WorldWideScience

Sample records for science fair experiments

  1. Science fair: Is it worth the work? A qualitative study on deaf students' perceptions and experiences regarding science fair in primary and secondary school

    Science.gov (United States)

    Smith, Vivian Lee

    Science fairs have a long history in American education. They play an important role for establishing inquiry-based experiences in a science classroom. Students may be more motivated to learn science content when they are allowed to choose their own science fair topics. The purpose of this study was to examine Deaf college students' perceptions and experiences regarding science fair participation during primary and/or secondary school and determine the influence of science fair involvement on the development of language skills, writing skills, and higher order thinking skills as well as its impact on choice of a STEM major. This study examined responses from Deaf students attending Gallaudet University and National Technical Institute for the Deaf (NTID) majoring in a Science, Technology, Engineering, or Math (STEM) field. An electronic questionnaire and a semi-structured interview were used to collect data. The electronic questionnaire was divided into two strands: demographics and science fair experience. Twenty-one respondents participated in the questionnaire and ten participants were interviewed. A cross-case analysis revealed communication was the key to a successful science fair experience. Findings showed the educational background of participants influenced their perspective regarding the experience of a science fair. When communicating through American Sign Language, the science fair experience was more positive. When communicating through an interpreter or having no interpreter at all, the science fair experience was viewed in a negative light. The use of science fairs to enhance language development, writing skills, and higher order thinking skills was supported. Teachers and parents were strong influences for Deaf students participating in a science fair. Participation in a science fair did influence students to choose a STEM major but there were other considerations as well.

  2. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  3. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  4. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  5. Science Fairs for Science Literacy

    Science.gov (United States)

    Mackey, Katherine; Culbertson, Timothy

    2014-03-01

    Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].

  6. The ELISe experiment at FAIR

    International Nuclear Information System (INIS)

    Simon, H.

    2007-01-01

    In this paper the novel ELectron Ion scattering in a Storage ring (eA-collider) experiment that is part of the baseline of FAIR[http://www.gsi.de/fair/reports/btr.html] will be discussed in terms of future prospects in a viable physics programme[http://www.gsi.de/documents/DOC-2006-Mar-118-1.pdf, http://www.gsi.de/fair/experiments/ELISe/] that will be feasible for the first time, making use of a clean purely electromagnetic probe in conjunction with unstable secondary beams, the electron

  7. The PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Bussa, M.P.

    2005-01-01

    The approved FAIR upgrade of the GSI facility in Darmstadt, Germany, includes the construction of a High Energy Storage Ring (HESR) for high intensity, phase space cooled antiprotons with momenta up to 15 GeV/c. A wide physics program is planned at this facility to investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. To serve the many experiments planned at this new facility, an universal, modular, hermetic spectrometer called PANDA (Proton ANtiproton Detector Array) is planned. This talk presents an overview of the physics program pursued by this project and of the PANDA detector system. The feasibility of measurements in the sector of spin degrees of freedom of quarks will be also discussed. (author)

  8. Google Science Fair winner visits CERN

    CERN Document Server

    Katarina Anthony

    2012-01-01

    Google Science Fair Grand Prize winner Brittany Michelle Wenger today wrapped up a day-and-a-half's visit of the CERN site. Her winning project uses an artificial neural network to diagnose breast cancer – a non-invasive technique with significant potential for use in hospitals.   Brittany Michelle Wenger at CERN's SM18 Hall. Besides winning a $50,000 scholarship from Google and work experience opportunities with some of the contest hosts, Brittany was offered a personal tour of CERN. “This visit has just been incredible,” she says. “I got to speak with [CERN's Director for Accelerators and Technology] Steve Myers about some of the medical applications and technologies coming out of the LHC experiments and how they can be used to treat cancer. We talked about proton therapy and hadron therapy, which could really change the way patients are treated, improving success rates and making treatment not such an excruciating process. That ...

  9. Software Development Infrastructure for the FAIR Experiments

    International Nuclear Information System (INIS)

    Uhlig, F; Al-Turany, M; Bertini, D; Karabowicz, R

    2011-01-01

    The proposed project FAIR (Facility for Anti-proton and Ion Research) is an international accelerator facility of the next generation. It builds on top of the experience and technological developments already made at the existing GSI facility, and incorporate new technological concepts. The four scientific pillars of FAIR are NUSTAR (nuclear structure and astrophysics), PANDA (QCD studies with cooled beams of anti-protons), CBM (physics of hadronic matter at highest baryon densities), and APPA (atomic physics, plasma physics, and applications). The FairRoot framework used by all of the big FAIR experiments as a base for their own specific developments, provides basic functionality like IO, geometry handling etc. The challenge is to support all the different experiments with their heterogeneous requirements. Due to the limited manpower, one of the first design decisions was to (re)use as much as possible already available and tested software and to focus on the development of the framework. Beside the framework itself, the FairRoot core team also provides some software development tools. We will describe the complete set of tools in this article. The Makefiles for all projects are generated using CMake. For software testing and the corresponding quality assurance, we use CTest to generate the results and CDash as web front end. The tools are completed by subversion as source code repository and trac as tool for the complete source code management. This set of tools allows us to offer the full functionality we have for FairRoot also to the experiments based on FairRoot.

  10. Fair

    CERN Multimedia

    2005-01-01

    The 'Presses Polytechniques Universitaires Romandes' is organising a book exhibition. The major topics covered will be science and technology. The fair will take place in the foyer of the main building (building 60), and will be open from 10am - 4pm on 5th July 2005.

  11. CERN welcomes Intel Science Fair winners

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    This June, CERN welcomed twelve gifted young scientists aged 15-18 for a week-long visit of the Laboratory. These talented students were the winners of a special award co-funded by CERN and Intel, given yearly at the Intel International Science and Engineering Fair (ISEF).   The CERN award winners at the Intel ISEF 2012 Special Awards Ceremony. © Society for Science & the Public (SSP). The CERN award was set up back in 2009 as an opportunity to bring some of the best and brightest young minds to the Laboratory. The award winners are selected from among 1,500 talented students participating in ISEF – the world's largest pre-university science competition, in which students compete for more than €3 million in awards. “CERN gave an award – which was obviously this trip – to students studying physics, maths, electrical engineering and computer science,” says Benjamin Craig Bartlett, 17, from South Carolina, USA, wh...

  12. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  13. CERN and Google team up for Science Fair

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN partners up with Google to present the world’s first online global science competition: the Google Science Fair.   The Google Science Fair invites young people aged 13-18 to conduct innovative science projects and present their results for the chance to win once-in-a-lifetime experiences and opportunities. CERN will offer a three-day visit to the Laboratory to one of the winners, and Rolf Heuer, CERN Director-General, will be on the prestigious panel of judges. Nobel laureates, science entrepreneurs, and science communicators will have the difficult task of choosing the winners. “Google is a company that was born from scientific experimentation and in that spirit we are interested in promoting science, technology, engineering and maths (best known as STEM) education all over the world,” says Samantha Peter, Education Product Marketing Manager at Google. “By creating a large competition where students can get immersed in these subjects and have the op...

  14. The Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research

  15. Obama Announces Science Education Goal at White House Science Fair

    Science.gov (United States)

    Showstack, Randy

    2012-02-01

    With student participants in the second annual White House Science Fair as a backdrop, President Barack Obama announced on 7 February programs to help prepare new math and science teachers and to meet a new goal of having 1 million more U.S. college graduates in science, technology, engineering, and math (STEM) over the next decade than there would be at the current graduation rate. That goal is outlined in a report entitled “Engage to excel,” by the President's Council of Advisors on Science and Technology (PCAST), released the same day. Obama also announced several other initiatives, including a $22 million private-sector investment, led by the Carnegie Corporation of New York, to invest in STEM teacher training. After he toured the science fair projects, Obama said the science fair students “inspire” him. “What impresses me so much is not just how smart you are, but it's the fact that you recognize you've got a responsibility to use your talents in service of something bigger than yourselves,” he said. What these young people are doing is “going to make a bigger difference in the life of our country over the long term than just about anything,” adding, “We've got to emphasize how important this is and recognize these incredible young people who are doing that that I couldn't even imagine thinking about at fifth grade or eighth grade or in high school.”

  16. Development of Teachers' Attitude Scale towards Science Fair

    Science.gov (United States)

    Tortop, Hasan Said

    2013-01-01

    This study was conducted to develop a new scale for measuring teachers' attitude towards science fair. Teacher Attitude Scale towards Science Fair (TASSF) is an inventory made up of 19 items and five dimensions. The study included such stages as literature review, the preparation of the item pool and the reliability and validity analysis. First of…

  17. Experiments on extreme states of matter towards HIF at FAIR

    International Nuclear Information System (INIS)

    Sharkov, B.; Varentsov, D.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe (FAIR) will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented frontier research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in plasma, nuclear, atomic, hadron and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of extreme state of matter on both a microscopic and on a cosmic scale. (authors)

  18. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  19. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  20. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    Science.gov (United States)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  1. Future Experiments with HADES at FAIR

    International Nuclear Information System (INIS)

    Tlusty, P.

    2010-01-01

    The Dielectron Spectrometer HADES installed at GSI Darmstadt recently provided new intriguing results on production of electron pairs and strangeness from elementary and nucleus-nucleus collisions. The obtained data call for further systematic investigations of heavier systems and/or at higher energies.For this purpose, the HADES spectrometer has been upgraded with a high-granularity RPC time-of-flight wall. In addition, a completely new detector read-out and data-acquisition system has been implemented which will greatly improve our data-taking rates. We describe the current status of the HADES spectrometer and our plans for experiments on heavy system collisions at energies up to 10 A GeV on the upcoming FAIR facility.

  2. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  3. The Compressed Baryonic Matter Experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Heuser J.M.

    2011-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  4. Students Inspiring Students: An Online Tool for Science Fair Participants

    Science.gov (United States)

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  5. Popularizing Natural Sciences by Means of Scientific Fair

    Directory of Open Access Journals (Sweden)

    Martin Cápay

    2011-12-01

    Full Text Available Science popularization is demanding from the financial as well as the time point of view. It is necessary to find the premises that would be easily available to general public. Another important step is to promote the event so that it would attract the audience. The preparation of scientific experiments itself also requires some financial resources. If we want to take advantage of these resources in the most useful and effective way, we have to find answers to the question: “What, where and how do we want to popularise?” In the paper, we describe one-day project aimed to popularization of scientific fields carried out by eight departments of the Faculty of Natural Sciences, Constantine the Philosopher University in Nitra. The project was named Scientific FairScience you can see, hear and experience. Its main goal was to present seven scientific fields - Physics, Informatics, Mathematics, Geography, Ecology, Chemistry and Biology. Popularization was carried out as experimental interactive activities unveiling the undisclosed corners of science. Their aim was to inspire the audience, arouse their interest in science and motivate the participants to cognitive activities. We introduce the idea of the project in detail concentrating mainly on informatics realized by the Department of Informatics.

  6. 1st Hands-on Science Science Fair

    OpenAIRE

    Costa, Manuel F. M.; Esteves. Z.

    2017-01-01

    In school learning of science through investigative hands-on experiments is in the core of the Hands-on Science Network vision. However informal and non-formal contexts may also provide valuable paths for implementing this strategy aiming a better e!ective science education. In May 2011, a "rst country wide “Hands-on Science’ Science Fair” was organized in Portugal with the participation of 131 students that presented 38 projects in all "elds of Science. In this communication we will pr...

  7. Compressed baryonic matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Jürgen Eschke

    2012-02-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the Facility for Antiproton and Ion Research (FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifcations of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/Fm, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45 AGeV. Hadronic, leptonic and photonic observables will be measured in a large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. This requires the development of novel detector systems, trigger and data acquisition concepts as well as in- novative real-time reconstruction techniques. A key observable of the physics program is a precise measurement of lowmass vector mesons and charmonium in their leptonic decay channel. In CBM, electrons will be identified using a gaseous RICH detector combined with several TRD detectors positioned after a system of silicon tracking stations which are located inside a magnetic dipole field. The concept of the RICH detector, results on R & D as well as feasibility studies and invariant mass distributions of charmonium will be discussed.

  8. Career Fairs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  9. Evaluation of constructivist pedagogy: Influence on critical thinking skills, science fair participation and level of performance

    Science.gov (United States)

    Foxx, Robbie Evelyn

    Science education reform, driven by a rapidly advancing technological society, demands the attention of both elementary and middle school curriculum-developers. Science education training in current standards (National Research Council [NRC] Standards 1996) emphasize inquiry, which is reported to be a basic tenet of the theory known as constructivism (NAASP, 1996; Cohen, 1988; Conley, 1993; Friedman, 1999; Newman, Marks, & Gamoran, 1996; Smerdon & Burkam 1999; Sizer 1992; Talbert & McLaughlin 1993; Tobin & Gallagher, 1987; Yager, 1991, 2000). Pedagogy focusing on the tenets of constructivist theory, at the intermediate level, can address current science standards. Many science educators believe participation in science fairs helps students develop the attitudes, skills, and knowledge that will help them to be comfortable and successful in the scientific and technological society (Czerniak, 1996). Competing in science fairs is one vehicle which allows students to apply science to societal issues, solve problems and model those things scientists do. Moreover, constructing a science fair project is suggested as being an excellent means to foster the development of concepts necessary in promoting scientific literacy (Czerniak, 1996). Research further suggests that through science fairs or other inquiry activities, students construct their knowledge with fewer misconceptions as they explore and discover the nature of science (NRC 1996). Tohn 's study (as cited in Bellipanni, 1994) stated that science fairs are a major campaign to increase student skills and to allow students a chance to have fun with science. The purpose of this research was twofold: (1) to assess science problem solving skills of students instructed using constructivist pedagogy, and (2) to explore the effects of constructivist pedagogy's influence(s) on science fair participation/placement. Students' attitudes resulting from these experiences were examined as well.

  10. The Google Science Fair winner comes to CERN

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Shree Bose, the Google Science Fair Grand Prize winner, will come to CERN for a three-day internship. She is looking forward to it and hopes to sit in the CERN Control Room, and to learn more about ALICE and in general the work going on here right now.   Google Science Fair winners Lauren Hodge (left) Shree Bose (middle) and Naomi Shah (right). (Image Copyright Google) Despite her young age, Shree Bose is already an experienced researcher. Indeed, she has already been awarded prestigious prizes in various science fairs and competitions. Aged 17, she found a way to improve ovarian cancer treatment for patients when they have built up a resistance to certain chemotherapy drugs. The project won the Grand Prize at the Google Science Fair, and together with an amazing 10-day trip to the Galapagos Islands with National Geographic Expeditions, she also won a trip to CERN. “Shree will visit several experimental sites here and will sit next to our physicists and engineers, in the CCC an...

  11. The PANDA experiment: Antiproton physics at FAIR

    International Nuclear Information System (INIS)

    Montagna, P.

    2011-01-01

    The new Facility for Antiproton and Ion Research (FAIR), under construction at the GSI laboratory at Darmstadt, in a few years will make available, among different types of beams, even antiproton beams with unique features. Through a High Energy Storage Ring (HESR) for antiprotons, an antiproton beam will be available in a momentum range from 1.5 to 15 GeV/c, which will interact on a hydrogen target. The products of the interaction, including hadronic systems with strangeness and/or charm, will be detected with the PANDA magnetic spectrometer (antiProton ANnihilation at DArmstadt), and the spectroscopic analysis will allow a detailed investigation on a number of open problems of the hadronic physics, as the quark confinement, the existence of non-conventional meson states (so-called glueballs and hybrids), the structure of hadrons and of the strong interaction, with particular attention to charmonium spectroscopy. An overview of the scientific program of PANDA and the current status of the project will be presented.

  12. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  13. Computing Activities for the PANDA Experiment at FAIR

    NARCIS (Netherlands)

    Messchendorp, Johan; Gruntorad, J; Lokajicek, M

    2010-01-01

    The PANDA experiment at the future facility FAIR will provide valuable data for our present understanding of the strong interaction. In preparation for the experiments, large-scale simulations for design and feasibility studies are performed exploiting a new software framework, PandaROOT, which is

  14. Experiments with beams of exotic nuclei at GSI and FAIR

    International Nuclear Information System (INIS)

    Emling, Hans

    2006-01-01

    The facility for antiproton and ion research FAIR will provide the international science community with a technically novel and in many respects unique accelerator system for a multi-faceted physics program. Rare-isotope beams of much improved quality together with advanced experimental concepts promise detailed experimental investigations of nuclei far away from stability. A brief description of the rare-isotope beam facility at FAIR is presented, which allows to extend substantially the current successful experimental program with exotic nuclei at GSI. (author)

  15. How To Implement the Science Fair Self-Help Development Program in Schools. Sandia Report.

    Science.gov (United States)

    Menicucci, David F.

    Often the burden of promoting science and engineering fairs falls upon science teachers who have to add the organizational activities for the fair to their normal teaching load. This manual is intended to assist in the science fair process by providing information about how to create a team of volunteers to manage the organizational activities.…

  16. Fairness in Knowing: Science Communication and Epistemic Justice.

    Science.gov (United States)

    Medvecky, Fabien

    2017-09-22

    Science communication, as a field and as a practice, is fundamentally about knowledge distribution; it is about the access to, and the sharing of knowledge. All distribution (science communication included) brings with it issues of ethics and justice. Indeed, whether science communicators acknowledge it or not, they get to decide both which knowledge is shared (by choosing which topic is communicated), and who gets access to this knowledge (by choosing which audience it is presented to). As a result, the decisions of science communicators have important implications for epistemic justice: how knowledge is distributed fairly and equitably. This paper presents an overview of issues related to epistemic justice for science communication, and argues that there are two quite distinct ways in which science communicators can be just (or unjust) in the way they distribute knowledge. Both of these paths will be considered before concluding that, at least on one of these accounts, science communication as a field and as a practice is fundamentally epistemically unjust. Possible ways to redress this injustice are suggested.

  17. Negotiating Discourses: Sixth-Grade Students' Use of Multiple Science Discourses during a Science Fair Presentation

    Science.gov (United States)

    Gomez, Kimberley

    2007-01-01

    This study offers important insights into the coexistence of multiple discourses and the link between these discourses and science understanding. It offers concrete examples of students' movement between multiple discourses in sixth-grade science fair presentations, and shows how those multiple discourses in science practices illuminate students'…

  18. Plasma Science and Applications at the Intel Science Fair: A Retrospective

    Science.gov (United States)

    Berry, Lee

    2009-11-01

    For the past five years, the Coalition for Plasma Science (CPS) has presented an award for a plasma project at the Intel International Science and Engineering Fair (ISEF). Eligible projects have ranged from grape-based plasma production in a microwave oven to observation of the effects of viscosity in a fluid model of quark-gluon plasma. Most projects have been aimed at applications, including fusion, thrusters, lighting, materials processing, and GPS improvements. However diagnostics (spectroscopy), technology (magnets), and theory (quark-gluon plasmas) have also been represented. All of the CPS award-winning projects so far have been based on experiments, with two awards going to women students and three to men. Since the award was initiated, both the number and quality of plasma projects has increased. The CPS expects this trend to continue, and looks forward to continuing its work with students who are excited about the possibilities of plasma. You too can share this excitement by judging at the 2010 fair in San Jose on May 11-12.

  19. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    Science.gov (United States)

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  20. Science Fair Projects. LC Science Tracer Bullet. TB 07-6

    Science.gov (United States)

    Howland, Joyce, Comp.

    2007-01-01

    Selected sources in this bibliography provide guidance to students, parents, and teachers throughout the process of planning, developing, implementing and competing in science fair activities. Sources range in suitability from elementary to high school levels. This guide updates "Library of Congress Science Tracer Bullet" 01-4. More specialized…

  1. Researching the Real: Transforming the Science Fair through Relevant and Authentic Research

    Science.gov (United States)

    Davidson, Rosemary McBryan

    This teacher research study documents the processes used to help students in an all-female, religious-based high school create science fair projects that are personally meaningful, scientifically sophisticated and up-to date in terms of science content. One-hundred sixteen young women in an honors chemistry class were introduced by their teacher to the methods used by science journalists when researching and crafting articles. The students then integrated these strategies into their science fair research through collaborative classroom activities designed by their teacher. Data collected during the process included audio and video tapes of classroom activities, student interviews, process work, finished projects, email conversations and the reflective journaling, annotated lesson plans, and memories of the lived experience by the teacher. The pedagogical changes which resulted from this project included the use of Read Aloud-Think Alouds (RATA) to introduce content and provide relevance, a discussion based topic selection process, the encouragement of relevant topic choices, the increased use of technology for learning activities and for sharing research, and an experimental design process driven by the student's personally relevant, topic choice. Built in feedback loops, provided by the teacher, peer editors and an outside editor, resulted in multiple revisions and expanded opportunities for communicating results to the community-at-large. Greater student engagement in science fair projects was evident: questioning for understanding, active involvement in decision making, collaboration within the classroom community, experience and expertise with reading, writing and the use of technology, sense of agency and interest in science related activities and careers all increased. Students communicated their evolving practices within the school community and became leaders who promoted the increased use of technology in all of their classes. Integrating journalistic

  2. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  3. SciTil Detector for the PANDA experiment at FAIR

    Science.gov (United States)

    Suzuki, Ken; Gruber, Lukas; Brunner, Stefan; Marton, Johann; Orth, Herbert; Schwarz, Carsten; Scitil/Panda Collaboration

    2014-09-01

    The PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) is a fixed-target experiment installed in a antiproton storage ring (HESR) in the energy range of 1 GeV to 15 GeV. FAIR is being build on the area of the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The universal PANDA detector together with the HESR enables to study fundamental questions of hadron and nuclear physics, e.g. gluonic excitations, the physics of strange and charm quarks and nucleon structure. The SciTil detector is a barrel time-of-flight detector and is a relatively new subcomponent to the system. The demand arose in order to provide a securer event tagging at the event rates of 20-100 MHz instantaneous event rate, to improve a particle identification capability of relatively low momentum particles, and to allow a faster track finding with pattern recognition. The beam test of the SciTil prototype detector in January 2014 showed a promising result. We report the status and outlook of the project.

  4. Making science education meaningful for American Indian students: The effect of science fair participation

    Science.gov (United States)

    Welsh, Cynthia Ann

    Creating opportunities for all learners has not been common practice in the United States, especially when the history of Native American educational practice is examined (Bull, 2006; Chenoweth, 1999; Starnes, 2006a). The American Indian Science and Engineering Society (AISES) is an organization working to increase educational opportunity for American Indian students in science, engineering, and technology related fields (AISES, 2005). AISES provides pre-college support in science by promoting student science fair participation. The purpose of this qualitative research is to describe how American Indian student participation in science fairs and the relationship formed with their teacher affects academic achievement and the likelihood of continued education beyond high school. Two former American Indian students mentored by the principal investigator participated in this study. Four ethnographic research methods were incorporated: participant observation, ethnographic interviewing, search for artifacts, and auto-ethnographic researcher introspection (Eisenhart, 1988). After the interview transcripts, photos documenting past science fair participation, and researcher field notes were analyzed, patterns and themes emerged from the interviews that were supported in literature. American Indian academic success and life long learning are impacted by: (a) the effects of racism and oppression result in creating incredible obstacles to successful learning, (b) positive identity formation and the importance of family and community are essential in student learning, (c) the use of best practice in science education, including the use of curricular cultural integration for American Indian learners, supports student success, (d) the motivational need for student-directed educational opportunities (science fair/inquiry based research) is evident, (e) supportive teacher-student relationships in high school positively influences successful transitions into higher education. An

  5. A Bargaining Experiment To Motivate a Discussion on Fairness.

    Science.gov (United States)

    Dickinson, David L.

    2002-01-01

    Employs a classroom version of the research game, the Ultimatum Game, to teach undergraduate students how fairness affects behavior. Focuses on three concepts related to fairness. Finds that classroom results motivate discussion about a downward sloping demand curve for fairness. Provides an appendix that includes instructional materials. (JEH)

  6. Selected event reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Semen; Höhne, Claudia; Lebedev, Andrey; Ososkov, Gennady

    2014-01-01

    Development of fast and efficient event reconstruction algorithms is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR facility. The event reconstruction algorithms have to process terabytes of input data produced in particle collisions. In this contribution, several event reconstruction algorithms are presented. Optimization of the algorithms in the following CBM detectors are discussed: Ring Imaging Cherenkov (RICH) detector, Transition Radiation Detectors (TRD) and Muon Chamber (MUCH). The ring reconstruction algorithm in the RICH is discussed. In TRD and MUCH track reconstruction algorithms are based on track following and Kalman Filter methods. All algorithms were significantly optimized to achieve maximum speed up and minimum memory consumption. Obtained results showed that a significant speed up factor for all algorithms was achieved and the reconstruction efficiency stays at high level.

  7. Electron identification capabilities of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, Claudia; Kisel, Ivan [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Lebedev, Semen [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna (Russian Federation); Ososkov, Gennady [Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2010-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a RICH and TRD detectors. In this contribution, methods which have been developed for the electron identification in CBM are presented. A fast and efficient RICH ring recognition algorithm based on the Hough Transform has been implemented. An ellipse fitting algorithm has been elaborated because most of the CBM RICH rings have elliptic shapes. An Artificial Neural Network can be used in order to suppress fake rings. The electron identification in RICH is substantially improved by the use of TRD detectors for which several different algorithms for electron identification are implemented. Results of electron identification and pion suppression are presented.

  8. Technical realization of the ELISe experiment at FAIR

    International Nuclear Information System (INIS)

    Simon, H.

    2009-01-01

    The ELISe experiment addresses the physics, scattering electrons off radioactive ions in colliding kinematics for the first time. It is an integral part of the FAIR facility as specified in the Baseline Technical Report. The physics addressed covers elastic and inelastic scattering experiments for the study of charge distributions, the electromagnetic response and the single particle structure via quasielastic scattering. Details on the programme can be found in our recent publication. The colliding beam kinematics allows for a complete reconstruction of the excitation and deexcitation process, measured via the electron and decay products with a close to 4π solid angle coverage. This complements and enhances the opportunities of the only other expected electron scattering experiment world-wide called SCRIT that aims for elastic scattering studies, and is especially suited for ISOL type facilities. The high centre-of-mass energy for the colliding beams, the fully identified target like ion beam, and the high reachable luminosities up to a few times 10 29 cm -2 s -1 will allow to extend the projected studies exploring also the inelastic channels. In this paper, the technical design of ELISe is presented. (author)

  9. Hypernuclear physics studies of the PANDA experiment at FAIR

    Science.gov (United States)

    Sanchez Lorente, Alicia

    2014-09-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments

  10. The silicon tracking system of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Singla, Minni [GSI Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Compressed Baryonic Matter (CBM) experiment, one of the major scientific pillars at FAIR, will explore the phase diagram of strongly interacting matter at the highest net-baryon densities in nucleus-nucleus collisions with interaction rates up to 10 MHz. The Silicon Tracking System is the central detector system of the CBM experiment. Its task is to perform track reconstruction and momentum determination for all charged particles created in beam-target collisions at SIS 100 and SIS 300 beam energies. The technical challenges to meet are a high granularity matching the high track densities, a fast self-triggering read-out coping with high interaction rates, and a low mass to yield high momentum resolution of Δp/p=1%. The detector system acceptance covers polar angles between 2.5 and 25 degrees and will be operated in the 1 T field of a superconducting dipole magnet. We introduce the concept of the STS, being comprised of eight tracking stations employing ∝1300 double-sided silicon microstrip sensors on modular structures that keep the read-out electronics outside the physics aperture. Ultra-thin-multiline micro-cables will be used to bridge the distance between the microstrip sensors and the readout electronics. Infrastructure such as power lines and cooling plates will be placed at the periphery of the stations. The status of the STS development is summarized in the presentation, including an overview on sensors, read-out electronics, prototypes, and system integration.

  11. The transition radiation detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano [Institut fuer Kernphysik, WWU Muenster (Germany)

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment is a fixed target heavy-ion experiment at the future FAIR accelerator facility. The CBM Transition Radiation Detector (TRD) is one of the key detectors to provide electron identification above momenta of 1 GeV/c and charged particle tracking. Due its capability to identify charged particles via their specific energy loss, the TRD in addition will provide valuable information for the measurement of fragments. These requirements can be fulfilled with a XeCO{sub 2} based Multi-Wire Proportional Counter (MWPC) detector in combination with an adequate radiator. The default MWPC is composed of a symmetric amplification area of 7 mm thickness, followed by a 5 mm drift region to enhance the TR-photon absorption probability in the active gas volume. This geometry provides also efficient and fast signal creation, as well as read-out, of the order of 200 μs per charged particle track. The performance of this detector is maximized by reducing the material budget between the radiator and gas volume to a minimum. The full detector at SIS100 will be composed of 200 modules in 2 sizes. To limit cost and production time the number of various module types is limited to 6 types and 4 types of Front End Board (FEB) flavors are required. An overview of the design and performance of the TRD detector is given.

  12. Willingness to pay for fair trade products: Results from a discrete choice experiment

    DEFF Research Database (Denmark)

    Peyer, Mathias; Balderjahn, Ingo; Scholderer, Joachim

    under the assumption that a fair trade label was included on the product package. It is concluded that fair trade certification may result yield real competitive advantage for producers of consumer goods, and that the generality of the observed effects should be investigated in other product categories...... awareness of fair trade labels and prior experience with fair trade products as individual-differences variables. Results indicated that consumer willingness to pay for fair trade labels was significant and positive under virtually all experimental conditions, and increased further when the fair trade label...... was combined with a strong manufacturer brand, when participants had prior experience with fair-trade products, and when participants had high prior awareness of fair trade labels. Based on the parameter estimates, price response functions were fitted, and changes in market shares were predicted for each brand...

  13. Development of DIRC counters for the PANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Seitz, B.; Bettoni, D.; Branford, D.; Britting, A.; Carassiti, V.; Cecchi, A.; Cowie, E.; Dodokhof, V.Kh.; Dueren, M.; Eyrich, W.; Foehl, K.; Hayrapetyan, A.; Hill, G.; Hoek, M.; Hohler, R.; Kaiser, R.; Keri, T.; Lehmann, A.; Lehmann, D.; Marton, J.

    2011-01-01

    The PANDA experiment at the planned FAIR facility at GSI, Darmstadt, aims at measuring hadronic final states with unprecedented precision and luminosity. Superior particle identification of charged and neutral particles is mandatory to fulfil PANDA's physics aims. DIRC (Detection of Internally Reflected Cherenkov light) counters are foreseen for charged particle identification. A barrel DIRC will cover the central region while a disc DIRC will provide particle identification in the forward region. Three DIRC concepts differing in the radiator geometry and method for dispersion correction are studied. The barrel DIRC uses a novel imaging system and aims at exploiting a 3D reconstruction to mitigate dispersion effects. Two concepts are investigated for the forward disc DIRC. One concept employs passive dispersion correction and focussing light guides for image reconstruction. Alternatively, time-of-propagation measurements and a wave-length dependent photon detection system are investigated. The three detector designs share common developments such as investigating radiator properties and photon detection systems, and use the same test beam facilities.

  14. Track reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Andrey; Hoehne, Claudia; Kisel, Ivan; Ososkov, Gennady

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator complex at Darmstadt is being designed for a comprehensive measurement of hadron and lepton production in heavy-ion collisions from 8-45 AGeV beam energy, producing events with large track multiplicity and high hit density. The setup consists of several detectors including as tracking detectors the silicon tracking system (STS), the muon detector (MUCH) or alternatively a set of Transition Radiation Detectors (TRD). In this contribution, the status of the track reconstruction software including track finding, fitting and propagation is presented for the MUCH and TRD detectors. The track propagation algorithm takes into account an inhomogeneous magnetic field and includes accurate calculation of multiple scattering and energy losses in the detector material. Track parameters and covariance matrices are estimated using the Kalman filter method and a Kalman filter modification by assigning weights to hits and using simulated annealing. Three different track finder algorithms based on track following have been developed which either allow for track branches, just select nearest hits or use the mentioned weighting method. The track reconstruction efficiency for central Au+Au collisions at 25 AGeV beam energy using events from the UrQMD model is at the level of 93-95% for both detectors.

  15. The Silicon Tracking System of the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Teklishyn Maksym

    2018-01-01

    Full Text Available The Silicon Tracking System (STS is the central detector in the Compressed Baryonic Matter (CBM experiment at FAIR. Operating in the 1Tm dipole magnetic field, the STS will enable pile-up free detection and momentum measurement of the charged particles originating from beam-target nuclear interactions at rates up to 10 MHz. The STS consists of 8 tracking stations based on double-sided silicon micro-strip sensors equipped with fast, self-triggering read-out electronics. With about two million read-out channels, the STS will deliver a high-rate stream of time-stamped data that is transferred to a computing farm for on-line event determination and analysis. The functional building block is a detector module consisting of a sensor, micro-cables and two front-end electronics boards. In this contribution, the development status of the STS components and the system integration is discussed and an outlook on the detector construction is given.

  16. An Experiment in Fair Value Accounting: UK Investment Vehicles

    OpenAIRE

    Rees, W.; Danbolt, Jo

    2008-01-01

    We use the British real estate and investment fund industries as experimentalsettings where historic cost (HC) and fair value accounting (FVA) can be compared. Both industries have the majority of their assets marked to market and hence the difference between the two accounting systems is profound. However, as the valuation of real estate is arguably more subjective than that of investment funds, we are able to contrast fair value accounting in a near ideal setting with one where it remains i...

  17. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  18. Science Fairs and Observational Science: A Case History from Earth Orbit

    Science.gov (United States)

    Lowman, Paul D., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    Having judged dozens of science fairs over the years, I am repeatedly disturbed by the ground rules under which students must prepare their entries. They are almost invariably required to follow the "scientific method," involving formulating a hypothesis, a test of the hypothesis, and then a project in which this test is carried out. As a research scientist for over 40 years, I consider this approach to science fairs fundamentally unsound. It is not only too restrictive, but actually avoids the most important (and difficult) part of scientific research: recognizing a scientific problem in the first place. A well-known example is one of the problems that, by his own account, stimulated Einstein's theory of special relativity: the obvious fact that when an electric current is induced in a conductor by a magnetic field , it makes no difference whether the field or the conductor is actually (so to speak) moving. There is in other words no such thing as absolute motion. Physics was transformed by Einstein's recognition of a problem. Most competent scientists can solve problems after they have been recognized and a hypothesis properly formulated, but the ability to find problems in the first Place is much rarer. Getting down to specifics, the "scientific method" under which almost all students must operate is actually the experimental method, involving controlled variables, one of which, ideally, is changed at a time. However, there is another type of science that can be called observational science. As it happens, almost all the space research I have carried out since 1959 has been this type, not experimental science.

  19. Feasibility Studies for the PANDA Experiment at FAIR

    NARCIS (Netherlands)

    Biegun, A.

    PANDA, the detector to study AntiProton ANnihilations at DArmstadt, will be installed at the future international Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The PANDA physics program is oriented towards the studies of the strong interaction and hadron structure performed

  20. An experiment in fair value accounting: UK investment vehicles

    NARCIS (Netherlands)

    Danbolt, J.; Rees, W.

    2008-01-01

    We use the British real estate and investment fund industries as experimental settings where historic cost (HC) and fair value accounting (FVA) can be compared. Both industries have the majority of their assets marked to market and hence the difference between the two accounting systems is profound.

  1. FEASIBILITY STUDIES FOR THE PANDA EXPERIMENT AT FAIR

    NARCIS (Netherlands)

    Biegun, A.

    PANDA, the detector to study AntiProton ANnihilations at DArmstadt, will be installed at the future international Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The PANDA physics program is oriented towards the studies of the strong interaction and hadron structure performed

  2. Sources of Anxiety and the Meaning of Participation in/for Science Fairs: A Canadian Case

    Science.gov (United States)

    Reis, Giuliano; Dionne, Liliane; Trudel, Louis

    2015-01-01

    Although anxiety is a significant emotional element of formal school science, little is known about how anxiety is originated and managed in the context of science fairs. The purpose of the present study was to investigate how a group of students in Grades 7 to 12 discursively (re)produce anxiety and its management from the perspective of their…

  3. The Silicon Tracking System of the CBM Experiment at FAIR

    Science.gov (United States)

    Heuser, Johann M.

