IgG antibody is detected but is not neutralizing. Anti-B19 IgM may or may not be present. Therapy includes any or all of the following: red-cell transfusion, adjustment in medications to restore or improve the patient's immune system, and administration of intravenous immunoglobulin (IVIG). Following treatment, patients should be closely monitored, especially if immunosuppression is unchanged or increased. Should hematocrit trend downward and parvovirus DNA trend upward, the therapeutic options above should be revisited. In a few instances, monthly maintenance IVIG may be indicated. Caregivers should be aware that B19 variants, though rarely encountered, can be missed or under-quantitated by some real-time polymerase-chain reaction methods.

  6. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  7. Flight suspension for the relativity gyro

    International Nuclear Information System (INIS)

    Patten, R.A. van

    1983-01-01

    A suspension system for levitation and precision positioning of the niobium coated spherical quartz gyro rotor during orbital flight has been simulated. The system employs multiple controllers and estimators with microprocessor (Z80) controlled range switching. The resulting system handles external accelerations up to 1 g in the highest range yet in the lowest range, below 10 -6 g the sensor noise power spectral density produces only 10 -10 g rms in the rotor. The system is capable of automatic emergency switch up within 100 μsec. Switch down is automatic to expected flight levels of ± 5 x 10 -8 g. Positioning accuracy in all ranges including emergency switch up is ± 5 μin. static, and ± 50 μin. dynamic. The average acceleration during the mission should be 10 -10 g to attain the science data accuracy goal. (Auth.)

  8. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  9. Human Parvovirus B19

    OpenAIRE

    Yarkın, Fügen

    1992-01-01

    Human parvavirus B19'un morfolojisi, oluşturduğu enfeksiyonun klinik belirtileri,tanı yöntemleri, epidemik özellikleri göz önüne alındığında, özellikle kronik olgularda B19 antikorlarının ilave edildiği immünglobulinlerin intravenöz infüzyonunun tedavide etkili olabilmektedir.

  10. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  11. STS-78 Flight Day 11

    Science.gov (United States)

    1996-01-01

    On this eleventh day of the STS-78 mission, the flight crew, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., are shown conducting a news conference to discuss the progress of the international mission with media from the United States, Canada and Europe. During the press conference, the crew explained the relevance of the experiments conducted aboard the Life Sciences and Microgravity mission, and praised support crews and researchers on Earth who are involved in the mission. Payload Specialist Dr. Robert Thirsk told Canadian journalists of how the research will not only benefit astronauts as they conduct long-term space missions, but also people on Earth. Some of the research will aid studies on osteoporosis and the effects steroids have on bones, and also may help doctors on Earth develop treatments for muscle diseases like muscular dystrophy, Thirsk told reporters in Toronto.

  12. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  13. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  14. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  15. Flight to America

    Directory of Open Access Journals (Sweden)

    Güneli Gün

    2011-01-01

    Full Text Available Güneli Gün’s memoir piece truly combines the excitement of the young traveler with the humor of the mature narrator. Born in Izmir, Turkey, she breaks her engagement to a young but conservative Turkish architect and overcomes her father’s concerns to eventually study at Hollins College, Virginia. Addressing topics such as breaking out of a traditional society, being torn between the home country and the imagined new home, and finding comfort in the arts, “Flight to America” compellingly reflects Güneli Gün’s mastery as a storyteller.

  16. STS-112 Flight Day 7 Highlights

    Science.gov (United States)

    2002-10-01

    On this seventh day of STS-112 mission members of the crew (Commander Jeff Ashby; Pilot Pam Melroy; Mission Specialist Sandy Magnus, Piers Sellers, Dave Wolf, and Fyodor Yurchikhin) along with the Expedition Five crew (Commander Valery Korzun; Flight Engineer Peggy Whitson, and Sergei Treschev) are seen answering questions during the mission's press interview and photo opportunity. They answered various questions regarding the mission's objectives, the onboard science experiments, the extravehicular activities (EVAs) and the effects of living in space. Shots of the test deployment of the S1 truss radiator and Canadarm rotor joint are also shown.

  17. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  18. 2013 EFRC PI Meeting -- Science for Our Nation's Energy Future: Energy Frontier Research Centers Principal Investigators' Meeting, Washington, D.C., July 18-19, 2013

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-07-01

    2013 EFRC Principal Investigators’ Meeting, July 18-19, 2013 in Washington D.C. By invitation only--about 500 attendees from the EFRCs and DOE, 235 senior EFRC members and 165 EFRC early career scientists from more than 80 institutions in 31 states, 2 foreign countries and Washington D.C. Over 115 talks and 225 posters

  19. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    Science.gov (United States)

    2013-11-01

    CFD . 15. SUBJECT TERMS Boundary layer transition, hypersonic , flight test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18...consistent with prior CFD 33,34 and wind tunnel measurements 28,29 at hypersonic conditions that indicated that the centerline is more unstable... Hypersonic Sciences Branch High Speed Systems Division NOVEMBER 2013 Approved for public release; distribution unlimited

  20. Rodent Research-1 (RR1) NASA Validation Flight: Mouse liver transcriptomic proteomic and epigenomic data

    Data.gov (United States)

    National Aeronautics and Space Administration — RR-1 is a validation flight to evaluate the hardware operational and science capabilities of the Rodent Research Project on the ISS. RNA DNA and protein were...

  1. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  2. 19 (Special Issue)

    African Journals Online (AJOL)

    mwakagugu

    19 (Special Issue). Tanzania Dental Journal 2017. 1. PRESIDENTS SPEECH AT THE OPENING CEREMONY OF THE TANZANIA DENTAL. ASSOCIATION 31ST SCIENTIFIC CONFERENCE AND .... awareness on oral health issues, high tooth decay, gum diseases and predominant tooth extraction as consistently reported ...

  3. Lexikos - Vol 19 (2009)

    African Journals Online (AJOL)

    Zum Stand und zu den Perspek-tiven der allgemeinsprachlichen Lexikographie mit Deutsch und Slowenisch · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. V Jesenšek, HE Wiegand. http://dx.doi.org/10.5788/19-0-432 ...

  4. DDC19: An Indictment.

    Science.gov (United States)

    Berman, Sanford

    1980-01-01

    Criticizes the 19th edition of "Dewey Decimal Classification" for violating traditional classification goals for library materials and ignoring the desires of libraries and other users. A total reform is proposed to eliminate Phoenix schedules and to accept only those relocations approved by an editorial board of users. (RAA)

  5. Mail Delivery | 19 December

    CERN Multimedia

    Mail Office

    2014-01-01

    Due to the annual closure of CERN, no mail will be distributed on Friday, 19 December but mail will still be collected in the morning. Nevertheless, it will be possible for you to bring outgoing mail to building 555-R-002 until 12 noon.

  6. 12-19 Review

    African Journals Online (AJOL)

    Marinda

    2009-06-25

    Jun 25, 2009 ... Correspondence to: Dr Rozali Spies, e-mail: rspies@telkomsa.net. Keywords: asthma; child; anaesthesia; bronchospasm. SAJAA 2009; 15(4): 12-19. ABSTRACT. Asthma is one of the most common coexisting diseases in children, and a major cause of mortality and morbidity in children. Morbidity is ...

  7. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  8. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  9. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Ph.D. (Wisconsin). Date of birth: 21 September 1936. Date of death: 10 September 1996. Specialization: Digital Control Systems, Analysis and Simulation of Discrete Event Systems and Flight Vehicle Guidance Last known address: Department of Computer Science, and Automation, Indian Institute of Science, Bengaluru ...

  10. Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts

    Science.gov (United States)

    Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno

    2010-07-01

    While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.

  11. Study of 19F and 19Ne mirror nuclei

    International Nuclear Information System (INIS)

    Lebrun, Claude.

    1976-01-01

    The electromagnetic properties of the mirror nuclei 19 F and 19 Ne were studied using the 18 O(d,nγ) 19 F, 17 O( 3 He,nγ) 19 Ne and 19 F(p,nγ) 19 Ne reactions. Lifetimes of 8 levels in 19 F and 11 levels in 19 Ne have been measured using the Doppler shift attenuation method. Weak and strong components of M 1 , E 1 and E 2 transition strengths are compared with shell model predictions. M 1 and E 2 transition strengths of conjugated nuclei (A=18 to A=34) are compiled and compared with wide configuration space shell models [fr

  12. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  13. Flight plan optimization

    Science.gov (United States)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  14. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  15. STS-114 Flight Day 6 Highlights

    Science.gov (United States)

    2005-01-01

    Day 6 is a relatively quiet day for the STS-114 crew. The main responsibility for crew members of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) is to unload supplies from the shuttle payload bay and from the Raffaello Multipurpose Logistics Module onto the ISS. Several of the astronauts answer interview questions from the news media, with an emphasis on the significance of their mission for the Return to Flight, shuttle damage and repair, and the future of the shuttle program. Thomas announces the winners of an essay contest for Australian students about the importance of science and mathematics education. The video includes the installation of a stowage rack for the Human Research Facility onboard the ISS, a brief description of the ISS modules, and an inverted view of the Nile Delta.

  16. A Multi-mission Event-Driven Component-Based System for Support of Flight Software Development, ATLO, and Operations first used by the Mars Science Laboratory (MSL) Project

    Science.gov (United States)

    Dehghani, Navid; Tankenson, Michael

    2006-01-01

    This paper details an architectural description of the Mission Data Processing and Control System (MPCS), an event-driven, multi-mission ground data processing components providing uplink, downlink, and data management capabilities which will support the Mars Science Laboratory (MSL) project as its first target mission. MPCS is developed based on a set of small reusable components, implemented in Java, each designed with a specific function and well-defined interfaces. An industry standard messaging bus is used to transfer information among system components. Components generate standard messages which are used to capture system information, as well as triggers to support the event-driven architecture of the system. Event-driven systems are highly desirable for processing high-rate telemetry (science and engineering) data, and for supporting automation for many mission operations processes.

  17. Flight Qualification of the NASA's Super Pressure Balloon

    Science.gov (United States)

    Cathey, Henry; Said, Magdi; Fairbrother, Debora

    Designs of new balloons to support space science require a number of actual flights under various flight conditions to qualify them to as standard balloon flight offerings to the science community. Development of the new Super Pressure Balloon for the National Aeronautics and Space Administration’s Balloon Program Office has entailed employing new design, analysis, and production techniques to advance the state of the art. Some of these advances have been evolutionary steps and some have been revolutionary steps requiring a maturing understanding of the materials, designs, and manufacturing approaches. The NASA Super Pressure Balloon development end goal is to produce a flight vehicle that is qualified to carry a ton of science instrumentation, at an altitude greater than 33 km while maintaining a near constant pressure altitude for extended periods of up to 100 days, and at any latitude on the globe. The NASA’s Balloon Program Office has pursued this development in a carefully executed incremental approach by gradually increasing payload carrying capability and increasing balloon volume to reach these end goal. A very successful test flight of a ~200,700 m3 balloon was launch in late 2008 from Antarctica. This balloon flew for over 54 days at a constant altitude and circled the Antarctic continent almost three times. A larger balloon was flown from Antarctica in early 2011. This ~422,400 m3 flew at a constant altitude for 22 days making one circuit around Antarctica. Although the performance was nominal, the flight was terminated via command to recover high valued assets from the payload. The balloon designed to reach the program goals is a ~532,200 m3 pumpkin shaped Super Pressure Balloon. A test flight of this balloon was launched from the Swedish Space Corporation’s Esrange Balloon Launch Facilities near Kiruna, Sweden on 14 August, 2012. This flight was another success for this development program. Valuable information was gained from this short test

  18. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    Burnett, T.; Iwai, J.; Lord, J.J.; Strausz, S.; Wilkes, R.J.; Dake, S.; Oda, H.; Miyamura, O.; Fuki, M.; Jones, W.V.; Gregory, J.; Hayashi, T.; Takahashi, U.; Tominaga, Y.; Wefel, J.P.; Fountain, W.; Derrickson, J.; Parnell, T.A.; Roberts, E.; Tabuki, T.; Watts, J.W.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  19. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight

  20. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  1. 19 CFR 19.1 - Classes of customs warehouses.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Classes of customs warehouses. 19.1 Section 19.1 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN § 19.1 Classes of...

  2. 19 CFR 19.38 - Supervision of exportation.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Supervision of exportation. 19.38 Section 19.38 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY CUSTOMS WAREHOUSES, CONTAINER STATIONS AND CONTROL OF MERCHANDISE THEREIN Duty-Free Stores § 19.38 Supervision of exportation. (a) Sales...