    The Compressed Baryonic Matter (CBM) experiment at FAIR will conduct a systematic research program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. These conditions are to be created in collisions of heavy-ion beams with nuclear targets in the projectile beam energy range of 2 to 45 GeV/nucleon, initially coming from the SIS 100 synchrotron (up to 14 GeV/nucleon) and in a next step from SIS 300 enabling studies at the highest net baryon densities. Collision rates up to 107 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel data acquisition and trigger concept which is not limited by latency but by throughput. In the paper we describe the concept and development status of CBM's central detector, the Silicon Tracking System (STS). The detector realizes a large, highly granular and redundant detector system with fast read-out, and lays specific emphasis on low material budget in its physics aperture to achieve for charged particle tracks a momentum resolution of δp/p ≈ 1% at p > 1 GeV/c, at >95% track reconstruction efficiency. The detector employs 1220 highly segmented double-sided silicon micro-strip sensors of 300 µm thickness, mounted into 896 modular structures of various types that are aggregated on 106 low-mass carbon fiber ladders of different sizes that build up the tracking stations. The read-out electronics with its supply and cooling infrastructure is arranged at the periphery of the ladders, and provides a total channel count of 1.8 million. The signal transmission from the silicon sensors to the electronics is realized through ultra-thin multi-line aluminum-polyimide cables of up to half a meter length. The electronics generates a free

  4. The silicon tracking system of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will conduct a systematic research program to explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. These conditions are to be created in collisions of heavy-ion beams with nuclear targets in the projectile beam energy range of 2 to 45 GeV/nucleon, initially coming from the SIS 100 synchrotron (up to 14 GeV/nucleon) and in a next step from SIS 300 enabling studies at the highest net baryon densities. Collision rates up to 10"7 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel data acquisition and trigger concept which is not limited by latency but by throughput. In the paper we describe the concept and development status of CBM's central detector, the Silicon Tracking System (STS). The detector realizes a large, highly granular and redundant detector system with fast read-out, and lays specific emphasis on low material budget in its physics aperture to achieve for charged particle tracks a momentum resolution of δp/p≈1% at p > 1 GeV/c, at >95% track reconstruction efficiency. The detector employs 1220 highly segmented double-sided silicon micro-strip sensors of 300 μm thickness, mounted into 896 modular structures of various types that are aggregated on 106 low-mass carbon fiber ladders of different sizes that build up the tracking stations. The read-out electronics with its supply and cooling infrastructure is arranged at the periphery of the ladders, and provides a total channel count of 1.8 million. The signal transmission from the silicon sensors to the electronics is realized through ultra-thin multi-line aluminum-polyimide cables of up to half a meter length. The electronics generates a free

  5. Science Fair Report: Flight of the Split-Fingered Fastball.

    Science.gov (United States)

    Mitchell, Richard J.

    1991-01-01

    Reports on the results of an eighth grade student's experiments, conducted with a moving car, concerning the aerodynamics of a baseball in flight. Describes the peculiar diving ability of the split-fingered fastball, as well as the dancing and weaving effect of the knuckleball. (JJK)

  6. Study of the characteristics of gas electron multipliers for the FAIR experiment CBM

    International Nuclear Information System (INIS)

    Biswas, S.; Abuhoza, A.; Frankenfeld, U.; Hehner, J.; Schmidt, C.J.; Traeger, M.; Schmidt, H.R.; Colafranceschi, S.; Marinov, A.; Sharma, A.

    2011-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany will use proton and heavy ion beams to study matter at extreme conditions. The CBM experiment at FAIR is designed to explore the QCD phase diagram in the region of high baryon densities. With CBM we will enter a new era of nuclear matter research by measuring rare diagnostic probes never observed before at FAIR energies, and thus CBM has a unique discovery potential. This will only be possible with the application of advanced instrumentation, including highly segmented and fast gaseous detectors

  7. Fair Play: A Study of Scientific Workforce Trainers’ Experience Playing an Educational Video Game about Racial Bias

    Science.gov (United States)

    Kaatz, Anna; Carnes, Molly; Gutierrez, Belinda; Savoy, Julia; Samuel, Clem; Filut, Amarette; Pribbenow, Christine Maidl

    2017-01-01

    Explicit racial bias has decreased in the United States, but racial stereotypes still exist and conspire in multiple ways to perpetuate the underparticipation of Blacks in science careers. Capitalizing on the potential effectiveness of role-playing video games to promote the type of active learning required to increase awareness of and reduce subtle racial bias, we developed the video game Fair Play, in which players take on the role of Jamal, a Black male graduate student in science, who experiences discrimination in his PhD program. We describe a mixed-methods evaluation of the experience of scientific workforce trainers who played Fair Play at the National Institutes of Health Division of Training Workforce Development and Diversity program directors’ meeting in 2013 (n = 47; 76% female, n = 34; 53% nonwhite, n = 26). The evaluation findings suggest that Fair Play can promote perspective taking and increase bias literacy, which are steps toward reducing racial bias and affording Blacks equal opportunities to excel in science. PMID:28450447

  8. Teacher participation in science fairs as professional development in South Africa

    Directory of Open Access Journals (Sweden)

    Clement K. Mbowane

    2017-07-01

    Full Text Available This research was undertaken to understand the perceptions of the Physical Sciences teachers who participate in the South African ‘Eskom Expo for Young Scientists’, regarding the educational significance of the science fair, and the extent to which expo participation provides an opportunity for professional development. The educational significance of this article is found in its contribution to the professional identity of teachers in their roles as organisers, mentors and judges. The model of Beijaard et al. (Teach Teach Educ. 2004;20:107–128 was used to characterise the teachers’ professional identity in terms of professional knowledge, attitudes, beliefs, norms and values, as well as emotions and agency. Interviews with the Physical Sciences teachers were analysed using thematic analysis, ultimately interpreting and linking the categories of responses to the theme of professional identity. The study found that expo participation contributes to pedagogical knowledge, content knowledge (as both procedural and declarative or factual knowledge and pedagogical content knowledge. Self-efficacy beliefs were strengthened, positive attitudes were developed, and strategies of inquiry-based learning and effective methodological instruction were observed during participation, which contributed to the participants’ school-based teaching. Teachers learn both from their engagement with learners, and through networking opportunities with fellow teachers. Teachers themselves value these aspects, and consequently, science fair participation is a sustainable form of professional development. It is recommended that the opportunity for professional development that is provided by teachers’ participation in such school-level science fairs should be acknowledged and promoted by schools and fair organisers. Significance: Science expos offer professional development to participating teachers and improve learners’ academic performance.

  9. International Rules for Pre-College Science Research: Guidelines for Science and Engineering Fairs, 2010-2011

    Science.gov (United States)

    Society for Science & the Public, 2011

    2011-01-01

    This paper presents the rules and guidelines of the Intel International Science and Engineering Fair 2011 to be held in Los Angeles, California in May 8-13, 2011. In addition to providing the rules of competition, these rules and guidelines for conducting research were developed to facilitate the following: (1) protect the rights and welfare of…

  10. Online Event Reconstruction in the CBM Experiment at FAIR

    Science.gov (United States)

    Akishina, Valentina; Kisel, Ivan

    2018-02-01

    Targeting for rare observables, the CBM experiment will operate at high interaction rates of up to 10 MHz, which is unprecedented in heavy-ion experiments so far. It requires a novel free-streaming readout system and a new concept of data processing. The huge data rates of the CBM experiment will be reduced online to the recordable rate before saving the data to the mass storage. Full collision reconstruction and selection will be performed online in a dedicated processor farm. In order to make an efficient event selection online a clean sample of particles has to be provided by the reconstruction package called First Level Event Selection (FLES). The FLES reconstruction and selection package consists of several modules: track finding, track fitting, event building, short-lived particles finding, and event selection. Since detector measurements contain also time information, the event building is done at all stages of the reconstruction process. The input data are distributed within the FLES farm in a form of time-slices. A time-slice is reconstructed in parallel between processor cores. After all tracks of the whole time-slice are found and fitted, they are collected into clusters of tracks originated from common primary vertices, which then are fitted, thus identifying the interaction points. Secondary tracks are associated with primary vertices according to their estimated production time. After that short-lived particles are found and the full event building process is finished. The last stage of the FLES package is a selection of events according to the requested trigger signatures. The event reconstruction procedure and the results of its application to simulated collisions in the CBM detector setup are presented and discussed in detail.

  11. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  12. The EXL experiment at FAIR and plans with the ESR at GSI

    NARCIS (Netherlands)

    Kalantar-Nayestanaki, N.; Demetriou, P; Julin, R; Harissopulos, SV

    2011-01-01

    In this contribution, the physics program of the EXL experiment at FAIR-NuSTAR along with its experimental setup will be briefly outlined. This experiment aims to study the structure and the dynamics of radioactive nuclei which collide with light ions in inverse kinematics. On the way to the final

  13. Experiences of the fairness of recruitment from unsuccessful applicants in the field of nursing.

    Science.gov (United States)

    Kanerva, Anne; Lammintakanen, Johanna; Kivinen, Tuula

    2010-04-01

    The purpose of this study was to describe the experiences of unsuccessful applicants for permanent nursing positions with regard to the fairness of the recruitment process. The international shortage of recruits in nursing and the rapidly increasing number of nurses retiring implies new challenges for recruitment. The nurses' experiences of fairness affect the availability of nurses and the attractiveness of the organization. The recruitment process is approached through traditional organizational justice theories. The material was gathered from thematic interviews with 12 nurses who had applied for a permanent nursing position but were not selected. The material was analysed using theory-driven content analysis. The nurses felt differently about the result of the recruitment process. The experience of distributive justice alone was not significant in terms of the general sense of justice, since other dimensions of justice compensated for it. The effect of applicants' experiences of fair treatment in the recruitment process affected their future behaviour positively, negatively or not at all. and implications for nursing management It is crucial to recognize applicants' experiences of the fairness of the recruitment process, because unsuccessful applicants constitute a pool of potential new employees. Furthermore, applicants with different experiences cannot be seen as a homogenous group. For example, internal applicants with negative experiences pose challenges for nursing management with regard to retaining them in the organization.

  14. How the “Queen Science” Lost Her Crown: A Brief Social History of Science Fairs and the Marginalization of Social Science

    Directory of Open Access Journals (Sweden)

    Jonathan Marx

    2004-10-01

    Full Text Available Science fairs at one time started out with an interest of increasing participation in the sciences. But as time has passed, the definition of science has been narrowed to the point where any possible social science project has been eliminated in favor of the bench sciences only. Even here, natural curiosity of students has been deemphasized. It is not surprising that science majors in the USA are becoming fewer and fewer given the narrowing of the disciplines. Young people are discouraged from majoring in science by the science establishment.

  15. Metaphoric Perceptions of the Students of the Sports Sciences Faculty Regarding the Concept of Fair-Play

    Science.gov (United States)

    Çaglayan, Hakan Salim; Gül, Özgür

    2017-01-01

    The objective of this study is to reveal the perceptions of the students of the sports sciences faculty regarding the concept of "Fair-Play" by means of metaphors. 275 students [male[subscript (n = 173)], female [subscript (n = 102)

  16. Computing activities for the P-bar ANDA experiment at FAIR

    International Nuclear Information System (INIS)

    Messchendorp, Johan

    2010-01-01

    The P-bar ANDA experiment at the future facility FAIR will provide valuable data for our present understanding of the strong interaction. In preparation for the experiments, large-scale simulations for design and feasibility studies are performed exploiting a new software framework, P-bar ANDAROOT, which is based on FairROOT and the Virtual Monte Carlo interface, and which runs on a large-scale computing GRID environment exploiting the AliEn 2 middleware. In this paper, an overview is given of the P-bar ANDA experiment with the emphasis on the various developments which are pursuit to provide a user and developer friendly computing environment for the P-bar ANDA collaboration.

  17. The EXL experiment at FAIR and plans with the ESR at GSI

    International Nuclear Information System (INIS)

    Kalantar-Nayestanaki, N.

    2011-01-01

    In this contribution, the physics program of the EXL experiment at FAIR-NuSTAR along with its experimental setup will be briefly outlined. This experiment aims to study the structure and the dynamics of radioactive nuclei which collide with light ions in inverse kinematics. On the way to the final measurements, several measurements have been proposed at the existing ESR at GSI with the purpose of understanding the detection systems for EXL and obtaining the first physics results in this type of experiments in a storage ring.

  18. Examining of the Predictors of Pre-Service Teachers' Perceptions of the Quality of the Science Fair Projects in Turkey

    Science.gov (United States)

    Tortop, Hasan Said

    2014-01-01

    This study aimed at examining the predictors of quality of science fair (SF) projects in the light of pre-service teachers' evaluation of SF rubric' domains. These projects were selected by judges in A city for the A Regional Exhibition of Science and Mathematics Project Study for Primary School Students: The SF projects were evaluated by thirty…

  19. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  20. A theory overview on the Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Nahrgang, Marlene

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR offers for the first time in heavy-ion physics the opportunity to investigate extremely baryon-dense strongly interacting matter with large data samples as a basis for high precision measurements. This will allow us to put theories at test, answer questions about the structure of the phase diagram of QCD and the transport properties of the medium. In this overview I will highlight some recent advances on several key questions, which will be addressed by the CBM experiment.

  1. Merging science, engineering, and data with FUN: Recreational Drones in STEaM Education Activities and Science Fair Projects

    Science.gov (United States)

    Olds, S. E.; Mooney, M. E.; Dahlman, L. E.

    2016-12-01

    Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using recreational drones to pursue STEM investigations!

  2. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  3. Science Experience Unit: Conservation.

    Science.gov (United States)

    Ferguson-Florissant School District, Ferguson, MO.

    GRADES OR AGES: Intermediate grades. SUBJECT MATTER: Conservation. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into 24 experiments. It is mimeographed and staple-bound with a paper cover. OBJECTIVES AND ACTIVITIES: A specific skill or knowledge objective is stated at the beginning of each experiment. Detailed procedures are listed…

  4. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  5. Science Diplomacy: French Experience

    Directory of Open Access Journals (Sweden)

    Alexei V. Shestopal

    2016-01-01

    Full Text Available The article deals with the formulation in France in the early twenty-first century of a new kind of diplomacy - science diplomacy. It studies the reasons for this process and its problems. On the one hand, the French foreign policy doctrine presupposes an ability to exercise certain influence on its international partners. However, its goals in this area are reduced to mere survival under conditions dictated by other countries. Modern trends in the world of science, which lead to integration, force to reconsider the attitude towards staff training, to research itself, and to its place and role in politics and diplomacy. However, an achievement of the French political class is an understanding of the main aspects of what is happening. This understanding leads to the search for ways to adapt to the new situation. At the same time, diplomats can operate only with those resources that are available to them. Competition with the US, China and other countries for scientific personnel and achievements cannot be won by diplomatic means alone, without backing by appropriate legal, economic and other efforts which provide favorable conditions for winning the competition. The main causes of France's unfavorable position in the struggle for an independent science are economic and political. It is they that lead to conditions, which prohibit French scientists to live up to their potential at home.

  6. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  7. Online / Offline reconstruction of trigger-less readout in the R3B experiment at FAIR

    International Nuclear Information System (INIS)

    Kresan, Dmytro; Al-Turany, Mohammad; Uhlig, Florian

    2015-01-01

    The R3B (Reactions with Rare Radioactive Beams) experiment is one of the planned experiments at the future FAIR facility at GSI Darmstadt. R3B will cover experimental reaction studies with exotic nuclei far off stability, thus enabling a broad physics program with rare-isotope beams with emphasis on nuclear structure and dynamics. Several different detection subsystems as well as sophisticated DAQ system and data-analysis software are being developed for this purpose. The data analysis software for R3B is based on FairRoot framework and called R3BRoot. R3BRoot is being used for simulation and detector design studies for the last few years. Recently, it was successfully used directly with the data acquisition and for the analysis of the R3B test beam-time in April 2014. For the future beam times the framework has to deal with the free streaming readout of the detectors. The implementation within R3BRoot to fulfil this trigger-less run mode will be discussed in this paper, as well as the set of tools developed for the online reconstruction and quality assurance of the data during the run. (paper)

  8. Online Tracking Algorithms on GPUs for the P̅ANDA Experiment at FAIR

    Science.gov (United States)

    Bianchi, L.; Herten, A.; Ritman, J.; Stockmanns, T.; Adinetz, A.; Kraus, J.; Pleiter, D.

    2015-12-01

    P̅ANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented.

  9. Online Tracking Algorithms on GPUs for the P-barANDA Experiment at FAIR

    International Nuclear Information System (INIS)

    Bianchi, L; Herten, A; Ritman, J; Stockmanns, T; Adinetz, A.; Pleiter, D; Kraus, J

    2015-01-01

    P-barANDA is a future hadron and nuclear physics experiment at the FAIR facility in construction in Darmstadt, Germany. In contrast to the majority of current experiments, PANDA's strategy for data acquisition is based on event reconstruction from free-streaming data, performed in real time entirely by software algorithms using global detector information. This paper reports the status of the development of algorithms for the reconstruction of charged particle tracks, optimized online data processing applications, using General-Purpose Graphic Processing Units (GPU). Two algorithms for trackfinding, the Triplet Finder and the Circle Hough, are described, and details of their GPU implementations are highlighted. Average track reconstruction times of less than 100 ns are obtained running the Triplet Finder on state-of- the-art GPU cards. In addition, a proof-of-concept system for the dispatch of data to tracking algorithms using Message Queues is presented. (paper)

  10. Measurement of rare probes with the silicon tracking system of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann; Friese, Volker

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the phase diagram of strongly interacting matter at highest net baryon densities and moderate temperatures. The CBM physics program will be started with beams delivered by the SIS 100 synchrotron, providing energies from 2 to 14 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 29 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS 300 in the next stage of FAIR. Collision rates up to 10 7 per second are required to produce very rare probes with unprecedented statistics in this energy range. Their signatures are complex. These conditions call for detector systems designed to meet the extreme requirements in terms of rate capability, momentum and spatial resolution, and a novel DAQ and trigger concept which is not limited by latency but by throughput. In this paper we outline the concepts of CBM's central detector, the Silicon Tracking System, and of the First-Level Event Selector, a dedicated computing farm to reduce on-line the raw data volume by up to three orders of magnitude to a recordable rate. Progress with the development of detector and software algorithms are discussed and examples of performance studies on the reconstruction of rare probes at SIS 100 and SIS 300 energies given

  11. Quench calculations for the superconducting dipole magnet of CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Kurilkin, P.; Akishin, P.; Bychkov, A.; Gusakov, Yu.; Ladygin, V.; Malakhov, A.; Shabunov, A.; Toral, F.; Floch, E.; Moritz, G.; Ramakers, H.; Senger, P.; Szwangruber, P.

    2016-01-01

    The scientific mission of the Compressed Baryonic Matter (CBM) experiment is the study of the nuclear matter properties at the high baryon densities in heavy ion collisions at the Facility of Antiproton and Ion Research (FAIR) in Darmstadt. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. It will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. This paper presents quench modeling and evaluation of candidate protection schemes for the CBM dipole magnet. Two quench programs based on finite-difference method were used in simulation. One of them is currently used at GSI, and the other based on CIEMAT (Madrid, Spain) was modified to perform quench calculation for the CBM magnet. (paper)

  12. Development of a silicon tracking and vertex detection system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2007-01-01

    The compressed baryonic matter (CBM) experiment is a fixed-target heavy-ion spectrometer planned at the future international Facility for Antiproton and Ion Research (FAIR) at GSI. The CBM research program will explore the phase diagram of Quantum Chromo Dynamics (QCD) in the region of high baryon chemical potentials, in other words nuclear matter at extreme densities. Matter of such forms is believed to exist in the interior of neutron stars and in the cores of certain types of supernovae. In the laboratory, the dense nuclear medium is created in collisions of heavy-ion beams with nuclear targets. With beam intensities of up to 10 12 ions per pulse, beam energies up to 45 GeV/nucleon, and high availability the SIS-300 synchrotron of FAIR will offer unique opportunities for this research. The CBM detector will identify hadrons and leptons in nuclear collisions with up to 1000 charged particles at event rates up to 10 MHz. The experiment will be optimized in particular for the detection of rare probes, like hadronic decays of D mesons and leptonic decays of light vector mesons, that can yield information on the initial dense phase of the collisions. The challenge is to accomplish in this environment high-resolution charged particle tracking, momentum measurement and secondary vertex selection with a silicon tracking and vertex detection system, the central component of the CBM detector. The system requirements include a very low material budget, radiation tolerant sensors with high spatial resolution, and a fast readout compatible with high-level-only triggers. The paper discusses the concept of the silicon detection system, the optimization of its layout, and the R and D on micro-strip and pixel sensors as well as front-end electronics for the building blocks of the detector stations

  13. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  14. 1, 2, 3 ... FAIR !

    International Nuclear Information System (INIS)

    Sturm, C.; Sharkov, B.; Stoecker, H.

    2010-01-01

    The Facility for Antiproton and Ion Research FAIR at Darmstadt/Germany will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented forefront research in hadron, nuclear, atomic and plasma physics and applied sciences. The start version of FAIR, the so called Modularized Start Version includes a basic accelerator as well as three experimental modules - 1, 2, 3 FAIR!

  15. A First-level Event Selector for the CBM Experiment at FAIR

    International Nuclear Information System (INIS)

    Cuveland, J de; Lindenstruth, V

    2011-01-01

    The CBM experiment at the upcoming FAIR accelerator aims to create highest baryon densities in nucleus-nucleus collisions and to explore the properties of super-dense nuclear matter. Event rates of 10 MHz are needed for high-statistics measurements of rare probes, while event selection requires complex global triggers like secondary vertex search. To meet these demands, the CBM experiment uses self-triggered detector front-ends and a data push readout architecture. The First-level Event Selector (FLES) is the central physics selection system in CBM. It receives all hits and performs online event selection on the 1 TByte/s input data stream. The event selection process requires high-throughput event building and full event reconstruction using fast, vectorized track reconstruction algorithms. The current FLES architecture foresees a scalable high-performance computer. To achieve the high throughput and computation efficiency, all available computing devices will have to be used, in particular FPGAs at the first stages of the system and heterogeneous many-core architectures such as CPUs for efficient track reconstruction. A high-throughput network infrastructure and flow control in the system are other key aspects. In this paper, we present the foreseen architecture of the First-level Event Selector.

  16. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  17. GSI Helmholz Centre for Heavy Ion Research - ALFA: Next generation concurrent framework for ALICE and FAIR experiments

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    FAIR is a new, unique international accelerator facility for the research with antiprotons and ions. It is being built at the GSI Darmstadt in Hesse, Germany. The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of a common software framework in an experiment independent way; ALFA (ALICE-FAIR framework). ALFA is designed for high quality parallel data processing and reconstruction on heterogeneous computing systems. It provides a data transport layer and the capability to coordinate multiple data processing components. ALFA is a flexible, elastic system which balances reliability and ease of development with performance by using a message based multi-processing in addition to multi-threading. The framework allows for usage of heterogeneous computing architectures by offloading (portions of code are accelerated on the device) or natively (where the full program is executed on the device ).

  18. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  19. The Impact of Previous Action on Bargaining—An Experiment on the Emergence of Preferences for Fairness Norms

    Directory of Open Access Journals (Sweden)

    Thomas Neumann

    2017-08-01

    Full Text Available The communication of participants to identify an acceptable bargaining outcome in the Nash bargaining game is all about fairness norms. Participants introduce fairness norms which yield a better outcome for themselves in order to convince the other participant of their bargaining proposal. Typically, these fairness norms are in line with theoretical predictions, which support a wide variety of different but fair outcomes the participants can choose from. In this experiment, we play two treatments of the Nash bargaining game: in one treatment, the participants play a dictator game prior to bargaining, and in the other treatment they do not. We find that participants who have not played the dictator game intensively discuss the outcome of the game and come to solutions closer to the equal split of the pie the longer they chat. This effect vanishes as soon as the participants have previous experience from a dictator game: instead of chatting, they establish the fairness norm introduced in the dictator game. Remarkably, if the dictator is unfair in the dictator game, he also gets a higher share of the pie in the Nash bargaining game.

  20. Barrel time-of-flight detector for the PANDA experiment at FAIR

    Science.gov (United States)

    Gruber, L.; Brunner, S. E.; Marton, J.; Orth, H.; Suzuki, K.; PANDA Tof Group

    2016-07-01

    The barrel time-of-flight detector for the PANDA experiment at FAIR is foreseen as a Scintillator Tile (SciTil) Hodoscope based on several thousand small plastic scintillator tiles read-out with directly attached Silicon Photomultipliers (SiPMs). The main tasks of the system are an accurate determination of the time origin of particle tracks to avoid event mixing at high collision rates, relative time-of-flight measurements as well as particle identification in the low momentum regime. The main requirements are the use of a minimum material amount and a time resolution of σ < 100 ps. We have performed extensive optimization studies and prototype tests to prove the feasibility of the SciTil design and finalize the R&D phase. In a 2.7 GeV/c proton beam at Forschungszentrum Jülich a time resolution of about 80 ps has been achieved using SiPMs from KETEK and Hamamatsu with an active area of 3 × 3mm2. Employing the Digital Photon Counter from Philips a time resolution of about 30 ps has been reached.

  1. Fast parallel tracking algorithm for the muon detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, A.; Hoehne, C.; Kisel', I.; Ososkov, G.

    2010-01-01

    Particle trajectory recognition is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR accelerator at Darmstadt. The tracking algorithms have to process terabytes of input data produced in particle collisions. Therefore, the speed of the tracking software is extremely important for data analysis. In this contribution, a fast parallel track reconstruction algorithm, which uses available features of modern processors is presented. These features comprise a SIMD instruction set (SSE) and multithreading. The first allows one to pack several data items into one register and to operate on all of them in parallel thus achieving more operations per cycle. The second feature enables the routines to exploit all available CPU cores and hardware threads. This parallel version of the tracking algorithm has been compared to the initial serial scalar version which uses a similar approach for tracking. A speed-upfactor of 487 was achieved (from 730 to 1.5 ms/event) for a computer with 2 x Intel Core 17 processors at 2.66 GHz

  2. Fast parallel ring recognition algorithm in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S.

    2011-01-01

    The Compressed Baryonic Matter (CBM)experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detector (TRD). Very fast data reconstruction is extremely important for CBM because of the huge amount of data which has to be handled. In this contribution, a parallelized ring recognition algorithm is presented. Modern CPUs have two features, which enable parallel programming. First, the SSE technology allows using the SIMD execution model. Second, multicore CPUs enable the use of multithreading. Both features have been implemented in the ring reconstruction of the RICH detector. A considerable speedup factor from 357 to 2.5 ms/event has been achieved including preceding code optimization for Intel Xeon X5550 processors at 2.67 GHz

  3. Price fairness

    OpenAIRE

    Diller, Hermann

    2013-01-01

    Purpose – The purpose of this article is to integrate the various strands of fair price research into a concise conceptual model. Design/methodology/approach – The proposed price fairness model is based on a review of the fair pricing literature, incorporating research reported in not only English but also German. Findings – The proposed fair price model depicts seven components of a fair price: distributive fairness, consistent behaviour, personal respect and regard for the partner, fair dea...

  4. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Adamczewski, J.; Becker, K.-H.; Belogurov, S.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eom, J.; Eschke, J.; Höhne, C.; Kampert, K.-H.; Kleipa, V.; Kochenda, L.; Kolb, B.; Kopfer, J.; Kravtsov, P.; Lebedev, S.; Lebedeva, E.; Leonova, E.

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype

  5. Event reconstruction in the RICH detector of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczewski, J. [GSI Darmstadt (Germany); Becker, K.-H. [University Wuppertal (Germany); Belogurov, S. [ITEP Moscow (Russian Federation); Boldyreva, N. [PNPI Gatchina (Russian Federation); Chernogorov, A. [ITEP Moscow (Russian Federation); Deveaux, C. [University Gießen (Germany); Dobyrn, V. [PNPI Gatchina (Russian Federation); Dürr, M. [University Gießen (Germany); Eom, J. [Pusan National University (Korea, Republic of); Eschke, J. [GSI Darmstadt (Germany); Höhne, C. [University Gießen (Germany); Kampert, K.-H. [University Wuppertal (Germany); Kleipa, V. [GSI Darmstadt (Germany); Kochenda, L. [PNPI Gatchina (Russian Federation); Kolb, B. [GSI Darmstadt (Germany); Kopfer, J. [University Wuppertal (Germany); Kravtsov, P. [PNPI Gatchina (Russian Federation); Lebedev, S., E-mail: s.lebedev@gsi.de [University Gießen (Germany); Lebedeva, E. [University Gießen (Germany); Leonova, E. [PNPI Gatchina (Russian Federation); and others

    2014-12-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility will investigate the QCD phase diagram at high net-baryon densities and moderate temperatures. One of the key signatures will be di-leptons emitted from the hot and dense phase in heavy-ion collisions. Measuring di-electrons, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In order to access the foreseen rare probes, the detector and the data acquisition have to handle interaction rates up to 10 MHz. Therefore, the development of fast and efficient event reconstruction algorithms is an important and challenging task in CBM. In this contribution event reconstruction and electron identification algorithms in the RICH detector are presented. So far they have been developed on simulated data but could already be tested on real data from a RICH prototype testbeam experiment at the CERN-PS. Efficient and fast ring recognition algorithms in the CBM-RICH are based on the Hough Transform method. Due to optical distortions of the rings, an ellipse fitting algorithm was elaborated to improve the ring radius resolution. An efficient algorithm based on the Artificial Neural Network was implemented for electron identification in RICH. All algorithms were significantly optimized to achieve maximum speed and minimum memory consumption. - Highlights: • Ring Imaging Cherenkov detector will serve for electron identification in CBM. • We present efficient ring recognition algorithm based on the Hough Transform method. • Developed algorithms were significantly optimized to achieve maximum speed up. • Electron identification algorithm in RICH based on the Artificial Neural Network. • Developed algorithms were successfully tested on real data from the RICH prototype.

  6. Hypernuclear physics studies of the P̅ANDA experiment at FAIR

    Science.gov (United States)

    Sanchez Lorente, Alicia

    2015-05-01

    Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). [1, 2] Thanks to the use of stored p̅ beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of Ξ- + overline Xi pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present work details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among

  7. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  8. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  9. Ring recognition and electron identification in the RICH detector of the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, S; Hoehne, C; Ososkov, G

    2010-01-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR facility at Darmstadt will measure dileptons emitted from the hot and dense phase in heavy-ion collisions. In case of an electron measurement, a high purity of identified electrons is required in order to suppress the background. Electron identification in CBM will be performed by a Ring Imaging Cherenkov (RICH) detector and Transition Radiation Detectors (TRD). In this contribution we will present algorithms and software which have been developed for electron identification in CBM. Efficient and fast ring recognition in the RICH detector is based on the Hough Transform method which has been accelerated considerably compared to a standard implementation. Ring quality selection is done using an Artificial Neural Network which also has been used for electron identification. Due to optical distortions ellipse fitting and radius corre ction routines are used for improved ring radius resolution. These methods allow for a high purity and efficiency of reconstructed electron rings. For momenta above 2 GeV/c the ring reconstruction efficiency for electrons embedded in central Au+Au collisions at 25 AGeV beam energy is 95% resulting in an electron identification efficiency of 90% at a pion suppression factor of 500. Including information from the TRD a pion suppression of 10 4 is reached at 80% efficiency. The developed algorithm is very robust to a high ring density environment. Current work focusses on detector layout studies in order to optimize the detector setup while keeping a high performance. All developed algorithms were tested on large statistics of simulated events and are included into the CBM software framework for common use.

  10. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Amar-Youcef, Samir

    2012-01-01

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  11. Design and performance studies of the micro-vertex-detector for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Amar-Youcef, Samir

    2012-04-12

    The CBM experiment is a fixed target experiment to be installed at the future accelerator facility at GSI/FAIR. It will investigate the properties of nuclear matter at extreme conditions and its underlying strong interaction. The research of the CBM experiment, which focuses on the regime of highest net-baryon densities and moderate temperatures, is complementary to this of the experiments at RHIC/BNL (STAR) and LHC/CERN (ALICE), which mainly focuses on the regime of high energy and zero net-baryon densities. The corresponding conditions in the CBM experiment can be produced in heavy-ion collisions at beam energies between 10 and 40 AGeV. Heavy particles, as e.g. charm carrying particles, could be sensitive to the properties of the medium in the early phase of the collision. However due to the short lifetime of open charm particles, they can only be reconstructed via their decay products and the corresponding track topology. Consequently in order to reconstruct the decay vertex with a high accuracy an ultrathin detector system with excellent spatial resolution is required. For the precise vertexing a microvertex detector (MVD) is envisaged, which has to be located directly behind the target and has to operate in the vacuum. Monolithic Active Pixel Sensors (MAPS) are the most promising candidates for the underlying sensor technology for the MVD of the CBM experiment. In the context of this thesis first attempts haven been initiated in order to integrate mechanically MAPS sensors into an ultra-thin detector dedicated to the CBM experiment. The mechanical integration necessarily needs to contain the MAPS sensors, electrical services and a support structure to cool and mount the sensors. As, apart from the intrinsic properties of the sensor, the support structures contribute notably to the specific functions and properties of the detector, particular care has to be taken during its development. Its implementation is not meant to push already the limits, rather it is

  12. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  13. Remember when science was fun? Encountering 'nuclear fallout in your wood stove' and other mysteries at the Northwestern New Mexico regional and state science and engineering fairs

    International Nuclear Information System (INIS)

    Hylko, J.M.; Miller, M.L.

    1996-01-01

    The Rio Grande Chapter of the Health Physics Society is a proud supporter of the Northwestern New Mexico Regional and State Science and Engineering Fairs. In this role, the chapter provides judges and furnishes monetary awards to recognize those students, between grades 6-12, and their teachers whose projects include the utilization or investigation of ionizing (e.g., gamma) or non-ionizing (e.g., UV exposure, microwaves) radiation. The chapter promotes public information and education about health physics by sending every award winner and sponsoring teacher a copy of career opportunities in health physics, including information about degree programs and scholarships. Also, the chapter provides a 1-year free subscription to the Rio Grande Chapter Newsletter, and publishes the names of the award winners, the titles of their projects, the names of their teachers, and the names of their schools. Furthermore, chapter members are encouraged to assist contestants and award winners by providing mentoring opportunities, and educational resources such as textbooks. This paper reviews the Rio Grande Chapter Science and Engineering Fair Program with respect to judging categories and criteria, project titles, what the chapter has learned from the students, and an overview of the 1995 Regional, State, and International Science and Engineering Fair Programme. (author)

  14. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Czech Academy of Sciences Publication Activity Database

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Kugler, Andrej; Kushpil, Vasilij; Mikhaylov, Vasily; Petráček, V.; Pospíšil, V.; Prakash, Arun; Škoda, L.; Svoboda, Ondřej; Tlustý, Pavel

    2017-01-01

    Roč. 53, č. 3 (2017), č. článku 60. ISSN 1434-6001 Institutional support: RVO:61389005 Keywords : FAIR * RHIC * LHC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 2.833, year: 2016

  15. More fair play in an ultimatum game after resettlement in Zimbabwe: a field experiment and a structural model.

    Science.gov (United States)

    Kohler, Stefan

    2013-01-01

    Zimbabwean villagers of distinct background have resettled in government-organized land reforms for more than three decades. Against this backdrop, I assess the level of social cohesion in some of the newly established communities by estimating the average preferences for fairness in a structural model of bounded rationality. The estimations are based on behavioral data from an ultimatum game field experiment played by 234 randomly selected households in 6 traditional and 14 resettled villages almost two decades after resettlement. Equal or higher degrees of fairness are estimated in all resettlement schemes. In one, or arguably two, out of three distinct resettlement schemes studied, the resettled villagers exhibit significantly higher degrees of fairness (p ≤ 0.11) and rationality (p ≤ 0.04) than those who live in traditional villages. Overall, villagers appear similarly rational, but the attitude toward fairness is significantly stronger in resettled communities (p ≤ 0.01). These findings are consistent with the idea of an increased need for cooperation required in recommencement.

  16. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Christoph

    2011-06-09

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few {mu}m), low material budget ({proportional_to}50 {mu}m Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the

  17. A readout system for the micro-vertex-detector demonstrator for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Schrader, Christoph

    2011-01-01

    The Compressed Baryonic Matter Experiment (CBM) is a fixed target heavy ion experiment currently in preparation at the future FAIR accelerator complex in Darmstadt. The CBM experiment focuses on the measurements of diagnostic probes of the early and dense phase of the fireball at beam energies from 8 up to 45 AGeV. As observables, rare hadronic, leptonic and photonic probes are used, including open charm. Open charm will be identified by reconstructing the secondary decay vertex of the corresponding short lived particles. As the central component for track reconstruction, a detector system based on silicon semiconductor detectors is planned. The first three stations of the Silicon Tracking System (STS) make up the so-called Micro-Vertex-Detector (MVD) operating in moderate vacuum. Because of the well-balanced compromise between an excellent spatial resolution (few μm), low material budget (∝50 μm Si), adequate radiation tolerance and readout speed, Monolithic Active Pixel Sensors (MAPS) based on CMOS technology are more suited than any other technology for the reconstruction of the secondary vertex in CBM. A new detector concept has to be developed. Two MVD-Demonstrator modules have been successfully tested with 120 GeV pions at the CERN-SPS. The main topic of this thesis is the development of a control and readout concept of several MVD-Demonstrator modules with a common data acquisition system. In order to achieve the required results a front-end electronics device has been developed which is capable of reading the analogue signals of two sensors on a ex-print cable. The high data rate of the MAPS sensors (1.2 Gbit per second and sensor by 50 MHz and 12 bit ADC resolution) requires a readout system which processes the data on-line in a pipeline to avoid dead times. In order to implement the pipeline processing an FPGA is used, which is located on an additional hardware platform. In order to integrate the MVD-Demonstrator readout board in the HADES data

  18. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  19. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  20. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  1. Development of prototype components for the silicon tracking system of the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Lymanets, Anton

    2013-06-26

    The CBM experiment at future accelerator facility FAIR will investigate the properties of nuclear matter under extreme conditions. The experimental programm is different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that create nuclear matter at high temperatures. In contrast, the study of the QCD phase diagram in the region of the highest net baryon densities and moderate temperatures that is weakly explored will be performed with high precision. For this, collisions of different heavy-ion beams at the energies of 10-45 GeV/nucleon with nuclear target will be measured. The physics programme of the CBM experiment includes measurement of both rare probes and bulk observables that originate from various phases of a nucleus-nucleus collision. In particular, decay of particles with charm quarks can be registered by reconstructing the decay vertex detached from the primary interaction point by several hundreds of micrometers (e.g., decay length cτ=123 μm for D{sup 0} meson). For this, precise tracking and full event reconstruction with up to 600 charged particle tracks per event within acceptance are required. Other rare probes require operation at interaction rate of up to 10 MHz. The detector system that performs tracking has to provide high position resolution on the order of 10 μm, operate at high rates and have radiation tolerant design with low material budget. The Silicon Tracking System (STS) is being designed for charged-particle tracking in a magnetic field. The system consists of eight tracking station located in the aperture of a dipole magnet with 1 T field. For tracks with momentum above 1 GeV, momentum resolution of such a system is expected to be about 1%. In order to fulfill this task, thorough optimization of the detector design is required. In particular, minimal material budget has to be achieved. Production of a detector module requires research and development activities with respect to the module components and their integration

  2. Experiences of racism, racial/ethnic attitudes, motivated fairness and mental health outcomes among primary and secondary school students.

    Science.gov (United States)

    Priest, Naomi; Perry, Ryan; Ferdinand, Angeline; Paradies, Yin; Kelaher, Margaret

    2014-10-01

    While studies investigating the health effects of racial discrimination for children and youth have examined a range of effect modifiers, to date, relationships between experiences of racial discrimination, student attitudes, and health outcomes remain unexplored. This study uniquely demonstrates the moderating effects of vicarious racism and motivated fairness on the association between direct experiences of racism and mental health outcomes, specifically depressive symptoms and loneliness, among primary and secondary school students. Across seven schools, 263 students (54.4% female), ranging from 8 to 17 years old (M = 11.2, SD = 2.2) reported attitudes about other racial/ethnic groups and experiences of racism. Students from minority ethnic groups (determined by country of birth) reported higher levels of loneliness and more racist experiences relative to the majority group students. Students from the majority racial/ethnic group reported higher levels of loneliness and depressive symptoms if they had more friends from different racial/ethnic groups, whereas the number of friends from different groups had no effect on minority students' loneliness or depressive symptoms. Direct experiences of racism were robustly related to higher loneliness and depressive symptoms in multivariate regression models. However, the association with depressive symptoms was reduced to marginal significance when students reported low motivated fairness. Elaborating on the negative health effects of racism in primary and secondary school students provides an impetus for future research and the development of appropriate interventions.

  3. Indian participation in FAIR accelerator facility

    International Nuclear Information System (INIS)

    Sur, Amitava

    2015-01-01

    India is a founder member of the FAIR-GmbH, the upcoming International Accelerator Facility at Darmstadt, Germany. Indian participation at FAIR is being funded jointly by the Department of Science and Technology (DST) and the Department of Atomic Energy (DAE). Indo- FAIR Coordination Centre at Bose Institute (BI-IFCC) is coordinating the Indian efforts of both in-kind contribution as well as experimental programmes at FAIR. FAIR aims for beams of stable and unstable nuclei as well as antiprotons in a wide range of intensities and energies. A superconducting double-synchrotron SIS100/300 with a circumference of 1,100 meters and with magnetic rigidities of 100 and 300 Tm, respectively, is at the heart of the FAIR accelerator facility. The existing GSI accelerators UNILAC and SIS18 will serve as an injector. Adjacent to the large double- synchrotron is a complex system of storage- cooler rings and experiment stations, including a superconducting nuclear fragment separator (Super-FRS) and an antiproton production target. FAIR will supply rare isotope beams (RIBs) and antiproton beams. In FAIR accelerator facility up to four research programs can be run in a parallel mode. The multidisciplinary research program covers the fields of QCD studies with cooled beams of antiprotons, nucleus nucleus collisions at highest baryon density, nuclear structure and nuclear astrophysics investigations with nuclei far off stability, high density plasma physics, atomic and material science studies, radio-biological and other application-oriented studies will contribute in providing in-kind items both for the accelerator and the experiments. As per current plans Indian in kind contributions include: Power Converters, Superconducting Magnets, Beam Stopper, Vacuum Chamber. A short sample from an Indian Industry has been tested successfully at FAIR. Indian participation in building the accelerator components for FAIR is presented

  4. Scientists' motivation to communicate science and technology to the public: surveying participants at the Madrid Science Fair

    OpenAIRE

    Martín-Sempere , María José; Garzón-García , Belén; Rey-Rocha , Jesús

    2008-01-01

    Abstract This paper investigates what motivates scientists to communicate science and technology in a science event involving a direct relationship and interaction with the public. A structured questionnaire survey was administered through face-to-face interviews to 167 research practitioners (researchers, technicians, support staff and fellows) at the Spanish Council for Scientific Research (CSIC) who part...

  5. How fair is fair trade?

    NARCIS (Netherlands)

    Maseland, Robbert; Vaal, Albert de

    2001-01-01

    This paper investigates to what extent fair trade programmes, are indeed ‘fair’. This is accomplished by comparing fair trade with free trade and protectionist trade regimes on their compliance of the criteria set by the fair trade movement itself. This comparison is made using comparative cost

  6. Putting Science FIRST: Memories of Family Science Experiences.

    Science.gov (United States)

    Science and Children, 1996

    1996-01-01

    Presents anecdotes from prominent citizens including Bill Clinton, Alan Alda, Carl Sagan, Gerald Wheeler, JoAnne Vasquez, and Lynn Margulis in which they reminisce about interesting science experiences with their families. (JRH)

  7. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    Science.gov (United States)

    Kharlamov, Petr; Dementev, Dmitrii; Shitenkov, Mikhail

    2017-10-01

    High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  8. Beam test results of STS prototype modules for the future accelerator experiments FAIR/CBM and NICA/MPD projects

    Directory of Open Access Journals (Sweden)

    Kharlamov Petr

    2017-01-01

    Full Text Available High-energy heavy-ion collision experiments provide the unique possibility to create and investigate extreme states of strongly-interacted matter and address the fundamental aspects of QCD. The experimental investigation the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The reconstruction of the charged particles created in the nuclear collisions, including the determination of their momenta, is the central detection task in high-energy heavy-ion experiments. It is taken up by the Silicon Tracking System in CBM@FAIR and by Inner Tracker in MPD@NICA currently under development. These experiments requires very fast and radiation hard detectors, a novel data read-out and analysis concept including free streaming front-end electronics. Thermal and beam tests of prototype detector modules for these tracking systems showed the stability of sensors and readout electronics operation.

  9. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  10. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  11. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    CERN Document Server

    Rodriguez, D; Scheidenberger, C; Kreim, S; Gomez-Hornillos, M B; Aysto, J; Dickel, T; Geppert, C; Novikov, Y N; Tain, J L; Garcia-Ramos, J E; Bollen, G; Hobein, M; Audi, G; Beck, D; Winkler, M; Jesch, C; Vasiliev, A; Sanchez, R; Neidherr, D; Huber, G; Weber, C; Suhonen, M; Reinhard, P G; Jokinen, A; Lapierre, A; Bender, M; Martinez, T; Solders, A; Huyse, M; Matos, M; Szerypo, J; Seliverstov, M; Cortes, G; Cakirli, R B; Van Duppen, P; George, S; Block, M; Ahammed, M; Herfurth, F; Neyens, G; Habs, D; Thirolf, P G; Flanagan, K T; Roux, C; Schneider, D; Brodeur, M; Yordanov, D; Marx, G; Koudriavtsev, I; De, A; Boehm, C; Noertershaeuser, W; Blaum, K; Schabinger, B; Ettenauer, S; Plass, W R; Wendt, K; Nagy, S; Vorobjev, G; Minaya-Ramirez, E; Heenen, P-H; Quint, W; Kester, O; Le Blanc, F; Ray, A; Billowes, J; Kuehl, T; Kraemer, J; Lunney, D; Kolhinen, V; Rubio, B; Brunner, T; Nesterenko, D; Ferrer, R; Algora, A; Repp, J; Naimi, S; Eberhardt, K; Ziegler, F; Popov, A; Krieger, A; Campbell, P; Gartzke, E; Ketelaer, J; Heinz, S; Delheij, P; Ullrich, J; Dax, A; Crespo Lopez-Urrutia, J R; Eliseev, S; Das, P; Cano-Ott, D; Petrick, M; Moore, I; Litvinov, Y A; Schwarz, S; Dilling, J; Geissel, H; Bushaw, B A; Gusev, Y; Lallena, A M; Schweikhard, L; Schuch, R; Herlert, A

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique ``fingerprint{''}. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for ...

  12. Experimental access to Transition Distribution Amplitudes with the PANDA experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Zambrana, Manuel; Ahmed, Samer; Deiseroth, Malte; Froehlich, Bertold; Khaneft, Dmitry; Lin, Dexu; Noll, Oliver; Valente, Roserio; Zimmermann, Iris [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Mora Espi, Maria Carmen; Ahmadi, Heybat; Capozza, Luigi; Dbeyssi, Alaa; Morales, Cristina; Rodriguez Pineiro, David [Helmholtz-Institut Mainz (Germany); Maas, Frank [Institut fuer Kernphysik, Johannes Gutenberg Universitaet, Mainz (Germany); Helmholtz-Institut Mainz (Germany); Prisma Cluster of Excellence, Mainz (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    We address the feasibility of accessing proton to pion Transition Distribution Amplitudes with the future PANDA detector at the FAIR facility. Assuming a factorized cross section, feasibility studies of measuring anti pp → e{sup +}e{sup -}π{sup 0} with PANDA have been performed at the center of mass energy squared s = 5 GeV{sup 2} and s = 10 GeV{sup 2}, in the kinematic region of four-momentum transfer 3.0 < q{sup 2} < 4.3 GeV{sup 2} and 5 < q{sup 2} < 9 GeV{sup 2}, respectively,with a neutral pion scattered in the forward or backward cone vertical stroke cosθ{sub π{sup 0}} vertical stroke > 0.5 in the anti pp center of mass frame. These include detailed simulations on signal reconstruction efficiency, rejection of the most severe background channel, i.e. anti pp → π{sup +}π{sup -}π{sup 0}, and the feasibility of the measurement using a sample of 2 fb{sup -1} of integrated luminosity. The cross sections obtained with the simulations are used to test QCD factorization at the leading order by measuring scaling laws and fitting angular distributions.

  13. Science Festivals: Grand Experiments in Public Outreach

    Science.gov (United States)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  14. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  15. Material Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity materials experiments carried out on the Shuttle/Mir program. There were six experiments, all of which investigated some aspect of diffusivity in liquid melts. The Liquid Metal Diffusion (LMD) experiment investigated the diffusivity of molten Indium samples at 185 C using a radioactive tracer, In-114m. By monitoring two different gamma ray energies (190 keV and 24 keV) emitted by the samples it was possible to measure independently the diffusion rates in the bulk and at the surface of the samples. The Queens University Experiment in Liquid Diffusion (QUELD) was the furnace facility used to process 213 samples for the five other experiments. These experiments investigated the diffusion, ripening, crystal growth, and glass formation in metal, semiconductor, and glass samples. This facility had the capability to process samples in an isothermal or gradient configuration for varying periods of time at temperatures up to 900 C. Both the LMD and the QUELD furnaces were mounted on the Microgravity Isolation Mount (MIM) which provided isolation from g-jitter. All the microgravity experiments were supported by the Space Acceleration Measurement System (SAMS); a three head three axes acceleration monitoring system which measured and recorded the acceleration environment.

  16. The Role of Educational Leadership on Participation in the Costa Rican National Program of Science and Technology Fairs at Escuela Abraham Lincoln in the Coastal Region

    Science.gov (United States)

    Marquez, Fernando

    2016-01-01

    The purpose of this study was to identify the role that Costa Rican educational leaders play in implementing the National Program of Science and Technology Fairs (Programa Nacional de Ferias de Ciencia y Tecnologia [PRONAFECYT]) initiative. The study provides an examination of leadership practices, instructional strategies, and professional…

  17. The barrel and disc DIRC counters for the PANDA experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Mustafa [II. Physikalisches Institut, Universitaet Giessen (Germany); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA spectrometer for the future FAIR facility at GSI will be used to address open questions in hadronic physics by investigating antiproton collisions with a fixed target in the momentum range between 1.5 GeV/c and 15 GeV/c. In order to achieve a particle identification with a high precision, two different DIRC detector concepts have been developed by PANDA, which allow a compact detector design together with an excellent performance to cleanly separate pions, kaons, and protons. The Barrel DIRC in the target spectrometer of PANDA is based on the successful BaBar DIRC with several key improvements. It is designed for polar angles between θ = 22 and θ = 140 and momenta up to 3.5 GeV/c. The Disc DIRC is part of the endcap region of the spectrometer and covers the angular range from θ = 5 /10 to θ = 22 in the forward direction of PANDA. It will provide a π/K separation with a 4-σ separation power up to a momentum of 4 GeV/c. Both Cherenkov detectors will use MCP-PMTs for the photon detection in combination with fast readout electronics. The radiators are synthetic fused silica plates with precision polished surfaces that guarantee to have very little photon losses by total reflection and conserve the Cherenkov angle during propagation through the optical system. Simulations with Geant4 and tests with several prototypes at various test beam facilities have been used to evaluate the designs and validate the expected PID performance of the DIRC counters.

  18. Physics at FAIR

    International Nuclear Information System (INIS)

    Chattopadhyay, Subhasis

    2014-01-01

    The Facility for Antiproton and Ion Research (FAIR) is under construction at Darmstadt, Germany. It will deliver high intensity beams of ions and antiprotons for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics and biophysics. One of the scientific pillars of FAIR is the Compressed Baryonic Matter (CBM) experiment which is designed for the study of high density nuclear matter as it exists in the core of neutron stars. In this article the scientific program of FAIR will be reviewed with emphasis on the CBM experiment

  19. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

    Science.gov (United States)

    Rodríguez, D.; Blaum, K.; Nörtershäuser, W.; Ahammed, M.; Algora, A.; Audi, G.; Äystö, J.; Beck, D.; Bender, M.; Billowes, J.; Block, M.; Böhm, C.; Bollen, G.; Brodeur, M.; Brunner, T.; Bushaw, B. A.; Cakirli, R. B.; Campbell, P.; Cano-Ott, D.; Cortés, G.; Crespo López-Urrutia, J. R.; Das, P.; Dax, A.; de, A.; Delheij, P.; Dickel, T.; Dilling, J.; Eberhardt, K.; Eliseev, S.; Ettenauer, S.; Flanagan, K. T.; Ferrer, R.; García-Ramos, J.-E.; Gartzke, E.; Geissel, H.; George, S.; Geppert, C.; Gómez-Hornillos, M. B.; Gusev, Y.; Habs, D.; Heenen, P.-H.; Heinz, S.; Herfurth, F.; Herlert, A.; Hobein, M.; Huber, G.; Huyse, M.; Jesch, C.; Jokinen, A.; Kester, O.; Ketelaer, J.; Kolhinen, V.; Koudriavtsev, I.; Kowalska, M.; Krämer, J.; Kreim, S.; Krieger, A.; Kühl, T.; Lallena, A. M.; Lapierre, A.; Le Blanc, F.; Litvinov, Y. A.; Lunney, D.; Martínez, T.; Marx, G.; Matos, M.; Minaya-Ramirez, E.; Moore, I.; Nagy, S.; Naimi, S.; Neidherr, D.; Nesterenko, D.; Neyens, G.; Novikov, Y. N.; Petrick, M.; Plaß, W. R.; Popov, A.; Quint, W.; Ray, A.; Reinhard, P.-G.; Repp, J.; Roux, C.; Rubio, B.; Sánchez, R.; Schabinger, B.; Scheidenberger, C.; Schneider, D.; Schuch, R.; Schwarz, S.; Schweikhard, L.; Seliverstov, M.; Solders, A.; Suhonen, M.; Szerypo, J.; Taín, J. L.; Thirolf, P. G.; Ullrich, J.; van Duppen, P.; Vasiliev, A.; Vorobjev, G.; Weber, C.; Wendt, K.; Winkler, M.; Yordanov, D.; Ziegler, F.

    2010-05-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10-5 to below 10-8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10-9 can be reached by employing highly-charged ions and a non

  20. Experimental access to Transition Distribution Amplitudes with the P¯ANDA experiment at FAIR

    Science.gov (United States)

    Singh, B. P.; Erni, W.; Keshelashvili, I.; Krusche, B.; Steinacher, M.; Liu, B.; Liu, H.; Liu, Z.; Shen, X.; Wang, C.; Zhao, J.; Albrecht, M.; Fink, M.; Heinsius, F. H.; Held, T.; Holtmann, T.; Koch, H.; Kopf, B.; Kümmel, M.; Kuhl, G.; Kuhlmann, M.; Leyhe, M.; Mikirtychyants, M.; Musiol, P.; Mustafa, A.; Pelizäus, M.; Pychy, J.; Richter, M.; Schnier, C.; Schröder, T.; Sowa, C.; Steinke, M.; Triffterer, T.; Wiedner, U.; Beck, R.; Hammann, C.; Kaiser, D.; Ketzer, B.; Kube, M.; Mahlberg, P.; Rossbach, M.; Schmidt, C.; Schmitz, R.; Thoma, U.; Walther, D.; Wendel, C.; Wilson, A.; Bianconi, A.; Bragadireanu, M.; Caprini, M.; Pantea, D.; Pietreanu, D.; Vasile, M. E.; Patel, B.; Kaplan, D.; Brandys, P.; Czyzewski, T.; Czyzycki, W.; Domagala, M.; Hawryluk, M.; Filo, G.; Krawczyk, M.; Kwiatkowski, D.; Lisowski, E.; Lisowski, F.; Fiutowski, T.; Idzik, M.; Mindur, B.; Przyborowski, D.; Swientek, K.; Czech, B.; Kliczewski, S.; Korcyl, K.; Kozela, A.; Kulessa, P.; Lebiedowicz, P.; Malgorzata, K.; Pysz, K.; Schäfer, W.; Siudak, R.; Szczurek, A.; Biernat, J.; Jowzaee, S.; Kamys, B.; Kistryn, S.; Korcyl, G.; Krzemien, W.; Magiera, A.; Moskal, P.; Palka, M.; Psyzniak, A.; Rudy, Z.; Salabura, P.; Smyrski, J.; Strzempek, P.; Wrońska, A.; Augustin, I.; Lehmann, I.; Nicmorus, D.; Schepers, G.; Schmitt, L.; Al-Turany, M.; Cahit, U.; Capozza, L.; Dbeyssi, A.; Deppe, H.; Dzhygadlo, R.; Ehret, A.; Flemming, H.; Gerhardt, A.; Götzen, K.; Karabowicz, R.; Kliemt, R.; Kunkel, J.; Kurilla, U.; Lehmann, D.; Lühning, J.; Maas, F.; Morales Morales, C.; Mora Espí, M. C.; Nerling, F.; Orth, H.; Peters, K.; Rodríguez Piñeiro, D.; Saito, N.; Saito, T.; Sánchez Lorente, A.; Schmidt, C. J.; Schwarz, C.; Schwiening, J.; Traxler, M.; Valente, R.; Voss, B.; Wieczorek, P.; Wilms, A.; Zühlsdorf, M.; Abazov, V. M.; Alexeev, G.; Arefiev, A.; Astakhov, V. I.; Barabanov, M. Yu.; Batyunya, B. V.; Davydov, Yu. I.; Dodokhov, V. Kh.; Efremov, A. A.; Fedunov, A. G.; Festchenko, A. A.; Galoyan, A. S.; Grigoryan, S.; Karmokov, A.; Koshurnikov, E. K.; Lobanov, V. I.; Lobanov, Yu. Yu.; Makarov, A. F.; Malinina, L. V.; Malyshev, V. L.; Mustafaev, G. A.; Olshevskiy, A.; Pasyuk, M. A.; Perevalova, E. A.; Piskun, A. A.; Pocheptsov, T. A.; Pontecorvo, G.; Rodionov, V. K.; Rogov, Yu. N.; Salmin, R. A.; Samartsev, A. G.; Sapozhnikov, M. G.; Shabratova, G. S.; Skachkov, N. B.; Skachkova, A. N.; Strokovsky, E. A.; Suleimanov, M. K.; Teshev, R. Sh.; Tokmenin, V. V.; Uzhinsky, V. V.; Vodopyanov, A. S.; Zaporozhets, S. A.; Zhuravlev, N. I.; Zorin, A. G.; Branford, D.; Glazier, D.; Watts, D.; Woods, P.; Britting, A.; Eyrich, W.; Lehmann, A.; Uhlig, F.; Dobbs, S.; Seth, K.; Tomaradze, A.; Xiao, T.; Bettoni, D.; Carassiti, V.; Cotta Ramusino, A.; Dalpiaz, P.; Drago, A.; Fioravanti, E.; Garzia, I.; Savriè, M.; Stancari, G.; Akishina, V.; Kisel, I.; Kulakov, I.; Zyzak, M.; Arora, R.; Bel, T.; Gromliuk, A.; Kalicy, G.; Krebs, M.; Patsyuk, M.; Zuehlsdorf, M.; Bianchi, N.; Gianotti, P.; Guaraldo, C.; Lucherini, V.; Pace, E.; Bersani, A.; Bracco, G.; Macri, M.; Parodi, R. F.; Bianco, S.; Bremer, D.; Brinkmann, K. T.; Diehl, S.; Dormenev, V.; Drexler, P.; Düren, M.; Eissner, T.; Etzelmüller, E.; Föhl, K.; Galuska, M.; Gessler, T.; Gutz, E.; Hayrapetyan, A.; Hu, J.; Kröck, B.; Kühn, W.; Kuske, T.; Lange, S.; Liang, Y.; Merle, O.; Metag, V.; Mülhheim, D.; Münchow, D.; Nanova, M.; Novotny, R.; Pitka, A.; Quagli, T.; Rieke, J.; Rosenbaum, C.; Schnell, R.; Spruck, B.; Stenzel, H.; Thöring, U.; Ullrich, M.; Wasem, T.; Werner, M.; Zaunick, H. G.; Ireland, D.; Rosner, G.; Seitz, B.; Deepak, P. N.; Kulkarni, A. V.; Apostolou, A.; Babai, M.; Kavatsyuk, M.; Lemmens, P.; Lindemulder, M.; Löhner, H.; Messchendorp, J.; Schakel, P.; Smit, H.; van der Weele, J. C.; Tiemens, M.; Veenstra, R.; Vejdani, S.; Kalita, K.; Mohanta, D. P.; Kumar, A.; Roy, A.; Sahoo, R.; Sohlbach, H.; Büscher, M.; Cao, L.; Cebulla, A.; Deermann, D.; Dosdall, R.; Esch, S.; Georgadze, I.; Gillitzer, A.; Goerres, A.; Goldenbaum, F.; Grunwald, D.; Herten, A.; Hu, Q.; Kemmerling, G.; Kleines, H.; Kozlov, V.; Lehrach, A.; Leiber, S.; Maier, R.; Nellen, R.; Ohm, H.; Orfanitski, S.; Prasuhn, D.; Prencipe, E.; Ritman, J.; Schadmand, S.; Schumann, J.; Sefzick, T.; Serdyuk, V.; Sterzenbach, G.; Stockmanns, T.; Wintz, P.; Wüstner, P.; Xu, H.; Li, S.; Li, Z.; Sun, Z.; Xu, H.; Rigato, V.; Fissum, S.; Hansen, K.; Isaksson, L.; Lundin, M.; Schröder, B.; Achenbach, P.; Bleser, S.; Cardinali, M.; Corell, O.; Deiseroth, M.; Denig, A.; Distler, M.; Feldbauer, F.; Fritsch, M.; Jasinski, P.; Hoek, M.; Kangh, D.; Karavdina, A.; Lauth, W.; Leithoff, H.; Merkel, H.; Michel, M.; Motzko, C.; Müller, U.; Noll, O.; Plueger, S.; Pochodzalla, J.; Sanchez, S.; Schlimme, S.; Sfienti, C.; Steinen, M.; Thiel, M.; Weber, T.; Zambrana, M.; Dormenev, V. I.; Fedorov, A. A.; Korzihik, M. V.; Missevitch, O. V.; Balanutsa, P.; Balanutsa, V.; Chernetsky, V.; Demekhin, A.; Dolgolenko, A.; Fedorets, P.; Gerasimov, A.; Goryachev, V.; Varentsov, V.; Boukharov, A.; Malyshev, O.; Marishev, I.; Semenov, A.; Konorov, I.; Paul, S.; Grieser, S.; Hergemöller, A. K.; Khoukaz, A.; Köhler, E.; Täschner, A.; Wessels, J.; Dash, S.; Jadhav, M.; Kumar, S.; Sarin, P.; Varma, R.; Chandratre, V. B.; Datar, V.; Dutta, D.; Jha, V.; Kumawat, H.; Mohanty, A. K.; Roy, B.; Yan, Y.; Chinorat, K.; Khanchai, K.; Ayut, L.; Pornrad, S.; Barnyakov, A. Y.; Blinov, A. E.; Blinov, V. E.; Bobrovnikov, V. S.; Kononov, S. A.; Kravchenko, E. A.; Kuyanov, I. A.; Onuchin, A. P.; Sokolov, A. A.; Tikhonov, Y. A.; Atomssa, E.; Hennino, T.; Imre, M.; Kunne, R.; Le Galliard, C.; Ma, B.; Marchand, D.; Ong, S.; Ramstein, B.; Rosier, P.; Tomasi-Gustafsson, E.; Van de Wiele, J.; Boca, G.; Costanza, S.; Genova, P.; Lavezzi, L.; Montagna, P.; Rotondi, A.; Abramov, V.; Belikov, N.; Bukreeva, S.; Davidenko, A.; Derevschikov, A.; Goncharenko, Y.; Grishin, V.; Kachanov, V.; Kormilitsin, V.; Melnik, Y.; Levin, A.; Minaev, N.; Mochalov, V.; Morozov, D.; Nogach, L.; Poslavskiy, S.; Ryazantsev, A.; Ryzhikov, S.; Semenov, P.; Shein, I.; Uzunian, A.; Vasiliev, A.; Yakutin, A.; Yabsley, B.; Bäck, T.; Cederwall, B.; Makónyi, K.; Tegnér, P. E.; von Würtemberg, K. M.; Belostotski, S.; Gavrilov, G.; Izotov, A.; Kashchuk, A.; Levitskaya, O.; Manaenkov, S.; Miklukho, O.; Naryshkin, Y.; Suvorov, K.; Veretennikov, D.; Zhadanov, A.; Rai, A. K.; Godre, S. S.; Duchat, R.; Amoroso, A.; Bussa, M. P.; Busso, L.; De Mori, F.; Destefanis, M.; Fava, L.; Ferrero, L.; Greco, M.; Maggiora, M.; Maniscalco, G.; Marcello, S.; Sosio, S.; Spataro, S.; Zotti, L.; Calvo, D.; Coli, S.; De Remigis, P.; Filippi, A.; Giraudo, G.; Lusso, S.; Mazza, G.; Mingnore, M.; Rivetti, A.; Wheadon, R.; Balestra, F.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Younis, H.; Birsa, R.; Bradamante, F.; Bressan, A.; Martin, A.; Clement, H.; Gålnander, B.; Caldeira Balkeståhl, L.; Calén, H.; Fransson, K.; Johansson, T.; Kupsc, A.; Marciniewski, P.; Pettersson, J.; Schönning, K.; Wolke, M.; Zlomanczuk, J.; Díaz, J.; Ortiz, A.; Vinodkumar, P. C.; Parmar, A.; Chlopik, A.; Melnychuk, D.; Slowinski, B.; Trzcinski, A.; Wojciechowski, M.; Wronka, S.; Zwieglinski, B.; Bühler, P.; Marton, J.; Suzuki, K.; Widmann, E.; Zmeskal, J.; Fröhlich, B.; Khaneft, D.; Lin, D.; Zimmermann, I.; Semenov-Tian-Shansky, K.

    2015-08-01

    Baryon-to-meson Transition Distribution Amplitudes (TDAs) encoding valuable new information on hadron structure appear as building blocks in the collinear factorized description for several types of hard exclusive reactions. In this paper, we address the possibility of accessing nucleon-to-pion ( πN) TDAs from reaction with the future P¯ANDA detector at the FAIR facility. At high center-of-mass energy and high invariant mass squared of the lepton pair q 2, the amplitude of the signal channel admits a QCD factorized description in terms of πN TDAs and nucleon Distribution Amplitudes (DAs) in the forward and backward kinematic regimes. Assuming the validity of this factorized description, we perform feasibility studies for measuring with the P¯ANDA detector. Detailed simulations on signal reconstruction efficiency as well as on rejection of the most severe background channel, i.e. were performed for the center-of-mass energy squared s = 5 GeV2 and s = 10 GeV2, in the kinematic regions 3.0 < q 2 < 4.3 GeV2 and 5 < q 2 GeV2, respectively, with a neutral pion scattered in the forward or backward cone in the proton-antiproton center-of-mass frame. Results of the simulation show that the particle identification capabilities of the P¯ANDA detector will allow to achieve a background rejection factor of 5 · 107 (1 · 107) at low (high) q 2 for s = 5 GeV2, and of 1 · 108 (6 · 106) at low (high) q 2 for s = 10 GeV2, while keeping the signal reconstruction efficiency at around 40%. At both energies, a clean lepton signal can be reconstructed with the expected statistics corresponding to 2 fb-1 of integrated luminosity. The cross sections obtained from the simulations are used to show that a test of QCD collinear factorization can be done at the lowest order by measuring scaling laws and angular distributions. The future measurement of the signal channel cross section with P¯ANDA will provide a new test of the perturbative QCD description of a novel class of hard

  1. Work, gender, and social networks: work experiences of fashion fair managers on Facebook

    Directory of Open Access Journals (Sweden)

    Andrea González Medina

    2017-07-01

    Full Text Available The article questions the classical paradigms of work society, which emphasized the industrial-worker-men. In contrast, it affirms the existence of a reorganization of the work world, reflected in many ways, such as non-industrial and labor regulation activities, as well as the introduction of information and communication technologies. The research focused on two fundamental aspects of said reorganization; the proliferation of activities in the informal sector and the use of information and communication technologies at work. In order to understand these lines of analysis, we selected the case of e-commerce carried out on the Facebook platform. Although this platform has been co-opted by big companies to advertise products, it is also possible to observe the emergence of an informal work market made up of women who use that technological tool to carry out business on Facebook through ‘fashion fairs’. The article argues that the work carried out in such fairs is permeated by gender stereotypes. Therefore, its objective is to understand the configuration of subjectivities on the basis of gender stereotypes in the current work environment. In order to achieve this, it proposed a qualitative methodology to analyze labor aspects, use of time, and interaction with technology. The understanding of the work included the following central themes: production of services, de-territorialization of work, and production of symbols, and each one of these was related to a gender stereotype: women in the informal sector; the articulation between domestic-extra- omestic/productive-reproductive work; and the feminization of the products market, respectively. The article seeks to make evident the processes involved in the production of services and the conditions of informality in which women are involved. The article is structured as follows: the first section conceptualizes the activity according to the categories of nontraditional

  2. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  3. Are comparisons of patient experiences across hospitals fair? A study in Veterans Health Administration hospitals.

    Science.gov (United States)

    Cleary, Paul D; Meterko, Mark; Wright, Steven M; Zaslavsky, Alan M

    2014-07-01

    Surveys are increasingly used to assess patient experiences with health care. Comparisons of hospital scores based on patient experience surveys should be adjusted for patient characteristics that might affect survey results. Such characteristics are commonly drawn from patient surveys that collect little, if any, clinical information. Consequently some hospitals, especially those treating particularly complex patients, have been concerned that standard adjustment methods do not adequately reflect the challenges of treating their patients. To compare scores for different types of hospitals after making adjustments using only survey-reported patient characteristics and using more complete clinical and hospital information. We used clinical and survey data from a national sample of 1858 veterans hospitalized for an initial acute myocardial infarction (AMI) in a Department of Veterans Affairs (VA) medical center during fiscal years 2003 and 2004. We used VA administrative data to characterize hospitals. The survey asked patients about their experiences with hospital care. The clinical data included 14 measures abstracted from medical records that are predictive of survival after an AMI. Comparisons of scores across hospitals adjusted only for patient-reported health status and sociodemographic characteristics were similar to those that also adjusted for patient clinical characteristics; the Spearman rank-order correlations between the 2 sets of adjusted scores were >0.97 across 9 dimensions of inpatient experience. This study did not support concerns that measures of patient care experiences are unfair because commonly used models do not adjust adequately for potentially confounding patient clinical characteristics.