  3. X-36 in Flight near Edge of Rogers Dry Lake during 5th Flight

    Science.gov (United States)

    1997-01-01

    This photo shows the X-36 Tailless Fighter Agility Research Aircraft passing over the edge of Rogers Dry Lake as the remotely-piloted aircraft flies over Edwards Air Force Base on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  4. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  5. IVGEN Post Flight Analysis

    Science.gov (United States)

    Mcquillen, John; Brown, Dan; Hussey, Sam; Zoldak, John

    2014-01-01

    The Intravenous Fluid Generation (IVGEN) Experiment was a technology demonstration experiment that purified ISS potable water, mixed it with salt, and transferred it through a sterilizing filter. On-orbit performance was verified as appropriate and two 1.5 l bags of normal saline solution were returned to earth for post-flight testing by a FDA certified laboratory for compliance with United States Pharmacopiea (USP) standards. Salt concentration deviated from required values and an analysis identified probable causes. Current efforts are focused on Total Organic Content (TOC) testing, and shelf life.The Intravenous Fluid Generation (IVGEN) Experiment demonstrated the purification of ISS potable water, the mixing of the purified water with sodium chloride, and sterilization of the solution via membrane filtration. On-orbit performance was monitored where feasible and two 1.5-liter bags of normal saline solution were returned to earth for post-flight testing by a FDA-registered laboratory for compliance with United States Pharmacopeia (USP)standards [1]. Current efforts have been focused on challenge testing with identified [2] impurities (total organic-carbon), and shelf life testing. The challenge testing flowed known concentrations of contaminants through the IVGEN deionizing cartridge and membrane filters to test their effectiveness. One finding was that the filters and DI-resin themselves contribute to the contaminant load during initial startup, suggesting that the first 100 ml of fluid be discarded. Shelf life testing is ongoing and involves periodic testing of stored DI cartridges and membrane filters that are capped and sealed in hermetic packages. The testing is conducted at six month intervals measuring conductivity and endotoxins in the effluent. Currently, the packaging technique has been successfully demonstrated for one year of storage testing. The USP standards specifies that the TOC be conducted at point of generation as opposed to point of

  6. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  7. Deep-Space Ka-Band Flight Experience

    Science.gov (United States)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  8. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  9. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  10. IceBridge Mission Flight Reports

    Data.gov (United States)

    National Aeronautics and Space Administration — The IceBridge Mission Flight Reports data set contains flight reports from NASA Operation IceBridge Greenland, Arctic, Antarctic, and Alaska missions. Flight reports...

  11. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  12. Morphing Flight Control Surface for Advanced Flight Performance, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  13. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi; Garcia, Daniel; Calo, Victor M.

    2014-01-01

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  14. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  15. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  16. Research in Science Education, Volume 19, 1989. Selected Refereed Papers from the Annual Conference of the Australian Science Education Research Association Held at the Frankston Campus of the Chisholm Institute of Technology (20th, Victoria, New South Wales, Australia, July 1989).

    Science.gov (United States)

    Tisher, Richard P., Ed.

    Diverse themes from the annual conference of the Australian Science Education Research Association are addressed in this volume. New topic concerns as well as concerns that have been cited in previous issues are identified. Papers focus on issues including: (1) science and technology; (2) classroom practices and processes; (3) international…

  17. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Science Academies' Refresher Course on Classical Mechanics and Electromagnetism. Information and Announcements Volume 19 Issue 8 August 2014 pp 775-775 ...

  18. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (cyborg insects or biobots.

  19. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    Science.gov (United States)

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  20. "Space flight is utter bilge"

    Science.gov (United States)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.

  1. Robust Decentralized Formation Flight Control

    Directory of Open Access Journals (Sweden)

    Zhao Weihua

    2011-01-01

    Full Text Available Motivated by the idea of multiplexed model predictive control (MMPC, this paper introduces a new framework for unmanned aerial vehicles (UAVs formation flight and coordination. Formulated using MMPC approach, the whole centralized formation flight system is considered as a linear periodic system with control inputs of each UAV subsystem as its periodic inputs. Divided into decentralized subsystems, the whole formation flight system is guaranteed stable if proper terminal cost and terminal constraints are added to each decentralized MPC formulation of the UAV subsystem. The decentralized robust MPC formulation for each UAV subsystem with bounded input disturbances and model uncertainties is also presented. Furthermore, an obstacle avoidance control scheme for any shape and size of obstacles, including the nonapriorily known ones, is integrated under the unified MPC framework. The results from simulations demonstrate that the proposed framework can successfully achieve robust collision-free formation flights.

  2. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  3. Solar array flight dynamic experiment

    Science.gov (United States)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  4. Flight Planning and Procedures

    Science.gov (United States)

    Rich, Allison C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.

  5. The role of church history and Byzantine studies in the history of historical sciences, religious and secular education in Ukraine in the late 19th and early 20th centuries

    Directory of Open Access Journals (Sweden)

    I. Y. Medovkina

    2013-12-01

    Full Text Available The historical retrospective of formation of the non­religious phenomenon «new Christianity» in the conteThe article examines the impact of the educational and scientific activities of famous church historians on the expansion of knowledge in the history of church, development of historical studies, religious and secular education in Ukrainian territories in the late 19th and early 20th centuries. The analysis of the biographies, activities and scientific papers of such well­known scientists as Aleksey Dmitriyevskiy, Ivan Sokolov, Kostiantyn Kharlampovych, Vasyl Bidnov and Oleksandr Lototskyi shows that the scholars made a great contribution to the expansion of historical knowledge in the history of church and Byzantine studies. They achieved it by finding and publishing new sources, studying new topics that had not been covered earlier, applying the historical comparative method and analysing the local history within the context of general history of humankind. Furthermore, just by reviewing the list of offices held by the above scholars, subjects they taught, and scientific journals where they worked as authors and editors and understanding what role they played in preserving church antiques during the period when objects of historical importance were expropriated and used for other purposes, you can appreciate not only their contribution to fostering a great number of well­educated broad­minded and scientifically oriented researchers and clergy members, but also the importance of the position they took on social issues. Because of the social principles they defended the scholars were often persecuted by the Bolsheviks, which caused their premature death or forced emigration.

  6. Science Operations Management

    Science.gov (United States)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  7. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  8. Perseus A, Part of the ERAST Program, in Flight

    Science.gov (United States)

    1993-01-01

    The Perseus A remotely-piloted research vehicle flies low over Rogers Dry Lake on its maiden voyage Dec. 21, 1993, at the Dryden Flight Research Center, Edwards, California. The Perseus, designed and built by Aurora Flight Sciences Corp., was towed into the air by a ground vehicle. At about 700 ft. the aircraft was released and the engine turned the propeller to take the plane to its desired altitude. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999

  9. The NASA Human Space Flight Supply Chain, Current and Future

    Science.gov (United States)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  10. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  11. 14 CFR 27.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 27.151 Section 27.151... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Flight Characteristics § 27.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  12. 14 CFR 29.151 - Flight controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight controls. 29.151 Section 29.151... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Flight Characteristics § 29.151 Flight controls. (a) Longitudinal, lateral, directional, and collective controls may not exhibit excessive breakout force, friction...

  13. NASA/MSFC/NSSTC Science Communication Roundtable

    Science.gov (United States)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  14. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  15. F-14 in banked flight

    Science.gov (United States)

    1979-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), is seen here in banked flight over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, acheived considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. The Navy had been experiencing inadvertant spin entries caused by the F-14's aileron rudder interconnect. The NASA/Navy/Grumman team developed and tested 4 different configurations of the aileron rudder interconnect to address the spin problem. These problems prompted the Navy to ask the manufacturer, Grumman, and NASA to investigate the issue. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later.

  16. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  17. System Identification of Flight Mechanical Characteristics

    OpenAIRE

    Larsson, Roger

    2013-01-01

    With the demand for more advanced fighter aircraft, relying on relaxed stability or even unstable flight mechanical characteristics to gain flight performance, more focus has been put on model-based system engineering to help with the design work. The flight control system design is one important part that relies on this modeling. Therefore it has become more important to develop flight mechanical models that are highly accurate in the whole flight envelop. For today’s newly developed fighter...

  18. Supersonic Retropropulsion Flight Test Concepts

    Science.gov (United States)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  19. 19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    19 January 2011 - British University of Manchester, Vice-President and Dean for the Faculty of Engineering and Physical Sciences Professor of Structural Engineering School of Mechanical, Aerospace and Civil Engineering C. Bailey in CERN Control Centre with Department Head P. Collier; at LHCb with R. Lindner and ATLAS underground experimental area with Deputy Spokesperson D. Charlton, througout accompanied by . Collier with R. Appleby and F. Loebinger

  20. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in...

  1. Interleukin-19 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying-Yin Chen

    2013-01-01

    Full Text Available Inflammatory cytokines within the tumor microenvironment are linked to progression in breast cancer. Interleukin- (IL- 19, part of the IL-10 family, contributes to a range of diseases and disorders, such as asthma, endotoxic shock, uremia, psoriasis, and rheumatoid arthritis. IL-19 is expressed in several types of tumor cells, especially in squamous cell carcinoma of the skin, tongue, esophagus, and lung and invasive duct carcinoma of the breast. In breast cancer, IL-19 expression is correlated with increased mitotic figures, advanced tumor stage, higher metastasis, and poor survival. The mechanisms of IL-19 in breast cancer have recently been explored both in vitro and in vivo. IL-19 has an autocrine effect in breast cancer cells. It directly promotes proliferation and migration and indirectly provides a microenvironment for tumor progression, which suggests that IL-19 is a prognostic marker in breast cancer and that antagonizing IL-19 may have therapeutic potential.

  2. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  3. Teratology in Mexico. 19th Century.

    Science.gov (United States)

    Gorbach, Frida

    2014-01-01

    It was not until the last third of the 19th century, the period in which, according to historiography, the country definitely inserted itself into modernity, that anomalies and monstrosities had a presence in Mexico. Therefore, what I present here are four moments of teratology in Mexico, four dates in which I try to recount how teratology, which still occupied a marginal place within the main themes of national science, not only reached to cover the realm of medical discussions at the time, but also laid the foundations for new disciplines like biology and anthropology.

  4. Pathfinder-Plus on flight in Hawaii

    Science.gov (United States)

    1998-01-01

    above 50,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  5. Pathfinder-Plus on flight over Hawaii

    Science.gov (United States)

    1998-01-01

    ,000 feet. Major activities of Pathfinder Plus' Hawaiian flights included detection of forest nutrient status, forest regrowth after damage caused by Hurricane Iniki in 1992, sediment/algal concentrations in coastal waters, and assessment of coral reef health. Pathfinder science activities were coordinated by NASA's Ames Research Center, Mountain View, California, and included researchers from the University of Hawaii and the University of California. Pathfinder is part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program managed by NASA's Dryden Flight Research Center, Edwards, California. Pathfinder and Pathfinder Plus were designed, built, and operated by AeroVironment, Inc., Monrovia, California. Pathfinder had a 98.4-foot wing span and weighed 560 pounds. Pathfinder Plus has a 121-foot wing span and weighs about 700 pounds. Pathfinder was powered by six electric motors while Pathfinder Plus has eight. Pathfinder's solar arrays produced approximately 8,000 watts of power while Pathfinder Plus' solar arrays produce about 12,500 watts of power. Both Pathfinder aircraft were built primarily of composites, plastic, and foam.

  6. Adewuyi et al (19).cdr

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Ife Journal of Science vol. 17, no. ... Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta, Ogun State,. Nigeria. ... coatings, paint and other industrial coatings as binder in ..... library generation.

  7. Materials Science Laboratory

    Science.gov (United States)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  8. Spacelab Life Sciences-1

    Science.gov (United States)

    Dalton, Bonnie P.; Jahns, Gary; Meylor, John; Hawes, Nikki; Fast, Tom N.; Zarow, Greg

    1995-01-01

    This report provides an historical overview of the Spacelab Life Sciences-1 (SLS-1) mission along with the resultant biomaintenance data and investigators' findings. Only the nonhuman elements, developed by Ames Research Center (ARC) researchers, are addressed herein. The STS-40 flight of SLS-1, in June 1991, was the first spacelab flown after 'return to orbit', it was also the first spacelab mission specifically designated as a Life Sciences Spacelab. The experiments performed provided baseline data for both hardware and rodents used in succeeding missions.

  9. Enabling Electric Propulsion for Flight

    Science.gov (United States)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  10. CHANGES IN FLIGHT TRAINEE PERFORMANCE FOLLOWING SYNTHETIC HELICOPTER FLIGHT TRAINING.

    Science.gov (United States)

    CARO, PAUL W., JR.; ISLEY, ROBERT N.

    A STUDY WAS CONDUCTED AT THE U.S. ARMY PRIMARY HELICOPTER SCHOOL, FORT WOLTERS, TEXAS, TO DETERMINE WHETHER THE USE OF A HELICOPTER TRAINING DEVICE WOULD IMPROVE STUDENT PERFORMANCE DURING SUBSEQUENT HELICOPTER CONTACT FLIGHT TRAINING. SUBJECTS WERE TWO EXPERIMENTAL GROUPS AND TWO CONTROL GROUPS OF WARRANT OFFICER CANDIDATES ENROLLED FOR A…

  11. Flight Attendant Fatigue: A Quantitative Review of Flight Attendant Comments

    Science.gov (United States)

    2011-10-01

    Hellesoy, 1994; Hunt & Space, 1994; Nagda & Koontz , 2003; Nesthus et al., 2007; Rayman, 1997; Smolensky, Lee, Mott, & Colligan, 1982; Tashkin...www.boeing. com/commercial/cabinair/ventilation.pdf Nagda, N.L., & Koontz , M.D. (2003). Review of studies on flight attendant health and comfort in

  12. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  13. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  14. The spectacle of science aloft

    Directory of Open Access Journals (Sweden)

    Cristina Olivotto

    2007-06-01

    Full Text Available Since the first pioneering balloon flight undertaken in France in 1783, aerial ascents became an ordinary show for the citizens of the great European cities until the end of the XIX century. Scientists welcomed balloons as an extraordinary device to explore the aerial ocean and find answers to their questions. At the same time, due to the theatricality of ballooning, sky became a unique stage where science could make an exhibition of itself. Namely, ballooning was not only a scientific device, but a way to communicate science as well. Starting from studies concerning the public facet of aerial ascents and from the reports of the aeronauts themselves, this essay explores the importance of balloon flights in growing the public sphere of science. Also, the reasons that led scientists to exploit “the show of science aloft” (earning funds, public support, dissemination of scientific culture… will be presented and discussed.

  15. Perseus B over Edwards AFB on a Development Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely-piloted research aircraft, seen here during a test flight in April1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  16. 32 CFR 2400.19 - Declassification by the Director of the Information Security Oversight Office.

    Science.gov (United States)

    2010-07-01

    ... Information Security Oversight Office. 2400.19 Section 2400.19 National Defense Other Regulations Relating to... SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM Declassification and Downgrading § 2400.19 Declassification by the Director of the Information Security Oversight Office. If the Director of the Information...

  17. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  18. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  19. Flight Dynamics Analysis for Leonardo-BRDF

    Science.gov (United States)

    Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.

  20. Life sciences recruitment objectives

    Science.gov (United States)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 2. An indigenous cluster beam apparatus with a reflectron time-of-flight mass spectrometer. G Raina G U Kulkarni R T Yadav V S Ramamurthy C N R Rao. Physical and Theoretical Volume 112 Issue 2 April ...

  2. SCI 236 AGARDograph. Part Two; National Aeronautics and Space Administration Armstrong Flight Research Center Annex

    Science.gov (United States)

    Neal, Bradford A.; Stoliker, Patrick C.

    2018-01-01

    NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.

  3. Geography 2050, November 19, 2014

    Science.gov (United States)

    2016-02-04

    16. SECURITY CLASSIFICATION OF: On November 19, 2014, the American Geographical Society hosted Geography 2050, a high?level symposium including top...UU UU UU UU 04-02-2016 Approved for public release; distribution is unlimited. Geography 2050, November 19, 2014 The views, opinions and/or findings...ABOVE ADDRESS. University of Kansas 2385 Irving Hill Road Lawrence, KS 66044 -7552 ABSTRACT Geography 2050, November 19, 2014 Report Title On November

  4. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  5. Editorial, n. 19, 2005

    Directory of Open Access Journals (Sweden)

    Editor Encontros Bibli

    2005-04-01

    Full Text Available http://dx.doi.org/10.5007/1518-2924.2005v10n19pi   FORMAÇÃO PROFISSIONAL E DESAFIOS ATUAIS NO CAMPO DA INFORMAÇÃO O título deste editorial aponta para mais que uma constatação; ele relembra a pluralidade com que está constituído o campo da informação de que tratam como campo profissional e de investigação bibliotecários, arquivistas e cientistas da informação. A atualidade decorre da circunstância de que há um sentimento em processo de generalização de que quase não há mais tempo para olhar o passado, senão como referência do que não pode mais servir como fonte de inspiração ou fonte de onde se poderá extrair idéias instrumentalmente aplicáveis ao mundo contemporâneo, especialmente de uma contemporaneidade que se mede em não mais que uma década. Desse modo, um artigo que examina a literatura sobre formação profissional, concentra a sua análise em textos que foram majoritariamente produzidos nos cinco anos recentes. Explica-se, sobretudo, pelo fato do enfoque estar dando relevância às tecnologias da informação e tecnologia, sabemos todos, não está sendo tomada nos dias atuais apenas como uma moeda que promove a competição entre países, através de suas elites dirigentes (políticas e econômicas e profissionais, mas, distorcidamente, está sendo levada à conta da razão da existência humana, sendo cada vez mais naturalizada. Por este motivo, um dos mais fortes desafios atuais no e ao campo da informação é incorporar em seu discurso e constante apreciação o trato ético da existência em sociedade e das relações que podem ser construídas nas interações entre homens e mulheres nesta contemporaneidade, sem perder de vista o futuro. Nesta edição, um artigo levanta parte das questões aí colocadas e, como trabalho intelectual, teve como base palestra realizada em 2004, por sua autora, em um Encontro dos Profissionais Bibliotecários do Estado de São Paulo, voltado para a discussão do tema

  6. STS-70 Post Flight Presentation

    Science.gov (United States)

    Peterson, Glen (Editor)

    1995-01-01

    In this post-flight overview, the flight crew of the STS-70 mission, Tom Henricks (Cmdr.), Kevin Kregel (Pilot), Major Nancy Currie (MS), Dr. Mary Ellen Weber (MS), and Dr. Don Thomas (MS), discuss their mission and accompanying experiments. Pre-flight, launch, and orbital footage is followed by the in-orbit deployment of the Tracking and Data Relay Satellite (TDRS) and a discussion of the following spaceborne experiments: a microgravity bioreactor experiment to grow 3D body-like tissue; pregnant rat muscular changes in microgravity; embryonic development in microgravity; Shuttle Amateur Radio Experiment (SAREX); terrain surface imagery using the HERCULES camera; and a range of other physiological tests, including an eye and vision test. Views of Earth include: tropical storm Chantal; the Nile River and Red Sea; lightning over Brazil. A three planet view (Earth, Mars, and Venus) was taken right before sunrise. The end footage shows shuttle pre-landing checkout, entry, and landing, along with a slide presentation of the flight.

  7. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  8. Bat Flight and Zoonotic Viruses

    Centers for Disease Control (CDC) Podcasts

    2014-05-30

    Reginald Tucker reads an abridged version of the EID perspective Bat Flight and Zoonotic Viruses.  Created: 5/30/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/2/2014.

  9. Centennial of Flight Educational Outreach

    Science.gov (United States)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  10. Cytogenic Investigations in Flight Personnel

    International Nuclear Information System (INIS)

    Wolf, G.; Obe, G.; Bergau, L.

    1999-01-01

    During long-distance flights at high altitudes flight personnel are exposed to cosmic radiation. In order to determine whether there are biological effects of such low dose radiation exposure in aircrew, chromosomal aberrations were investigated in 59 female cabin attendants and a matched control group of 31 members of station personnel. The mean number of dicentric chromosomes amounts to 1.3 (95% CI 1.0-1.6) per 1,000 cells in cabin attendants and 1.4 (95% CI 1.0-1.9) per 1,000 cells in controls. In an additional control group of 56 female clerks from Berlin the mean frequency of dicentric chromosomes was 1.3 (95% CI 1.0-1.6). Neither in dicentric frequency and distribution nor in other aberrations was a significant difference between the groups of flight and station personnel found. The high frequency of multi-aberrant cells was remarkable in flight personnel as well as in station personnel. The reason for this phenomenon is unknown and needs further investigation. (author)

  11. Visual and flight performance recovery after PRK or LASIK in helicopter pilots.

    Science.gov (United States)

    Van de Pol, Corina; Greig, Joanna L; Estrada, Art; Bissette, Gina M; Bower, Kraig S

    2007-06-01

    Refractive surgery, specifically photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK), is becoming more accepted in the military environment. Determination of the impact on visual performance in the more demanding aviation environment was the impetus for this study. A prospective evaluation of 20 Black Hawk pilots pre-surgically and at 1 wk, 1 mo, and 6 mo postsurgery was conducted to assess both PRK and LASIK visual and flight performance outcomes on the return of aviators to duty. Of 20 pilots, 19 returned to flight status at 1 mo after surgery; 1 PRK subject was delayed due to corneal haze and subjective visual symptoms. Improvements were seen under simulator night and night vision goggle flight after LASIK; no significant changes in flight performance were measured in the aircraft. Results indicated a significantly faster recovery of all visual performance outcomes 1 wk after LASIK vs. PRK, with no difference between procedures at 1 and 6 mo. Low contrast acuity and contrast sensitivity only weakly correlated to flight performance in the early post-operative period. Overall flight performance assessed in this study after PRK and LASIK was stable or improved from baseline, indicating a resilience of performance despite measured decrements in visual performance, especially in PRK. More visually demanding flight tasks may be impacted by subtle changes in visual performance. Contrast tests are more sensitive to the effects of refractive surgical intervention and may prove to be a better indicator of visual recovery for return to flight status.

  12. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  13. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  14. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  15. Altitude exposures during commercial flight: a reappraisal.

    Science.gov (United States)

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  16. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    UAS, Bangalore). Date of birth: 19 March 1956. Specialization: Biodiversity, Endophytes, Plant Evolutionary Biology, Conservation Genetics, Bio-prospecting. Address: Professor, Department of Crop Physiology, Univeristy of Agricultural Sciences, ...

  17. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 6 January 1981 ... Date of birth: 19 February 1985 .... Address: School of Basic Sciences, Indian Institute of Technology, Mandi 175 005, H.P. ... Specialization: Game Theory & Optimisation, Stochastic Control, Information Theory

  18. Indian Women In Science | C...

    Indian Academy of Sciences (India)

    satya

    2009-01-19

    Jan 19, 2009 ... COMMUNICATION IN THE INFORMATION ... accounts of what brought them to science and what kept them going ... Explores the factors that influence judicial decision- making on the admission of scientific evidence in court.

  19. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  20. INTEGRAL: In flight behavior of ISGRI and SPI

    International Nuclear Information System (INIS)

    Lebrun, F.; Roques, J.-P.; Sauvageon, A.; Terrier, R.; Laurent, P.; Limousin, O.; Lugiez, F.; Claret, A.

    2005-01-01

    The payload of INTEGRAL, the space gamma-ray observatory launched in October 2002, features two gamma-ray telescopes that take advantage of the semiconductor technologies. The spectrometer SPI, is equipped with 19 high-purity germanium detectors cooled at 85 K. We will report on the SPI in-flight background, performance, the detector evolution and the annealings performed every 6 months. The INTEGRAL Soft Gamma-Ray Imager (ISGRI) is the low-energy camera of the IBIS telescope. It is the first large camera equipped with CdTe detectors. We will present some system aspects, in particular the noisy pixel handling and will report on its in-flight background, performance and their evolution

  1. The Gravity Probe B Flight Dewar

    Science.gov (United States)

    2001-01-01

    Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. This photograph is of the Gravity Probe B flight dewar, a metal container made like a vacuum bottle that is used especially for storing liquefied gases, that will maintain the experiment at a temperature just above absolute zero, staying cold for two years. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Launched in 2004 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation. (Photo Credit: Lockheed Martin Corporation/R. Underwood)

  2. Flight to Safety from European Stock Markets

    DEFF Research Database (Denmark)

    Aslanidis, Nektarios; Christiansen, Charlotte

    -return trade-off is positive and during flight-to-safety episodes it is negative. The effects of flight-to-safety episodes on the risk-return trade-off are qualitatively similar for own country flight-to-safety episodes, for flight from own country stock market to the US bond market, and for US flight......This paper investigates flight-to-safety from stocks to bonds in seven European markets. We use quantile regressions to identify flight-to-safety episodes. The simple risk-return trade-off on the stock markets is negative which is caused by flight-to-safety episodes: During normal periods, the risk...

  3. Post-Flight Data Analysis Tool

    Science.gov (United States)

    George, Marina

    2018-01-01

    A software tool that facilitates the retrieval and analysis of post-flight data. This allows our team and other teams to effectively and efficiently analyze and evaluate post-flight data in order to certify commercial providers.