  4. Feasibility studies for accessing nucleon structure observables with the PANDA experiment at the future FAIR facility

    International Nuclear Information System (INIS)

    Mora Espi, Maria Carmen

    2012-10-01

    The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp→e + e - π 0 , investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp→e + e - will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp→e + e - cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp→π + π - is taken into account. The results show a 10 9 background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c) 2 . The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected angular distribution. Above this s limit, the low cross section will not allow

  5. Feasibility studies for accessing nucleon structure observables with the PANDA experiment at the future FAIR facility

    Energy Technology Data Exchange (ETDEWEB)

    Mora Espi, Maria Carmen

    2012-10-15

    The availability of a high-intensity antiproton beam with momentum up to 15 GeV/c at the future Facility for Antiproton and Ion Research (FAIR) will open a unique opportunity to investigate wide areas of nuclear physics with the PANDA (antiProton ANnihilations at DArmstadt) detector. Part of these investigations concern the Electromagnetic Form Factors of the proton in the time-like region and the study of the transition distribution amplitudes, for which feasibility studies have been performed in this thesis. Moreover, simulations to study the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter of PANDA are presented. This detector is crucial especially for the reconstruction of processes like anti pp{yields}e{sup +}e{sup -}{pi}{sup 0}, investigated in this work. Different arrangements of dead material were studied. The results show that both, the efficiency and the energy resolution of the backward endcap of the electromagnetic calorimeter fulfill the requirements for the detection of backward particles, and that this detector is necessary for the reconstruction of the channels of interest. The study of the annihilation channel anti pp{yields}e{sup +}e{sup -} will improve the knowledge of the electromagnetic form factors in the time-like region, and will help to understand their connection with the electromagnetic form factors in the space-like region. In this thesis the feasibility of a measurement of the anti pp{yields}e{sup +}e{sup -} cross section with PANDA is studied using Monte-Carlo simulations. The major background channel anti pp{yields}{pi}{sup +}{pi}{sup -} is taken into account. The results show a 10{sup 9} background suppression factor, which assure a sufficiently clean signal with less than 0.1 % background contamination. The signal can be measured with an efficiency greater than 30 % up to s=14 (GeV/c){sup 2}. The Electromagnetic Form Factors are extracted from the reconstructed signal and corrected

  6. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  7. Quality assurance of double-sided silicon microstrip sensors for the silicon tracking system in the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Larionov, Pavel [Goethe Universitaet, Frankfurt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) is the core tracking detector of the CBM experiment at FAIR. The system's task is to reconstruct the trajectories of the charged particles produced in the beam-target interactions, provide their momentum determination, and enable the detection of decay topologies. The STS will comprise 1220 double-sided silicon microstrip sensors. After production each sensor will go through a number of Quality Assurance procedures to verify their validity for performance in the STS and also to confirm the manufacturer's data. In this talk, results of the quality assurance procedures that are being applied to the latest STS prototype sensors, including detailed tests of the quality of each single strip, long-term stability and preparations for volume tests during series production, are presented.

  8. Science, Fascism, and Foreign Policy : The Exhibition “Scienza Universale” at the 1942 Rome World’s Fair

    NARCIS (Netherlands)

    Somsen, Geert

    2017-01-01

    This essay analyzes the exhibition “Scienza Universale,” which was to be a central part of the 1942 world’s fair in Rome. Although in the end World War II kept the fair from happening, the plans for the exhibit were finished, and they allow for an in-depth analysis of the propagandistic uses of

  9. Experiments on supply chain contracting: effects of contract type and fairness concerns

    OpenAIRE

    Arabacı, Özge; Arabaci, Ozge

    2013-01-01

    In this thesis, we conduct experiments with human decision makers on supply chain contracting. We consider a simple manufacturer-retailer supply chain scenario where the retailer faces the newsvendor problem. Building on Sahin and Kaya (2011), we compare the experimental performance of three contract types (wholesale price, buyback and revenue sharing contracts) between the firms with theoretical predictions, and among each other. We are interested in the manufacturer’s contract parameter dec...

  10. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  11. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  12. Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography

    International Nuclear Information System (INIS)

    Nunn, J.; Smith, B. J.; Puentes, G.; Walmsley, I. A.; Lundeen, J. S.

    2010-01-01

    Given an experimental setup and a fixed number of measurements, how should one take data to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached by Kosut et al.[R. Kosut, I. Walmsley, and H. Rabitz, e-print arXiv:quant-ph/0411093 (2004)]. Here we provide efficient numerical algorithms for finding the optimal design, and analytic results for the case of 'minimal tomography'. We also introduce the average OED, which is independent of the state to be reconstructed, and the optimal design for tomography (ODT), which minimizes tomographic bias. Monte Carlo simulations confirm the utility of our results for qubits. Finally, we adapt our approach to deal with constrained techniques such as maximum-likelihood estimation. We find that these are less amenable to optimization than cruder reconstruction methods, such as linear inversion.

  13. Participatory Design of Citizen Science Experiments

    Science.gov (United States)

    Senabre, Enric; Ferran-Ferrer, Nuria; Perelló, Josep

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through co-creation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention…

  14. Time-based cluster and hit finding for the STS detector in the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, Grigory [Goethe University, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Joint Institute for Nuclear Research, Dubna (Russian Federation); Kisel, Ivan [Goethe University, Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The goal of the future CBM experiment at FAIR is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. An important feature of the experiment is the real time reconstruction and physical analysis. It will allow select important events immediately after the collision and increase the quality of the data. In this case, the data are supplied to processing in form of time slices containing a large number of collisions. Preprocessing of the time-based results requires special algorithms that take into account not only the coordinates, but also the time of flight of each particle. Clustering algorithm for the STS detector has been designed and integrated into the CBMROOT framework. It enables data processing with high efficiency for the time slices of any length at frequencies of 107 and over collisions per second. The algorithm has a high speed and it can operate in event-based mode as well as in time-based.

  15. To touch the science through the experiment!

    Science.gov (United States)

    Słowik, Grzegorz

    2016-04-01

    To touch the science through the experiment! Grzegorz P. Slowik, Gymnasium No. 2 in Zielona Gora, Poland Our School - Gymnasium No. 2 in Zielona Gora - where pupils' age is 13 -16, has for many years organized a lot of exciting events popularizing science among Zielona Gora children and young people, in particular experimental physics and astronomy. The best known in our town is the regular event on physics, - called the physical Festival of Zielona Gora, of which I am the main initiator and organizer. The Festival is directed to students of the last classes of Zielona Góra primary schools. During the Festivities their shows have also physicists and astronomers, from cooperating with us in popularization of science Zielona Gora University. At the festival the students from our Experimental School Group "Archimedes". Presented their own prepared themselves physical experience. With considerable help of students of Gymnasium No. 2 interested in astronomy, we organize the cyclical event, named "Cosmic Santa Claus," where I share with the students the knowledge gained through my active annual participation in the Space Workshop organized by the Science Centre in Warsaw. We all have fun and learn in a great way and with a smile, we touch real science that reveals its secrets!

  16. Book fair

    CERN Multimedia

    2006-01-01

    The Swiss academic publishing house 'Presses Polytechniques Universitaires Romandes'will be presenting its most recent scientific and technical publications at a book fair in the lobby of the Main Building (60) from 10 a.m. to 4 p.m. on Thursday 28 September 2006.

  17. Characterization of silicon microstrip sensors with a pulsed infrared laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe Univ., Frankfurt (Germany); GSI (Germany); Eschke, Juergen [GSI (Germany); FAIR (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The Silicon Tracking System (STS) for the Compressed Baryonic Matter (CBM) experiment at FAIR will comprise more than 1200 double-sided silicon microstrip sensors. For the quality assurance of the prototype sensors a laser test system has been built up. The aim of the sensor scans with the pulsed infrared laser system is to determine the charge sharing between strips and to measure the uniformity of the sensor response over the whole active area. The laser system measures the sensor response in an automatized procedure at several thousand positions across the sensor with focused infrared laser light (σ∼15 μm, λ=1060 nm). The duration (5 ns) and power (few mW) of the laser pulses are selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24k electrons, which is similar to the charge created by minimum ionizing particles in these sensors. Results from the characterization of monolithic active pixel sensors, to understand the spot-size of the laser, and laser scans for different sensors are presented.

  18. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian

    2007-01-01

    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  19. The CBM Experiment at FAIR-New challenges for Front-End Electronics, Data Acquisition and Trigger Systems

    International Nuclear Information System (INIS)

    Mueller, Walter F J

    2006-01-01

    The 'Compressed Baryonic Matter' (CBM) experiment at the new 'Facility for Antiproton and Ion Research' (FAIR) in Darmstadt is designed to study the properties of highly compressed baryonic matter produced in nucleus-nucleus collisions in the 10 to 45 A GeV energy range. One of the key observables is hidden (J/ψ) and open (D 0 , D ± ) charm production. To achieve an adequate sensitivity extremely high interaction rates of up to 10 7 events/second are required, resulting in major technological challenges for the detectors, front-end electronics and data processing. The front-end electronics will be self-triggered, autonomously detect particle hits, and output hit parameter together with a precise absolute time-stamp. Several layers of feature extraction and event selection will reduce the primary data flow of about 1 TByte/sec to a level of 1 GByte/sec. This new architecture avoids many limitations of conventional DAQ/Trigger systems and is for example essential for open charm detection, which requires the reconstruction of displaced vertices, in a high-rate heavy ion environment

  20. On 18 November 2010, CERN signed an agreement with the Facility for Antiproton and Ion Research (FAIR) GmbH, the company that is co-ordinating the construction of the accelerator and experiment facilities for the FAIR project in Germany.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    The agreement, which was signed by CERN's director-general, Rolf Heuer (left) and FAIR's scientific director Boris Sharkov, concerns collaboration in accelerator sciences and technologies and other scientific domains of mutual interest.

  1. Experiment Prevails Over Observation in Geophysical Science

    Science.gov (United States)

    Galvin, C.

    2006-05-01

    Thomson and Tait gave their name to a text (T and T') that sums up nineteenth century mechanics. T and T' says that scientists gain knowledge of the natural universe and the laws that regulate it through Experience. T and T' divides Experience into Observation and Experiment. The posthumous (1912) edition of T and T' appeared seven years before Eddington's expeditions to observe the eclipse of 29 May 1919 that demonstrated the bending of starlight predicted by Einstein's general theory of relativity. During the 2005 centenary of young Einstein's remarkably productive year, Eddington's (1919) result was frequently remembered, but the description in 2005 of what Eddington did in 1919 often differed from what Eddington said that he did. In his words then, Eddington observed; in words from scientists, historians of science, and philosophers of science during 2005, Eddington often experimented. In 1912, T and T' had distinguished Observation from Experiment with an apt contrast: ""When, as in astronomy, we endeavour to ascertain these causes by simply watching, we observe; when, as in our laboratories, we interfere arbitrarily with the causes or circumstances of a phenomenon, we are said to experiment"". (italics in T and T'). Eddington himself conformed to this distinction in his report (Physical Society of London, 1920). In its Preface, he states that observations were made at each of two stations, and concludes that ""I think it may now be stated that Einstein's law of gravitation is definitely established by observation..."". Chapter V of that report deals with The Crucial Phenomena. In this chapter, some form of the word observe (noun, verb, adjective, adverb) appears 13 times. In this chapter, experiment appears only as experimental, and then only twice. Einstein's prediction, with Eddington's observations, profoundly impressed contemporary philosophers of science. Karl Popper, then aged 17, considered Eddington's findings to effect a turning point in his career

  2. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    NARCIS (Netherlands)

    Antonov, A. N.; Gaidarov, M. K.; Ivanov, M. V.; Kadrev, D. N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.; Audouin, L.; Khan, E.; Tassan-Got, L.; Aumann, T.; Beller, P.; Boretzky, K.; Dolinskii, A.; Egelhof, P.; Emling, H.; Franzke, B.; Geissel, H.; Kelic-Heil, A.; Kester, O.; Kurz, N.; Litvinov, Y.; Muenzenberg, G.; Nolden, F.; Schmidt, K. -H.; Scheidenberger, Ch.; Simon, H.; Steck, M.; Weick, H.; Enders, J.; Pietralla, N.; Richter, A.; Schrieder, G.; Zilges, A.; Distler, M. O.; Merkel, H.; Mueller, U.; Junghans, A. R.; Lenske, H.; Fujiwara, M.; Suda, T.; Kato, S.; Adachi, T.; Hamieh, S.; Harakeh, M. N.; Kalantar-Nayestanaki, N.; Woertche, H.; Berg, G. P. A.; Koop, I. A.; Logatchov, P. V.; Otboev, A. V.; Parkhomchuk, V. V.; Shatilov, D. N.; Shatunov, P. Y.; Shatunov, Y. M.; Shiyankov, S. V.; Shvartz, D. I.; Skrinsky, A. N.; Chulkov, L. V.; Danilin, B. V.; Korsheninnikov, A. A.; Kuzmin, E. A.; Ogloblin, A. A.; Volkov, V. A.; Grishkin, Y.; Lisin, V. P.; Mushkarenkov, A. N.; Nedorezov, V.; Polonski, A. L.; Rudnev, N. V.; Turinge, A. A.; Artukh, A.; Avdeichikov, V.; Ershov, S. N.; Fomichev, A.; Golovkov, M.; Gorshkov, A. V.; Grigorenko, L.; Klygin, S.; Krupko, S.; Meshkov, I. N.; Rodin, A.; Sereda, Y.; Seleznev, I.; Sidorchuk, S.; Syresin, E.; Stepantsov, S.; Ter-Akopian, G.; Teterev, Y.; Vorontsov, A. N.; Kamerdzhiev, S. P.; Litvinova, E. V.; Karataglidis, S.; Alvarez Rodriguez, R.; Borge, M. J. G.; Ramirez, C. Fernandez; Garrido, E.; Sarriguren, P.; Vignote, J. R.; Fraile Prieto, L. M.; Lopez Herraiz, J.; Moya de Guerra, E.; Udias-Moinelo, J.; Amaro Soriano, J. E.; Rojo, A. M. Lallena; Caballero, J. A.; Johansson, H. T.; Jonson, B.; Nilsson, T.; Nyman, G.; Zhukov, M.; Golubev, P.; Rudolph, D.; Hencken, K.; Jourdan, J.; Krusche, B.; Rauscher, T.; Kiselev, D.; Trautmann, D.; Al-Khalili, J.; Catford, W.; Johnson, R.; Stevenson, P. D.; Barton, C.; Jenkins, D.; Lemmon, R.; Chartier, M.; Cullen, D.; Bertulani, C. A.; Heinz, A.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the

  3. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Gaidarov, M.K. [INRNE-BAS Sofia (Bulgaria); Ivanov, M.V. [Grupo de Physica Nuclear, Complutense University of Madrid (Spain); Kadrev, D.N. [INRNE-BAS Sofia (Bulgaria); Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B. [Centre d' Etudes Nucleaires Bordeaux-Gradingnan (CENBG) (France); Belier, G.; Chatillon, A.; Granier, T.; Taieb, J. [CEA Bruyeres-le-Chatel (France); Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S. [CEA Saclay (France); Farget, F.; Schmitt, C. [GANIL Caen (France)

    2011-05-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  4. The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study

    International Nuclear Information System (INIS)

    Antonov, A.N.; Gaidarov, M.K.; Ivanov, M.V.; Kadrev, D.N.; Aiche, M.; Barreau, G.; Czajkowski, S.; Jurado, B.; Belier, G.; Chatillon, A.; Granier, T.; Taieb, J.; Dore, D.; Letourneau, A.; Ridikas, D.; Dupont, E.; Berthoumieux, E.; Panebianco, S.; Farget, F.; Schmitt, C.

    2011-01-01

    The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented.

  5. Extreme state of matter physics at FAIR

    International Nuclear Information System (INIS)

    Boris Sharkov

    2010-01-01

    Complete text of publication follows. The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented.

  6. Fair for extreme state of matter physics

    International Nuclear Information System (INIS)

    Sharkov, B.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented. (author)

  7. Is Equality Fair?

    Directory of Open Access Journals (Sweden)

    Arthur Tarasov

    2015-11-01

    Full Text Available This paper attempts to answer the question whether people consider decisions that lead to equal outcomes fair. I find that this is not always the case. In an experiment where subjects are given equal opportunities to choose how to divide money between each other in a two-player game, any strategy is perceived to be fair more than half the time, including the profit-maximizing strategy. The equal divisions that lead to equal outcomes are sometimes considered unfair by both players. Moreover, players frequently punished the others, whose decisions led to equal outcomes. I hypothesize that such punishments occur because people have different conceptions of what a fair outcome and fair punishment are

  8. Participatory design of citizen science experiments

    OpenAIRE

    Senabre, Enric; Ferran Ferrer, Núria; Perelló, Josep, 1974-

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through cocreation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention to social concerns and needs, as well as the collective construction of research questions, can be integrated into scientific research. The 95 stude...

  9. The FAIR start

    International Nuclear Information System (INIS)

    Stoecker, H.; Sturm, C.

    2011-01-01

    At the 4th of October 2010 nine countries signed the international agreement on the construction of the Facility for Antiproton and Ion Research, FAIR. Adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, FAIR substantially expands research goals and technical possibilities. It will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in hadron, nuclear, atomic and plasma physics as well as applied sciences which will be described in this article briefly.

  10. Fair innings.

    Science.gov (United States)

    Bognar, Greg

    2015-05-01

    In many societies, the aging of the population is becoming a major problem. This raises difficult issues for ethics and public policy. On what is known as the fair innings view, it is not impermissible to give lower priority to policies that primarily benefit the elderly. Philosophers have tried to justify this view on various grounds. In this article, I look at a consequentialist, a fairness-based, and a contractarian justification. I argue that all of them have implausible implications and fail to correspond to our moral intuitions. I end by outlining a different kind of consequentialist justification that avoids those implications and corresponds better to our considered moral judgments. © 2014 John Wiley & Sons Ltd.

  11. Darwin, Earthworms & Circadian Rhythms: A Fertile Field for Science Fair Experiments

    Science.gov (United States)

    Burns, John T.; Scurti, Paul J.; Furda, Amy M.

    2009-01-01

    This article discusses why the study of earthworms has fascinated many scientists, and why earthworms make ideal experimental animals for students to test in the laboratory. Although earthworms may appear to be primitive, they are governed by both circadian and seasonal rhythms, just as more advanced organisms are. They possess an intelligence…

  12. Material science experiments at the ATLAS facility

    CERN Document Server

    Keinigs, R K; Atchison, W L; Bartsch, R R; Faehl, R J; Flower-Maudlin, E C; Hammerberg, J E; Holtkamp, D B; Kyrala, G A; Oro, D M; Parker, J V; Preston, D L; Removsky, R E; Scudder, D W; Sheehey, P T; Shlachter, J S; Taylor, A J; Tonks, D L; Turchi, P J; Chandler, E A

    2001-01-01

    Summary form only given, as follows. Three experimental campaigns designed for fielding on the Atlas Pulsed Power Facility are discussed. The foci of these experiments are directed toward a better understanding of three material science issues; (1) strength at high strain and high strain rate, (2) friction at material interfaces moving at high relative velocities, and (3) material failure in convergent geometry. Atlas provides an environment for investigating these problems in parameter regimes and geometries that are inaccessible with standard techniques. For example, flow stress measurements of material strength using conventional Hopkinson bar experiments are limited to strain rates ~10/sup 4/ sec/sup -1/. Atlas will be capable of imploding metal shells to combined strains of 200% and strain rates >10/sup 6/ sec/sup -1/. Data obtained regimes is used to test different constitutive strength models used in several Los Alamos hydrocodes. Dynamic friction has been investigated for nearly 300 years, but a first...

  13. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  14. Science writing workshops with the ATLAS experiment

    CERN Document Server

    Bourdarios, Claire; The ATLAS collaboration

    2017-01-01

    Particle physics is fascinating to an overwhelming majority of the population but is shrouded in mystery.. Our theories appear abstruse and abstract, our experiments are specialized and technical; there is a barrier-both literal and metaphorical -that keeps the uninitiated out. As practicing scientists, we are often called upon to explain our work: to spread awareness, to educate, to justify the expenditure of public funds, or to counter an increasingly troubling suspicion of science. But the dispassionate, objective, disembodied voice we have been trained to use in our professional lives, doesn't work very well with the public. In order to communicate meaningfully with a more general audience, we must start from a point of connection and keep referring back to the things we have in common -the human experiences and emotions we all share; we must risk being subjective and personal, be willing to talk about the messy, creative aspects of science and the passion that animates our work. This talk will describe w...

  15. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    The benefits of student access to scientific research opportunities and the use of data in curriculum and student inquiry-driven approaches to teaching as effective tools in science instruction are compelling (i.e., Ledley, et al., 2008; Gawel & Greengrove, 2005; Macdonald, et al., 2005; Harnik & Ross. 2003). Unfortunately, these experiences are traditionally limited at community colleges due to heavy faculty teaching loads, a focus on teaching over research, and scarce departmental funds. Without such hands-on learning activities, instructors may find it difficult to stimulate excitement about science in their students, who are typically non-major and nontraditional. I present two different approaches for effectively incorporating research into the community college setting that each rely on partnerships with other institutions. The first of these is a more traditional approach for providing research experiences to undergraduate students, though such experiences are limited at community colleges, and involves student interns working on a research project under the supervision of a faculty member. Specifically, students participate in a water quality assessment study of two local bayous. Students work on different aspects of the project, including water sample collection, bio-assay incubation experiments, water quality sample analysis, and collection and identification of phytoplankton. Over the past four years, nine community college students, as well as two undergraduate students and four graduate students from the local four-year university have participated in this research project. Aligning student and faculty research provides community college students with the unique opportunity to participate in the process of active science and contribute to "real" scientific research. Because students are working in a local watershed, these field experiences provide a valuable "place-based" educational opportunity. The second approach links cutting-edge oceanographic

  16. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system

    International Nuclear Information System (INIS)

    Varentsov, Victor; Wada, Michiharu

    2004-01-01

    Here we present results of the further development of two novel ideas in the field of slow RI-beams production. They are a fair-wind gas cell concept for big-size high-pressure buffer gas cells and a new approach to the extraction system. For this purpose, detailed gas dynamic simulations based on the solution of a full system of time-dependent Navier-Stokes equations have been performed for both the fair-wind gas cell of 500 mm length at 1 bar helium buffer gas pressure and the RF-funnel extraction system at low buffer gas pressure. The results of gas dynamic calculations were used for detailed microscopic Monte Carlo ion-beam trajectory simulations under the combined effect of the buffer gas flow and electric fields of the RF-funnels. The obtained results made it apparent that the use of the fair-wind gas cell concept and extraction RF-funnels look very promising for production of high-quality low-energy RI-beams

  17. Breakout Session: Empowering Fair Use Decisions in Higher Education: Developing Copyright Instruction for 90 Minutes or Less. Presented by Ben Harnke, Education & Reference Librarian, the University of Colorado Anschutz Medical Campus Health Sciences Library, John Jones, Instruction & Curriculum Librarian, the University of Colorado Anschutz Medical Campus Health Sciences Library, and Meghan Damour, Reference Intern, the University of Colorado Anschutz Medical Campus Health Sciences Library.

    Directory of Open Access Journals (Sweden)

    Jennifer Mayer

    2018-02-01

    Full Text Available The presenters shared their experiences and strategies for effective fair use instruction for researchers and faculty members at the University of Colorado Anschutz Medical Campus. The session featured multiple discussion prompts, in order to allow for audience participation. Specific themes and practical tips about fair use instruction included obstacles and challenges, developing the fair use class session, and planning and logistics. Links to supplementary presentation material and tools are provided.

  18. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  19. Hadron Physics at FAIR

    International Nuclear Information System (INIS)

    Wiedner, Ulrich

    2011-01-01

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  20. Children develop a veil of fairness.

    Science.gov (United States)

    Shaw, Alex; Montinari, Natalia; Piovesan, Marco; Olson, Kristina R; Gino, Francesca; Norton, Michael I

    2014-02-01

    Previous research suggests that children develop an increasing concern with fairness over the course of development. Research with adults suggests that the concern with fairness has at least 2 distinct components: a desire to be fair and a desire to signal to others that they are fair. We explore whether children's developing concern with behaving fairly toward others may in part reflect a developing concern with appearing fair to others. In Experiments 1 and 2, most 6- to 8-year-old children behaved fairly toward others when an experimenter was aware of their choices; fewer children opted to behave fairly, however, when they could be unfair to others yet appear fair to the experimenter. In Experiment 3, we explored the development of this concern with appearing fair by using a wider age range (6- to 11-year-olds) and a different method. In this experiment, children chose how to assign a good or bad prize to themselves and another participant by either unilaterally deciding who would get each prize or using a fair procedure--flipping a coin in private. Older children were much more likely to flip the coin than younger children, yet were just as likely as younger children to assign themselves the good prize by reporting winning the coin flip more than chance would dictate. Overall, the results of these experiments suggest that as children grow older they become increasingly concerned with appearing fair to others, which may explain some of their increased tendency to behave fairly.

  1. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    accessible with the availability of the Light Microscopy Module (LMM) on ISS. To meet these goals, the ACE experiment is being built-up in stages, with the availability of confocal microscopy being the ultimate objective. Supported by NASAs Physical Sciences Research Program, ESAESTEC, and the authors respective governments.

  2. The Longitudinal Analysis of Elementary School Pupils’ Science Competition Experience, Intrinsic Motivation and Creativity Growth

    Directory of Open Access Journals (Sweden)

    Chia-Chun Hsiao

    2014-12-01

    Full Text Available Comparing students who have participated in Taiwan International Science Fair and those who have not, this study aims to understand the creativity development between the ones with creativity trainings for participating in the Fair and the ones who did not participate in science fair and did not receive any related trainings. Furthermore, this study intends to investigate the effects of intrinsic motivation on the development of creativity between the two groups. From National Taiwan Science Education Center, 208 student participants of the 41st-50th Fair and 871 non-participants were sampled through their teachers who voluntarily participated in this study. With growth model analysis in Hierarchical Linear Modeling, individual differences in scientific creativity between science fair participants and non-participants were found and its growth was developed distinctively. Students who participated in Taiwan International Science Fair presented downward development in scientific creativity and then upward, while the non-participants revealed upward then downward development. In regard to intrinsic motivation, science fair participants showed positive effects of Self-efficacy and Internal value on creativity, while their intrinsic motivation presents moderating effects on the rapid growth of creativity. Contrarily, intrinsic motivation did not appear to have any effects on non-participants. Based on the research outcomes, relevant suggestions are further proposed.

  3. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  4. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  5. Do information, price, or morals influence ethical consumption? A natural field experiment and customer survey on the purchase of Fair Trade coffee.

    Science.gov (United States)

    Andorfer, Veronika A; Liebe, Ulf

    2015-07-01

    We address ethical consumption using a natural field experiment on the actual purchase of Fair Trade (FT) coffee in three supermarkets in Germany. Based on a quasi-experimental before-and-after design the effects of three different treatments - information, 20% price reduction, and a moral appeal - are analyzed. Sales data cover actual ethical purchase behavior and avoid problems of social desirability. But they offer only limited insights into the motivations of individual consumers. We therefore complemented the field experiment with a customer survey that allows us to contrast observed (ethical) buying behavior with self-reported FT consumption. Results from the experiment suggest that only the price reduction had the expected positive and statistically significant effect on FT consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. PROTON MICROSCOPY AT FAIR

    International Nuclear Information System (INIS)

    Merrill, F. E.; Mariam, F. G.; Golubev, A. A.; Turtikov, V. I.; Varentsov, D.

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and a facility has been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international effort has investigated a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located in Darmstadt, Germany. This new Proton microscope for FAIR(PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. It is also proposed to install the PRIOR system at the GSI Helmholtzzentrum fuer Schwerionenforschung before installation at FAIR for dynamic experiments with different drivers including high explosives, pulsed power and lasers. The design of the proton microscope and expected radiographic performance is presented.

  7. Questions of fairness and anti-doping in US cycling: The contrasting experiences of professionals and amateurs

    Science.gov (United States)

    Henning, April D.; Dimeo, Paul

    2015-01-01

    Abstract The focus of researchers, media and policy on doping in cycling is often limited to the professional level of the sport. However, anti-doping test results since 2001 demonstrate that banned substances are also used by US cyclists at lower levels of the sport, necessitating a broader view of the patterns and motivations of substance use within the sport. In this article, we describe and explain the doping culture that has emerged in domestic US cycling among amateur and semi-professionals. Through analysis of records from sports governing bodies and journalistic reports, we assess the range of violation types and discuss the detection and punishing of riders who were not proven to have intended to cheat but became “collateral damage” in the war on doping. We argue that the phenomenon of doping is more complex than what has been shown to occur in elite sport, as it includes a wider variety of behaviours, situations and motivations. We develop fresh insights by examining cases where doping has been accidental, intrinsically motivated, non-performance enhancing or the result of prescribed medical treatments banned by anti-doping authorities. Such trends call into question the fairness of anti-doping measures, and we discuss the possibility of developing localised solutions to testing and sanctioning amateur athletes. PMID:26692658

  8. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fančovičová, Jana; Erdoğan, Mehmet; Prokop, Pavol

    2010-12-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher's enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students' conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may "make a difference" towards influencing high school students' positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

  9. Fair Play: A Study of Scientific Workforce Trainers' Experience Playing an Educational Video Game about Racial Bias

    Science.gov (United States)

    Katz, Anna; Carnes, Molly; Gutierrez, Belinda; Savoy, Julia; Samuel, Clem; Filut, Amarette; Pribbenow, Christine Maidl

    2017-01-01

    Explicit racial bias has decreased in the United States, but racial stereotypes still exist and conspire in multiple ways to perpetuate the underparticipation of Blacks in science careers. Capitalizing on the potential effectiveness of role-playing video games to promote the type of active learning required to increase awareness of and reduce…

  10. Fair Value or Market Value?

    Directory of Open Access Journals (Sweden)

    Bogdan Cosmin Gomoi

    2014-12-01

    Full Text Available When taking into consideration the issue of defining the “fair value” concept, those less experimented in the area often fall in the “price trap”, which is considered as an equivalent of the fair value of financial structures. This valuation basis appears as a consequence of the trial to provide an “accurate image” by the financial statements and, also, as an opportunity for the premises offered by the activity continuing principle. The specialized literature generates ample controversies regarding the “fair value” concept and the “market value” concept. The paper aims to debate this issue, taking into account various opinions.

  11. CERN Book fair

    CERN Multimedia

    CERN Central Library and IT Department Bookshop

    2004-01-01

    The CERN Library, in conjunction with the IT Department Bookshop, is organizing a book fair on the 28th and 29th October. Some 15 major publishers will be represented, including 6 who will be here in person, and more than 700 of their latest titles will be on display (for sale or order). The major topics covered will be computing, physics, technology, mathematics, engineering and popular science. Those present at this event will include Alpha Science, Cambridge University Press, Elsevier, Institute of Physics, Microsoft Press, O'Reilly, OLF Switzerland, Oxford University Press, McGraw-Hill, Springer, Pearson, Thali Switzerland, Wiley, World Scientific and Ebooks Corporation. The fair will take place on the first floor of the Main Building (bldg.60), Salle des Pas Perdus, and will be open from 10.00 to 17.00 on both days. In addition, EBooks Corporation will describe their electronic book system; insight into this is available at http://www.eblib.com/ We look forward to your support for this initiative. Sh...

  12. What makes a good experiment ? reasons and roles in science

    CERN Document Server

    Franklin, Allan

    2016-01-01

    What makes a good experiment? Although experimental evidence plays an essential role in science, as Franklin argues, there is no algorithm or simple set of criteria for ranking or evaluating good experiments, and therefore no definitive answer to the question. Experiments can, in fact, be good in any number of ways: conceptually good, methodologically good, technically good, and pedagogically important. And perfection is not a requirement: even experiments with incorrect results can be good, though they must, he argues, be methodologically good, providing good reasons for belief in their results. Franklin revisits the same important question he posed in his 1981 article in the British Journal for the Philosophy of Science, when it was generally believed that the only significant role of experiment in science was to test theories. But experiments can actually play a lot of different roles in science—they can, for example, investigate a subject for which a theory does not exist, help to articulate an existing ...

  13. FAIR-share

    CERN Multimedia

    2009-01-01

    Twenty-seven engineers involved in the FAIR project in Germany recently spent three days at CERN. The purpose of their visit: tour ALICE and meet with CERN engineers. This marks the start of a close cooperation. The FAIR project engineers and their CERN counterparts.If you want to build a new particle accelerator and wish to benefit from existing expertise, who do you go to see? Well… why not go straight to CERN? That’s what this group of 27 engineers did. They are working on a new accelerator project, the Facility for Antiproton and Ion Research (FAIR), to be built at the heavy-ion research centre GSI located near Darmstadt, Germany. Representing a variety of disciplines, from manufacturing to architecture, they will be responsible for making the project a reality. The visit was organised from 14-16 October, making it possible to include a tour of the ALICE experiment prior to the re-start of the LHC. However, the main goal was ...

  14. Taking our own medicine: on an experiment in science communication.

    Science.gov (United States)

    Horst, Maja

    2011-12-01

    In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.

  15. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  16. Validity and Fairness

    Science.gov (United States)

    Kane, Michael

    2010-01-01

    This paper presents the author's critique on Xiaoming Xi's article, "How do we go about investigating test fairness?," which lays out a broad framework for studying fairness as comparable validity across groups within the population of interest. Xi proposes to develop a fairness argument that would identify and evaluate potential fairness-based…

  17. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  18. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  19. Mapping the entangled ontology of science teachers’ lived experience

    DEFF Research Database (Denmark)

    Daugbjerg, Peer Schrøder; de Freitas, E.; Valero, Paola

    2015-01-01

    , the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw...... the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish primary science teachers—Erik, Jane and Tina—, we look for how their self-reported lived experiences become entangled with their content knowledge......In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers’ ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely...

  20. Strategy intervention for the evolution of fairness.

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    Full Text Available The 'irrational' preference for fairness has attracted increasing attention. Although previous studies have focused on the effects of spitefulness on the evolution of fairness, they did not consider non-monotonic rejections shown in behavioral experiments. In this paper, we introduce a non-monotonic rejection in an evolutionary model of the Ultimatum Game. We propose strategy intervention to study the evolution of fairness in general structured populations. By sequentially adding five strategies into the competition between a fair strategy and a selfish strategy, we arrive at the following conclusions. First, the evolution of fairness is inhibited by altruism, but it is promoted by spitefulness. Second, the non-monotonic rejection helps fairness overcome selfishness. Particularly for group-structured populations, we analytically investigate how fairness, selfishness, altruism, and spitefulness are affected by population size, mutation, and migration in the competition among seven strategies. Our results may provide important insights into understanding the evolutionary origin of fairness.

  1. Are the FAIR Data Principles Fair?

    OpenAIRE

    Dunning, Alastair; de Smaele, Madeleine; Boehmer, Jasmin

    2017-01-01

    Presentation given at IDCC17 about FAIR data research done by Research Data Services of TU Delft, on 22nd February 2018. Relates to practice paper: Dunning, Alastair, de Smaele, Madeleine, & Böhmer, Jasmin. (2017, January 31). Are the FAIR Data Principles fair?. Zenodo. http://doi.org/10.5281/zenodo.321423  Relates to data-set: Dunning, A.C. (Alastair); de Smaele, M.M.E. (Madeleine); Böhmer, J.K. (Jasmin) (2017) Evaluation of data repositories based on the FAIR Principles for ...

  2. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  3. Material science experiments on the Atlas Facility

    International Nuclear Information System (INIS)

    Keinigs, Rhonald K.; Atchison, Walter L.; Faehl, Rickey J.; Lindemuth, Irvin R.; Anderson, Wallace E.; Bartsch, Robert Richard; Flower-Maudlin, Elane C.; Hammerberg, James E.; Holtkamp, David B.; Jones, Michael E.; Kyrala, George A.; Oro, David M.; Parker, Jerald V.; Preston, Dean L.; Reinovsky, Robert E.; Scudder, David W.; Sheehey, Peter T.; Shlacter, Jack S.; Stokes, John L.; Taylor, Antoinette J.; Tonks, Davis L.; Turchi, Peter J.

    2001-01-01

    Three material properties experiments that are to be performed on the Atlas pulsed power facility are described; friction at sliding metal interfaces, spallation and damage in convergent geomety, and plastic flow at high strain and high strain rate. Construction of this facility has been completed and experiments in high energy density hydrodynamics and material dynamics will begin in 2001.