  4. Optimized Lift for Autonomous Formation Flight

    Data.gov (United States)

    National Aeronautics and Space Administration — Experimental in-flight evaluations have demonstrated that the concept of formation flight can reduce fuel consumption of trailing aircraft by 10 percent. Armstrong...

  5. GRIP FLIGHT TRACKS AND ANIMATIONS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Flight Tracks and Animations dataset includes both KML files and animation files. The KML files use Google Earth to show the flight tracks on a map. The...

  6. F-15 IFCS Intelligent Flight Control System

    Science.gov (United States)

    Bosworth, John T.

    2008-01-01

    This viewgraph presentation gives a detailed description of the F-15 aircraft, flight tests, aircraft performance and overall advanced neural network based flight control technologies for aerospace systems designs.

  7. Flight Activity and Crew Tracking System -

    Data.gov (United States)

    Department of Transportation — The Flight Activity and Crew Tracking System (FACTS) is a Web-based application that provides an overall management and tracking tool of FAA Airmen performing Flight...

  8. Core Flight System Satellite Starter Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — The Core Flight System Satellite Starter Kit (cFS Kit) will allow a small satellite or CubeSat developer to rapidly develop, deploy, test, and operate flight...

  9. Positive Exchange of Flight Controls Program

    Science.gov (United States)

    1995-03-10

    This advisory circular provides guidance for all pilots, especially student pilots, flight instructors, and pilot examiners, on the recommended procedure to use for the positive exchange of flight controls between pilots when operating an aircraft.

  10. Open Science Interview mit PA

    OpenAIRE

    Scheliga, Kaja

    2014-01-01

    This interview is part of a series of interviews on open science and digital scholarship conducted in 2013 with researchers from various backgrounds. For an analysis of the interviews see: Scheliga, Kaja and Sascha Friesike. 2014. “Putting open science into practice: A social dilemma?” First Monday. Volume 19, Number 9. DOI: http://dx.doi.org/10.5210/fm.v19i9.5381

  11. Open Science Interview mit IB

    OpenAIRE

    Scheliga, Kaja

    2014-01-01

    This interview is part of a series of interviews on open science and digital scholarship conducted in 2013 with researchers from various backgrounds. For an analysis of the interviews see: Scheliga, Kaja and Sascha Friesike. 2014. “Putting open science into practice: A social dilemma?” First Monday. Volume 19, Number 9. DOI: http://dx.doi.org/10.5210/fm.v19i9.5381

  12. Physiology, medicine, long-duration space flight and the NSBRI

    Science.gov (United States)

    McPhee, J. C.; White, R. J.

    2003-01-01

    The hazards of long-duration space flight are real and unacceptable. In order for humans to participate effectively in long-duration orbital missions or continue the exploration of space, we must first secure the health of the astronaut and the success of such missions by assessing in detail the biomedical risks of space flight and developing countermeasures to these hazards. Acquiring the understanding necessary for building a sound foundation for countermeasure development requires an integrated approach to research in physiology and medicine and a level of cooperative action uncommon in the biomedical sciences. The research program of the National Space Biomedical Research Institute (NSBRI) was designed to accomplish just such an integrated research goal, ameliorating or eliminating the biomedical risks of long-duration space flight and enabling safe and productive exploration of space. The fruits of these labors are not limited to the space program. We can also use the gained understanding of the effects and mechanisms of the physiological changes engendered in space and the applied preventive and rehabilitative methods developed to combat these changes to the benefit of those on Earth who are facing similar physiological and psychological difficulties. This paper will discuss the innovative approach the NSBRI has taken to integrated research management and will present some of the successes of this approach. c2003 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  13. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  14. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  15. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  16. X-36 Being Prepared on Lakebed for First Flight

    Science.gov (United States)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2 ... Rapid Communication Volume 129 Issue 2 February 2017 pp 149-156 ... The central perylene core of 1 is twisted with dihedral angles of 19.48(2)◦ and 19.50(2)◦; this twist configuration induces the axial chirality in this family of perylene bisimide ...

  18. Information Science: Science or Social Science?

    OpenAIRE

    Sreeramana Aithal; Paul P.K.,; Bhuimali A.

    2017-01-01

    Collection, selection, processing, management, and dissemination of information are the main and ultimate role of Information Science and similar studies such as Information Studies, Information Management, Library Science, and Communication Science and so on. However, Information Science deals with some different characteristics than these subjects. Information Science is most interdisciplinary Science combines with so many knowledge clusters and domains. Information Science is a broad disci...

  19. How Insects Initiate Flight: Computational Analysis of a Damselfly in Takeoff Flight

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo; Flow Simulation Research Group Team

    2017-11-01

    Flight initiation is essential for survival in biological fliers and can be classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of interest to understand how non-jumping takeoffs occur and what strategies insects use to generate the required forces. Using a high fidelity computational fluid dynamics simulation, we identify the flow features and compute the wing aerodynamic forces to elucidate how flight forces are generated by a damselfly performing a non-jumping takeoff. Our results show that a damselfly generates about three times its bodyweight during the first half-stroke for liftoff while flapping through a steeply inclined stroke plane and slicing the air at high angles of attack. Consequently, a Leading Edge Vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. This work was supported by National Science Foundation [CBET-1313217] and Air Force Research Laboratory [FA9550-12-1-007].

  20. 14 CFR 415.115 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... TRANSPORTATION LICENSING LAUNCH LICENSE Safety Review and Approval for Launch of an Expendable Launch Vehicle From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's...

  1. 14 CFR 417.107 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 417.107 Section 417.107... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.107 Flight safety. (a) Flight safety... safety system that satisfies subpart D of this part as follows, unless § 417.125 applies. (1) In the...

  2. 14 CFR 121.387 - Flight engineer.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No... holding a current flight engineer certificate. For each airplane type certificated after January 1, 1964...

  3. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    A virtual appreciative coaching and mentoring programme to support novice nurse researchers in Africa · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JE Maritz, L Roets, 80-92 ...

  4. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    Activity-based market segmentation of visitors to thermal spring resorts in the Western Cape Province, South Africa: Assessing the potential for health tourism development · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MS Boekstein, JP Spencer, 1100-1109 ...

  5. Tropical Journal of Health Sciences - Vol 19, No 2 (2012)

    African Journals Online (AJOL)

    Cerebral And Myocardial Infarction In A Patient With Uncorrected Tetralogy Of Fallot · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. WE Sadoh, IN Adigweme, EJ Ogbemudia, 40-41 ...

  6. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... The socio-economic impact of HIV/AIDS on infected individuals in the ... influence the travel behaviour of visitors to nature-based tourism products in South Africa?

  7. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    The experiences of divorced professional nurses in the workplace · EMAIL FULL TEXT ... Reasons for low risk pregnant women self-referral to the hospital for delivery ... Barriers to quality care during intrapartum in Buffalo City, Eastern Cape ...

  8. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    Preliminary psychometric validation data for a non-clinical South African sample using a neuroscience-based computerized battery · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. R Murphy, N Cassimjee, 360-369 ...

  9. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    African Journal for Physical, Health Education, Recreation and Dance. ... Adiposity and physical activity among children in countries at different stages of the physical ... The world in turmoil: Promotion of peace and international understanding ...

  10. African Journal for Physical Activity and Health Sciences - Vol 19 ...

    African Journals Online (AJOL)

    Evaluation of Alpha Theta training on neurophysiology, mood, mindfulness, health and spirituality · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SD Edwards, DJ Edwards, 770-785 ...

  11. Ethiopian Journal of Health Sciences - Vol 19, No 3 (2009)

    African Journals Online (AJOL)

    nvestigation of Dysentery Outbreak and its causes, Jimma City, Southwest Ethiopia · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Fessehaye Alemseged, Alemshet Yami, Wondwossen Birke, Zewdinesh S/Mariam, Kenate Worku ...

  12. eso-na-nceij-ui-y-19-9-7

    Indian Academy of Sciences (India)

    Page 1. Science Smiles. RKLaxman. It saves a lot of bother, If you programme it, it goes about on its own taking pictures of tourist and historical interests, and returns. R -E-S-O-NA-N-C-E-I-J-UI-Y-19-9-7----~-------~~-------------------. 5.

  13. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  14. Time-of-flight spectrometers

    International Nuclear Information System (INIS)

    Carrico, J.P.

    1976-01-01

    The flight time of an ion in an inhomogeneous, oscillatory electric field (IOFE) is an m/e-dependent property of this field and is independent of the initial position and velocity. The d.c. component of the equation of motion for an ion in the IOFE describes a harmonic oscillation of constant period. When ions oscillate for many periods with one species overtaking another the motion may no longer be truly periodic although the resulting period or 'quasi-period' still remains independent of the initial conditions. This period or 'quasi-period' is used in the time-of-flight mass spectrometer described. The principle of operation is also described and both analytical and experimental results are reported. (B.D.)

  15. CFD applications in hypersonic flight

    Science.gov (United States)

    Edwards, T. A.

    1992-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.

  16. Flight test trajectory control analysis

    Science.gov (United States)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  17. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  18. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  19. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  20. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  1. STS 63: Post flight presentation

    Science.gov (United States)

    1995-02-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Mission Specialist; and Colonel Vladimir Titor, Mission Specialist from Russia), gave a short autobiography of each member and a brief description of their assignment during this mission. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MlR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  2. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J W; Russell, G J [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  3. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  4. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Mikki V Vinodu. Articles written in Journal of Chemical Sciences. Volume 113 Issue 1 February 2001 pp 1-9 Inorganic and Analytical. Peroxidase-like catalytic activities of ionic metalloporphyrins supported on functionalised polystyrene surface · Mikki V Vinodu M ...

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S Panigrahy. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya ...

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Ranjit Das. Articles written in Journal of Earth System Science. Volume 121 Issue 1 February 2012 pp 19-28. Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India · Ranjit Das H R Wason M L ...

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. YIN ZHOU. Articles written in Journal of Chemical Sciences. Volume 130 Issue 2 February 2018 pp 19. Polynuclear and one-dimensional cyanide-bridged heterobimetallic complexes: synthesis, crystal structures and magnetic properties · JINGWEN SHI WENLONG LAN YIN ...

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. D B Shah. Articles written in Journal of Earth System Science. Volume 120 Issue 1 February 2011 pp 19-25. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model · M R Pandya D B ...

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Nitesh Patidar. Articles written in Journal of Earth System Science. Volume 127 Issue 2 March 2018 pp 19. Impact of LULC change on the runoff, base flow and evapotranspiration dynamics in eastern Indian river basins during 1985–2005 using variable infiltration capacity ...

  11. Aviator's Fluid Balance During Military Flight.

    Science.gov (United States)

    Levkovsky, Anna; Abot-Barkan, Sivan; Chapnik, Leah; Doron, Omer; Levy, Yuval; Heled, Yuval; Gordon, Barak

    2018-02-01

    A loss of 1% or more of bodyweight due to dehydration has a negative effect on cognitive performance, which could critically affect flight safety. There is no mention in the literature concerning the amounts of military pilots' fluid loss during flight. The aim of this study was to quantify fluid loss of pilots during military flight. There were 48 aviators (mean age 23.9) from the Israeli Air Force who participated in the study, which included 104 training flights in various flight platforms. Bodyweight, urine specific gravity, and environmental heat strain were measured before and after each flight. Fluid loss was calculated as the weight differences before and after the flight. We used a univariate and one-way ANOVA to analyze the effect of different variables on the fluid loss. The mean fluid loss rate was 462 ml · h-1. The results varied among different aircraft platforms and depended on flight duration. Blackhawk pilots lost the highest amount of fluids per flight, albeit had longer flights (mean 108 min compared to 35.5 in fighter jets). Jet fighter pilots had the highest rate of fluid loss per hour of flight (up to 692 ml, extrapolated). Overall, at 11 flights (11%) aircrew completed their flight with a meaningful fluid loss. We conclude that military flights may be associated with significant amount of fluid loss among aircrew.Levkovsky A, Abot-Barkan S, Chapnik L, Doron O, Levy Y, Heled Y, Gordon B. Aviator's fluid balance during military flight. Aerosp Med Hum Perform. 2018; 89(2):9498.

  12. Operational Issues: What Science in Available?

    Science.gov (United States)

    Rosekind, Mark R.; Neri, David F.

    1997-01-01

    Flight/duty/rest considerations involve two highly complex factors: the diverse demands of aviation operations and human physiology (especially sleep and circadian rhythms). Several core operational issues related to fatigue have been identified, such as minimum rest requirements, duty length, flight time considerations, crossing multiple time zones, and night flying. Operations also can involve on-call reserve status and callout, delays due to unforeseen circumstances (e.g., weather, mechanical), and on-demand flights. Over 40 years of scientific research is now available to apply to these complex issues of flight/duty/rest requirements. This research involves controlled 'laboratory studies, simulations, and data collected during regular flight operations. When flight/duty/rest requirements are determined they are typically based on a variety of considerations, such as operational demand, safety, economic, etc. Rarely has the available, state-of-the-art science been a consideration along with these other factors when determining flight/duty/rest requirements. While the complexity of the operational demand and human physiology precludes an absolute solution, there is an opportunity to take full advantage of the current scientific data. Incorporating these data in a rational operational manner into flight/duty/rest requirements can improve flight crew performance, alertness, and ultimately, aviation safety.

  13. A Tribute to Professor Rene H. Miller - A Pioneer in Aeromechanics and Rotary Wing Flight Transportation

    Science.gov (United States)

    Friedmann, Peretz P.; Johnson, Wayne; Scully, Michael P.

    2011-01-01

    Rene H. Miller (May 19, 1916 January 28, 2003), Emeritus H. N. Slater Professor of Flight Transportation, was one of the most influential pioneers in rotary wing aeromechanics as well as a visionary whose dream was the development of a tilt-rotor based short haul air transportation system. This paper pays a long overdue tribute to his memory and to his extraordinary contributions.

  14. Respiratory water loss during rest and flight in European Starlings (Sturnus vulgaris)

    NARCIS (Netherlands)

    Engel, Sophia; Suthers, Roderick A.; Biebach, Herbert; Visser, G. Henk

    2006-01-01

    Respiratory water loss in Starlings (Sturnus vulgaris) at rest and during flight at ambient temperatures (T-amb) between 6 and 25 degrees C was calculated from respiratory airflow and exhaled air temperature. At rest, breathing frequency f(1.4 +/- 0.3 Hz) and tidal volume V-t (1.9 +/- 0.4 ml) were

  15. Parvovirus B19 and Other Illnesses

    Science.gov (United States)

    ... Cheek Rash Parvovirus B19 and Other Illnesses References Parvovirus B19 and Other Illnesses Recommend on Facebook Tweet Share ... disease is the most common illness caused by parvovirus B19 infection. Learn More Parvovirus B19 infection can cause ...

  16. Efficient flapping flight of pterosaurs

    Science.gov (United States)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for

  17. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 27 August 1960. Specialization: Polymer Science Address during Associateship: IPC Department, Indian Institute of Science, Bangalore 560 012. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will ...

  19. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  20. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  1. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  2. Neuroscience discipline science plan

    Science.gov (United States)

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  3. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  4. SSR: What's in "School Science Review" for "PSR" Readers?

    Science.gov (United States)

    Lakin, Liz

    2004-01-01

    This article summarises ideas and developments in teaching and learning in science of relevance to "Primary Science Review" ("PSR") readers from three recent issues (309, 310, and 311) of "School Science Review" ("SSR"), the ASE journal for science education 11-19. The themes running through these are: ICT, the implications for science education…

  5. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  6. Science Smiles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Science Smiles. Articles in Resonance – Journal of Science Education. Volume 1 Issue 4 April 1996 pp 4-4 Science Smiles. Chief Editor's column / Science Smiles · R K Laxman · More Details Fulltext PDF. Volume 1 Issue 5 May 1996 pp 3-3 Science Smiles.

  7. NASA Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  8. Lições de coisas e ensino das ciências na França no fim do século 19: contribuição a uma história da cultura - Object lessons and science education in France in the late nineteenth century: contribution to a history of the school culture

    Directory of Open Access Journals (Sweden)

    Pierre Kahn, France

    2014-05-01

    .Keywords: activity (student, elementary school, intellectual education, education practice, concrete education, science education, object lesson, inductive method, intuitive method, observation, pedagogy. LECCIONES PRÁCTICAS Y ENSEÑANZA DE LAS CIENCIAS EN FRANCIA A FINALES DEL SIGLO 19: CONTRIBUCIÓN A UNA HISTORIA DE LA CULTURA ESCOLARResumenAdemás de las importantes reformas llevadas a cabo en la organización institucional de la escuela primaria (gratuito, obligación, secularismo, a finales del siglo 19, los franceses republicanos estaban dispuestos a hacer una profunda transformación de los contenidos y de las normas pedagógicas. Ciencias experimentales han beneficiado en gran medida en 1882 y convertido en una disciplina regular de la escuela primaria, sus programas y su distribución en el tiempo. La Lección de las cosas, método de enseñanza que los reformistas estaban entusiasmados, desde la década de 1860, será destrecha y de forma natural asociado a esta enseñanza. De hecho, es una primera lección de observación o donde los estudiantes se mejores oportunidades de observar que en las clases de historia natural o física básica? Y en relación con la otra, y la lección educación científica tiene dos caras, una prosaica, otro "encantado". La educación científica prosaico, para los estudiantes que, en su mayor parte, no saben de otra escuela que el principal debe ser práctico y convencional. Si la lección es particularmente adecuada para esta enseñanza es que se centra en las realidades concretas y conocidas. En contexto encantador, la enseñanza és un poderoso instrumento de educación intelectual (incluso la educación moral y política. Encarna la esperanza de una "educación liberal" primaria completa, válida y digna de su tipo que las humanidades clásicas escuela. La lección de las cosas, que coincide con el enfoque pedagógico con el mismo método de la ciencia (método inductivo se convierte en la excelencia, al permitir este tipo de educaci

  9. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  10. VIRTIS-M flight lamps

    International Nuclear Information System (INIS)

    Melchiorri, R.; Piccioni, G.; Mazzoni, A.

    2003-01-01

    VIRTIS-M is a visible-infrared (VIS-IR) image spectrometer designed for the Rosetta mission; it intends to provide detailed informations on the physical, chemical, and mineralogical nature of comets and asteroids. The in-flight performances of VIRTIS-M are expected to be influenced by various disturbances, like the initial strong vibrations of the rocket, the long duration of the experiment (from 2003 to 2010), as well as other possible environmental changes; therefore, an in-flight recalibration procedure is mandatory. Quite often in such kinds of missions, a light emission diode (LED) is employed to calibrate the on-board spectrometers by taking advantage of the relative small dimensions, stability, and hardness of these sources. VIRTIS-M is the first image spectrometer that will use a new generation of lamps for internal calibrations. These new lamps are characterized by a wide spectral range with a blackbody-like emission with an effective temperature of about (2400-2600 K), thereby covering the whole VIRTIS-M's spectral range (0.2-5 μm); i.e., they offer the possibility of a wider spectral calibration in comparison with the quasimonochromatic LED emission. A precise spectral calibration is achieved by adding special filters for visible and infrared ranges in front of the window source, containing many narrow absorption lines. In the present article, we describe the calibration and tests of some flight prototypes of these lamps (VIS and IR), realized by the Officine Galileo and calibrated by the Consiglio Nazionale delle Ricerche-Istituto di Astrofisica Spaziale e Fisica Cosmica

  11. Lymphocytes on sounding rocket flights.

    Science.gov (United States)

    Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A

    1994-05-01

    Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.

  12. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  13. Consort 1 sounding rocket flight

    Science.gov (United States)

    Wessling, Francis C.; Maybee, George W.

    1989-01-01

    This paper describes a payload of six experiments developed for a 7-min microgravity flight aboard a sounding rocket Consort 1, in order to investigate the effects of low gravity on certain material processes. The experiments in question were designed to test the effect of microgravity on the demixing of aqueous polymer two-phase systems, the electrodeposition process, the production of elastomer-modified epoxy resins, the foam formation process and the characteristics of foam, the material dispersion, and metal sintering. The apparatuses designed for these experiments are examined, and the rocket-payload integration and operations are discussed.

  14. STS-72 Flight Day 7

    Science.gov (United States)

    1996-01-01

    On this seventh day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the Walt Disney movie, 'Snow White and the Seven Dwarfs.' Chiao and Scott performed the second spacewalk of the mission where they tested equipment and work platforms that will be used in building the planned International Space Station. This spacewalk was almost seven hours long. Wakata conducted an interview with and answered questions from six graders from a Japanese school in Houston, Texas.

  15. F-8 SCW in flight

    Science.gov (United States)

    1973-01-01

    A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing in place of the conventional wing. The unique design of the Supercritical Wing (SCW) reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph a Vought F-8A Crusader is shown being used as a flying testbed for an experimental Supercritical Wing airfoil. The smooth fairing of the fiberglass glove with the wing is illustrated in this view. This is the configuration of the F-8 SCW aircraft late in the program. The SCW team fitted the fuselage with bulges fore and aft of the wings. This was similar to the proposed shape of a near-sonic airliner. Both the SCW airfoil and the bulged-fuselage design were optimal for cruise at Mach 0.98. Dr. Whitcomb (designer of the SCW) had previously spent about four years working on supersonic transport designs. He concluded that these were impractical due to their high operating costs. The high drag at speeds above Mach 1 resulted in greatly increased costs. Following the fuel-price rises caused by the October 1973 oil embargo, airlines lost interest in near-sonic transports. Rather, they wanted a design that would have lower fuel consumption. Dr. Whitcomb developed a modified supercritical-wing shape that provided higher lift-to-drag ratios at the same speeds. He did this by using thicker airfoil sections and a reduced wing sweepback. This resulted in an increased aspect ratio without an increase in wing weight. In the three decades since the F-8 SCW flew, the use of such airfoils has become common. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the

  16. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  17. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  18. Life Sciences Accomplishments 1994

    Science.gov (United States)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  19. Parvovirus B19 Associated Hepatitis

    Science.gov (United States)

    Bihari, Chhagan; Rastogi, Archana; Saxena, Priyanka; Rangegowda, Devraj; Chowdhury, Ashok; Gupta, Nalini; Sarin, Shiv Kumar

    2013-01-01

    Parvovirus B19 infection can present with myriads of clinical diseases and syndromes; liver manifestations and hepatitis are examples of them. Parvovirus B19 hepatitis associated aplastic anemia and its coinfection with other hepatotropic viruses are relatively underrecognized, and there is sufficient evidence in the literature suggesting that B19 infections can cause a spectrum of liver diseases from elevation of transaminases to acute hepatitis to fulminant liver failure and even chronic hepatitis. It can also cause fatal macrophage activation syndrome and fibrosing cholestatic hepatitis. Parvovirus B19 is an erythrovirus that can only be replicate in pronormoblasts and hepatocytes, and other cells which have globosides and glycosphingolipids in their membrane can also be affected by direct virus injury due to nonstructural protein 1 persistence and indirectly by immune mediated injury. The virus infection is suspected in bone marrow aspiration in cases with sudden drop of hemoglobin and onset of transient aplastic anemia in immunosuppressed or immunocompetent patients and is confirmed either by IgM and IgG positive serology, PCR analysis, and in situ hybridization in biopsy specimens or by application of both. There is no specific treatment for parvovirus B19 related liver diseases, but triple therapy regimen may be effective consisting of immunoglobulin, dehydrohydrocortisone, and cyclosporine. PMID:24232179

  20. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Science.gov (United States)

    2010-01-01

    ... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil airplanes... flight engineer or flight navigator duties on a civil airplane of U.S. registry, leased to a person not a... certificate holder is performing flight engineer or flight navigator duties on the U.S.-registered civil...

  1. 19 CFR 19.39 - Delivery for exportation.

    Science.gov (United States)

    2010-04-01

    ... sales ticket certifying exportation and return it to the proprietor for retention in the files. The port... as required by § 19.36(b) of this part. The officer shall sign the sales ticket certifying... following conditions are met: (i) Sales may be made only to passengers holding a through ticket on the same...

  2. 19 CFR 19.12 - Inventory control and recordkeeping system.

    Science.gov (United States)

    2010-04-01

    ... invoice with any discrepancy reported to the port director as provided in § 19.6(a). (3) Recordation... discovery. The responsible party must pay the applicable duties, taxes and interest on thefts and shortages... discovery. The responsible party must pay the applicable duties, taxes and interest on thefts and shortages...

  3. Residual stress analysis by neutron time-of-flight at a reactor source

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.; Schroder, J.