  4. Studies on multigap resistive plate chamber prototypes for the new NeuLAND detector at the R3B experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Elvers, Michael; Endres, Janis; Zilges, Andreas [IKP, Universitaet Koeln (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Bemmerer, Daniel; Stach, Daniel; Wagner, Andreas; Yakorev, Dmitry [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector is part of the R3B experiment at FAIR and will detect neutrons between 0.2 and 1 GeV. The high energy neutrons are converted to charged particles, mainly protons, which are detected by Multigap Resistive Plate Chambers (MRPC). For the detector, a time resolution of {sigma}{sub t} < 100 ps and a position resolution of {sigma}{sub x,y,z} {approx}1 cm is required for given flight paths in the range from 10 to 35 m. An active area of 2 x 2 m{sup 2} of the neutron detector at a distance of 12.5 m to the target will match the angular acceptance of {+-}80 mrad for the neutrons defined by the gap of the superconducting dipole magnet. The salient features of the prototypes are described, as well as electrical measurements and studies with cosmic rays.

  5. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  6. WOLF REXUS EXPERIMENT - European Planetary Science Congress

    Science.gov (United States)

    Buzdugan, A.

    2017-09-01

    WOLF experiment is developing a reaction wheel-based control system, effectively functioning as active nutation damper. One reaction wheel is used to reduce the undesirable lateral rates of spinning cylindrically symmetric free falling units, ejected from a sounding rocket. Once validated in REXUS flight, the concept and the design developed during WOLF experiment can be used for other application which require a flat spin of the free falling units.

  7. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Zyzak, Maksym

    2016-07-07

    Modern experiments in heavy ion collisions operate with huge data rates that can not be fully stored on the currently available storage devices. Therefore the data flow should be reduced by selecting those collisions that potentially carry the information of the physics interest. The future CBM experiment will have no simple criteria for selecting such collisions and requires the full online reconstruction of the collision topology including reconstruction of short-lived particles. In this work the KF Particle Finder package for online reconstruction and selection of short-lived particles is proposed and developed. It reconstructs more than 70 decays, covering signals from all the physics cases of the CBM experiment: strange particles, strange resonances, hypernuclei, low mass vector mesons, charmonium, and open-charm particles. The package is based on the Kalman filter method providing a full set of the particle parameters together with their errors including position, momentum, mass, energy, lifetime, etc. It shows a high quality of the reconstructed particles, high efficiencies, and high signal to background ratios. The KF Particle Finder is extremely fast for achieving the reconstruction speed of 1.5 ms per minimum-bias AuAu collision at 25 AGeV beam energy on single CPU core. It is fully vectorized and parallelized and shows a strong linear scalability on the many-core architectures of up to 80 cores. It also scales within the First Level Event Selection package on the many-core clusters up to 3200 cores. The developed KF Particle Finder package is a universal platform for short- lived particle reconstruction, physics analysis and online selection.

  8. Online selection of short-lived particles on many-core computer architectures in the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Zyzak, Maksym

    2016-01-01

    Modern experiments in heavy ion collisions operate with huge data rates that can not be fully stored on the currently available storage devices. Therefore the data flow should be reduced by selecting those collisions that potentially carry the information of the physics interest. The future CBM experiment will have no simple criteria for selecting such collisions and requires the full online reconstruction of the collision topology including reconstruction of short-lived particles. In this work the KF Particle Finder package for online reconstruction and selection of short-lived particles is proposed and developed. It reconstructs more than 70 decays, covering signals from all the physics cases of the CBM experiment: strange particles, strange resonances, hypernuclei, low mass vector mesons, charmonium, and open-charm particles. The package is based on the Kalman filter method providing a full set of the particle parameters together with their errors including position, momentum, mass, energy, lifetime, etc. It shows a high quality of the reconstructed particles, high efficiencies, and high signal to background ratios. The KF Particle Finder is extremely fast for achieving the reconstruction speed of 1.5 ms per minimum-bias AuAu collision at 25 AGeV beam energy on single CPU core. It is fully vectorized and parallelized and shows a strong linear scalability on the many-core architectures of up to 80 cores. It also scales within the First Level Event Selection package on the many-core clusters up to 3200 cores. The developed KF Particle Finder package is a universal platform for short- lived particle reconstruction, physics analysis and online selection.

  9. FAIR - Cosmic matter in the laboratory

    International Nuclear Information System (INIS)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-01-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper and gives an update of former publications. (author)

  10. FAIR - Cosmic Matter in the Laboratory

    Science.gov (United States)

    Stöcker, Horst; Stöhlker, Thomas; Sturm, Christian

    2015-06-01

    To explore cosmic matter in the laboratory - this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser - or into neutron star cores by probing the highest baryon densities in relativistic nucleus-nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper [4] and gives an update of former publications [5] - [12].

  11. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  12. Science Experiences among Female Athletes: Race Makes a Difference

    Science.gov (United States)

    Kraus, Rebecca S.; Hanson, Sandra L.

    Sport participation is increasingly seen as a resource with considerable physical, social, and academic benefits. As a new millennium begins with girls more visible in sport, an important question is whether all girls reap these benefits. Although general academic benefits of sport have been shown, the authors' earlier work showed that experience in the male sport domain benefits young women in the elite (often male) science curriculum. Competition, self-esteem, and other individual resources gained through sport are potential sources of success in the similarly competitive male realm of science. In this research, the authors used critical feminist theory to guide their examination of racial and ethnic variations in the relation between sport participation and science experiences for young women. Data from the nationally representative National Education Longitudinal Study were used to explore the impact of sport participation in the 8th and 10th grades on 10th grade science achievement (measured by science grades and standardized test scores) and course taking for African American, Hispanic, and White women. The findings revealed that sport participation has some positive consequences for the science experiences of each of the groups of women. It also has some negative consequences, although the positive consequences outnumber the negative consequences for Hispanic and White, but not African American, women. Sport in 10th grade, especially competitive varsity sport, is most likely to have positive consequences. The findings revealed that each of the groups experiences different routes to success in science, and sport participation is present at some level in each of these routes. A consideration of multiple areas of science experience is important for understanding the connections between race and ethnicity, sport, and science for young women. Unique sociocultural contexts are used to attempt to understand these findings, and implications are discussed.

  13. CERN Scientific Book Fair 2013

    CERN Multimedia

    CERN Library

    2013-01-01

    The CERN Bookshop and CERN Library invite you to attend the 2013 CERN Book Fair, a two-day scientific event offering you the opportunity to meet key publishers and to browse and purchase books at significant discounts.   Key publishers will present a selection of titles in physics, technology, mathematics, engineering, computing and popular science. You are welcome to come along and meet the publishers’ representatives or simply have a look at the books on sale. The fair will take place in the Main Building (Bldg. 500) on the ground floor near Restaurant 1 on Monday 9 and Tuesday 10 September. Participating or represented publishers include: Oxford University Press, Princeton University Press, Springer, Wiley, and World Scientific-Imperial College Press. Fair opening times:  - Monday 9 September 9:00 - 18:00  - Tuesday 10 September 9:00 - 18:00

  14. CERN scientific book fair 2010

    CERN Document Server

    CERN Library

    2010-01-01

    The CERN Bookshop and CERN Library invite you to attend the 2010 CERN Book Fair, a two-day scientific event offering you the opportunity to meet key publishers and to browse and purchase books at significant discounts.   Some twelve companies will be present and will bring with them a selection of titles in physics, technology, mathematics, engineering, computing and popular science. You are welcome to come along and meet the publishers’ representatives or simply have a look to the books on offer. The Fair will take place in the Main Building (bldg. 500) on the ground floor near the Restaurant 1 on Tuesday 7th and Wednesday 8th September. Participating or represented publishers include: Cambridge University Press, EPFL Press – PPUR, Oxford University Press, Imperial College Press, McGraw-Hill, Oxford University Press, Pearson Education, Princeton University Press, Springer, Taylor and Francis, Wiley, World Scientific. Fair opening times: Tuesday 7 September 9:00 &ndash...

  15. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  16. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  17. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  18. Bionic Hearing: the Science and the Experience

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Cochlear implants are the first device to successfully restore neural function.  They have instigated a popular but controversial revolution in the treatment of deafness, and they serve as a model for research in neuroscience and biomedical engineering.  After a visual tour of the physiology of natural hearing the function of cochlear implants will be described in the context of electrical engineering, psychophysics, clinical evaluation, and my own personal experience.  The audience will have the opportunity to experience speech and music heard through a cochlear implant. The social implications of cochlear implantation and the future outlook for auditory prostheses will also be discussed.                              ...

  19. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Sorokin, Iurii

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10 14 n eq /cm 2 (n eq -neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the amplitude response on

  20. Characterization of silicon microstrip sensors, front-end electronics, and prototype tracking detectors for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, Iurii

    2013-07-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryonic densities. The matter at the extreme conditions will be studied in collisions of a heavy ion beam with a fixed heavy element target. The present work is devoted to the development of the main component of the CBM experiment - the Silicon Tracking System (STS). The STS has to enable reconstruction of up to 1000 charged particle tracks per nucleus-nucleus interaction at the rate of up to 10 MHz, provide a momentum resolution Δp/p of 1 %, and withstand the radiation load of up to 10{sup 14} n{sub eq}/cm{sup 2} (n{sub eq}-neutron equivalent). The STS will be based on double-sided silicon microstrip sensors, that will be arranged in 8 planes in the aperture of the dipole magnet. Selftriggering readout electronics will be located on the periphery of the detecting planes, and connected to the sensors with low mass microcables. In the stage of R and D, as well as in the stages of pre-series and series production, characterization of the sensors, of the front-end electronics, and of the complete detector modules has to be performed. In the present work the required techniques were developed, and the performance of the latest detector prototypes was evaluated. A particular attention is paid to evaluation of the signal amplitude, as it is one of the most important detector characteristics. Techniques for measuring the passive electrical characteristics of the sensors were developed. These include: the coupling and the interstrip capacitances, the interstrip resistance, the bias resistance, the strip leakage current, the bulk capacitance, and the bulk leakage current. The techniques will be applied for the quality assurance of the sensors during the pre-series and the series production. Extensive characterization of the prototype readout chip, n-XYTER, was performed. The register settings were optimized, and the dependence of the

  1. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  2. Modeling event building architecture for the triggerless data acquisition system for PANDA experiment at the HESR facility at FAIR/GSI

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    A novel architecture is being proposed for the data acquisition and trigger system for PANDA experiment at the HESR facility at FAIR/GSI. The experiment will run without the hardware trigger signal and use timestamps to correlate detector data from a given time window. The broad physics program in combination with high rate of 2 10^7 interactions require very selective filtering algorithms which access information from almost all detectors. Therefore the effective filtering will happen later than it used to in today's systems ie after the event building. To assess that, the complete architecture will be built of two stages: the data concentrator stage providing event building and the rate reduction stage. For the former stage, which allows to switch 100 GB/s of event fragments to perform event building, we propose two layers of ATCA crates filled with compute nodes - modules designed at University of Giessen for trigger and data acquisition systems. Each board is equipped with 5 Virtex4 FX60 FPG...

  3. Modeling event building architecture for the triggerless data acquisition system for PANDA experiment at the HESR facility at FAIR/GSI

    International Nuclear Information System (INIS)

    Korcyl, K; Konorov, I; Kühn, W; Schmitt, L

    2012-01-01

    A novel architecture is being proposed for the data acquisition and trigger system of the PANDA experiment at the HESR facility at FAIR/GSI. The experiment will run without hardware trigger signal using timestamps to correlate detector data from a given time window. The broad physics program in combination with the high rate of 2 * 10 7 interactions per second requires very selective filtering algorithms accessing information from many detectors. Therefore the effective filtering will happen later than in today's systems ie. after the event building. To assess that, the complete architecture will be built of two stages: the data concentrator stage providing event building and the rate reduction stage. For the former stage, which requires a throughput of 100 GB/s to perform event building, we propose two layers of ATCA crates filled with Compute Nodes - modules designed at IHEP and University of Giessen for trigger and data acquisition systems. Currently each board is equipped with 5 Virtex4 FX60 FPGAs and high bandwidth connectivity is provided by 8 front panel RocketIO ports and 12 backplane ports for the inter-module communication. We designed simplified models of the components of the architecture and using the SystemC library as support for the discrete event simulations, demonstrate the expected throughput of the full-size system. We also show impact of some architectural choices and key parameters on the architecture's performance.

  4. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  5. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  6. AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS’ SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Andrea C. Burrows

    2016-04-01

    Full Text Available Twenty-three pre-collegiate educators of elementary students (ages 5-10 years and secondary students (ages 11-18 years attended a two-week science, technology, engineering, and mathematics (STEM astronomy focused professional development in the summer of 2015 with activities focused on authentic science experiences, inquiry, and partnership building. ‘Authentic’ in this research refers to scientific skills and are defined. The study explores the authentic science education experience of the pre-collegiate educators, detailing the components of authentic science as seen through a social constructionism lens. Using qualitative and quantitative methods, the researchers analyzed the successes and challenges of pre-collegiate science and mathematics educators when immersed in STEM and astronomy authentic science practices, the educators’ perceptions before and after the authentic science practices, and the educators’ performance on pre to post content tests during the authentic science practices. Findings show that the educators were initially engaged, then disengaged, and then finally re-engaged with the authentic experience. Qualitative responses are shared, as are the significant results of the quantitative pre to post content learning scores of the educators. Conclusions include the necessity for PD team delivery of detailed explanations to the participants - before, during, and after – for the entire authentic science experience and partnership building processes. Furthermore, expert structure and support is vital for participant research question generation, data collection, and data analysis (successes, failures, and reattempts. Overall, in order to include authentic science in pre-collegiate classrooms, elementary and secondary educators need experience, instruction, scaffolding, and continued support with the STEM processes.

  7. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  8. Academic attainment and the high school science experiences among high-achieving African American males

    Science.gov (United States)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  9. World Experience in Using Education and Science in the Process of Building the State Intellectual Potential

    Directory of Open Access Journals (Sweden)

    Krupka Mykhaylo I.

    2015-11-01

    Full Text Available The aim of the article is to analyze the world experience in using education and science in the processes of increasing the intellectual potential of the state and prospects of its application in Ukraine. The article describes features of the continental, Atlantic and the East Asian models of higher education management with emphasis on the key points, which can be useful for reforming the Ukrainian system of education. It has been noted that the problem of higher education quality in Ukraine lies in fundamental principles of its functioning, because development of the national education system for a long time took place under conditions of administrative system, while the European system of education is built on principles of competition and free market. On the basis of comparative characteristics of sources of finance in the United States there has been determined a dominant role of the federal government and it has been found that among the branches of science the leading positions are occupied by the life sciences. The experience of reforming science in countries of the Central and Eastern Europe, which took place on the model of functioning of the research institutes and research process in the EU countries, has been analyzed. Particular attention is paid to the successful experience of reforming the education and science in China. Taking into account the international experience the author has substantiated the directions of increasing the intellectual potential in Ukraine by deepening the integration of education and science, in particular: the creation of a wide network of research universities and conducting of a fair share of fundamental research on their base; accelerated development of public-private partnership in education and science; quick updating of the curricula adequate to the requirements of time and introduction of interdisciplinary courses; competitive financing of scientific programs with participation of the state and

  10. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  11. Reconstructing Iconic Experiments in Electrochemistry: Experiences from a History of Science Course

    Science.gov (United States)

    Eggen, Per-Odd; Kvittingen, Lise; Lykknes, Annette; Wittje, Roland

    2012-01-01

    The decomposition of water by electricity, and the voltaic pile as a means of generating electricity, have both held an iconic status in the history of science as well as in the history of science teaching. These experiments featured in chemistry and physics textbooks, as well as in classroom teaching, throughout the nineteenth and twentieth…

  12. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  13. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  14. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe University, Frankfurt am Main (Germany); GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Eschke, Juergen [GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Facility for Anti-proton and Ion Research, GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) of the CBM experiment at FAIR is composed of 8 tracking stations comprising of 1292 double-sided silicon micro-strip sensors. A Laser Test System (LTS) has been developed for the quality assurance of prototype sensors. The aim is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. Several prototype sensors with strip pitch of 50 and 58 μm have been tested, as well as a prototype module with realistic mechanical arrangement of sensor and read-out cables. The LTS is designed to measure sensor response in an automatized procedure across the sensor with focused laser beam (spot-size ∼ 12 μm, wavelength = 1060 nm). The pulse with duration (∼ 10 ns) and power (∼ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Results from laser scans of prototype sensors and detector module are reported.

  15. Fairness and nanotechnology concern.

    Science.gov (United States)

    McComas, Katherine A; Besley, John C

    2011-11-01

    Research suggests that fairness perceptions matter to people who are asked to evaluate the acceptability of risks or risk management. Two separate national random surveys (n = 305 and n = 529) addressed Americans' concerns about and acceptance of nanotechnology risk management in the context of the degree to which they view scientists and risk managers as fair. The first survey investigated general views about scientists across four proposed dimensions of fairness (distributional, procedural, interpersonal, and informational). The results show that respondents who believe that the outcomes of scientific research tend to result in unequal benefits (distributional fairness) and that the procedures meant to protect the public from scientific research are biased (procedural fairness) were more concerned about nanotechnology. Believing scientists would treat them with respect (interpersonal fairness) and ensure access to information (informational fairness) were not significant predictors of concern. The second study also looked at these four dimensions of fairness but focused on perceptions of risk managers working for government, universities, and major companies. In addition to concern, it also examined acceptance of nanotechnology risk management. Study 2 results were similar to those of study 1 for concern; however, only perceived informational fairness consistently predicted acceptance of nanotechnology risk management. Overall, the study points to the value of considering fairness perceptions in the study of public perceptions of nanotechnology. © 2011 Society for Risk Analysis.

  16. Future Facility: FAIR at GSI

    International Nuclear Information System (INIS)

    Rosner, Guenther

    2007-01-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations

  17. Evaluating lineup fairness: Variations across methods and measures

    OpenAIRE

    Mansour, Jamal K; Beaudry, Jennifer L; Kalmet, Natalie; Bertrand, Michelle I; Lindsay, R C L

    2017-01-01

    Triers of fact sometimes consider lineup fairness when determining the suggestiveness of an identification procedure. Likewise, researchers often consider lineup fairness when comparing results across studies. Despite their importance, lineup fairness measures have received scant empirical attention and researchers inconsistently conduct and report mock-witness tasks and lineup fairness measures. We conducted a large-scale, online experiment (N = 1010) to examine how lineup fairness measures ...

  18. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  19. Madisonian Fair Use

    OpenAIRE

    Madison, Michael

    2017-01-01

    This short essay reflects on developments in the law, scholarship, and practice of fair use since the publication in 2004 of an earlier article on patterns in fair use practice and adjudication. It synthesizes many of those developments in the idea of “Madisonian” fair use, borrowing the separation of powers metaphor from James Madison’s work on the US Constitution and applying it, lightly and in a preliminary way, to copyright.

  20. Fair market value

    International Nuclear Information System (INIS)

    Williams, J.

    1991-01-01

    This paper presents an examination of fair market value concepts as they pertain to producing petroleum properties. conventional petroleum economic theories of fair market value are examined in light of recent work on the market value of long-life reserves. Their work is expanded to show that sellers rely on comparable sales data for estimating FMV. Both results are used to suggest that current practices over-emphasize the discounted cash flow approach to estimating fair market value

  1. Preservice Teachers' Memories of Their Secondary Science Education Experiences

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Fancovicova, Jana; Erdogan, Mehmet; Prokop, Pavol

    2010-01-01

    Understanding preservice teachers' memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers' perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants' memories of…

  2. The Design and Evaluation of Teaching Experiments in Computer Science.

    Science.gov (United States)

    Forcheri, Paola; Molfino, Maria Teresa

    1992-01-01

    Describes a relational model that was developed to provide a framework for the design and evaluation of teaching experiments for the introduction of computer science in secondary schools in Italy. Teacher training is discussed, instructional materials are considered, and use of the model for the evaluation process is described. (eight references)…

  3. ATLAS Experiment: Collaboration at the frontiers of science and technology

    CERN Document Server

    2018-01-01

    ATLAS is run by a collaboration of physicists, engineers, technicians and support staff from around the world. It is one of the largest collaborative efforts ever attempted in science, with over 5000 members and almost 3000 scientific authors. The ATLAS Collaboration welcomes new collaborators for long-term engagement in the experiment.

  4. Free riders play fair

    OpenAIRE

    Takikawa, Hirohide

    2012-01-01

    After the demise of the social contract theory, the argument from fair play, which employs the principle of fair play, has been widely acknowledged as one of the most promising ways of justifying political obligation. First, I articulate the most promising version of the principle of fair play. Then, I show that free riders play fair, that is, that their moral fault lies not in unfairness but in the violation of a rule by appealing to the example of three-in-a-boat. Finally, I conclude that e...

  5. Fair Trade - is it really fair?

    Czech Academy of Sciences Publication Activity Database

    Konečný, Tomáš; Mysliveček, Jan

    -, č. 367 (2008), s. 1-53 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : Fair Trade * coffee * price setting Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp367.pdf

  6. NASA's Earth Science Data Systems Standards Process Experiences

    Science.gov (United States)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  7. Fairness is intuitive

    DEFF Research Database (Denmark)

    Cappelen, Alexander W.; Panton, Ulrik Haagen; Tungodden, Bertil

    2016-01-01

    In this paper we provide new evidence showing that fair behavior is intuitive to most people. We find a strong association between a short response time and fair behavior in the dictator game. This association is robust to controls that take account of the fact that response time might be affected...

  8. Fair Package Assignment

    Science.gov (United States)

    Lahaie, Sébastien; Parkes, David C.

    We consider the problem of fair allocation in the package assignment model, where a set of indivisible items, held by single seller, must be efficiently allocated to agents with quasi-linear utilities. A fair assignment is one that is efficient and envy-free. We consider a model where bidders have superadditive valuations, meaning that items are pure complements. Our central result is that core outcomes are fair and even coalition-fair over this domain, while fair distributions may not even exist for general valuations. Of relevance to auction design, we also establish that the core is equivalent to the set of anonymous-price competitive equilibria, and that superadditive valuations are a maximal domain that guarantees the existence of anonymous-price competitive equilibrium. Our results are analogs of core equivalence results for linear prices in the standard assignment model, and for nonlinear, non-anonymous prices in the package assignment model with general valuations.

  9. CERN Scientific Book Fair 2008

    CERN Multimedia

    DSU Unit

    2008-01-01

    The CERN Bookshop and CERN Library invite you to attend the 2008 CERN Book Fair 2008, a three-day scientific book festival offering you the opportunity to meet key publishers and electronic book suppliers and to browse and purchase books at significant discounts. Some ten companies will be participating and will bring with them a selection of titles in physics, technology, mathematics, engineering and popular science. There will also be a number of tie-in events intended to give you an insight into the writing and publishing process from authors within our own community. Come along and meet the authors, discuss your book ideas with the publishers’ representatives or simply browse the books on offer. The Fair will take place in Building 500 in the area near the Main Auditorium, and special presentations (as detailed below) will be held in rooms nearby or in the Library. Participating publishers and book traders include: Cambridge ...

  10. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  11. Do natural science experiments influence public attitudes towards environmental problems?

    International Nuclear Information System (INIS)

    Wallner, A.; Hunziker, M.; Kienast, F.

    2003-01-01

    We investigated the significance of risk assessment studies in the public discussion on CO 2 emissions. Politicians and representatives from the public were interviewed by using the social-science technique of qualitative in-depth interviews. Three different types of attitudes towards natural science were found among politicians. Depending on which attitude a politician holds, risk assessment studies can have an impact on his/her readiness to support environmental policy measures. Regarding lay people, key factors affecting the acceptance of environmental policy measures are knowledge of environmental problems, their impacts on ecosystems or human health as well as direct personal perception of those impacts. Since direct perception is not always possible in everyday life, natural science experiments might be a means for successfully mediating this lacking perception. (author)

  12. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  13. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Science.gov (United States)

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  14. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Directory of Open Access Journals (Sweden)

    E Richard Gold

    2016-12-01

    Full Text Available Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  15. Primatology between feelings and science: a personal experience perspective.

    Science.gov (United States)

    Vitale, Augusto

    2011-03-01

    The aim of this article is to discuss some aspects of the relationship between feelings and primatological science, and how this relationship can influence this particular scientific practice. This point of view is based on the author's personal experience. A sentimental reason to study primatology in the first place will be discussed, and then the existence of a bond between the observer and the observed will be presented as a possible by-product of primatology. The following question is whether a sentimental attitude toward primates is detrimental for good science or is, alternatively, actually leading to better primatological science. As an example, the practice of naming individual monkeys is considered. It is argued that naming monkeys can help by characterizing individuality, and this is likely to improve planning of behavioural observations and welfare of captive individuals. The relationship between the researcher and study subject in biomedical studies is discussed in terms of hierarchy of moral status. Finally, primatology is not unique in the existence of bonds between the observer and the observed, at least from the point of view of the observer. However, primatology is unique because, more than in other cases, it gives greater opportunity for reasoning about different factors surrounding "doing science with animals." This is most probably owing to the phylogenetic closeness primatologists have with their study subjects. Among the different factors involved in making science using animals, the sentimental bond developing between the researcher and study animal can be very influential. 2010 Wiley-Liss, Inc.

  16. Plasma experiments with relevance for other branches of science

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Lozneanu, E.

    2000-01-01

    A new scenario of self-organization, suggested by plasma experiments, is presented as an enlightening model able to illustrate, on some examples, the necessity of a paradigm shift in science. Thus, self-organization at criticality in fusion devices, differential negative resistance of semi-conductors, generation of complex space charge configurations under controllable laboratory conditions and in nature are mentioned as phenomena potentially explicable in the frame of a unique framework in which self-organization is the central concept. (authors)

  17. Hybla Fair event: environmental report

    International Nuclear Information System (INIS)

    Roach, D.R.; Russell, W.L. Jr.

    1975-01-01

    A series of environmental measurements during the Hybla Fair nuclear event were made. Experimenters were unsure of conditions that would be created since there was no closure system and the experiments were close to the source. A variety of temperature, pressure, and load devices were tested. The results will aid in the design and engineering of future close-in diagnostic packages and pipes. (U.S.)

  18. The Dimensions and Impact of Informal Science Learning Experiences on Middle Schoolers' Attitudes and Abilities in Science

    Science.gov (United States)

    Lin, Pei-Yi; Schunn, Christian D.

    2016-01-01

    Learners encounter science in a wide variety of contexts beyond the science classroom which collectively could be quite influential on student attitudes and abilities. But relatively little is known about the relative influence of different forms of informal science experiences, especially for the kinds of experiences that students typically…

  19. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    Science.gov (United States)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  20. Family science: An ethnographic case study of the ordinary science and literacy experiences of one family

    Science.gov (United States)

    McCarty, Glenda M.

    Despite the copious research available on science learning, little is known about ways in which the public engages in free-choice science learning and even fewer studies have focused on how families engage in science to learn about the world around them. The same was true about studies of literacy development in the home until the 1980s when researchers (e.g. Bissex, 1980; Heath, 1983; Taylor, 1983) began documenting the literacy happenings and practices of young children in natural settings. Findings from intensive emergent literacy research studies have challenged traditional approaches to the teaching and learning of literacy, especially drawing attention to the active role children take in their own learning. Drawing upon those early literacy studies, this research project uses ethnographic case study methods along with a naturalistic inquiry approach, to document the daily explorations of one science-oriented family. Over a three year span, I have followed my own family, in our natural setting, through our day-to-day experiences with science and literacy as we seek to mediate and understand the world around us. In doing so, I have explored the ways we have shared knowledge and constructed learning through science books and read alouds, self-initiated inquiry learning, and communication. Throughout the three year research period, I have collected data and documented my own young children's understanding of the nature of science by observing their engagement with world around them.

  1. On fairness and randomness

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2009-01-01

    We investigate the relation between the behavior of non-deterministic systems under fairness constraints, and the behavior of probabilistic systems. To this end, first a framework based on computable stopping strategies is developed that provides a common foundation for describing both fair...... this perspective the question is investigated what probabilistic properties are needed in such an implementation to guarantee (with probability one) certain required fairness properties in the behavior of the probabilistic system. Generalizing earlier concepts of ε -bounded transition probabilities, we introduce...

  2. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs

    Directory of Open Access Journals (Sweden)

    Jackie Phinney

    2018-01-01

    Conclusions: The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  3. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    Science.gov (United States)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  4. Mapping the entangled ontology of science teachers' lived experience

    Science.gov (United States)

    Daugbjerg, Peer S.; de Freitas, Elizabeth; Valero, Paola

    2015-09-01

    In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers' ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely, the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw on the relational ontology and intra-action of Karen Barad (J Women Cult Soc 28(3): 801, 2003) as she argues for a "relational ontology" that sees a relation as a dynamic flowing entanglement of a matter and meaning. We combine this with the materialist phenomenological studies of embodiment by SungWon Hwang and Wolff-Michael Roth (Scientific and mathematical bodies, Sense Publishers, Rotterdam, 2011), as they address how the teachers and students are present in the classroom with/in their "living and lived bodies". Our aim is to use theoretical insights from these two different but complementary approaches to map the embodiment of teachers' experiences and actions. We build our understanding of experience on the work of John Dewey (Experience and education, Simon & Schuster, New York, 1938) and also Jean Clandinin and Michael Connelly (Handbook of qualitative research, Sage Publications, California, 2000), leading us to propose three dimensions: settings, relations and continuity. This means that bodies and settings are mutually entailed in the present relation, and furthermore that the past as well as the present of these bodies and settings—their continuity—is also part of the present relation. We analyse the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish

  5. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts....... The first part tackles the cake cutting problem, where the cake is a metaphor for a heterogeneous divisible resource such as land, time, mineral deposits, and computer memory. We study the equilibria of classical protocols and design an algorithmic framework for reasoning about their game theoretic...

  6. Vehicle underbody fairing

    Science.gov (United States)

    Ortega, Jason M.; Salari, Kambiz; McCallen, Rose

    2010-11-09

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  7. Customizing Fair Use Transplants

    Directory of Open Access Journals (Sweden)

    Peter K. Yu

    2018-02-01

    Full Text Available In the past decade, policymakers and commentators across the world have called for the introduction of copyright reform based on the fair use model in the United States. Thus far, Israel, Liberia, Malaysia, the Philippines, Singapore, South Korea, Sri Lanka and Taiwan have adopted the fair use regime or its close variants. Other jurisdictions such as Australia, Hong Kong and Ireland have also advanced proposals to facilitate such adoption. This article examines the increasing efforts to transplant fair use into the copyright system based on the U.S. model. It begins by briefly recapturing the strengths and weaknesses of legal transplants. The article then scrutinizes the ongoing effort to transplant fair use from the United States. Specifically, it identifies eight modalities of transplantation. This article concludes with five lessons that can be drawn from studying the ongoing transplant efforts.

  8. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  9. Summary of 2016 Light Microscopy Module (LMM) Physical Science Experiments on ISS. Update of LMM Science Experiments and Facility Capabilities

    Science.gov (United States)

    Sicker, Ronald J.; Meyer, William V.; Foster, William M.; Fletcher, William A.; Williams, Stuart J.; Lee, Chang-Soo

    2016-01-01

    This presentation will feature a series of short, entertaining, and informative videos that describe the current status and science support for the Light Microscopy Module (LMM) facility on the International Space Station. These interviews will focus on current experiments and provide an overview of future capabilities. The recently completed experiments include nano-particle haloing, 3-D self-assembly with Janus particles and a model system for nano-particle drug delivery. The videos will share perspectives from the scientists, engineers, and managers working with the NASA Light Microscopy program.

  10. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  11. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  12. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  13. EV M-experiment in radiation material science

    International Nuclear Information System (INIS)

    Ganeev, G.Z.; Kislitsin, S.B.; Pyatiletov, Yu.S.; Turkebaev, T.Eh.; Tyupkina, O.G.

    1999-01-01

    To simulate rapid processes in materials, rearrangement at the atomic level, or processes in which the access to the materials is limited or considered to be hazardous, the EV M-experiment is going to be applied more often in the atomic material science (calculating experiment, computer-aided simulation). This paper presents the most important outcomes obtained from the calculating experiment carried out by scientists of the Institute of Nuclear Physics of NNC RK, who are considered to be followers of the scientific school named after Kirsanov V.V. The review consists of the following sections: 1. Simulation of dynamic processes of radiation damage of materials. 2. Simulation of radiation defects in materials. 3. Simulation of radiation defects migration processes in crystals. 4. Simulation of irradiated materials failure and deformation processes

  14. Expanding educational access and opportunities: The globalization and foreign direct investment of multinational corporations and their influence on STEM, project-based learning and the national science and technology fair in schools in Costa Rica

    Science.gov (United States)

    Valdez, Joaquin G.

    The purpose of this qualitative study was to examine the influence of globalization and the foreign direct investment (FDI) of multinational corporations (MNCs) on the curriculum in schools in Costa Rica. The study focused primarily on Science, Technology, Engineering and Mathematics (STEM), Project-Based Learning (PBL), 21st century skills, and the national science and technology fair. The high influx of MNCs such as Intel has changed the global and educational culture of the country increasing the number of knowledge-based workers in Costa Rica. As a result, policy changes have been instituted in education to mirror the demands of sustaining the country's global economy. This study was supported by the creation of three research questions that would attempt to answer 1) the extent that teachers implementing STEM curriculum trace their practices back to policy, globalization, and multinational corporations as well as the extent to which the economic growth of Costa Rica and STEM education are related, 2) how mandating the national science and technology fair has influenced 21st century skills through project-based learning and the use of technology by teachers and its impact on curriculum and instruction, and 3) how has the national science and technology fair policy changed the value of STEM education for students, teachers, and educational leaders. To further understand the outcome of this study, four theoretical frameworks were applied that included, Spring's theory of world educational culture, Friedman's world flatteners, Wagner's 21st century skills and partnerships for 21st century skills, and Slough and Milam's STEM project-based learning theoretical framework. Each framework was applied to support the changes to the educational system; survival skills necessary to compete in the global job market; application of 21st century skills in the classroom and in the science projects students created. A research team comprised of 14 doctoral students, led by Dr

  15. The silicon tracking system of the CBM experiment at FAIR. Development of microstrip sensors and signal transmission lines for a low-mass, low-noise system

    International Nuclear Information System (INIS)

    Singla, Minni

    2014-01-01

    In this thesis, different physical and electrical aspects of silicon microstrip sensors and low-mass multi-line readout cables have been investigated. These silicon microstrip sensors and readout cables will be used in the Silicon Tracking System (STS) of the fixed-target heavy-ion Compressed Baryonic Matter (CBM) experiment which is under development at the upcoming Facility for Antiproton and ion Research (FAIR) in Darmstadt, Germany. The highly segmented low-mass tracking system is a central CBM detector system to resolve the high tracking densities of charged particles originating from beam-target interactions. Considering the low material budget requirement the double-sided silicon microstrip detectors have been used in several planar tracking stations. The readout electronics is planned to be installed at the periphery of the tracking stations along with the cooling system. Low-mass multi-line readout cables shall bridge the distance between the microstrip sensors and the readout electronics. The CBM running operational scenario suggests that some parts of the tracking stations are expected to be exposed to a total integrated particle fluence of the order of 1 x 10 14 n eq /cm 2 . After 1 x 10 14 n eq /cm 2 the damaged modules in the tracking stations will be replaced. Thus radiation hard sensor is an important requirement for the sensors. Moreover, to cope with the high reaction rates, free-streaming (triggerless) readout electronics with online event reconstruction must be used which require high signal-to-noise (SNR) ratio (i.e., high signal efficiency, low noise contributions). Therefore, reduction in noise is a major goal of the sensor and cable development. For better insight into the different aspects of the silicon microstrip sensors and multi-line readout cables, the simulation study has been performed using SYNOPSYS TCAD tools. 3D models of the silicon microstrip sensors and the readout cables were implemented which is motivated by the stereoscopic

  16. All Christians? Experiences of science educators in Northern Ireland

    Science.gov (United States)

    Murphy, Colette; Hickey, Ivor; Beggs, Jim

    2010-03-01

    In this paper we respond to Staver's article (this issue) on an attempt to resolve the discord between science and religion. Most specifically, we comment on Staver's downplaying of difference between Catholics and Protestants in order to focus on the religion-science question. It is our experience that to be born into one or other of these traditions in some parts of the world (especially Northern Ireland) resulted in starkly contrasting opportunities, identities and practices in becoming and being science educators. The paper starts with a short contextual background to the impact of religion on schooling and higher education in Northern Ireland. We then explore the lives and careers of three science/religious educators in Northern Ireland: Catholic (Jim) and Protestant (Ivor) males who are contemporaries and whose experience spans pre-Troubles to post-conflict and a Catholic female (Colette) who moved to Northern Ireland during the Troubles as a teenager. Finally, we discuss the situation regarding the teaching of creationism and evolution in Northern Ireland—an issue has recently generated high public interest. The Chair of the Education Committee of the Northern Ireland Assembly recently stated that "creationism is not for the RE class because I believe that it can stand scientific scrutiny and that is a debate which I am quite happy to encourage and be part of…" (News Letter 2008). It could be the case that the evolution debate is being fuelled as a deliberate attempt to undermine some of the post-conflict collaboration projects between schools and communities in Northern Ireland.