    1990-01-01

    Non-destructive neutron diffractometry for stress analysis will be a powerful experimental tool in material science research performed at the GKSS 5 MW reactor FRG-1. Arguments which show the advantages of the time-of-flight method are given and a suitable high-resolution neutron-efficient type of spectrometer is introduced. First results derived from this method are presented

  4. Paresev in flight with pilot Milt Thompson

    Science.gov (United States)

    1964-01-01

    large alpha vane on the wing apex with a scale at the trailing edge that the pilot could read directly. A curved bubble level measured the vehicle attitude, and a Fairchild camera recorded the glide slope. PARESEV 1-B The Paresev 1-B used the Paresev 1-A space frame with a smaller Dacron wing (100 square feet) and was flight tested to evaluate its handling qualities with lower lift-to-drag values. One project NASA engineer described its gliding ability as 'pretty scary.' PARESEV 1-C The space frame of this vehicle remained almost unchanged from the earlier vehicles. However, a new control box gave the pilot the ability to increase or decrease the nitrogen in the inflatable wing supports to compensate for the changing density of the air. Two bottles of nitrogen provided an extra supply of nitrogen. The vehicle featured an inflatable wing. Actually the whole wing was not inflatable; the three chambers that acted as spars and supported the wing inflated. The center spar ran fore and aft and measured 191 inches; two other inflatable spars formed the leading edges. These three compartments were filled with nitrogen under pressure to make them rigid. The Paresev in this configuration was expected to closely approximate the aerodynamic characteristics that would be encountered with the Gemini space capsule, only with a parawing extended. The Paresev was very unstable in flight with this configuration. The first Paresev flights began with tows across the dry lakebed, in 1962, using a NASA vehicle, an International Harvester carry-all (6 cylinder). Eventually ground and airtows were done using a Stearman sport biplane (450 horsepower), a Piper Super Cub (150-180 horsepower), Cessna L-19 (200 horsepower Bird Dog) and a Boeing-Vertol HC-1A. Speed range of the Paresev was about 35 to 65 miles per hour. The Paresev completed nearly 350 flights during a research program from 1962 until 1964. Pilots flying the Paresev included NASA pilots Milton Thompson, Bruce Peterson, and Neil

  5. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  6. Egypt v literatuře před polovinou 19. století

    Czech Academy of Sciences Publication Activity Database

    Baďurová, Anežka

    -, č. 4 (2013) E-ISSN 1805-2800 Keywords : egypt ian literature * literature * Week of science and technology 2013 http://www.lib.cas.cz/casopis-informace/ egypt -v-literature-pred-polovinou-19-stoleti/

  7. Time of flight Laue fiber diffraction studies of perdeuterated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, V.T.; Whalley, M.A.; Mahendrasingam, A.; Fuller, W. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The diffractometer SXD at the Rutherford Appleton Laboratory ISIS pulsed neutron source has been used to record high resolution time-of-flight Laue fiber diffraction data from DNA. These experiments, which are the first of their kind, were undertaken using fibers of DNA in the A conformation and prepared using deuterated DNA in order to minimis incoherent background scattering. These studies complement previous experiments on instrument D19 at the Institute Laue Langevin using monochromatic neutrons. Sample preparation involved drawing large numbers of these deuterated DNA fibers and mounting them in a parallel array. The strategy of data collection is discussed in terms of camera design, sample environment and data collection. The methods used to correct the recorded time-of-flight data and map it into the final reciprocal space fiber diffraction dataset are also discussed. Difference Fourier maps showing the distribution of water around A-DNA calculated on the basis of these data are compared with results obtained using data recorded from hydrogenated A-DNA on D19. Since the methods used for sample preparation, data collection and data processing are fundamentally different for the monochromatic and Laue techniques, the results of these experiments also afford a valuable opportunity to independently test the data reduction and analysis techniques used in the two methods.

  8. ¿Catedrales de las ciencias o templos del saber? Los museos de ciencias naturales de Córdoba, Argentina, a fines del siglo XIX Cathedrals to sciences or temples of knowledge? The museums of natural sciences of Cordoba, Argentina, by the end of the 19th century

    Directory of Open Access Journals (Sweden)

    Luis Tognetti

    2001-06-01

    Full Text Available Los museos de Botánica, Mineralogía y Zoología de la Facultad de Ciencias Físico-Matemáticas se formaron en el marco de un fenómeno de alcance mundial, definido por ciertos autores como 'museum movement', durante un período en el cual los fundamentos de ese movimiento se encontraban en un proceso de reelaboración. En este sentido, el propósito del trabajo es analizar la etapa constitutiva de los museos de historia natural en un espacio periférico - Córdoba a fines del siglo XIX - con el fin de conocer parcialmente ese proceso de transición. La estrategia definida puso a las colecciones en el centro del análisis para saber cómo se formaron y con qué finalidad. También se abordaron otros dos aspectos de relevancia: la dotación de recursos humanos y de fondos para esas instituciones.The museums of Botany, Mineralogy and Zoology of the Facultad de Ciencias Físico-Matemáticas were created along with a world wide phenomenon, defined by some authors as the "museum movement," in a time the basics of this movement were being restructured. Thus, this work intends to go over the building stage of the natural history museums in a peripheral domain - Cordoba by the end of the 19th century - in order to partially understand this transition process. The strategy is to analyze the collections and find out how and why they were gathered. Two other aspects are also relevant: the human resources and the funds these institutions were granted.

  9. Morphing flight control surface for advanced flight performance

    Science.gov (United States)

    Detrick, Matt; Kwak, Seung-Keon; Yoon, Hwan-Sik

    2006-03-01

    A novel Morphing Flight Control Surface (MFCS) system has been developed. The distinction of this research effort is that the SenAnTech team has incorporated our innovative Highly Deformable Mechanism (HDM) into our MFCS. The feasibility of this novel technology for deformable wing structures, such as airfoil shaping, warping or twisting with a flexure-based high displacement PZT actuator has been demonstrated via computational simulations such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). CFD was implemented to verify the accuracy of the complex potential flow theory for this application. Then, complex potential flow theory, kinematics, geometry, and static force analysis were incorporated into a multidisciplinary GUI simulation tool. This tool has been used to aid the design of the MFCS. The results show that we can achieve up to five degrees of wing twisting with our proposed system, while using minimal volume within the wing and adding little weight.

  10. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  11. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  12. Flight performance of Galileo and Ulysses RTGs

    International Nuclear Information System (INIS)

    Hemler, R.J.; Kelly, C.E.

    1993-01-01

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances

  13. Psychology of Flight Attendant’s Profession

    OpenAIRE

    Tatyana V. Filipieva

    2012-01-01

    The profession of a flight attendant appeared in aviation in the 1920s. Professional community of flight attendants is constantly growing with the growth of complexity of aviation technology, professional standards of passenger service and safety. The psychological scientific research was carried out by a psychologist who worked as a flight attendant. The study revealed the psychological content, demands, peculiarities in cabin crews' labor. A job description was accomplished. Temporal and sp...

  14. Numerical simulation of hypersonic flight experiment vehicle

    OpenAIRE

    Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子

    1994-01-01

    Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...

  15. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  16. NASA/MSFC/NSSTC Science Communication Roundtable

    Science.gov (United States)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  17. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  18. B-52 Flight Mission Symbology - Close up

    Science.gov (United States)

    1993-01-01

    A close-up view of some of the mission markings that tell the story of the NASA B-52 mothership's colorful history. These particular markings denote some of the experiments the bomber conducted to develop parachute recovery systems for the solid rocket boosters used by the Space Shuttle. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported

  19. Advanced in-flight measurement techniques

    CERN Document Server

    Lawson, Nicholas; Jentink, Henk; Kompenhans, Jürgen

    2013-01-01

    The book presents a synopsis of the main results achieved during the 3 year EU-project "Advanced Inflight Measurement Techniques (AIM)" which applied advanced image based measurement techniques to industrial flight testing. The book is intended to be not only an overview on the AIM activities but also a guide on the application of advanced optical measurement techniques for future flight testing. Furthermore it is a useful guide for engineers in the field of experimental methods and flight testing who face the challenge of a future requirement for the development of highly accurate non-intrusive in-flight measurement techniques.

  20. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  1. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  2. Time Manager Software for a Flight Processor

    Science.gov (United States)

    Zoerne, Roger

    2012-01-01

    Data analysis is a process of inspecting, cleaning, transforming, and modeling data to highlight useful information and suggest conclusions. Accurate timestamps and a timeline of vehicle events are needed to analyze flight data. By moving the timekeeping to the flight processor, there is no longer a need for a redundant time source. If each flight processor is initially synchronized to GPS, they can freewheel and maintain a fairly accurate time throughout the flight with no additional GPS time messages received. How ever, additional GPS time messages will ensure an even greater accuracy. When a timestamp is required, a gettime function is called that immediately reads the time-base register.

  3. Some Unknown Pages of the Living Organisms' First Orbital Flight

    Science.gov (United States)

    Malashenkov, D. C.

    2002-01-01

    The successful creation of ballistic rockets in USSR has allowed at the end of 1953 to make a real task of delivery of a payload into the Earth's orbit. In March 1954 during the meeting in the Academy of Sciences of USSR, the basic research problems conducted by means of artificial satellites of the Earth were determined. In May, 1954 S. Korolev has sent to Government of the USSR the report with the offer of creation the space satellites on the basis of intercontinental ballistic rocket -7 developed by him. It was the first time when the idea about possibility of interplanetary flights was stated in the official document. In August 1954 Council of Ministers of the USSR had ratified the submitted offers and have entrusted to work over scientific and theoretical problems of space flight. In the beginning of 1956 the Korolev's United Design Bureau was officially entrusted the creation and launch of undirected research satellite named "Object D" weighing 1.000-1.400 kg in 1957-1958. The main scientific management and development of scientific equipment was assigned to a commission of the Academy of Sciences of the USSR under the direction of . Keldysh. The measurement of parameters of the atmosphere, corpuscular radiation of the Sun, magnetic fields, space radiation etc. was planned during the "Object D" flight. The successful performance in the middle of 1956 of the second series of launches of geophysical rockets has allowed to gain a large volume of the information about parameters of physiological functions and behavior of animals in conditions of flight. For enlargement of these works the laboratory of V. Yazdovsky in the Institute of aviation medicine was extended to a department, the large group of the new employees, including V. Antipov, . Baevsky, I. Balakhovsky, B. Buylov, . Genin, O. Gazenko, A. Gurdjian, I. Kasyan, A. Kotovskaya, E..Yuganov, . Shepelev and others came to the department. But, owing to the delay of development of the scientific equipment for

  4. Telephone switchboard closure | 19 December

    CERN Multimedia

    2014-01-01

    Exceptionally, the telephone switchboard will close at 4 p.m. on Friday, 19 December, instead of the usual time of 6 p.m., to allow time for closing all systems properly before the annual closure. Therefore, switchboard operator assistance to transfer calls from/to external lines will stop. All other phone services will run as usual.

  5. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  6. 14 CFR 91.1095 - Initial and transition training and checking: Flight instructors (aircraft), flight instructors...

    Science.gov (United States)

    2010-01-01

    ... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight...

  7. 14 CFR 61.41 - Flight training received from flight instructors not certificated by the FAA.

    Science.gov (United States)

    2010-01-01

    ... the FAA. (a) A person may credit flight training toward the requirements of a pilot certificate or... flight instructor described in paragraph (a) of this section is only authorized to give endorsements to...

  8. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  9. Flight Muscle Dimorphism and Heterogeneity in Flight Initiation of Field-Collected Triatoma infestans (Hemiptera: Reduviidae)

    OpenAIRE

    Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2007-01-01

    Recent experiments demonstrated that most field-collected Triatoma infestans (Klug) (Hemiptera: Reduviidae) adults from northern Argentina either never initiated flight or did so repeatedly in both sexes. This pattern could not be explained by sex, adult age, weight, weight-to-length ratio (W/L), or chance. We examined whether bugs that never initiated flight possessed developed flight muscles, and whether flight muscle mass relative to total body mass (FMR) was related to the probability of ...

  10. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Metal Organic Framework: Crystalline Stacked Molecular Containers. Ramanathan Vaidhyanathan. General Article Volume 19 Issue 12 December 2014 pp 1147-1157 ...

  11. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    Science.gov (United States)

    1990-01-01

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  12. Remembering the Musi - SilkAir Flight MI 185 crash victim identification.

    Science.gov (United States)

    Tan, Peng Hui; Wee, Keng Poh; Sahelangi, Peter

    2007-10-01

    On 19 December 1997, SilkAir Flight MI 185, a Boeing B737-300 airliner crashed into the Musi River near Palembang, Southern Sumatra, enroute from Jakarta, Indonesia to Singapore. All 104 passengers and crew onboard were killed. Of the human remains recovered, 6 positive identifications were made, including that of one Singaporean. Two of the identifications were by dental records, 2 by fingerprints, 1 by age estimation and 1 by personal effects. This paper describes the crash victim identification of Flight MI 185. The authors were part of an Indonesia- Singapore forensic team deployed for 3 weeks in Palembang to assist the Indonesian authorities in human remains identification.