  17. Galaxy Zoo: An Experiment in Public Science Participation

    Science.gov (United States)

    Raddick, Jordan; Lintott, C. J.; Schawinski, K.; Thomas, D.; Nichol, R. C.; Andreescu, D.; Bamford, S.; Land, K. R.; Murray, P.; Slosar, A.; Szalay, A. S.; Vandenberg, J.; Galaxy Zoo Team

    2007-12-01

    An interesting question in modern astrophysics research is the relationship between a galaxy's morphology (appearance) and its formation and evolutionary history. Research into this question is complicated by the fact that to get a study sample, researchers must first assign a shape to a large number of galaxies. Classifying a galaxy by shape is nearly impossible for a computer, but easy for a human - however, looking at one million galaxies, one at a time, would take an enormous amount of time. To create such a research sample, we turned to citizen science. We created a web site called Galaxy Zoo (www.galaxyzoo.org) that invites the public to classify the galaxies. New members see a short tutorial and take a short skill test where they classify galaxies of known types. Once they pass the test, they begin to work with the entire sample. The site's interface shows the user an image of a single galaxy from the Sloan Digital Sky Survey. The user clicks a button to classify it. Each classification is stored in a database, associated with the galaxy that it describes. The site has become enormously popular with amateur astronomers, teachers, and others interested in astronomy. So far, more than 110,000 users have joined. We have started a forum where users share images of their favorite galaxies, ask science questions of each other and the "zookeepers," and share classification advice. In a separate poster, we will share science results from the site's first six months of operation. In this poster, we will describe the site as an experiment in public science outreach. We will share user feedback, discuss our plans to study the user community more systematically, and share advice on how to work with citizen science projects to the mutual benefit of both professional and citizen scientists.

  18. Russian-American Experience in Science Education and Volcanological Research

    Science.gov (United States)

    Eichelberger, J. C.; Gordeev, E. I.; Vesna, E. B.

    2007-12-01

    After five years experience in bringing American students to meet and learn with Russian students in Kamchatka and bringing Russian students to meet and learn with American students in Alaska, it is possible to make some generalizations about the problems and benefits this growing program. Some 200 students, including many from other countries besides the United States and Russian Federation, have now had this experience. The context of their collaboration is the International Volcanological Field School, sponsored by the University of Alaska Fairbanks, Kamchatka State University, and the Institute of Volcanology and Seismology, and also a comparison of Mount St Helens, Bezymianny, and Shiveluch volcanoes under the National Science Foundation's Partnerships in International Research in Education, with important support from the Russian Academy of Sciences, Far East Division. Elements of these two projects are adaptation to unfamiliar, harsh, and remote environments; intensive courses in Russian language, history, geography, and culture; and sharing of research and education experiences among students. The challenges faced by the program are: · Slow and complex visa processes. · Demise of a direct airline connection, necessitating round-the-world travel to go 3000 km. · Adequately communicating to students beforehand the need for physical fitness, mental fortitude in uncomfortable conditions, and patience when bad weather limits mobility. Benefits of the projects have been: · Experiences that students report to be career- and life-changing. · Much more positive perceptions of Russia and Russian people by American students and of America and Americans by Russian students. · Introduction to the "expedition style" volcanology necessary in challenging environments. · Development of long-lasting collaborations and friendships in the context of international science. Students often comment that hearing about what their peers have done or are doing in research at

  19. Egg and a lot of science: an interdisciplinary experiment

    OpenAIRE

    Gayer, M. C.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; T., Rodrigues D.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; Denardin, E. L.G.; Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil; Roehrs, R.; Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, Brazil

    2014-01-01

    Egg and a lot of science: an interdisciplinary experimentGayer, M.C.1,2;Rodrigues, D.T.1,2; Escoto, D.F.1; Denardin, E.L.G.2, Roehrs, R.1,21Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, BrazilIntroduction: How to tell if an egg is rotten? How to calculate the volume of an egg? Because the rotten egg float? Why has this...

  20. Satellite stories: capturing professional experiences of academic health sciences librarians working in delocalized health sciences programs.

    Science.gov (United States)

    Phinney, Jackie; Horsman, Amanda Rose

    2018-01-01

    Health sciences training programs have progressively expanded onto satellite campuses, allowing students the opportunity to learn in communities away from an academic institution's main campus. This expansion has encouraged a new role for librarians to assume, in that a subset of health sciences librarians identify as "satellite librarians" who are permanently located at a distance from the main campus. Due to the unique nature of this role and lack of existing data on the topic, the authors investigated the experiences and perceptions of this unique group of information professionals. An electronic survey was distributed to health sciences librarians via two prominent North American email discussion lists. Questions addressed the librarians' demographics, feelings of social inclusion, technological support, autonomy, professional support, and more. Eighteen surveys were analyzed. While several respondents stated that they had positive working relationships with colleagues, many cited issues with technology, scheduling, and lack of consideration as barriers to feeling socially included at both the parent and local campuses. Social inclusion, policy creation, and collection management issues were subject to their unique situations and their colleagues' perceptions of their roles as satellite librarians. The results from this survey suggest that the role of the academic health sciences librarian at the satellite campus needs to be clearly communicated and defined. This, in turn, will enhance the experience for the librarian and provide better service to the client.

  1. Community Resilience Informed by Science and Experience (C-RISE)

    Science.gov (United States)

    Young Morse, R.; Peake, L.; Bowness, G.

    2017-12-01

    The Gulf of Maine Research Institute is developing an interactive learning experience that engages participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and the changes we see now and that are predicted for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through the connection to the challenge of city planning in our harbor communities. We are leveraging the ESRI Story Maps platform to build rich visualization-based narratives that feature NOAA maps, data and tools. Our program participants work in teams to navigate the content and participate in facilitated group discussions led by our educators. Based on the adult learning experience and in concert with new content being developed for the LabVenture program around the theme of Climate Change, we will develop a learning experience for 5th and 6th graders.Our goal is to immerse 1000+ adults from target communities in Greater Portland region as well as 8000+ middle school students from throughout the state in the experience.

  2. Artificial climate experiment facility in Institute for Environmental Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Shunichi [Department of Radioecology, Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    1999-03-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). `Yamase` condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  3. Artificial climate experiment facility in Institute for Environmental Sciences

    International Nuclear Information System (INIS)

    Hisamatsu, Shunichi

    1999-01-01

    The Institute for Environmental Sciences is now constructing the artificial climate experiment facility (ACEF) to research the effect of climate on movement of elements in the various environments. The ACEF will have one large, and five small artificial climate experiment chambers. The large chamber is designed to simulate climate conditions in all Japan. It will equip systems to simulate sunshine, rainfall (including acid rain), snowfall and fog (including acid fog). 'Yamase' condition will also be reproduced in it. Yamase is a Japanese term describing the characteristic weather condition occurring mainly on the Pacific Ocean side at the northern Japan. While the small chamber will not have rainfall, snowfall and fog systems, radioisotopes will be used in the two small chambers which will be set up in a radioisotope facility. We describe here the outline of the ACEF and the preliminary research programs being undertaken using both kinds of chambers. (author)

  4. The Earth System Science Education Experience: Personal Vignettes

    Science.gov (United States)

    Ruzek, M.; Aron, J.; Maranto, G.; Reider, D.; Wake, C.

    2006-12-01

    Colleges and universities across the country and around the world have embraced the Earth system approach to gain deeper understanding of the interrelationships of processes that define the home planet. The Design Guide for Undergraduate Earth System Science Education, a product of the NASA/USRA Earth System Science Education for the 21st Century Program (ESSE 21), represents a synthesis of community understanding of the content and process of teaching and learning about Earth as a system. The web-based Design Guide serves faculty from multiple disciplines who wish to adopt an ESS approach in their own courses or programs. Illustrating the nine topical sections of the Design Guide are a series of short vignettes telling the story of how ESS is being used in the classroom, how ESS has contributed to institutional change and personal professional development, how ESS is being implemented at minority serving institutions, and the impact of ESS education on student research. Most vignettes are written from a personal perspective and reflect a direct experience with Earth System Science Education. Over forty vignettes have been assembled aiming to put a face on the results of the systemic reform efforts of the past fifteen years of the ESSE programs, documenting the sometimes intangible process of education reform to be shared with those seeking examples of ESS education. The vignettes are a vital complement to the Design Guide sections, and are also available as a separate collection on the Design Guide and ESSE 21 web sites.

  5. The FairRoot framework

    International Nuclear Information System (INIS)

    Al-Turany, M; Bertini, D; Karabowicz, R; Kresan, D; Malzacher, P; Uhlig, F; Stockmanns, T

    2012-01-01

    The FairRoot framework is an object oriented simulation, reconstruction and data analysis framework based on ROOT. It includes core services for detector simulation and offline analysis. The framework delivers base classes which enable the users to easily construct their experimental setup in a fast and convenient way. By using the Virtual Monte Carlo concept it is possible to perform the simulations using either Geant3 or Geant4 without changing the user code or the geometry description. Using and extending the task mechanism of ROOT it is possible to implement complex analysis tasks in a convenient way. Moreover, using the FairCuda interface of the framework it is possible to run some of these tasks also on GPU. Data IO, as well as parameter handling and data base connections are also handled by the framework. Since some of the experiments will not have an experimental setup with a conventional trigger system, the framework can handle also free flowing input streams of detector data. For this mode of operation the framework provides classes to create the needed time sorted input streams of detector data out of the event based simulation data. There are also tools to do radiation studies and to visualize the simulated data. A CMake-CDash based building and monitoring system is also part of the FairRoot services which helps to build and test the framework on many different platforms in an automatic way, including also Continuous Integration.

  6. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  7. Developing fair compensation structures

    International Nuclear Information System (INIS)

    Trousdale, W.J.

    1998-01-01

    The issue of finding an effective way to incorporate Aboriginal values into the process of developing fair compensation structures was discussed. This paper discusses pricing intangible values using dollars, but it was emphasized that 'values' are whatever are important to us. Therefore, in order to achieve fair compensation, creative alternatives that are value-focused should be pursued. In addition to the more straight-forward monetary compensation, compensation could also be about avoiding losses, mitigating adverse impacts, achieving better communication, and promoting cultural understanding. 25 refs., 2 tabs

  8. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  9. Teachers doing science: An authentic geology research experience for teachers

    Science.gov (United States)

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  10. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  11. Science Data Report for the Optical Properties Monitor (OPM) Experiment

    Science.gov (United States)

    Wilkes, D. R.; Zwiener, J. M.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    This science data report describes the Optical Properties Monitor (OPM) experiment and the data gathered during its 9-mo exposure on the Mir space station. Three independent optical instruments made up OPM: an integrating sphere spectral reflectometer, vacuum ultraviolet spectrometer, and a total integrated scatter instrument. Selected materials were exposed to the low-Earth orbit, and their performance monitored in situ by the OPM instruments. Coinvestigators from four NASA Centers, five International Space Station contractors, one university, two Department of Defense organizations, and the Russian space company, Energia, contributed samples to this experiment. These materials included a number of thermal control coatings, optical materials, polymeric films, nanocomposites, and other state-of-the-art materials. Degradation of some materials, including aluminum conversion coatings and Beta cloth, was greater than expected. The OPM experiment was launched aboard the Space Shuttle on mission STS-81 in January 1997 and transferred to the Mir space station. An extravehicular activity (EVA) was performed in April 1997 to attach the OPM experiment to the outside of the Mir/Shuttle Docking Module for space environment exposure. OPM was retrieved during an EVA in January 1998 and was returned to Earth on board the Space Shuttle on mission STS-89.

  12. Fairness Doctrine in Advertising.

    Science.gov (United States)

    Martin, Charles Vance

    After a decade of debate, numerous Federal Communications Commission (FCC) rulings, and many court decisions, the application of the "fairness doctrine"--an act that mandates objectivity in the presentation of facts concerning controversial issues--remains unsettled. This report discusses issues involved in the application of the…

  13. Contract law as fairness

    NARCIS (Netherlands)

    Klijnsma, J.

    2015-01-01

    This article examines the implications for contract law of Rawls' theory of justice as fairness. It argues that contract law as an institution is part of the basic structure of society and as such subject to the principles of justice. Discussing the basic structure in relation to contract law is

  14. Fair quantum blind signatures

    International Nuclear Information System (INIS)

    Tian-Yin, Wang; Qiao-Yan, Wen

    2010-01-01

    We present a new fair blind signature scheme based on the fundamental properties of quantum mechanics. In addition, we analyse the security of this scheme, and show that it is not possible to forge valid blind signatures. Moreover, comparisons between this scheme and public key blind signature schemes are also discussed. (general)

  15. What Governs Ice-Sticking in Planetary Science Experiments?

    Science.gov (United States)

    Gaertner, Sabrina; Gundlach, B.; Blum, J.; Fraser, H. J.

    2018-06-01

    Water ice plays an important role, alongside dust, in current theories of planet formation. Decades of laboratory experiments have proven that water ice is far stickier in particle collisions than dust. However, water ice is known to be a metastable material. Its physical properties strongly depend on its environmental parameters, the foremost being temperature and pressure. As a result, the properties of ice change not only with the environment it is observed in, but also with its thermal history.The abundance of ice structures that can be created by different environments likely explains the discrepancies observed across the multitude of collisional laboratory studies in the past [1-16]; unless the ices for such experiments have been prepared in the same way and are collided under the same environmental conditions, these experiments simply do not collide the same ices.This raises several questions:1. Which conditions and ice properties are most favourable for ice sticking?2. Which conditions and ice properties are closest to the ones observed in protoplanetary disks?3. To what extent do these two regimes overlap?4. Consequently, which collisional studies are most relevant to planetary science and therefore best suited to inform models of planet formation?In this presentation, I will give a non-exhaustive overview of what we already know about the properties of ice particles, covering those used in planetary science experiments and those observed in planet forming regions. I will discuss to what extent we can already answer questions 1-3, and what information we still need to obtain from observations, laboratory experiments, and modelling to be able to answer question 4.References:1. Bridges et al. 1984 Natur 309.2. Bridges et al. 1996 Icar 123.3. Deckers & Teiser 2016 MNRAS 456.4. Dilley & Crawford 1996 JGRE 101.5. Gundlach & Blum 2015 ApJ 798.6. Hatzes et al. 1991 Icar 89.7. Hatzes et al. 1988 MNRAS 231.8. Heißelmann et al. 2010 Icar 206.9. Higa et al. 1996 P

  16. Selecting students for a South African mathematics and science foundation programme: effectiveness and fairness of school-leaving examinations and aptitude tests.

    NARCIS (Netherlands)

    van der Flier, H.; Thijs, G.D.; Zaaiman, H.

    2003-01-01

    The identification of students with the potential to succeed in mathematics- and science-based study despite previous educational disadvantage is a critical issue currently facing many South African higher education institutions. The possible use of school-leaving examination (Matric) results and/or

  17. An Investigation of the Effects of Authentic Science Experiences Among Urban High School Students

    Science.gov (United States)

    Chapman, Angela

    Providing equitable learning opportunities for all students has been a persistent issue for some time. This is evident by the science achievement gap that still exists between male and female students as well as between White and many non-White student populations (NCES, 2007, 2009, 2009b) and an underrepresentation of female, African-American, Hispanic, and Native Americans in many science, technology, engineering, and mathematics (STEM) related careers (NCES, 2009b). In addition to gender and ethnicity, socioeconomic status and linguistic differences are also factors that can marginalize students in the science classroom. One factor attributed to the achievement gap and low participation in STEM career is equitable access to resources including textbooks, laboratory equipment, qualified science teachers, and type of instruction. Extensive literature supports authentic science as one way of improving science learning. However, the majority of students do not have access to this type of resource. Additionally, extensive literature posits that culturally relevant pedagogy is one way of improving education. This study examines students' participation in an authentic science experience and argues that this is one way of providing culturally relevant pedagogy in science classrooms. The purpose of this study was to better understand how marginalized students were affected by their participation in an authentic science experience, within the context of an algae biofuel project. Accordingly, an interpretivist approach was taken. Data were collected from pre/post surveys and tests, semi-structured interviews, student journals, and classroom observations. Data analysis used a mixed methods approach. The data from this study were analyzed to better understand whether students perceived the experience to be one of authentic science, as well as how students science identities, perceptions about who can do science, attitudes toward science, and learning of science practices

  18. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  19. Can that be right? essays on experiment, evidence, and science

    CERN Document Server

    Franklin, Allan

    1999-01-01

    In this collection of essays Allan Franklin defends the view that science provides us with knowledge about the world which is based on experimental evidence and on reasoned and critical discussion. In short, he argues that science is a reasonable enterprise. He begins with detailed studies of four episodes from the history of modern physics: (1) the early attempts to detect gravity waves, (2) how the physics community decided that a proposed new elementary particle, 17-keV neutrino, did not exist, (3) a sequence of experiments on K meson decay, and (4) the origins of the Fifth Force hypothesis, a proposed modification of Newton's Law of Universal Gravitation. The case studies are then used to examine issues such as how discord between experimental results is resolved, calibration of an experimental apparatus and its legitimate use in validating an experimental result, and how experimental results provide reasonable grounds for belief in both the truth of physical theories and in the existence of the entities ...

  20. Science, technology and mission design for LATOR experiment

    Science.gov (United States)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2017-11-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun. By using independent time-series of highly accurate measurements of the Shapiro time-delay (laser ranging accurate to 1 cm) and interferometric astrometry (accurate to 0.1 picoradian), LATOR will measure gravitational deflection of light by the solar gravity with accuracy of 1 part in a billion, a factor {30,000 better than currently available. LATOR will perform series of highly-accurate tests of gravitation and cosmology in its search for cosmological remnants of scalar field in the solar system. We present science, technology and mission design for the LATOR mission.

  1. Reactions to perceived fairness : the impact

    NARCIS (Netherlands)

    Bos, K. van den

    2001-01-01

    In correspondence with terror management theory, the findings of two experiments show that reminders of death lead to stronger effects of perceived fairness on ratings of negative affect. Furthermore, in line with the theory’s self-esteem mechanism, results of Experiment 1 suggest that state

  2. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  3. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  4. Taking an active stance: How urban elementary students connect sociocultural experiences in learning science

    Science.gov (United States)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-12-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards self-determining the sciences that are personally meaningful. Furthermore, tying sociocultural experiences with science learning helps generate sociopolitical awareness among students. We collected interview and observation data in an urban elementary classroom over one academic year to understand the value of urban students' sociocultural experiences in learning science and choosing science activities.

  5. Liberal Studies in Science--A Successful Experiment

    Science.gov (United States)

    Jevons, F. R.

    1970-01-01

    Describes the job placement success experienced by graduates of the Science Greats Course at the University of Manchester. Discusses the course content which centers on the social relations of science. Since nearly half the course involves science content, the author discusses the science background necessary for enrollees. Presents a personal…

  6. Multiple Payload Ejector for Education, Science and Technology Experiments

    Science.gov (United States)

    Lechworth, Gary

    2005-01-01

    The education research community no longer has a means of being manifested on Space Shuttle flights, and small orbital payload carriers must be flown as secondary payloads on ELV flights, as their launch schedule, secondary payload volume and mass permits. This has resulted in a backlog of small payloads, schedule and cost problems, and an inability for the small payloads community to achieve routine, low-cost access to orbit. This paper will discuss Goddard's Wallops Flight Facility funded effort to leverage its core competencies in small payloads, sounding rockets, balloons and range services to develop a low cost, multiple payload ejector (MPE) carrier for orbital experiments. The goal of the MPE is to provide a low-cost carrier intended primarily for educational flight research experiments. MPE can also be used by academia and industry for science, technology development and Exploration experiments. The MPE carrier will take advantage of the DARPAI NASA partnership to perform flight testing of DARPA s Falcon small, demonstration launch vehicle. The Falcon is similar to MPE fiom the standpoint of focusing on a low-cost, responsive system. Therefore, MPE and Falcon complement each other for the desired long-term goal of providing the small payloads community with a low-cost ride to orbit. The readiness dates of Falcon and MPE are complementary, also. MPE is being developed and readied for flight within 18 months by a small design team. Currently, MPE is preparing for Critical Design Review in fall 2005, payloads are being manifested on the first mission, and the carrier will be ready for flight on the first Falcon demonstration flight in summer, 2006. The MPE and attached experiments can weigh up to 900 lb. to be compatible with Falcon demonstration vehicle lift capabilities fiom Wallops, and will be delivered to the Falcon demonstration orbit - 100 nautical mile circular altitude.

  7. The Good, the Right & the Fair

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Nielsen, Morten Ebbe Juul; Sandøe, Peter

    The Good, the Right, and the Fair is a comprehensive introduction to contemporary moral and political philosophy especially suited for undergraduate students in medicine and the life sciences. The book covers first questions concerning the good: What makes a life worth living? Is it only humans who...... matter morally? Is welfare all that matters? It then proceeds to a discussion of the right: How ought we to act? The major ethical theories of the western tradition are presented and their strengths and weaknesses discussed. Finally, key aspects of the philosophical discussion of the fair, including...

  8. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  9. Fair trade international surrogacy.

    Science.gov (United States)

    Humbyrd, Casey

    2009-12-01

    Since the development of assisted reproductive technologies, infertile individuals have crossed borders to obtain treatments unavailable or unaffordable in their own country. Recent media coverage has focused on the outsourcing of surrogacy to developing countries, where the cost for surrogacy is significantly less than the equivalent cost in a more developed country. This paper discusses the ethical arguments against international surrogacy. The major opposition viewpoints can be broadly divided into arguments about welfare, commodification and exploitation. It is argued that the only valid objection to international surrogacy is that surrogate mothers may be exploited by being given too little compensation. However, the possibility of exploitation is a weak argument for prohibition, as employment alternatives for potential surrogate mothers may be more exploitative or more harmful than surrogacy. It is concluded that international surrogacy must be regulated, and the proposed regulatory mechanism is termed Fair Trade Surrogacy. The guidelines of Fair Trade Surrogacy focus on minimizing potential harms to all parties and ensuring fair compensation for surrogate mothers.

  10. Sport medicine and sport science practitioners' experiences of organizational change.

    Science.gov (United States)

    Wagstaff, C R D; Gilmore, S; Thelwell, R C

    2015-10-01

    Despite the emergence of and widespread uptake of a growing range of medical and scientific professions in elite sport, such environs present a volatile professional domain characterized by change and unprecedentedly high turnover of personnel. This study explored sport medicine and science practitioners' experiences of organizational change using a longitudinal design over a 2-year period. Specifically, data were collected in three temporally defined phases via 49 semi-structured interviews with 20 sport medics and scientists employed by three organizations competing in the top tiers of English football and cricket. The findings indicated that change occurred over four distinct stages; anticipation and uncertainty, upheaval and realization, integration and experimentation, normalization and learning. Moreover, these data highlight salient emotional, behavioral, and attitudinal experiences of medics and scientists, the existence of poor employment practices, and direct and indirect implications for on-field performance following organizational change. The findings are discussed in line with advances to extant change theory and applied implications for prospective sport medics and scientists, sport organizations, and professional bodies responsible for the training and development of neophyte practitioners. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Egg and a lot of science: an interdisciplinary experiment

    Directory of Open Access Journals (Sweden)

    M. C. Gayer

    2014-08-01

    Full Text Available Egg and a lot of science: an interdisciplinary experimentGayer, M.C.1,2;Rodrigues, D.T.1,2; Escoto, D.F.1; Denardin, E.L.G.2, Roehrs, R.1,21Interdisciplinary Research Group on Teaching Practice, Graduate Program in Biochemistry, Unipampa, RS, Brazil2Laboratory of Physicochemical Studies and Natural Products, Post Graduate Program in Biochemistry, Unipampa, RS, BrazilIntroduction: How to tell if an egg is rotten? How to calculate the volume of an egg? Because the rotten egg float? Why has this characteristic rotten egg smell? Because the gray-green color is formed on the surface of the cooked egg yolk? These issues are commonplace and unnoticed in day-to-day. Our grandmothers know how to tell if an egg is rotten or not, you just put the egg in a glass of water. If it is rotten floating, sinking is good. But why this happens? That they do not know answer. With only one egg chemical reactions work, macromolecules (proteins, density, membranes and conservation of matter. Hydrogen sulphide is responsible for the aroma of a freshly cooked egg. This gas as they break down the molecules of albumin, a protein present in the egg is formed. The color comes from a sulfide precipitation, this time with the Fe2+ ion contained in the yolk (Fe2+ + S2  FeS. The use of simple and easy to perform experiments, correlating various knowledge proves a very useful tool in science education. Objectives: Develop multidisciplinary learning contents through the problem. Materials and methods: The teacher provides students with a boiled egg, salt, a syringe and a cup, a plate and water. The teacher lays the aforementioned issues for students and allows them to exchange information with each other, seeking answers through experimentation. Results and discussion: Students engaged with the activity and interaction of groups in order to solve the proposed problem. Still, through trial and error have sought in various ways to find the answers. This tool takes the student to

  12. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  13. Strong Interaction Studies with PANDA at FAIR

    Science.gov (United States)

    Schönning, Karin

    2016-10-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme.

  14. Strong Interaction Studies with PANDA at FAIR

    International Nuclear Information System (INIS)

    Schönning, Karin

    2016-01-01

    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of nuclear-, hadron- and atomic physics experiments. The future PANDA experiment at FAIR will offer a broad physics programme with emphasis on different aspects of hadron physics. Understanding the strong interaction in the perturbative regime remains one of the greatest challenges in contemporary physics and hadrons provide several important keys. In these proceedings, PANDA will be presented along with some high-lights of the planned physics programme

  15. Education and Policy in Soil Science: The U.S. Experience

    Science.gov (United States)

    Sharpley, Andrew; van Es, Harold; Dick, Richard; Bergfeld, Ellen; Anderson, Karl; Chapman, Susan; Fisk, Susan

    2017-04-01

    The Soil Science Society of America (SSSA), founded in 1936, fosters the transfer of knowledge and practices to sustain soils globally, and now serves 6,000 members worldwide. It is also home to over 1,000 certified professionals dedicated to advancing the field of soil science. The Society provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use. We provide high-impact research publications, educational programs, certifications, and science-policy initiatives, which will be described in more detail in this presentation. The need for soil science education to a wider audience and development and promotion of soils-based policy initiatives, has increased in the last decade with recognition of the role soils play in sustaining life, population well-being at the nexus of food, energy, and water security. To address these needs, SSSA has two general public outreach sites online: www.soils.org/discover-soils and https://soilsmatter.wordpress.com/, reaching over a half-million viewers per year, as well as social media platforms. We are dedicated to increasing interest and awareness of soil science among K-12 teachers and their students, and working to integrate more information on soil science into the science curriculum of schools over multiple grade levels. For instance, we have a website dedicated to children (http://www.soils4kids.org/), which describes fun games to play with soil, suggestions for science-fair experiments, and opens their minds to careers in soil science. Another site (http://www.soils4teachers.org/) is dedicated to the needs of school teachers, providing ready resources for the classroom. Society members have even authored books ("Soil! Get the Inside Scoop" for one) to get children aged 9 to 12, excited about the living world of soil. In keeping with the times, a blog called "Soils Matter" is hosted by Society staff and now has

  16. An Exploration of Hispanic Mothers' Culturally Sustaining Experiences at an Informal Science Center

    Science.gov (United States)

    Weiland, Ingrid

    2015-01-01

    Science education reform focuses on learner-centered instruction within contexts that support learners' sociocultural experiences. The purpose of this study was to explore Hispanic mothers' experiences as accompanying adults at an informal science center within the context of culturally sustaining experiences, which include the fluidity…

  17. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  18. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  19. Crisp Fair Gambles

    OpenAIRE

    André , Eric

    2014-01-01

    Axiomatic models of decision under ambiguity with a non-unique prior allow for the existence of Crisp Fair Gambles: acts whose expected utility is nul whichever of the priors is used. But, in these models, the DM has to be indifferent to the addition of such acts. Their existence is then at odds with a preference taking into account the variance of the prospects. In this paper we study some geometrical and topological properties of the set of priors that would rule out the existence of Crisp ...

  20. Partner choice creates fairness in humans.

    Science.gov (United States)

    Debove, Stéphane; André, Jean-Baptiste; Baumard, Nicolas

    2015-06-07

    Many studies demonstrate that partner choice has played an important role in the evolution of human cooperation, but little work has tested its impact on the evolution of human fairness. In experiments involving divisions of money, people become either over-generous or over-selfish when they are in competition to be chosen as cooperative partners. Hence, it is difficult to see how partner choice could result in the evolution of fair, equal divisions. Here, we show that this puzzle can be solved if we consider the outside options on which partner choice operates. We conduct a behavioural experiment, run agent-based simulations and analyse a game-theoretic model to understand how outside options affect partner choice and fairness. All support the conclusion that partner choice leads to fairness only when individuals have equal outside options. We discuss how this condition has been met in our evolutionary history, and the implications of these findings for our understanding of other aspects of fairness less specific than preferences for equal divisions of resources. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Near-death experiences between science and prejudice

    Science.gov (United States)

    Facco, Enrico; Agrillo, Christian

    2012-01-01

    Science exists to refute dogmas; nevertheless, dogmas may be introduced when undemonstrated scientific axioms lead us to reject facts incompatible with them. Several studies have proposed psychobiological interpretations of near-death experiences (NDEs), claiming that NDEs are a mere byproduct of brain functions gone awry; however, relevant facts incompatible with the ruling physicalist and reductionist stance have been often neglected. The awkward transcendent look of NDEs has deep epistemological implications, which call for: (a) keeping a rigorously neutral position, neither accepting nor refusing anything a priori; and (b) distinguishing facts from speculations and fallacies. Most available psychobiological interpretations remain so far speculations to be demonstrated, while brain disorders and/or drug administration in critical patients yield a well-known delirium in intensive care and anesthesia, the phenomenology of which is different from NDEs. Facts can be only true or false, never paranormal. In this sense, they cannot be refused a priori even when they appear implausible with respect to our current knowledge: any other stance implies the risk of turning knowledge into dogma and the adopted paradigm into a sort of theology. PMID:22826697

  2. NEAR-DEATH EXPERIENCES BETWEEN SCIENCE AND PREJUDICE

    Directory of Open Access Journals (Sweden)

    Enrico eFacco

    2012-07-01

    Full Text Available Science exists to refute dogmas; nevertheless, dogmas may be introduced when undemonstrated scientific axioms lead us to reject facts incompatible with them.Several studies have proposed psychobiological interpretations of near-death experiences (NDEs, claiming that NDEs are a byproduct of brain functions gone awry; however, relevant facts incompatible with the ruling physicalist and reductionist stance have been often neglected. The awkward transcendent look of NDEs has deep epistemological implications, which call for: a keeping a rigorously neutral position, neither accepting nor refusing anything a priori; and b distinguishing facts from speculations and fallacies. Most available psychobiological interpretations remain so far speculations to be demonstrated, while brain disorders and/or drug administration in critical patients yield a well-known delirium in intensive care and anesthesia, the phenomenology of which is different from NDEs. Facts can be only true or false, never paranormal. In this sense, they cannot be refused a priori even when they appear implausible with respect to our current knowledge: any other stance implies the risk of turning knowledge into dogma and the adopted paradigm into a sort of theology.

  3. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  4. Public Library YA Program Roundup: Murder, We Wrote...and Played [and] Asleep in the Library: Girl Scouts Earn "From Dreams to Reality" Patch [and] Sign Language Funshop [and] Science Fair Help Day [and] A Skyomish Fairy Tale [and] The POW! Project: Picturing Our World! Teens Create Art and Self-Esteem at the Boston Public Library.

    Science.gov (United States)

    Goldsmith, Francisca; Seblonka, Cathy Sullivan; Wagner, Joyce; Smith, Tammy; Sipos, Caryn; Bodart, Joni Richards

    1998-01-01

    Includes six articles that describe public library programs for teens. Highlights include interactive murder mysteries; a girl scout sleepover program on career awareness; sign language workshop; a Science Fair help day that included guest speakers; a unit on fairy tales and legends; and a project to enhance creativity and self-esteem. (LRW)

  5. The ̅PANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Ikegami Andersson, W

    2016-01-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed. (paper)

  6. The ̅PANDA Detector at FAIR

    Science.gov (United States)

    Ikegami Andersson, W.; ̅PANDA Collaboration

    2016-11-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed.

  7. Fairness in risky environments: theory and evidence

    Czech Academy of Sciences Publication Activity Database

    Babický, V.; Ortmann, Andreas; van Koten, Silvester

    -, č. 419 (2010), s. 1-32 ISSN 1211-3298 R&D Projects: GA MŠk(CZ) LC542 Institutional research plan: CEZ:MSM0021620846 Keywords : fairness * risk aversion * subject pool effects * economics experiments Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp419.pdf

  8. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  9. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  10. Effects of an intensive middle school science experience on the attitude toward science, self-esteem, career goal orientation, and science achievement of eighth-grade female students

    Science.gov (United States)

    Williams, Tammy Kay

    The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.

  11. Production of hypernuclei at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Gaitanos, Theodoros; Larionov, Alexei; Mosel, Ulrich [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2011-07-01

    The strangeness sector of the strong interaction is important for our knowledge on, e.g., nuclear astrophysics. It is still a widely debated topic of current research. Hypernuclear production in heavy-ion collisions and anti p-nucleus collisions offers the opportunity to investigate the hyperon-nucleon and hyperon-hyperon interaction inside a hadronic environment in terrestrial laboratories. We study the formation of fragments with and without strangeness contents in the framework of a dynamical transport model (Giessen Boltzmann-Uehling- Uhlenbeck, GiBUU) and a statistical approach (Statistical Multifragmentation Model, SMM) of fragment formation. We use a coalescence picture for the production of single-{Lambda} and double-{Lambda} hypernuclei, and provide theoretical estimates on their spectra and inclusive cross sections in heavy-ion collisions and anti p induced reactions, relevant for HypHI and PANDA experiments at FAIR.

  12. FAIR - from a few-body perspective

    Directory of Open Access Journals (Sweden)

    Stöhlker Th.

    2010-04-01

    Full Text Available In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on few-body physics.

  13. Position Posters: An Alternative Take on Science Posters

    Science.gov (United States)

    Dorner, Meredith

    2015-01-01

    Research shows the importance of active learning, especially within science classes. One way to achieve this goal is to incorporate student-driven projects into the course (e.g., posters). Traditionally, science-poster assignments follow the spirit of the science fair in which a student conducts an experiment and analyzes the results. This article…

  14. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    Science.gov (United States)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  15. Does science speak clearly and fairly in trade and food safety disputes? The search for an optimal response of WTO adjudication to problematic international standard-making.

    Science.gov (United States)

    Ni, Kuei-Jung

    2013-01-01

    experts would be instrumental to strengthening the mutual supports between the WTO and international standard-setting organizations, and may help avoid the introduction of a prejudice toward a justified science finding.

  16. Why Everyday Experience? Interpreting Primary Students' Science Discourse from the Perspective of John Dewey

    Science.gov (United States)

    Na, Jiyeon; Song, Jinwoong

    2014-05-01

    The purposes of this study were, based on John Dewey's ideas on experience, to examine how primary students used their own everyday experience and were affected by own and others' experience in science discourse, and to illuminate the implications of experience in science education. To do these, science discourses by a group of six fourth-graders were observed, where they talked about their ideas related to thermal concepts. The data was collected through interviews and open-ended questions, analyzed based on Dewey's perspective, and depicted as the discourse map which was developed to illustrate students' transaction and changing process of students' ideas. The results of the analysis showed typical examples of Dewey's notions of experience, such as the principles of continuity and of transaction and of different types of experience, examples of `the expanded continuity and transaction', and science discourse as inquiry. It was also found that students' everyday experiences played several roles: as a rebuttal for changing their own ideas or others', backing for assurance of their own ideas in individual students' inner changes after discourse with others, and backing for other's ideas. Based on these observations, this study argues that everyday experience should be considered as a starting point for primary students' science learning because most of their experience comes from everyday, not school science, contexts. In addition, to evoke educative experience in science education, it is important for teachers to pay more attention to Dewey's notions of the principles of continuity and of transaction and to their educational implications.

  17. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  18. Deconstructing the Constructed Experience: Reforming Science Materials to Develop Creativity

    Science.gov (United States)

    Goodale, Timothy A.; Hughes, Claire E.

    2018-01-01

    For over 50 years, science educators have been calling for increased opportunities for students to engage with science in creative manners, but teachers are still reliant on packaged materials that promote single and 'correct' responses with cookbook approaches. This article suggests five strategies that teachers can use to enhance constructed…

  19. Moudre ou faire bouillir ?

    OpenAIRE

    Rowlands, Mike; Fuller, Dorian Q.

    2012-01-01

    Moudre ou faire bouillir ? Nourrir les corps et les esprits dans des traditions culinaires et sacrificielles en Asie de l’Ouest, de l’Est et du Sud. Les techniques de préparation alimentaire révélées par l’archéologie pour les différentes régions d’Eurasie, incluant l’utilisation des céramiques, des meules et des plantes domestiques, mettent en évidence des situations contrastées. En Asie de l’Ouest, la mouture, la fabrication du pain et les soles de cuisson en aires ouvertes pour le rôtissag...

  20. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    Science.gov (United States)

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  1. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  2. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    Science.gov (United States)

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  3. Latin American Youth Entrepreneurs: Differences between Coached and Laissez-Faire Entrepreneurial Experiences in Their Employability Skills and Their Entrepreneurial Innovative Attitude

    Science.gov (United States)

    Roman Maqueira, Juana

    2011-01-01

    The purpose of this study was to examine the relationships between the development of employability skills and entrepreneurial innovative attitude in Latin American youth entrepreneurs 18-29 years of age after participating in at least 1 year of an entrepreneurship experience. The design involved analyzing two groups. The first was a coached group…

  4. Public attitudes to genomic science: an experiment in information provision.

    Science.gov (United States)

    Sturgis, Patrick; Brunton-Smith, Ian; Fife-Schaw, Chris

    2010-03-01

    We use an experimental panel study design to investigate the effect of providing "value-neutral" information about genomic science in the form of a short film to a random sample of the British public. We find little evidence of attitude change as a function of information provision. However, our results show that information provision significantly increased dropout from the study amongst less educated respondents. Our findings have implications both for our understanding of the knowledge-attitude relationship in public opinion toward genomic science and for science communication more generally.

  5. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  6. FAIR VALUE: UTILITY AND LIMITS

    OpenAIRE

    Valentin Gabriel Cristea

    2015-01-01

    This paper presents the utility and the limits of the fair value. We believe that any new product must be tried and tested before being imposed on the market and must be accepted by all potential users and those who will be affected, directly or indirectly and its advantages, disadvantages, risks, its cost must be predetermined and analyzed in a comprehensive and objective.We ask: Do financial statements at fair value meet users' expectations? The requirement to use fair value pricing mode...

  7. Women in Science and Technology: Nepal's E i Experience

    Indian Academy of Sciences (India)

    ranjeetha

    Science Education and Research. India ... to look after the welfare of women has been established especially after the World Women ... there was limited number of schools for educating .... knowledge about informal sector associations, rural.

  8. Sharing experiences about developing a regional social science virtual library

    OpenAIRE

    Babini, Dominique

    2004-01-01

    Why and how a Latin American and the Caribbean social sciences network (Consejo Latinoamericano de Ciencias Sociales, CLACSO) started a cooperative open access digital library to disseminate research results (journal articles, books, working documents)

  9. The Cosmopolitanization of Science: Experience from Chinese Stem Cell Scientists.

    Science.gov (United States)

    Zhang, Joy Yueyue

    2010-09-01

    It is commonly perceived that the 'globalization of science' may result in a 'Westernization of science'. In this paper, however, I use the case of stem cell science in China to demonstrate that developing countries are sometimes able to effectively shape the norms of global/local scientific exchange. Based on interviews with 38 stem cell scientists in six Chinese cities in early 2008, this paper elucidates Chinese scientists' outlook towards cross-border collaborations and the effects that the internationalization of science has had on everyday laboratory operations. Findings suggest that although there still exists an asymmetry of scientific influence, and in many aspects China is still 'catching-up' to the West, there is also a changing nature of communication beyond borders. One key aspect of recent international scientific development is the growing necessity for local stakeholders to acquire a global mindset and to compare, reflect and accommodate diverse interests. This is what I define as the 'cosmopolitanization of science'. The study empirically examines the sociological and methodological implications of the cosmopolitanization process and further develops Ulrich Beck's cosmopolitan theory by delineating four main features of the 'cosmopolitanization of science': shared future benefits, passive ethicization, reflexive negotiation, and continuous performance.

  10. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  11. Language experience narratives and the role of autobiographical reasoning in becoming an urban science teacher

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2011-06-01

    One of the central challenges globalization and immigration present to education is how to construct school language policies, procedures, and curricula to support academic success of immigrant youth. This case-study compares and contrasts language experience narratives along Elena's developmental trajectory of becoming an urban science teacher. Elena reflects upon her early language experiences and her more recent experiences as a preservice science teacher in elementary dual language classrooms. The findings from Elena's early schooling experiences provide an analysis of the linkages between Elena's developing English proficiency, her Spanish proficiency, and her autobiographical reasoning. Elena's experiences as a preservice teacher in two elementary dual language classrooms indicates ways in which those experiences helped to reframe her views about the intersections between language learning and science learning. I propose the language experience narrative, as a subset of the life story, as a way to understand how preservice teachers reconstruct past language experiences, connect to the present, and anticipate future language practices.

  12. Land-Atmosphere Feedback Experiment (LAFE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wulfmeyer, Volker [University of Hohenheim; Turner, David [NOAA National Severe Storms Laboratory

    2016-07-01

    lower troposphere, including the interfacial layer of the CBL. The optimal azimuth is to the ENE of the SGP central facility, which takes advantage of both changes in the surface elevation and different crop types planted along that path. 3) The University of Wisconsin Space Science and Engineering Center Portable Atmospheric Research Center (SPARC) and the University of Oklahoma Collaborative Lower Atmospheric Mobile Profiling System (CLAMPS) operating two vertically pointing atmospheric emitted radiance interferometers (AERIs) and two Doppler lidar (DL) systems scanning cross track to the central RHI for determining the surface friction velocity and the horizontal variability of temperature, moisture, and wind. Thus, both the variability of surface fluxes and CBL dynamics and thermodynamics over the SGP site will be studied for the first time. The combination of these three components will enable us to estimate both the divergence of the latent heat profile and the advection of moisture. Thus, the moisture budget in the SGP domain can be studied. Furthermore, the simultaneous measurements of surface and entrainment fluxes as well as the daily cycle of the CBL thermodynamic state will provide a unique data set for characterizing LSA interaction in dependence of large-scale and local conditions such as soil moisture and the state of the vegetation. The measurements will also be applied for the development of improved parameterizations of surface fluxes and turbulence in the CBL. The latter is possible because mean profiles, gradients, higher-order moments, and fluxes are measured simultaneously. The results will be used for the verification of simulations of LSA feedback in large-eddy simulation (LES) and mesoscale models, which are planned for the SGP site. Due to the strong connection between the pre-convective state of the CBL and the formation of clouds and precipitation, this new generation of experiments will strongly contribute to the improvement of their

  13. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  14. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  15. From the instantia crucis to the crucial experiment: different perspectives in philosophy and science

    Directory of Open Access Journals (Sweden)

    Anabel Cardoso Raicik

    2017-12-01

    Full Text Available The existence and meaning of crucial experiments are issues that do not hold consensus in science and the philosophy of science. Duhem, Popper and Lakatos, for example, present antagonistic positions among themselves and even in relation to the idea of instantia crucis made explicit by Francis Bacon in the Novum Organum. This article aims at rescuing the Baconian definition, recognizing that it is part of a distinct philosophical position of contemporary theses, and discussing some conceptions of crucial experiment both by philosophers of science and by some scholars, such as Newton. Also, point out some reflections for the teaching of sciences.

  16. Life sciences flight experiments program, life sciences project division, procurement quality provisions

    Science.gov (United States)

    House, G.

    1980-01-01

    Methods are defined for implementing quality assurance policy and requirements for life sciences laboratory equipment, experimental hardware, integration and test support equipment, and integrated payloads.

  17. Does market competition explain fairness?

    Science.gov (United States)

    Descioli, Peter

    2013-02-01

    The target article by Baumard et al. uses their previous model of bargaining with outside options to explain fairness and other features of human sociality. This theory implies that fairness judgments are determined by supply and demand but humans often perceive prices (divisions of surplus) in competitive markets to be unfair.

  18. Affect and fairness in economics

    NARCIS (Netherlands)

    van Winden, F.A.A.M.

    2007-01-01

    A strained relationship exists between mainstream economics and ethics. Over the last decade, behavioral economists have strongly argued for the importance of fairness in motivating behavior, based on substantial experimental evidence. Two main approaches to the modeling of fairness have been

  19. TAXATION. FAIRNESS. EQUALITY

    Directory of Open Access Journals (Sweden)

    Morar Ioan Dan

    2014-12-01

    of the tax burden between them, depending on how the tax base, depending on the type of taxpayer and according to other criteria. Another coordinated taxation is part of contemporary consumerist polticilor new tax, taxing certain income, especially income individuals is marked by the overall objective of capitalist society, that consumption growth. Fiscal policies are policies the new contemporary consumerism. And this phenomenon influences the distribution of the tax burden among taxpayers, more or less fair. What is tax fairness and how we can quantify? Here's a question that I try to raspunt from equality before the law tax payers. Equality before the tax law is not a primary goal of modern tax policy, it losing ground to tax efficiency goals and its economic and social components. On the other hand though fiscal phenomenon can help to ensure social peace through taxation to keep Sean absolute size of the tax burden and the fact that all are equal before the law, tax law and within given social policies in broadly, social security or insurance in respect restrains can be promoted by themselves and less by fiscal policy.

  20. [Neurophenomenology: Project for a Science of Past Experiences].

    Science.gov (United States)

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  1. Competency Based Modular Experiments in Polymer Science and Technology.

    Science.gov (United States)

    Pearce, Eli M; And Others

    1980-01-01

    Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)

  2. First experiences with a novel farmer citizen science approach

    NARCIS (Netherlands)

    Etten, van Jacob; Beza, Eskender; Calderer, Lluís; Duijvendijk, van Kees; Fadda, Carlo; Fantahun, Basazen; Kidane, Yosef Gebrehawaryat; Gevel, van de Jeske; Gupta, Arnab; Mengistu, Dejene Kassahun

    2016-01-01

    Rapid climatic and socio-economic changes challenge current agricultural R&D capacity. The necessary quantum leap in knowledge generation should build on the innovation capacity of farmers themselves. A novel citizen science methodology, triadic comparisons of technologies or tricot, was

  3. FAIR: a Horizon for Future Charming Physics

    International Nuclear Information System (INIS)

    Ritman, James

    2007-01-01

    The science goals underlying the future international Facility for Antiproton and Ion Research--FAIR--[1] that is being realized in Darmstadt span a broad range of research activities on the structure of matter. One component of this facility is directed towards studies of hadronic matter at the sub-nuclear level with beams of antiprotons. These studies focus on two key aspects: confinement of quarks and the generation of the hadron masses. These goals will be pursued by performing precision measurements of charged and neutral decay products from antiproton-proton annihilation in the charmonium mass region. In this talk I present some of the issues connected to FAIR in which the groups in Cracow and Juelich are extending and intensifying our cooperation

  4. International Science Olympiad participants' experiences and perceptions on private education

    Science.gov (United States)

    Park, Kyeong jin; Ryu, Chun-Ryol; Choi, Jinsu

    2016-04-01

    The International Science Olympiad is an international intellectual olympic in which students, aging under 20 and who have not entered university, compete using their creative problem solving skills in the field of science. Many nations participate in the Olympiad with great interest, for this competition is a global youth science contest which is also used to measure national basic science levels. However in Korea, benefits for Olympiad participants were reduced because issues were risen that the Olympiad could intensify private education. This resulted in a continuous decrease in the number of applicants, bringing national competitiveness deterioration to concern. Therefore in this study, we identified the problems by analyzing the actual conditions of Olympiad participants' private education, and sought support plans to activate Olympiad participation. For this use, we conducted a survey of 367 summer school and winter school acceptees in 9 branches. 68.9% of the students were preparing for the Olympiad by private education, and the highest percentage answered that their private education expenses were an average of 3~5 million won. Olympiad preparation took up 30~50% of all private education, showing that private education greatly influences the preparing processes for the Olympiad. Meanwhile the participants perceived that in order to reduce Olympiad-related private education, the following should be implemented priority: supply of free high-quality on-line education materials, and easy access to Olympiad related information. It was also suggested that the most effective and needed education methods were school olympiad preparation classes, on-line education expansion, and special lectures and mentoring from olympiad-experienced senior representatives. Additionally, as methods to activate Olympiad participation, it was thought that award records should be allowed to be used in college applications by enabling award records into student records and special

  5. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education

    Science.gov (United States)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  6. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    Science.gov (United States)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  7. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  8. Plasma science and technology for emerging economies an AAAPT experience

    CERN Document Server

    2017-01-01

    This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing.   With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs.   These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii...

  9. Using Educational Computer Games in the Classroom: Science Teachers' Experiences, Attitudes, Perceptions, Concerns, and Support Needs

    Science.gov (United States)

    An, Yun-Jo; Haynes, Linda; D'Alba, Adriana; Chumney, Frances

    2016-01-01

    Science teachers' experiences, attitudes, perceptions, concerns, and support needs related to the use of educational computer games were investigated in this study. Data were collected from an online survey, which was completed by 111 science teachers. The results showed that 73% of participants had used computer games in teaching. Participants…

  10. Science and Mathematics Teachers' Experiences, Needs, and Expectations regarding Professional Development

    Science.gov (United States)

    Chval, Kathryn; Abell, Sandra; Pareja, Enrique; Musikul, Kusalin; Ritzka, Gerard

    2008-01-01

    High quality teachers are essential to improving the teaching and learning of mathematics and science, necessitating effective professional development (PD) and learning environments for teachers. However, many PD programs for science and mathematics teachers fall short because they fail to consider teacher background, experience, knowledge,…

  11. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  12. Fourth Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE4)

    NARCIS (Netherlands)

    Katz, Daniel S; Niemeyer, Kyle E; Gesing, Sandra; Hwang, Lorraine; Bangerth, Wolfgang; Hettrick, Simon; Idaszak, Ray; Salac, Jean; Chue Hong, Neil; Núñez-Corrales, Santiago; Allen, Alice; Geiger, R Stuart; Miller, Jonah; Chen, Emily; Dubey, Anshu; Lago, Patricia

    2018-01-01

    This article summarizes motivations, organization, and activities of the Fourth Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE4). The WSSSPE series promotes sustainable research software by positively impacting principles and best practices, careers, learning, and

  13. Cultural Values and Overall Fairness;

    Directory of Open Access Journals (Sweden)

    Mohsen Golparvar

    2010-04-01

    Full Text Available This research conducted with the aim of investigating the relationships between overall fairness and cultural values with organizational justice, job satisfaction and turnover among the personnel of training and education administrations in Esfahan city. Statistical population were the personnel of education and training administrations regions, which 309 persons from them selected with using simple random sampling. Research instruments were overall fairness with 3 items, cultural values (in two fields including materialism and power distance with 8 items, distributive, procedural and interactional justice with 3,3,3 items respectively, job satisfaction with 3 items and turnover with 3 items. Data were analyzed with using Pearson’s correlation coefficient, structural equation modeling, moderated hierarchical regression and mediating regression analysis. Results showed that there are significant relations between overall fairness with distributive, procedural, interactional justice and turnover, job satisfaction and materialism (P0.05. The results of structural equation modeling and mediating regression analysis showed that overall fairness relatively mediate the relations between procedural justices with turnover. But there was not mediated role for overall fairness in relations between distributive and interactional fairness with turnover and job satisfaction. Moderated regression analysis showed that power distance likely have moderated role in relations between overall fairness with turnover likely.

  14. Me, Myself, Fairness, and I: On the Self-Related Aspects of Fairness Reactions

    NARCIS (Netherlands)

    Loseman, A.

    2011-01-01

    The current dissertation focuses on the psychology of justice as a self-related process. Six experiments within three justice domains are reported in which specific self-related aspects and their influence on fairness reactions are investigated. The construction of one’s self-image (i.e., the

  15. What was fair in acturial fairness?

    OpenAIRE

    Heras Martínez , Antonio José; Teira , David; Pradier , Pierre-Charles

    2016-01-01

    URL des Documents de travail : http://centredeconomiesorbonne.univ-paris1.fr/documents-de-travail-du-ces/; Documents de travail du Centre d'Economie de la Sorbonne 2016.73 - ISSN : 1955-611X; The concept of acturial fairness stems from an Aristotelian tradition in which fairness requires equality between the goods exchanged. When dealing with aleatory contracts, this principle evolved, among medieval scholars, into equality in risk: benefits and losses should be proportional to the risks unde...

  16. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    Science.gov (United States)

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…

  17. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  18. FAIR VALUE: UTILITY AND LIMITS

    Directory of Open Access Journals (Sweden)

    Valentin Gabriel Cristea

    2015-05-01

    Full Text Available This paper presents the utility and the limits of the fair value. We believe that any new product must be tried and tested before being imposed on the market and must be accepted by all potential users and those who will be affected, directly or indirectly and its advantages, disadvantages, risks, its cost must be predetermined and analyzed in a comprehensive and objective.We ask: Do financial statements at fair value meet users' expectations? The requirement to use fair value pricing model that was carrying was not accompanied by a parallel examination of its impact on the presentation of accounts.

  19. Trade Fairs, Markets and Fields

    DEFF Research Database (Denmark)

    Moeran, Brian

    2011-01-01

    This article describes how trade fairs act as a framing mechanism that enables participants to come together for the exchange of goods and services and to perceive themselves as acting in a social field. This way, trade fairs make markets possible. Based on ongoing participant observation at book....../material, social, situational, content/appreciative, and the use value of goods, values which are then equated with a commodity exchange value in the form of price. Trade fairs frame order, but they are also events where the respective field might be reconfigurated. The contingency of personal interaction...

  20. How the Demographic Composition of Academic Science and Engineering Departments Influences Workplace Culture, Faculty Experience, and Retention Risk

    Directory of Open Access Journals (Sweden)

    Eric E. Griffith

    2018-04-01

    Full Text Available Although on average women are underrepresented in academic science, technology, engineering, and mathematics (STEM departments at universities, an underappreciated fact is that women’s representation varies widely across STEM disciplines. Past research is fairly silent on how local variations in gender composition impact faculty experiences. This study fills that gap. A survey of STEM departments at a large research university finds that women faculty in STEM are less professionally satisfied than male colleagues only if they are housed in departments where women are a small numeric minority. Gender differences in satisfaction are largest in departments with less than 25% women, smaller in departments with 25–35% women, and nonexistent in departments approaching 50% women. Gender differences in professional satisfaction in gender-unbalanced departments are mediated by women’s perception that their department’s climate is uncollegial, faculty governance is non-transparent, and gender relations are inequitable. Unfavorable department climates also predict retention risk for women in departments with few women, but not in departments closer to gender parity. Finally, faculty who find within-department mentors to be useful are more likely to have a favorable view of their department’s climate, which consequently predicts more professional satisfaction. Faculty gender and gender composition does not moderate these findings, suggesting that mentoring is equally effective for all faculty.

  1. Experimenting with engagement : commentary on: Taking our own medicine: on an experiment in science communication.

    Science.gov (United States)

    Lewenstein, Bruce V

    2011-12-01

    Social scientists can explore questions about what counts as knowledge and how researchers-including social science researchers-can produce that knowledge. An art/space installation examining issues of public participation in science demonstrates the process of co-creation of knowledge about public participation, not simply the co-creation of the meaning of the installation itself.

  2. Pura Vida: Teacher Experiences in a Science Education Study Abroad Course in Costa Rica

    Science.gov (United States)

    Medina, Stephanie Rae

    The purpose of this study was to explore the experiences of classroom teachers who participated in a science-focused study abroad during their time as a preservice teacher and to explore how they are using their study abroad experiences in science curriculum planning and in classroom instruction. This study is guided by two research questions: 1) what are the study abroad experiences that have influenced classroom teachers; and, 2) how do classroom teachers incorporate study abroad experiences into science curriculum planning and instruction in the classroom? Participants were two in-service science teachers from schools located in the Southwestern United States. The participants were enrolled in the course, Environmental Science and Multicultural Experience for K-8 Teachers offered through the Department of Educational Leadership, Curriculum and Instruction during their time as preservice teachers. The course included a two-week study abroad component in Costa Rica. Participants spent their mornings observing a monolingual, Spanish-speaking elementary classroom followed by a faculty-led multicultural seminar. Afternoons during the study abroad experience were dedicated to field science activities such as quantifying plant and animal biodiversity, constructing elevation profiles, determining nutrient storage in soil, and calculating river velocity. Throughout the course students participated in science-focused excursions. A cross case study design was used to answer the two research questions guiding this dissertation study. Data collection included participant-created concept maps of the science experiences during the study abroad experience, in-depth interviews detailing the study abroad experience and classroom instruction, and participant reflective journal entries. Cross-caseanalysis was employed to explore the uniqueness of each participant's experience and commonalities between the cases. Trustworthiness was established by utilizing multiple sources of data

  3. Materials Science Experiments Under Microgravity - A Review of History, Facilities, and Future Opportunities

    Science.gov (United States)

    Stenzel, Ch.

    2012-01-01

    Materials science experiments have been a key issue already since the early days of research under microgravity conditions. A microgravity environment facilitates processing of metallic and semiconductor melts without buoyancy driven convection and sedimentation. Hence, crystal growth of semiconductors, solidification of metallic alloys, and the measurement of thermo-physical parameters are the major applications in the field of materials science making use of these dedicated conditions in space. In the last three decades a large number of successful experiments have been performed, mainly in international collaborations. In parallel, the development of high-performance research facilities and the technological upgrade of diagnostic and stimuli elements have also contributed to providing optimum conditions to perform such experiments. A review of the history of materials science experiments in space focussing on the development of research facilities is given. Furthermore, current opportunities to perform such experiments onboard ISS are described and potential future options are outlined.

  4. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  5. The impact of fair trade

    NARCIS (Netherlands)

    Ruben, R.

    2008-01-01

    Twenty years ago, Fair Trade started as an effort to enable smallholder producers from developing countries to successfully compete in international markets. Better access to market outlets and stable prices are considered key principles for sustainable poverty reduction and stakeholder

  6. The Economics of Fair Play.

    Science.gov (United States)

    Sigmund, Karl; Fehr, Ernst; Nowak, Martin A.

    2002-01-01

    Reports on the field of experimental economics and speculates about why we value fairness and cooperation over the seemingly more rational selfishness. Illustrates a typical decision making situation using the Ultimatum game. (DDR)

  7. Uncovering the lived experiences of junior and senior undergraduate female science majors

    Science.gov (United States)

    Adornato, Philip

    The following dissertation focuses on a case study that uses critical theory, social learning theory, identity theory, liberal feminine theory, and motivation theory to conduct a narrative describing the lived experience of females and their performance in two highly selective private university, where students can cross-register between school, while majoring in science, technology, engineering and mathematics (STEM). Through the use of narratives, the research attempts to shed additional light on the informal and formal science learning experiences that motivates young females to major in STEM in order to help increase the number of women entering STEM careers and retaining women in STEM majors. In the addition to the narratives, surveys were performed to encompass a larger audience while looking for themes and phenomena which explore what captivates and motivates young females' interests in science and continues to nurture and facilitate their growth throughout high school and college, and propel them into a major in STEM in college. The purpose of this study was to uncover the lived experiences of junior and senior undergraduate female science majors during their formal and informal education, their science motivation to learn science, their science identities, and any experiences in gender inequity they may have encountered. The findings have implications for young women deciding on future careers and majors through early exposure and guidance, understanding and recognizing what gender discrimination, and the positive effects of mentorships.

  8. Experiment information - GRIPDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us GRI...a.nbdc01665-002 Description of data contents Experimentally identified GPCR interaction regions Data file File name: gri...pdb_exp_info.zip File URL: ftp://ftp.biosciencedbc.jp/archive/gripdb/LATEST/gripdb_exp_info.zip ...File size: 6.2 KB Simple search URL http://togodb.biosciencedbc.jp/togodb/view/gri...es Data item Description ID Experiment information ID GRIP ID1 GRIP ID related wigh the experiment GRIP ID2 No. in GRI

  9. Patterns and Impacts of Short-Term Cross-Cultural Experience in Science and Mathematics Teaching: Benefits, Value, and Experience

    Science.gov (United States)

    Kanyaprasith, Kamonwan; Finley, Fred N.; Phonphok, Nason

    2015-01-01

    This study evaluates a cross-cultural experience in science and mathematics teaching in Thailand--an internship program. In this study, qualitative data sources including semi-structured interviews, classroom observations, and pre-post questionnaire were collected from five groups of participants, which were: (a) administrators; (b) Thai…

  10. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  11. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  12. To what extent Fair Value is Fair, an Analysis of Reliability and Relevance of the Fair Value Accounting Paradigm.

    OpenAIRE

    Dugarte, Rafael

    2006-01-01

    To what extent Fair Value is Fair, an Analysis of Reliability and Relevance of the Fair Value Accounting Paradigm. Rafael Dugarte Escalante September, 2006 Fair value accounting is fair and important for financial reporting in providing relevant, reliable, comparable and understandable information to the users depending on what kind of information is expected from it, and the way in which fair value is actually found. This study complemen...

  13. An analysis of Science Olympiad participants' perceptions regarding their experience with the science and engineering academic competition

    Science.gov (United States)

    Wirt, Jennifer L.

    Science education and literacy, along with a focus on the other STEM fields, have been a center of attention on the global scale for decades. The 1950's race to space is often considered the starting point. Through the years, the attention has spread to highlight the United States' scientific literacy rankings on international testing. The ever-expanding global economy and global workplace make the need for literacy in the STEM fields a necessity. Science and academic competitions are worthy of study to determine the overall and specific positive and negative aspects of their incorporation in students' educational experiences. Science Olympiad is a national science and engineering competition that engages thousands of students each year. The purpose of this study was to analyze the perceptions of Science Olympiad participants, in terms of science learning and interest, 21st century skills and abilities, perceived influence on careers, and the overall benefits of being involved in Science Olympiad. The study sought to determine if there were any differences of perception when gender was viewed as a factor. Data was acquired through the Science Olympiad survey database. It consisted of 635 usable surveys, split evenly between males and females. This study employed a mixed methods analysis. The qualitative data allowed the individual perceptions of the respondents to be highlighted and acknowledged, while the quantitative data allowed generalizations to be identified. The qualitative and quantitative data clearly showed that Science Olympiad had an impact on the career choices of participants. The qualitative data showed that participants gained an increased level of learning and interest in science and STEM areas, 21st century skills, and overall positive benefits as a result of being involved. The qualitative data was almost exclusively positive. The quantitative data however, did not capture the significance of each researched category that the qualitative

  14. Experiencing Soil Science from your office through virtual experiences

    Science.gov (United States)

    Beato, M. Carmen; González-Merino, Ramón; Campillo, M. Carmen; Fernández-Ahumada, Elvira; Ortiz, Leovigilda; Taguas, Encarnación V.; Guerrero, José Emilio

    2017-04-01

    Currently, numerous tools based on the new information and communication technologies offer a wide range of possibilities for the implementation of interactive methodologies in Education and Science. In particular, virtual reality and immersive worlds - artificially generated computer environments where users interact through a figurative individual that represents them in that environment (their "avatar") - have been identified as the technology that will change the way we live, particularly in educational terms, product development and entertainment areas (Schmorrow, 2009). Gisbert-Cervera et al. (2011) consider that the 3D worlds in education, among others, provide a unique training and exchange of knowledge environment which allows a goal reflection to support activities and achieve learning outcomes. In Soil Sciences, the experimental component is essential to acquire the necessary knowledge to understand the biogeochemical processes taking place and their interactions with time, climate, topography and living organisms present. In this work, an immersive virtual environment which reproduces a series of pits have been developed to evaluate and differentiate soil characteristics such as texture, structure, consistency, color and other physical-chemical and biological properties for educational purposes. Bibliographical material such as pictures, books, papers and were collected in order to classify the information needed and to build the soil profiles into the virtual environment. The programming language for the virtual recreation was Unreal Engine4 (UE4; https://www.unrealengine.com/unreal-engine-4). This program was chosen because it provides two toolsets for programmers and it can also be used in tandem to accelerate development workflows. In addition, Unreal Engine4 technology powers hundreds of games as well as real-time 3D films, training simulations, visualizations and it creates very realistic graphics. For the evaluation of its impact and its

  15. Construction of Virtual-Experiment Systems for Information Science Education

    Science.gov (United States)

    She, Jin-Hua; Amano, Naoki

    Practice is very important in education because it not only can stimulate the motivation of learning, but also can deepen the understanding of theory. However, due to the limitations on the time and experiment resources, experiments cannot be simply introduced in every lesson. To make the best use of multimedia technology, this paper designs five virtual experiment systems, which are based on the knowledge of physics at the high-school lever, to improve the effectiveness of teaching data processing. The systems are designed by employing the cognitive theory of multimedia learning and the inner game principle to ensure the easy use and to reduce the cognitive load. The learning process is divided into two stages: the first stage teaches the basic concepts of data processing; and the second stage practices the techniques taught in the first stage and uses them to build a linear model and to carry out estimation. The virtual experiment systems have been tested in an university's data processing course, and have demonstrated their validity.

  16. Collaborative e-Science Experiments and Scientific Workflows

    NARCIS (Netherlands)

    Belloum, A.; Inda, M.A.; Vasunin, D.; Korkhov, V.; Zhao, Z.; Rauwerda, H.; Breit, T.M.; Bubak, M.; Hertzberger, L.O.

    2011-01-01

    Recent advances in Internet and grid technologies have greatly enhanced scientific experiments' life cycle. In addition to compute- and data-intensive tasks, large-scale collaborations involving geographically distributed scientists and e-infrastructure are now possible. Scientific workflows, which

  17. Moroccan experience in nuclear sciences and technology: Present status

    International Nuclear Information System (INIS)

    El Mediouri, K.

    2001-01-01

    The applications of nuclear technology started in Morocco in the early sixties and were developed particularly in the sectors of Agriculture, Education and Medicine. In the early seventies, these applications were extended to other important sectors such as Industry using gauges and NDT techniques, Mines and Hydrology. But a lack of sufficient and adequate infrastructure has limited the development of these applications. Further more, as Morocco relies totally on foreign imports to meet its energy needs, the option of nuclear power generation started to be considered seriously. This was the initiator of a real national reflection on an integrated program for all peaceful applications of nuclear energy which led to the progressive constitution of an institutional and regulatory frame. In this context, the National Center for Nuclear energy, Sciences and Techniques (CNESTEN), which is a public institution, was created in 1986. Its current programme and future are described in the paper. (author)

  18. Experiments related to marine environmental science using a tandem Pelletron

    International Nuclear Information System (INIS)

    Kitamura, A.; Hamamoto, S.; Ohtani, Y.; Furuyama, Y.; Taniike, A.; Kubota, N.; Yamauchi, T.; Mimura, H.

    2003-01-01

    Activities related to marine environmental science, which have been made in our laboratory using a 1.7MV Pelletron 5SDH2 accelerator, are reviewed. One is successful application of proton beams to radiation-induced graft polymerization for making amidoxime-type adsorbents that are very effective for collecting doubly charged ions of metal elements, such as uranium and vanadium, abundantly dissolved in seawater. The other is effective application of accelerator analyses to investigation of interaction of tributyltin (TBT) chloride, which had been used in self-polishing antifouling paints and are endocrine disrupter having mutagenicity, with a TBT resistant marine microorganism newly isolated from sediment of a ship's ballast water tank. (author)

  19. Measuring and Controlling Fairness of Triangulations

    KAUST Repository

    Jiang, Caigui; Gü nther, Felix; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    of fairness must take new aspects into account. We use concepts from discrete differential geometry (star-shaped Gauss images) to express fairness, and we also demonstrate how fairness can be incorporated into interactive geometric design of triangulated

  20. Issues in Fair Value Accounting under IFRS

    OpenAIRE

    Bischof, Jannis

    2008-01-01

    The dissertation presents theoretical evidence for inconsistencies in fair value accounting under IFRS, experimental evidence for biases in risk perception of fair values and empirical evidence for discretion in banks' disclosure policies with respect to fair value measurement.

  1. Mapping classroom experiences through the eyes of enlace students: The development of science literate identities

    Science.gov (United States)

    Oemig, Paulo Andreas

    The culture of a science classroom favors a particular speech community, thus membership requires students becoming bilingual and bicultural at the same time. The complexity of learning science rests in that it not only possesses a unique lexicon and discourse, but it ultimately entails a way of knowing. My dissertation examined the academic engagement and perceptions of a group (N=30) of high school students regarding their science literate practices. These students were participating in an Engaging Latino Communities for Education (ENLACE) program whose purpose is to increase Latino high school graduation rates and assist them with college entrance requirements. At the time of the study, 19 students were enrolled in different science classes to fulfill the science requirements for graduation. The primary research question: What kind of science classroom learning environment supports science literate identities for Latino/a students? was addressed through a convergent parallel mixed research design (Creswell & Plano Clark, 2011). Over the course of an academic semester I interviewed all 30 students arranged in focus groups and observed in their science classes. ENLACE students expressed interest in science when it was taught through hands-on activities or experiments. Students also stressed the importance of having teachers who made an effort to get to know them as persons and not just as students. Students felt more engaged in science when they perceived their teachers respected them for their experiences and knowledge. Findings strongly suggest students will be more interested in science when they have opportunities to learn through contextualized practices. Science literate identities can be promoted when inquiry serves as a vehicle for students to engage in the language of the discipline in all its modalities. Inquiry-based activities, when carefully planned and implemented, can provide meaningful spaces for students to construct knowledge, evaluate claims

  2. The Content and Integrative Component of Capstone Experiences: An Analysis of Political Science Undergraduate Programs

    Science.gov (United States)

    Hummer, Jill Abraham

    2014-01-01

    In 1991, the APSA Task Force on Political Science recommended elements of a curricular structure that would best promote student learning. The report stated that there should be a capstone experience at the end of the senior year and that the capstone should require students to integrate their whole learning experience in the major. This article…

  3. A Workbook for Scaffolding Mentored Undergraduate Research Experiences in the Social and Behavioral Sciences

    Science.gov (United States)

    Colbert-White, Erin; Simpson, Elizabeth

    2017-01-01

    Research mentors strive to ensure that undergraduates gain research skills and develop professionally during mentored research experiences in the sciences. We created the SURE (Specialized Undergraduate Research Experience) Workbook, a freely-available, interactive guide to scaffold student learning during this process. The Workbook: (1)…

  4. Comparison of SOLA-FLX calculations with experiments at systems, science and software

    International Nuclear Information System (INIS)

    Dienes, J.K.; Hirt, C.W.; Stein, L.R.