  13. Echocardiography in the flight program

    Science.gov (United States)

    Charles, John B.; Bungo, Michael W.; Mulvagh, Sharon L.

    1991-01-01

    Observations on American and Soviet astronauts have documented the association of changes in cardiovascular function during orthostasis with space flight. A basic understanding of the cardiovascular changes occurring in astronauts requires the determination of cardiac output and total peripheral vascular resistance as a minimum. In 1982, we selected ultrasound echocardiography as our means of acquiring this information. Ultrasound offers a quick, non-invasive and accurate means of determining stroke volume which, when combined with the blood pressure and heart rate measurements of the stand test, allows calculation of changes in peripheral vascular resistance, the body's major response to orthostatic stress. The history of echocardiography in the Space Shuttle Program is discussed and the results are briefly presented.

  14. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  15. Flight Telerobotic Servicer prototype simulator

    Science.gov (United States)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  16. STS-72 Flight Day 2

    Science.gov (United States)

    1996-01-01

    On this second day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the motion picture 'Star Wars.' The crew performed a systems checkout, prepared for the retrieval of the Japanese Space Flyer Unit (SFU), tested the spacesuits for the EVA, and activated some of the secondary experiments. An in-orbit news interview was conducted with the crew via satellite downlinking. Questions asked ranged from the logistics of the mission to the avoidance procedures the Endeavour Orbiter performed to miss hitting the inactive Air Force satellite, nicknamed 'Misty' (MSTI). Earth views included cloud cover, several storm systems, and various land masses with several views of the shuttle's open cargo bay in the foreground.

  17. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  18. Women in 19th Century Irish immigration.

    Science.gov (United States)

    Jackson, P

    1984-01-01

    By the 1950s--100 years after the great famine of 1845-49-- 57% of emigrants from the 26 countries of Ireland were women. In the latter 1/2 of the 19th Century, increasing proportions of women emigrated, until they outnumbered men. For women it was more than a flight from poverty. It was also an escape from an increasingly patriarchal society, whose asymetrical development as a colony curtailed women's social space, even in their traditional role as wife and mother. The famine, which is the single greatest influence forcing emigration, undermined the social fabric of an agrarian society, hastening the process of agricultural transformation. The growth of a new class of Irish a British grazier landlords resulted in a situation of acute land scarcity, encouraging tendencies to cling to one's land holding without dividing it. This, combined with new inheritance practices, gave rise to widespread arranged marriages as a means of land consolidation, and the dowry system. The spontaneous marriage practices of famine days also were replaced by a postponement of marriage. These trends severely reduced the choices exerted by women. The absence of big industrialized cities, which might have absorbed displaced rural populations, removed available options, particularly for women. The system of land monopoly and inheritance revolving around male heads of households reinforced partriarchal relations, within a framework of rigid sexual norms, whose enforcement was easy because the church, which played an important role in the emergence of these values, was a major landowner in itself. The subordinated, invisible status of women in post-famine Ireland, and growing barriers to easy access to marriage partners, to waged employment and self-expression, all helped ensure the higher and higher emigration rates of women. The economic transformation of Irish agriculture accelerated the establishment of oppressive values and helped depreciate the position of women to a very low level. The

  19. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  20. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  1. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  2. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  3. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  4. 76 FR 16236 - Prohibition Against Certain Flights Within the Tripoli (HLLL) Flight Information Region (FIR)

    Science.gov (United States)

    2011-03-23

    ... Tripoli (HLLL) Flight Information Region (FIR) AGENCY: Federal Aviation Administration (FAA), Department... the Tripoli (HLLL) Flight Information Region (FIR) by all U.S. air carriers; U.S. commercial operators...) Flight Information Region (FIR). (a) Applicability. This section applies to the following persons: (1...

  5. 78 FR 66261 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-11-05

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services; Confirmation of Effective Date AGENCY: Federal Aviation...-calendar month flight review requirements. This rule also clarifies that the generally applicable recent...

  6. 78 FR 56822 - Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online...

    Science.gov (United States)

    2013-09-16

    ...-0780; Amdt. No. 61-131] RIN 2120-AK23 Certified Flight Instructor Flight Reviews; Recent Pilot in Command Experience; Airmen Online Services AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... review requirements. This rule also clarifies that the generally applicable recent flight experience...

  7. Bird Flight and Satish Dhawan

    Indian Academy of Sciences (India)

    and birds has inspired poetry, art, l~terature, science and tech- nology. In Monsoon, Wilbur ... Henk Tennekes, an aerospace engineering professor at Pennsyl- vania State University, USA, has a different story to tell in his popular book The ...

  8. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  9. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  10. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    the Geophysical Observatory "Borok" of the Joint Institute of Physics of the Earth after O.Yu. Schmidt, Russian Academy of Sciences, on the statistics manifestations of various diseases for Murom City, located in the same region (Central Russia) at a distance of about 50 km has been investigated. It has been observed that the period of the absence of pulsation's is typical for the maximum number of events in the manifestation of the diseases, especially nervous ones. High-frequency pulsation's similar to frequency in the basic human biorhythms are absent in 60-100 % for neurasthenia and 100 % - for neurosis and psychosis. All these electromagnetic waves are usually the background for the earthling to disappear with the release of the interplanetary spacecraft beyond the magnetosphere, and after a few days of flight the cosmonauts will be out of the usual electromagnetic "noise", as well as outside the geomagnetic field. It is unknown however if under the simultaneous absence either the geomagnetic field or electromagnetic waves in a wide range of frequencies - from low (including those of the field of brain rhythms, heart, etc.) to the highest ones the extremely high frequencies affect the human organism upon the resonance effects on the body cells. Therefore, in the coming years, during the preparatory stages of the first interplanetary flight, it is required to study synergistic effects of exposure to the fields on human - under expected absence of the usual "sets" oscillations of electromagnetic fields, especially geomagnetic pulsations, when real background of hypo-magnetic field exists. It should be emphasized that the flights and landings on the Moon cannot be analogous for discussion of the situation, as the flights continued outside the magnetosphere of the Earth are less than a week. Most importantly, the Moon during each lunar month (29 days) for several days is trailing geomagnetic sphere.

  11. Hyper-X Research Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1997-01-01

    be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  12. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1999-01-01

    be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is the airframe integration. The body of the vehicle itself forms critical elements of the engine. The forebody acts as part of the intake for airflow and the aft section serves as the nozzle. The X-43A vehicles were manufactured by Micro Craft, Inc., Tullahoma, Tennessee. Orbital Sciences Corporation, Chandler, Arizona, built the Pegasus rocket booster used to launch the X-43 vehicles. For the Dryden research flights, the Pegasus rocket booster and attached X-43 will be air launched by Dryden's B-52 'Mothership.' After release from the B-52, the booster will accelerate the X-43A vehicle to the established test conditions (Mach 7 to 10) at an altitude of approximately 100,000 feet where the X-43 will separate from the booster and fly under its own power and preprogrammed control.

  13. Realizing the Dream of Flight: Biographical Essays in Honor of the Centennial of Flight, 1903-2003

    Science.gov (United States)

    Dawson, Virginia P. (Editor); Bowles, Mark D. (Editor)

    2005-01-01

    While growing up in Cedar Rapids, Iowa, Milton Wright, The Wright Brothers Father, liked to purchase toys for his sons that he hoped would stimulate their imagination. One of the most memorable gifts was a toy helicopter that was designed by the French aeronautical experimenter Alphonse P naud. Milton gave his sons this gift in 1878, and, though it was a simple device with a stick bound to a four-blade rotor set in a spindle, it had the intended effect it caused them to dream. Twenty-five years separated the gift of this toy and their invention of the airplane, yet the Wright brothers were convinced it had exerted an important influence. Tom Crouch argued in The Bishop's Boys that toys like these perfectly illustrated the significance of play for technological innovation. He wrote, rotary-wing toys were to intrigue and inspire generations of children, a few of whom would, as adults, attempt to realize the dream of flight for themselves. If the first powered flight on 17 December 1903 represented a childhood dream realized, it was only the first step in the rapid evolution of the airplane from their flimsy kite-like contraption of wood and cloth to jet airliners and rockets in space. And, as extraordinary as the achievement of powered flight seemed in 1903, before the end of the century, space travel also would become a dream realized. Soviet astronaut Yuri Gagarin first circumnavigated Earth in April 1961, and, eight years later, American astronauts took the first steps for humankind on the Moon. It is with great pleasure that we introduce Realizing the Dream: Biographical Essays in Honor of the Centennial of Flight. These essays in celebration of the Wright brothers first flight 100 years ago grew out of presentations by a group of prominent scholars in 2003 at a conference sponsored by the NASA History Division and held at the Great Lakes Science Center in Cleveland, Ohio. The volume focuses on the careers of some of the many men and women who helped to realize

  14. Investigating Flight with a Toy Helicopter

    Science.gov (United States)

    Liebl, Michael

    2010-01-01

    Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…

  15. High Flight. Aerospace Activities, K-12.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  16. Maneuver of Spinning Rocket in Flight

    OpenAIRE

    HAYAKAWA, Satio; ITO, Koji; MATSUI, Yutaka; NOGUCHI, Kunio; UESUGI, Kuninori; YAMASHITA, Kojun

    1980-01-01

    A Yo-despin device successfully functioned to change in flight the precession axis of a sounding rocket for astronomical observation. The rocket attitudes before and after yodespin were measured with a UV star sensor, an infrared horizon sensor and an infrared telescope. Instrumentation and performance of these devices as well as the attitude data during flight are described.

  17. Design techniques for mutlivariable flight control systems

    Science.gov (United States)

    1981-01-01

    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  18. 75 FR 7345 - Filtered Flight Data

    Science.gov (United States)

    2010-02-19

    ... digital flight data recorder regulations affecting certain air carriers and operators. This final rule prohibits the filtering of some original flight recorder sensor signals unless a certificate holder can show... A. Verna, Avionics Systems Branch, Aircraft Certification Service, AIR-130, Federal Aviation...

  19. Simulation of the Physics of Flight

    Science.gov (United States)

    Lane, W. Brian

    2013-01-01

    Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…

  20. Habitability and Behavioral Issues of Space Flight.

    Science.gov (United States)

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  1. Life-critical digital flight control systems

    Science.gov (United States)

    Mcwha, James

    1990-01-01

    Digital autopilot systems were first used on commercial airplanes in the late 1970s. The A-320 airplane was the first air transport airplane with a fly-by-wire primary flight control system. On the 767-X (777) airplane Boeing will install all fly-by-wire flight controls. Activities related to safety, industry status and program phases are discussed.

  2. 14 CFR 61.56 - Flight review.

    Science.gov (United States)

    2010-01-01

    ... altitude, in lieu of the 1 hour of flight training required in paragraph (a) of this section. (c) Except as... flight training and 1 hour of ground training. The review must include: (1) A review of the current... of ground training specified in paragraph (a) of this section. (g) A student pilot need not...

  3. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  4. A Decentralized Approach to Formation Flight Routing

    NARCIS (Netherlands)

    Visser, H.G.; Lopes dos Santos, Bruno F.; Verhagen, C.M.A.

    2016-01-01

    This paper describes the development of an optimization-based cooperative planning system for the efficient routing and scheduling of flight formations. This study considers the use of formation flight as a means to reduce the overall fuel consumption of civil aviation in long-haul operations. It

  5. Dosimetric system for prolonged manned flights

    International Nuclear Information System (INIS)

    Akatov, Yu.A.; Kovalev, E.E.; Sakovich, V.A.; Deme, Sh.; Fekher, I.; Nguen, V.D.

    1991-01-01

    Comments for the All-Union state standard 25645.202-83 named Radiation safety of a spacecraft crew during space flight. Requirements for personnel dosimetric control, are given. Devices for the dosimetric control used in manned space flights nowadays are reviewed. The performance principle and structure of the FEDOR dosimetric complex under development are discussed

  6. F-15 IFCS: Intelligent Flight Control System

    Science.gov (United States)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  7. Quiet engine program flight engine design study

    Science.gov (United States)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  8. Pernilla Craig Flight Around Lac Leman

    CERN Multimedia

    Goldfarb, Steven

    2013-01-01

    Aviator and future physicist Pernilla Craig visits CERN and is hosted by the Geneva Flight Club. Web pioneer Robert Cailliau helps in the preparations, flight instructor Aline Cosmetatos takes the co-pilot seat, and ATLAS outreach coordinator Steven Goldfarb serves cocktails from the back seat.

  9. 14 CFR 61.98 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.98 Section 61.98 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN...) Navigation; (viii) Slow flight and stalls; (ix) Emergency operations; and (x) Postflight procedures. (2) For...

  10. 14 CFR 61.107 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.107 Section 61.107 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... reference maneuvers; (vii) Navigation; (viii) Slow flight and stalls; (ix) Basic instrument maneuvers; (x...

  11. FT 3 Flight Test Cards for Export

    Science.gov (United States)

    Marston, Michael L.

    2015-01-01

    These flight test cards will be made available to stakeholders who participated in FT3. NASA entered into the relationship with our stakeholders, including the FAA, to develop requirements that will lead to routine flights of unmanned aircraft systems flying in the national airspace system.

  12. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  13. Transverse excitations of 19F

    International Nuclear Information System (INIS)

    Donne, A.J.H.

    1985-01-01

    In this thesis aspects of the structure of the nucleus 19 F are discussed as a result of transverse electron-scattering experiments, with emphasis on the ground state. The magnetization distribution of this state has been obtained from the measurement of electrons scattered from 19 F at backward angles. An introduction to the electron-scattering formalism is presented briefly together with the interpretation of electron-scattering results in terms of the nuclear shell model. The experimental apparatus for the measurement of electron scattering through an angle of 180 0 is described. This instrumentation has been installed in the low-energy facility (LEF) at NIKHEF-K. Simultaneously with the study of the magnetic ground state distribution of 19 F, also excited states of this nucleus up to an energy of 4.4 MeV have been investigated, mainly from data obtained in the EMIN station. Also for these states, the shell-model calculations have been the guide to determine their structure. (Auth.)

  14. Séminaire de physique corpusculaire | 19 December

    CERN Multimedia

    2012-01-01

    Active and Sterile Neutrinos in Cosmology by Prof. Julien Lesgourges, EPFL (Lausanne) Wednesday 19 December 2012 at 11:15 Science III, Auditoire 1S081 30, quai Ernest-Ansermet, 1211 Genève 4 Abstract: Review of status and prospects for constraining the neutrino sector using cosmological observables, with an emphasis on cosmic microwave background and large scale structure data. More information here.

  15. 14 CFR 63.43 - Flight engineer courses.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  16. Remote radio control of insect flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2009-10-01

    Full Text Available We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely-controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  17. Remote radio control of insect flight.

    Science.gov (United States)

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  18. Shuttle operations era planning for flight operations

    Science.gov (United States)

    Holt, J. D.; Beckman, D. A.

    1984-01-01

    The Space Transportation System (STS) provides routine access to space for a wide range of customers in which cargos vary from single payloads on dedicated flights to multiple payloads that share Shuttle resources. This paper describes the flight operations planning process from payload introduction through flight assignment to execution of the payload objectives and the changes that have been introduced to improve that process. Particular attention is given to the factors that influence the amount of preflight preparation necessary to satisfy customer requirements. The partnership between the STS operations team and the customer is described in terms of their functions and responsibilities in the development of a flight plan. A description of the Mission Control Center (MCC) and payload support capabilities completes the overview of Shuttle flight operations.

  19. Young PHD's in Human Space Flight

    Science.gov (United States)

    Wilson, Eleanor

    2002-01-01

    The Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME) in cooperation with the NASA Office of Space Flight, Human Exploration and Development of Space Enterprise sponsored a summer institute, Young PHD#s (Persons Having Dreams) in Human Space Flight. This 3-day institute used the curriculum of a workshop designed for space professionals, 'Human Space Flight-Analysis and Design: An Integrated, Systematic Approach.' The content was tailored to a high school audience. This institute seeks to stimulate the interest of pre-college students in space flight and motivate them to pursue further experiences in this field. Additionally, this institute will serve as a pilot model for a pre- collegiate training program that can be replicated throughout the country. The institute was complemented with a trip to the Goddard Space Flight Center.

  20. The First European Parabolic Flight Campaign with the Airbus A310 ZERO-G

    Science.gov (United States)

    Pletser, Vladimir; Rouquette, Sebastien; Friedrich, Ulrike; Clervoy, Jean-Francois; Gharib, Thierry; Gai, Frederic; Mora, Christophe

    2016-12-01

    Aircraft parabolic flights repetitively provide up to 23 seconds of reduced gravity during ballistic flight manoeuvres. Parabolic flights are used to conduct short microgravity investigations in Physical and Life Sciences and in Technology, to test instrumentation prior to space flights and to train astronauts before a space mission. The use of parabolic flights is complementary to other microgravity carriers (drop towers, sounding rockets), and preparatory to manned space missions on board the International Space Station and other manned spacecraft, such as Shenzhou and the future Chinese Space Station. After 17 years of using the Airbus A300 ZERO-G, the French company Novespace, a subsidiary of the ' Centre National d'Etudes Spatiales' (CNES, French Space Agency), based in Bordeaux, France, purchased a new aircraft, an Airbus A310, to perform parabolic flights for microgravity research in Europe. Since April 2015, the European Space Agency (ESA), CNES and the ` Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, the German Aerospace Center) use this new aircraft, the Airbus A310 ZERO-G, for research experiments in microgravity. The first campaign was a Cooperative campaign shared by the three agencies, followed by respectively a CNES, an ESA and a DLR campaign. This paper presents the new Airbus A310 ZERO-G and its main characteristics and interfaces for scientific experiments. The experiments conducted during the first European campaign are presented.

  1. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  2. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    Science.gov (United States)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  3. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  4. [Diagnosis for human parvovirus B19-polyarthritis: usefulness of empty particle B19.ELISA and B19-DNA.PCR].

    Science.gov (United States)

    Hatakeyama, Y; Ishii, K; Murai, C; Sugamura, K; Mitomo, N; Saitoh, T; Rikimaru, Y; Okazaki, T; Sasaki, T

    1998-10-01

    To evaluate the usefulness of new ELISA for human parvovirus B19 (B19) antibodies and PCR for the diagnosis of acute onset of B19 polyarthritis. We evaluated the reproducibility and sensitivity on the detection of anti-B19 antibody by ELISA using recombinant VP-1 and VP-2 (empty particle), and then studied for the prevalence of IgM and IgG B19 antibody in 125 samples for anti-B19 tests. The random study on anti-B19 antibody assay as well as PCR for B19-DNA was also performed in 130 cases with acute onset of arthritis excluding those with known origins, 224 with rheumatoid arthritis and 149 with other categories. The results by using B19-empty particle ELISA were reproducible and showed the assay was a sensitive way for clinical use. IgM anti-B19 antibodies were positive not only in all samples from erythema infectiosum, but also often in those from hemolytic anemia, pure red cell aplasia, fetal hydrops, hepatic injury, fever of unknown origin. Among 130 with acute onset of arthritis, 21 showed positive tests for IgM anti-B19 antibody and/or B19 DNA. On the other hand, 4 among 224 patients with rheumatoid arthritis were positive for IgM anti-B19 antibody, but all of 149 in control group were negative for IgM anti-B19 antibodies and for B19 DNA. Anti-B19 ELISA using B19-empty particle which has been introduced as a routine test system, is a useful tool for the diagnosis of acute onset of B19 arthritis. An additional examination using PCR for B19 DNA may contribute for understanding persistent B19 polyarthritis or reactivation of B19 infection.

  5. The Art and Science of Tactics

    Science.gov (United States)

    1977-01-01

    THE ART AND SCIENCE OF TACTICS by MAJOR ROBERT A. DOUGHTY, US ARMY E stablishing the nature of tactics has been a pastime of professional...tactics in the US Army have implicitly begun to assume that tactics is more an exact science than an " art and science ." As one recent military writer...and 19th centuries generally agreed that tactics was more an art than it was a science . Many agreed with the terse definition given by Antoine

  6. Proceedings of The Twentieth International Symposium on Space Technology and Science. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-31

    The 20th international symposium on space technology and science was held in Nagaragawa city, Gifu prefecture on May 19-25, 1996, and 401 papers were made public. Out of those, 112 papers were summed up as Volume 2 following the previous Volume 1. As to space transportation, the paper included reports titled as follows: Conceptual study of H-IIA rocket (upgraded H-II rocket); Test flight of the launch vehicle; International cooperation in space transportation; etc. Concerning microgravity science, Recent advances in microgravity research; Use of microgravity environment to investigate the effect of magnetic field on flame shape; etc. Relating to satellite communications and broadcasting, `Project GENESYS`: CRL`s R and D project for realizing high data rate satellite communications networks; The Astrolink {sup TM/SM} system; etc. Besides, the paper contained reports on the following fields: lunar and planetary missions and utilization, space science and balloons, earth observations, life science and human presence, international cooperation and space environment, etc

  7. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  8. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  9. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  10. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

    International Nuclear Information System (INIS)

    Bultman, D. H.; Weinacht, D.

    2000-01-01

    This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule)

  11. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  12. The performance and the characterization of laser ablation aerosol particle time-of-flight mass spectrometry (LAAP-ToF-MS)

    Science.gov (United States)

    Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho

    2016-05-01

    Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.

  13. Physiological modelling of oxygen consumption in birds during flight

    Science.gov (United States)

    Bishop; Butler

    1995-01-01

    This study combines data on changes in cardiovascular variables with body mass (Mb) and with exercise intensity to model the oxygen supply available to birds during flight. Its main purpose is to provide a framework for identifying the factors involved in limiting aerobic power input to birds during flight and to suggest which cardiovascular variables are the most likely to have been influenced by natural selection when considering both allometric and adaptive variation. It is argued that natural selection has acted on heart rate (fh) and cardiac stroke volume (Vs), so that the difference in the arteriovenous oxygen content (CaO2-Cv¯O2) in birds, both at rest and during flight, is independent of Mb. Therefore, the Mb exponent for oxygen consumption (V(dot)O2) during flight can be estimated from measurements of heart rate and stroke volume. Stroke volume is likely to be directly proportional to heart mass (Mh) and, using empirical data, values for the Mb coefficients and exponents of various cardiovascular variables are estimated. It is concluded that, as found for mammals, fh is the main adaptive variable when considering allometric variation, although Mh also shows a slight scaling effect. Relative Mh is likely to be the most important when considering adaptive specialisations. The Fick equation may be represented as: (V(dot)O2)Mbz = (fh)Mbw x (Vs)Mbx x (CaO2 - Cv¯O2)Mby , where w, x, y, z are the body mass exponents for each variable and the terms in parentheses represent the Mb coefficients. Utilising this formula and data from the literature, the scaling of minimum V(dot)O2 during flight for bird species with a 'high aerobic capacity' (excluding hummingbirds) is calculated to be: 166Mb0.77±0.09 = 574Mb-0.19±0.02 x 3.48Mb0.96±0.02 x 0.083Mb0.00±0.05 , and for hummingbirds (considered separately owing to their unique wing kinematics) it is: 314Mb0.90±0.22 = 617Mb-0.10±0.06 x 6.13Mb1.00±0.11 x 0.083Mb0.00±0.05 . These results are largely dependent on the

  14. Evaluation Science

    Science.gov (United States)

    Patton, Michael Quinn

    2018-01-01

    Culturally and politically science is under attack. The core consequence of perceiving and asserting evaluation as science is that it enhances our credibility and effectiveness in supporting the importance of science in our world and brings us together with other scientists to make common cause in supporting and advocating for science. Other…

  15. Science/s.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Tricoire

    2005-03-01

    Full Text Available Un forum a été organisé en mars par la Commission européenne. Il s’appelait « Science in Society ». Depuis 2000 la Commission a mis en place un Plan d’Action élaboré pour que soit promue « la science » au sein du public, afin que les citoyens prennent de bonnes décisions, des décisions informées. Il s’agit donc de développer la réflexivité au sein de la société, pour que cette dernière agisse avec discernement dans un monde qu’elle travaille à rendre durable. ...

  16. 44 CFR 19.200 - Application.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Application. 19.200 Section 19.200 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 19.200 Application. Except as provided in §§ 19.205...

  17. 44 CFR 19.310 - Recruitment.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Recruitment. 19.310 Section... RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Admission and Recruitment Prohibited § 19.310 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which §§ 19.300 through 19...

  18. 27 CFR 19.704 - Labels.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Labels. 19.704 Section 19... TREASURY LIQUORS DISTILLED SPIRITS PLANTS Samples of Spirits § 19.704 Labels. (a) On each container of spirits to be withdrawn under the provisions of § 19.701, the proprietor shall affix a label showing the...

  19. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  20. Multimodal Displays for Target Localization in a Flight Test

    National Research Council Canada - National Science Library

    Tannen, Robert

    2001-01-01

    ... Synthesized Immersion Research Environment (SIRE) facility. Twelve pilots with a mean of 2652 flight hours performed a simulated flight task in which they were instructed to maintain a prescribed flight path, air speed, and altitude...