    1977-03-01

    Preliminary results of a comparison between hydroelastic calculations at the Los Alamos Scientific Laboratory and experiments at Systems, Science and Software are described. The axisymmetric geometry is an idealization of a pressurized water reactor at a scale of 1/25. Reasons for some of the discrepancies are described, and suggestions for improving both experiments and calculations are discussed

  5. I'm Not Sure What to Do! Learning Experiences in the Humanities and Social Sciences

    Science.gov (United States)

    Maher, JaneMaree; Mitchell, Jennifer

    2010-01-01

    This article reports on a focus group study of student experience in a large humanities and social science faculty in Australia. The study had two purposes: the first was to examine student study/work/life balance issues, and the second purpose was to investigate their experiences of study, workloads and assessment. This article reports on the…

  6. Taking an Active Stance: How Urban Elementary Students Connect Sociocultural Experiences in Learning Science

    Science.gov (United States)

    Upadhyay, Bhaskar; Maruyama, Geoffrey; Albrecht, Nancy

    2017-01-01

    In this interpretive case study, we draw from sociocultural theory of learning and culturally relevant pedagogy to understand how urban students from nondominant groups leverage their sociocultural experiences. These experiences allow them to gain an empowering voice in influencing science content and activities and to work towards…

  7. Negative incidental emotions augment fairness sensitivity.

    Science.gov (United States)

    Liu, Cuizhen; Chai, Jing Wen; Yu, Rongjun

    2016-04-22

    Previous studies have shown that task-unrelated emotions induced incidentally exert carryover effects on individuals' subsequent decisions in financial negotiations. However, the specificity of these emotion effects are not clear. In three experiments, we systematically investigated the role of seven transiently induced basic emotions (disgust, sadness, anger, fear, happiness, surprise and neutral) on rejection of unfair offers using the ultimatum game. We found that all negative emotions (disgust, sadness, anger and fear), but not happiness or surprise, significantly increased rejection rates, suggesting that the effect of incidental negative emotions on fairness is not specific to the type of negative emotion. Our findings highlight the role of fleeting emotions in biasing decision-making processes and suggest that all incidental negative emotions exert similar effects on fairness sensitivity, possibly by potentiating attention towards negative aspects of the situation.

  8. Antiproton chain of the FAIR storage rings

    International Nuclear Information System (INIS)

    Katayama, T; Kamerdzhiev, V; Lehrach, A; Maier, R; Prasuhn, D; Stassen, R; Stockhorst, H; Herfurth, F; Lestinsky, M; Litvinov, Yu A; Steck, M; Stöhlker, T

    2015-01-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described. (paper)

  9. Perspectives at the future accelerator facility FAIR

    International Nuclear Information System (INIS)

    Stroth, J.

    2005-01-01

    The future Facility for Antiproton and Ion Research (FAIR) in Darmstadt will provide ideal conditions for a diverse research programme addressing various aspects of strongly interacting systems, fundamental interactions and dense plasmas. The projected complex combines two new synchrotrons with various storage rings, foresees cooling of beams and permits fixed target as well as in-beam experiments. This presentation will focus on the future research activities at FAIR, which can be grouped into 5 research areas: the structure and reactions of rare isotopes, hadron physics with brilliant antiproton beams, nuclear matter at high densities, atomic physics of antimatter and in strong electromagnetic fields, and laser as well as ion induced plasma physics. Emphasis will be put on the experimental installations addressing nuclear physics with relevance for astrophysics. (author)

  10. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  11. Science 101: What Constitutes a Good Science Project

    Science.gov (United States)

    Robertson, Bill

    2016-01-01

    Having written columns dealing with science fairs before, Bill Robertson notes that it's been a long time since he has tackled the subject of what passes for a "science fair" in schools these days. Because science fairs have changed over the years, Robertson revisits the topic and explains the scientific method. The main focus of the…

  12. Experiences of Using Automated Assessment in Computer Science Courses

    Directory of Open Access Journals (Sweden)

    John English

    2015-10-01

    Full Text Available In this paper we discuss the use of automated assessment in a variety of computer science courses that have been taught at Israel Academic College by the authors. The course assignments were assessed entirely automatically using Checkpoint, a web-based automated assessment framework. The assignments all used free-text questions (where the students type in their own answers. Students were allowed to correct errors based on feedback provided by the system and resubmit their answers. A total of 141 students were surveyed to assess their opinions of this approach, and we analysed their responses. Analysis of the questionnaire showed a low correlation between questions, indicating the statistical independence of the individual questions. As a whole, student feedback on using Checkpoint was very positive, emphasizing the benefits of multiple attempts, impartial marking, and a quick turnaround time for submissions. Many students said that Checkpoint gave them confidence in learning and motivation to practise. Students also said that the detailed feedback that Checkpoint generated when their programs failed helped them understand their mistakes and how to correct them.

  13. Teaching Science IBL, a shared experience between schools

    Science.gov (United States)

    Ruas, Fatima; Carneiro, Paula

    2015-04-01

    Key words: Problem based learning, Inquiry-based learning, digital resources, climate changes The inquiry-based learning approach is applied by watching a video about the last rigorous winter and its effects. The teacher starts by posing some questions related with the video news: Why only after a 20 or 30 years from now, how will it be possible to explain the occurrence of two storms in just a month's time? Is our climate effectively changing? What is the difference between weather and climate? The teacher helps students to think about where and how they can find information about the subject, providing/teaching them suitable tools to access and use information. The teacher plays the role of mentor/facilitator. Students should proceed to their research, presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborate in the learning process. After the discussion the students must present their conclusions. The main goals are: explain the difference between weather and climate; understand whether or not climate change exists; identify the causes of climate change and extreme weather events; raising awareness among young people about environmental issues of preservation and sustainability of our planet. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.

  14. How do marine and coastal citizen science experiences foster environmental engagement?

    Science.gov (United States)

    Dean, Angela J; Church, Emma K; Loder, Jenn; Fielding, Kelly S; Wilson, Kerrie A

    2018-05-01

    Citizen science programs enable community involvement in scientific research. In addition to fostering greater science literacy, some citizen science programs aim to foster engagement in environmental issues. However, few data are available to indicate whether and how citizen science programs can achieve greater environmental engagement. We survey individuals choosing to attend one of seventeen reef citizen science events and examine the extent to which attendees reported three indicators of greater environmental engagement: (i) willingness to share information, (ii) increased support for marine conservation and citizen science, and (iii) intentions to adopt a new behavior. Most participants reported being willing to share information about reef conservation (91%) and described increased support for marine science and conservation (87%). Half of participants (51%) reported intentions to adopt a new conservation behavior. We found that key elements of the citizen science experience associated with these outcomes were learning about actions to protect reefs and coasts (procedural learning), experiencing surprise, and experiencing negative emotions about environmental problems. Excitement was also associated with positive outcomes, but only in participants who were less likely to see themselves as environmental, or were less frequent visitors to reefs and coasts. Importantly, the association between factual learning and environmental engagement outcomes was limited or negative. These findings suggest that the way citizen science experiences make people feel, may be more important for fostering future environmental engagement than factual-based learning. When designing citizen science programs for community members, these findings provide a reminder to not focus on provision of factual information alone, but to highlight environmental impacts while providing meaningful experiences and building environmental skills. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Teaching and Learning Science Through Song: Exploring the experiences of students and teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-12-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and students suggested about using songs for middle school classroom science instruction. Data gathered included three teacher interviews, one classroom observation and a student focus-group discussion from each of six cases. The data from each unit of analysis were examined independently and then synthesized in a multi-case analysis, resulting in a number of merged findings, or assertions, about the experience. The results of this study indicated that teachers used content-rich music to enhance student understanding of concepts in science by developing content-based vocabulary, providing students with alternative examples and explanations of concepts, and as a sense-making experience to help build conceptual understanding. The use of science-content songs engaged students by providing both situational and personal interest, and provided a mnemonic device for remembering key concepts in science. The use of songs has relevance from a constructivist approach as they were used to help students build meaning; from a socio-cultural perspective in terms of student engagement; and from a cognitive viewpoint in that in these cases they helped students make connections in learning. The results of this research have implications for science teachers and the science education community in developing new instructional strategies for the middle school science classroom.

  16. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    Science.gov (United States)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  17. CALFED--An experiment in science and decisionmaking

    Science.gov (United States)

    Taylor, Kimberly A.; Jacobs, Katharine L.; Luoma, Samuel N.

    2003-01-01

    The CALFED Bay-Delta Program faces a challenging assignment: to develop a collaborative state-federal management plan for the complex river system and involve multiple stakeholders (primarily municipal, agricultural, and environmental entities) whose interests frequently are in direct conflict. Although many resource-management issues involve multiple stakeholders and conflict is integral to their discussion, the CALFED experience is unique because of its shared state and federal roles, the magnitude and significance of stakeholder participation, and the complexity of the scientific issues involved.

  18. Production of a Science Documentary and Its Usefulness in Teaching the Nature of Science: Indirect Experience of How Science Works

    Science.gov (United States)

    Kim, Sun Young; Yi, Sang Wook; Cho, Eun Hee

    2014-01-01

    In this study, we produced a documentary which portrays scientists at work and critically evaluated the use of this film as a teaching tool to help students develop an understanding of the nature of science. The documentary, "Life as a Scientist: People in Love with 'Caenorhabditis elegans,' a Soil Nematode" encompasses the…

  19. Experiments and Modeling in Support of Generic Salt Repository Science

    International Nuclear Information System (INIS)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James; Caporuscio, Florie Andre; Otto, Shawn; Boukhalfa, Hakim; Jordan, Amy B.; Chu, Shaoping; Zyvoloski, George Anthony; Johnson, Peter Jacob

    2017-01-01

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  20. Experiments and Modeling in Support of Generic Salt Repository Science

    Energy Technology Data Exchange (ETDEWEB)

    Bourret, Suzanne Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otto, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zyvoloski, George Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Peter Jacob [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-19

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generating nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.

  1. AAEC experience in applying science and technology for development

    International Nuclear Information System (INIS)

    Tate, K.H.

    1979-01-01

    This article presents some examples of the experience of an Australian research body, the Australian Atomic Energy Commission, in transferring and developing new technology. These include the application of radioisotopes in research, industry and medicine, for example radioisotope on-stream analysis, nuclear techniques in hydrology, sterilisation of medical supplies, production and development of radiopharmaceuticals and termite tracing and eradication. Details are given of environmental research and energy studies undertaken at the AAEC. Three projects which have particular relevance to nuclear reactor performance and safety are described. Details are given of the AAEC involvement in the assessment of technical and economic aspects of tenders for a proposal to build a nuclear power station at Jervis Bay

  2. Learning to write in science: A study of English language learners' writing experience in sixth-grade science classrooms

    Science.gov (United States)

    Qi, Yang

    Writing is a predictor of academic achievement and is essential for student success in content area learning. Despite its importance, many students, including English language learners (ELLs), struggle with writing. There is thus a need to study students' writing experience in content area classrooms. Informed by systemic functional linguistics, this study examined 11 ELL students' writing experience in two sixth grade science classrooms in a southeastern state of the United States, including what they wrote, how they wrote, and why they wrote in the way they did. The written products produced by these students over one semester were collected. Also collected were teacher interviews, field notes from classroom observations, and classroom artifacts. Student writing samples were first categorized into extended and nonextended writing categories, and each extended essay was then analyzed with respect to its schematic structure and grammatical features. Teacher interviews and classroom observation notes were analyzed thematically to identify teacher expectations, beliefs, and practices regarding writing instruction for ELLs. It was found that the sixth-grade ELLs engaged in mostly non-extended writing in the science classroom, with extended writing (defined as writing a paragraph or longer) constituting roughly 11% of all writing assignments. Linguistic analysis of extended writing shows that the students (a) conveyed information through nouns, verbs, adjectives, adverbial groups and prepositional phrases; (b) constructed interpersonal context through choices of mood, modality, and verb tense; and (c) structured text through thematic choices and conjunctions. The appropriateness of these lexicogrammatical choices for particular writing tasks was related to the students' English language proficiency levels. The linguistic analysis also uncovered several grammatical problems in the students' writing, including a limited range of word choices, inappropriate use of mood

  3. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  4. Process evaluation of health fairs promoting cancer screenings.

    Science.gov (United States)

    Escoffery, Cam; Liang, Shuting; Rodgers, Kirsten; Haardoerfer, Regine; Hennessy, Grace; Gilbertson, Kendra; Heredia, Natalia I; Gatus, Leticia A; Fernandez, Maria E

    2017-12-18

    Low income and uninsured individuals often have lower adherence to cancer screening for breast, cervical and colorectal cancer. Health fairs are a common community outreach strategy used to provide cancer-related health education and services. This study was a process evaluation of seven health fairs focused on cancer screening across the U.S. We conducted key-informant interviews with the fair coordinator and conducted baseline and follow-up surveys with fair participants to describe characteristics of participants as well as their experiences. We collected baseline data with participants at the health fairs and telephone follow-up surveys 6 months following the fair. Attendance across the seven health fairs ranged from 41 to 212 participants. Most fairs provided group or individual education, print materials and cancer screening during the event. Overall, participants rated health fairs as very good and participants reported that the staff was knowledgeable and that they liked the materials distributed. After the fairs, about 60% of participants, who were reached at follow-up, had read the materials provided and had conversations with others about cancer screening, and 41% talked to their doctors about screening. Based on findings from evaluation including participant data and coordinator interviews, we describe 6 areas in planning for health fairs that may increase their effectiveness. These include: 1) use of a theoretical framework for health promotion to guide educational content and activities provided, 2) considering the community characteristics, 3) choosing a relevant setting, 4) promotion of the event, 5) considerations of the types of services to deliver, and 6) evaluation of the health fair. The events reported varied in reach and the participants represented diverse races and lower income populations overall. Most health fairs offered education, print materials and onsite cancer screening. Participants reported general satisfaction with these events

  5. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, D [National Science Foundation; Bromwich, DH [Ohio State University; Russell, LM [Scripps Institution of Oceanography; Verlinde, J [The Pennsylvania State University; Vogelmann, AM [Brookhaven National Laboratory

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  6. Publication ethics from the perspective of PhD students of health sciences: a limited experience.

    Science.gov (United States)

    Arda, Berna

    2012-06-01

    Publication ethics, an important subtopic of science ethics, deals with determination of the misconducts of science in performing research or in the dissemination of ideas, data and products. Science, the main features of which are secure, reliable and ethically obtained data, plays a major role in shaping the society. As long as science maintains its quality by being based on reliable and ethically obtained data, it will be possible to maintain its role in shaping the society. This article is devoted to the presentation of opinions of PhD candidate students in health sciences in Ankara concerning publication ethics. The data obtained from 143 PhD students from the fields of medicine, dentistry, pharmacy and veterinary reveal limited but unique experiences. It also shows that plagiarism is one of the worst issues in the publication ethics from the perspective of these young academics.

  7. The effects of experience and attrition for novice high-school science and mathematics teachers.

    Science.gov (United States)

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  8. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  9. Trade Fairs, Markets and Fields

    DEFF Research Database (Denmark)

    Moeran, Brian

    2011-01-01

    This working paper takes as its starting point the work of the German economic sociologist, Jens Beckert, and his call for empirical investigations into how intentionally rational actors reach decisions under conditions when they do not know what is best to do. It describes how trade fairs act...... as a framing mechanism that enables participants to come together for the exchange of goods and services and to perceive themselves as acting in a social field. Fairs frame the contacts people make and sustain as networks; the institutional rules and social norms guiding their behaviour there; and the values...... and cognitive frames that they bring to bear and negotiate with other participants. They make actors aware of a ‘mutual correspondence’ in their interpretation of the goods in which they deal and of the social situations in which engage for the sake of such trade. Trade fairs both configure fields and make...

  10. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    Science.gov (United States)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  11. Setting Fair Prices – Fundamental Principle Of Sustainable Marketing

    OpenAIRE

    Cătoiu, Iacob; Vrânceanu, Diana Maria; Filip, Alina

    2010-01-01

    In commercial area, the price has a major importance, being frequently considered among the main criteria used in buying decision process. Price fairness derives from equity theory and it is focused on assuring in a transaction a reasonable report between the customer’s sacrifice and the value offered by the seller. In three marketing experiments we have evaluated customers’ fairness perceptions of differential prices, this tactic being frequently used by sellers. One important finding was th...

  12. The effect of site-based preservice experiences on elementary science teaching self-efficacy beliefs

    Science.gov (United States)

    Wingfield, Mary E.

    Current reform in science education has focused on the need for improvement of preservice teacher training (National Science Education Standards, 1996). As a situation specific construct (Bandura, 1977), self-efficacy studies have been conducted to investigate factors that impact preservice teachers' sense of confidence as it relates to their ability to become successful science teachers. This descriptive study identified factors in the site based experiences that affected preservice elementary teachers' self-efficacy as measured by the Science Teaching Efficacy Belief Instrument (STEBL-B) (Enochs and Riggs, 1990). The sample consisted of the entire population of undergraduate elementary preservice teachers in the site based teacher education program during the fall semester of 1997 at a large south central urban university. The 131 paired, pretest posttests of the entire STEBL-B and the two constructs were analyzed for significance in mean score gains. Results of the paired t test yielded a t value of 11.52 which was significant at p Bandura identified as sources of information used to determine self-efficacy. These include performance accomplishments through authentic teaching experiences, vicarious experiences through observation of the site based teachers, and verbal persuasion and physiological states from feedback given by the university coordinators. The majority of these preservice teachers started the semester with a negative attitude toward teaching science, but ended the semester with a positive view of themselves as effective science teachers in the future.

  13. Perspectives on Science Teacher Professional Development: A study of the ASSET Experience

    Science.gov (United States)

    Reeves, Katrina; Miller, Scott; Foster, Andrea

    2015-01-01

    The Astronomy Summer School of East Texas (ASSET) is a two-year NASA-funded teacher professional development program created to help improve middle and high school science teachers' knowledge of and attitudes toward astronomy. During an intensive summer astronomy course experience, science teachers are taught astronomy concepts and principles through engaging pedagogical techniques. The workshop models hands-on/minds-on teaching strategies that strengthened teachers' own pedagogical content knowledge and ways of teaching astronomy to students.As part of our second year of ASSET, participants were observed and interviewed before, during and after the workshop experience to ascertain their perspectives on their own professional development and understanding of astronomy. Interview data, participant observations, surveys, and artifact data (journaling, one-minute papers, etc...) were analyzed and three broad themes emerged regarding the significance of the ASSET experience on teacher enhancement of content knowledge, pedagogical content knowledge (PCK), and the significance of teacher professional development communities in teaching and learning science. We will discuss the major implications of our observations and outline what tools and techniques can be best implemented as part of professional development workshops such as ASSET.This project is supported by the NASA Science Mission Directorate Education and Public Outreach for Earth and Space Science (EPOESS), which is part of the Research Opportunities in Space and Earth Sciences (ROSES), Grant Number NNX12AH11G.

  14. [Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology].

    Science.gov (United States)

    Wulz, Monika

    2015-03-01

    Thought Experiments of Economic Surplus: Science and Economy in Ernst Mach's Epistemology. Thought experiments are an important element in Ernst Mach's epistemology: They facilitate amplifying our knowledge by experimenting with thoughts; they thus exceed the empirical experience and suspend the quest for immediate utility. In an economical perspective, Mach suggested that thought experiments depended on the production of an economic surplus based on the division of labor relieving the struggle for survival of the individual. Thus, as frequently emphasized, in Mach's epistemology, not only the 'economy of thought' is an important feature; instead, also the socioeconomic conditions of science play a decisive role. The paper discusses the mental and social economic aspects of experimental thinking in Mach's epistemology and examines those within the contemporary evolutionary, physiological, and economic contexts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Goethe's Conception of "Experiment as Mediator" and Implications for Practical Work in School Science

    Science.gov (United States)

    Park, Wonyong; Song, Jinwoong

    2018-03-01

    There has been growing criticism over the aims, methods, and contents of practical work in school science, particularly concerning their tendency to oversimplify the scientific practice with focus on the hypothesis-testing function of experiments. In this article, we offer a reading of Johann Wolfgang von Goethe's scientific writings—particularly his works on color as an exquisite articulation of his ideas about experimentation—through the lens of practical school science. While avoiding the hasty conclusions made from isolated experiments and observations, Goethe sought in his experiments the interconnection among diverse natural phenomena and rejected the dualistic epistemology about the relation of humans and nature. Based on a close examination of his color theory and its underlying epistemology, we suggest three potential contributions that Goethe's conception of scientific experimentation can make to practical work in school science.

  16. Improving Science Literacy and Earth Science Awareness Through an Intensive Summer Research Experience in Paleobiology

    Science.gov (United States)

    Heim, N. A.; Saltzman, J.; Payne, J.

    2014-12-01

    The chasm between classroom science and scientific research is bridged in the History of Life Internships at Stanford University. The primary foci of the internships are collection of new scientific data and original scientific research. While traditional high school science courses focus on learning content and laboratory skills, students are rarely engaged in real scientific research. Even in experiential learning environments, students investigate phenomena with known outcomes under idealized conditions. In the History of Life Internships, high school youth worked full time during the summers of 2013 and 2014 to collect body size data on fossil Echinoderms and Ostracods, measuring more than 20,000 species in total. These data are contributed to the larger research efforts in the Stanford Paleobiology Lab, but they also serve as a source of data for interns to conduct their own scientific research. Over the course of eight weeks, interns learn about previous research on body size evolution, collect data, develop their own hypotheses, test their hypotheses, and communicate their results to their peers and the larger scientific community: the 2014 interns have submitted eight abstracts to this meeting for the youth session entitled Bright STaRS where they will present their research findings. Based on a post-internship survey, students in the 2013 History of Life cohort had more positive attitudes towards science and had a better understanding of how to conduct scientific research compared to interns in the Earth Sciences General Internship Program, where interns typically do not complete their own research project from start to finish. In 2014, we implemented both pre- and post-internship surveys to determine if these positive attitudes were developed over the course of the internship. Conducting novel research inspires both the students and instructors. Scientific data collection often involves many hours of repetitive work, but answering big questions typically

  17. A qualitative, phenomenological study on the lived experiences of science teachers in The Bahamas

    Science.gov (United States)

    Micklewhite, Thalia Vionne

    This phenomenological study investigates the lived experiences and perceptions of secondary science teachers in the archipelagic country of The Bahamas and how these teachers make meaning of the secondary science program in The Bahamas through the lens of life in a democratic society. The study's purpose was to answer the question: What are the lived experiences of secondary science teachers in The Bahamas in terms of their working conditions'? Using principles of phenomenological research to approach meaning, in-depth interviewing was conducted with six secondary science teachers on four islands of The Bahamas, including the capital of New Providence. The participants and the selected islands are representative of the diversity of teachers, the population, and school climates and structures throughout the country. Narratives were obtained via three ninety-minute interviews with each participant; and thematic analysis was the instrument by which three central themes emerged. Analysis of narratives reveals that lived experience of secondary science teachers revolve around themes of: (1) The Professional Self, (2) Curriculum Leadership, and (3) Curriculum. Most participants are in the career of secondary science education as second choice but are still committed to the profession. Participants overwhelmingly commented that there was a lack of supportive frameworks for critical elements of their daily work, and a need for clear, visionary and decisive curriculum leadership by The Ministry of Education and private School Boards. Participants also desired more appropriate and alternative science curricula that would meet the need of non-academically inclined Bahamian students. Antecedent to their calls was a pressing recognition that they lacked participatory democratic voice in national secondary science education evidenced by years of unrecognized and unattended suggestions sent to those in authority. As a result of these findings, the researcher was propelled towards

  18. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    Science.gov (United States)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of

  19. Fairness and Trust in Structured Populations

    Directory of Open Access Journals (Sweden)

    Corina E. Tarnita

    2015-07-01

    Full Text Available Classical economic theory assumes that people are rational and selfish, but behavioral experiments often point to inconsistent behavior, typically attributed to “other regarding preferences.” The Ultimatum Game, used to study fairness, and the Trust Game, used to study trust and trustworthiness, have been two of the most influential and well-studied examples of inconsistent behavior. Recently, evolutionary biologists have attempted to explain the evolution of such preferences using evolutionary game theoretic models. While deterministic evolutionary game theoretic models agree with the classical economics predictions, recent stochastic approaches that include uncertainty and the possibility of mistakes have been successful in accounting for both the evolution of fairness and the evolution of trust. Here I explore the role of population structure by generalizing and expanding these existing results to the case of non-random interactions. This is a natural extension since such interactions do not occur randomly in the daily lives of individuals. I find that, in the limit of weak selection, population structure increases the space of fair strategies that are selected for but it has little-to-no effect on the optimum strategy played in the Ultimatum Game. In the Trust Game, in the limit of weak selection, I find that some amount of trust and trustworthiness can evolve even in a well-mixed population; however, the optimal strategy, although trusting if the return on investment is sufficiently high, is never trustworthy. Population structure biases selection towards strategies that are both trusting and trustworthy trustworthy and reduces the critical return threshold, but, much like in the case of fairness, it does not affect the winning strategy. Further considering the effects of reputation and structure, I find that they act synergistically to promote the evolution of trustworthiness.

  20. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  1. Definition of Atmospheric Science Experiments and Techniques: Wake Zone Mapping Experiments

    Science.gov (United States)

    Taeusch, D. R.

    1976-01-01

    The development of a subsatellite system has been proposed for the shuttle program which would provide to the scientific community a platform for experiments which would be tethered to the shuttle spacecraft orbiting at about 200 km altitude. Experiments which can perform measurements of aeronomic interest onboard or utilizing the tethered satellite concept are described and recommended.

  2. Students' Perceptions of an Applied Research Experience in an Undergraduate Exercise Science Course.

    Science.gov (United States)

    Pearson, Regis C; Crandall, K Jason; Dispennette, Kathryn; Maples, Jill M

    2017-01-01

    Applied research experiences can provide numerous benefits to undergraduate students, however few studies have assessed the perceptions of Exercise Science (EXS) students to an applied research experience. The purpose of this study was two-fold: 1) to describe the rationale and implementation of an applied research experience into an EXS curriculum and 2) to evaluate EXS undergraduate students' perceptions of an applied research experience. An EXS measurement course was chosen for implementation of an applied research experience. The applied research experience required groups of students to design, implement, and evaluate a student-led research project. Fourteen questions were constructed, tailored to EXS undergraduate students, to assess students' perceptions of the experience. Qualitative analysis was used for all applicable data, with repeated trends noted; quantitative data were collapsed to determine frequencies. There was an overall positive student perception of the experience and 85.7% of students agreed an applied research experience should be continued. 84.7% of students perceived the experience as educationally enriching, while 92.8% reported the experience was academically challenging. This experience allowed students to develop comprehensive solutions to problems that arose throughout the semester; while facilitating communication, collaboration, and problem solving. Students believed research experiences were beneficial, but could be time consuming when paired with other responsibilities. Results suggest an applied research experience has the potential to help further the development of EXS undergraduate students. Understanding student perceptions of an applied research experience may prove useful to faculty interested in engaging students in the research process.

  3. Children develop a veil of fairness

    DEFF Research Database (Denmark)

    Shaw, Alex; Montinari, Natalia; Piovesan, Marco

    2014-01-01

    Previous research suggests that children develop an increasing concern with fairness over the course of development. Research with adults suggests that the concern with fairness has at least 2 distinct components: a desire to be fair and a desire to signal to others that they are fair. We explore......INFO Database Record (c) 2013 APA, all rights reserved)....

  4. Idea-based, transformative experiences in science: What are they and how do you foster them?

    Science.gov (United States)

    Pugh, Kevin James

    Many have argued that science education should enrich students' lives, but, surprisingly, this issue has not been systematically addressed. Much of the work in science education has focused on the issue of how enriched experience leads to the development of conceptual understanding, but relatively little work has focused on the issue of how conceptual understanding leads to the development of enriched experience. This dissertation is comprised of two articles, which address the latter issue. The first article, entitled "Applying Pragmatism and Deweyan Aesthetics to Science Education: A Look at How Concepts Can Enrich Everyday Experience," develops the construct of an idea-based, transformative experience (a particular type of enriched experience) and an understanding of the role that concepts play in such experience, by synthesizing Dewey's writings on experience, aesthetics, and education. Such experience is centrally defined by an expansion of perception, meaning, and value which results from active use of a concept. Three illustrative examples of idea-based, transformative experiences are provided. Implications include a focus on idea-based, transformative experience as the goal of science education. A discussion of how this goal compares, contrasts, and relates to the standard goals of conceptual understanding/change and the development of thinking/participatory skills is provided. The second article, entitled, "Teaching for Idea-based, Transformative Experiences in Science," is a report of a study which examines the effectiveness of two related teaching elements (the artistic crafting of content and the modeling and scaffolding of perception, meaning, and value) at fostering idea-based, transformative experiences. The elements were used in teaching a unit on adaptation and evolution in a high school zoology class and student outcomes were compared with those of students in a roughly equivalent class where case-based methods were used. Results indicate that a

  5. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  6. The Big Bang: UK Young Scientists' and Engineers' Fair 2010

    Science.gov (United States)

    Allison, Simon

    2010-01-01

    The Big Bang: UK Young Scientists' and Engineers' Fair is an annual three-day event designed to promote science, technology, engineering and maths (STEM) careers to young people aged 7-19 through experiential learning. It is supported by stakeholders from business and industry, government and the community, and brings together people from various…

  7. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  8. Enhancing Children's Success in Science Learning: An Experience of Science Teaching in Teacher Primary School Training

    Science.gov (United States)

    Ferreira, Maria Eduarda; Porteiro, Ana Cláudia; Pitarma, Rui

    2015-01-01

    The Environmental Studies curricular area, taught at primary school level in Portugal, is a challenging context for curricular interdisciplinarity and the achievement of small-scale research and creative and innovative experiences, inside and outside the classroom. From that assumption, we present, under the master course of primary teacher…

  9. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    Science.gov (United States)

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  10. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman

    2009-10-01

    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  11. Financial fairness and conditional indexation

    NARCIS (Netherlands)

    Kleinow, T.; Schumacher, J.M.

    2017-01-01

    Collective pension contracts can generate advantages for their participants by implementing forms of risk sharing. To ensure the continuity of a collective scheme, it has to be monitored whether the contracts offered to participants are financially fair in terms of their market value. When risk

  12. Financial Fairness and Conditional Indexation

    NARCIS (Netherlands)

    Kleinow, Torsten; Schumacher, Hans

    2015-01-01

    Collective pension contracts can generate advantages for their participants by implementing forms of risk sharing. To ensure the continuity of a collective scheme, it has to be monitored whether the contracts offered to participants are financially fair in terms of their market value. When risk

  13. Pension accounting and fair value

    OpenAIRE

    Napier, Christopher

    2007-01-01

    The chapter reviews the applicability of the fair value measurement concept to pension assets and liabilities, concluding that difficulties are likely to arise in measuring pension liabilities at far value, owing to the absence of well-developed markets for such liabilities.

  14. Toddlers Selectively Help Fair Agents

    Directory of Open Access Journals (Sweden)

    Luca Surian

    2017-06-01

    Full Text Available Previous research showed that infants and toddlers are inclined to help prosocial agents and assign a positive valence to fair distributions. Also, they expect that positive and negative actions directed toward distributors will conform to reciprocity principles. This study investigates whether toddlers are selective in helping others, as a function of others’ previous distributive actions. Toddlers were presented with real-life events in which two actresses distributed resources either equally or unequally between two puppets. Then, they played together with a ball that accidentally fell to the ground and asked participants to help them to retrieve it. Participants preferred to help the actress who performed equal distributions. This finding suggests that by the second year children’s prosocial actions are modulated by their emerging sense of fairness.HighlightsToddlers (mean age = 25 months are selective in helping distributors.Toddlers prefer helping a fair rather than an unfair distributor.Toddlers’ selective helping provides evidence for an early sense of fairness.

  15. Antiproton complex at the FAIR project

    International Nuclear Information System (INIS)

    Dolinskii, A.; Knie, K.; Dimopoulou, C.; Gostishchev, V.; Litvinov, S.; Nolden, F.; Steck, M.

    2011-01-01

    This report summarizes a set of calculations for the antiproton production in a complex composed of target area, collector, separator, beam line and collector ring for the antiproton source of the future FAIR facility (Facility for Antiproton and Ion Research) at GSI, Darmstadt, Germany. The emphasis is on the optimization of the accumulation rate of antiprotons in order to maximize the luminosity of experiments with cooled antiproton beams in the High Energy Storage Ring (HESR). Results of simulations for each component of the antiproton production complex are presented in order to identify the present limitations of the antiproton production rate.

  16. Articulating attrition: Graduate school experiences of female doctoral students in the sciences

    Science.gov (United States)

    Osburn, Kathryn Ann

    2005-07-01

    Despite decades of research and reform efforts designed to bolster female retention in scientific disciplines, the conundrum of women's departure from doctoral programs in the sciences remains. This qualitative case study investigated the aspects of the graduate school experience that female doctoral students described as facilitating or impeding their successful degree completion in chemistry. I analyzed the graduate school narratives of twelve female participants who represented both successful and unsuccessful doctoral recipients from four advisors at one university. Participants identified four types of experiences that facilitated their retention in the doctoral program: feeling successful and confident in meeting the program requirements, having positive research experiences, receiving support from social networks, and being dedicated to career goals. Participants cited four kinds of experiences that impeded their continued participation in the doctoral program: having negative research experiences, feeling a lack of success and confidence in meeting the program requirements, changing career goals, and receiving no support from social networks. The graduate school experiences of participants who did and did not successfully attain their degree objectives differed in terms of four dimensions: pre-program experiences, academic experiences, advisory experiences, and social experiences. Based on these findings, I have proposed a model of attrition and retention that emphasizes the role that these unique program experiences play in shaping participants' sense of professional fit within the community of doctoral chemists, consequently contributing to their differential program outcomes. This study not only offers a new perspective on the phenomenon of female doctoral attrition in the sciences but also informs the development of more gender-inclusive graduate science practices and policies that will support the retention of female doctoral students.

  17. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  18. Formative experience mediated by virtual learning environment: science and mathematics teachers’ education in the amazon region

    Directory of Open Access Journals (Sweden)

    France Fraiha Martins

    2012-06-01

    Full Text Available This article reports results of a qualitative research, in the narrative modality. We investigated the formative experiences of teachers of Mathematics and Science through distance learning in the Amazon region, experienced in a course through the Virtual Learning Environment (VLE. We investigated under what conditions this education experience was a catalyst for teachers’ reflections on the Amazonian context of teaching science and mathematics. By using Discursive Textual Analysis some categories e merged: graduating in the Amazon region: obstacles and confrontations; AVA and Technologies: meaning (s of the education experience and the impact of the experience in the perceptions of teachers’ practices and training. The analysis of the results reveals the obstacles to the training in this context. The dynamics experienced by the use of VLE technologies and of the teachers reverberated methodological insights regarding the use of technology in teaching practices, indicating also the VLE as an alternative of (self education on the Amazon reality

  19. The laboratory of the mind thought experiments in the natural sciences

    CERN Document Server

    Brown, James Robert

    1993-01-01

    Thought experiments are performed in the laboratory of the mind. Beyond this metaphor it is difficult to say just what these remarkable devices for investigating nature are or how they work. Though most scientists and philosophers would admit their great importance, there has been very little serious study of them. This volume is the first book-length investigation of thought experiments. Starting with Galileo's argument on falling bodies, Brown describes numerous examples of the most influential thought experiments from the history of science. Following this introduction to the subject, some substantial and provocative claims are made, the principle being that some thought experiments should be understood in the same way that platonists understand mathematical activity: as an intellectual grasp of an independently existing abstract realm. With its clarity of style and structure, The Laboratory of the Mind will find readers among all philosophers of science as well as scientists who have puzzled over how thou...

  20. Reflection after teaching a lesson: Experiences of secondary school science teachers

    Science.gov (United States)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  1. Wow, My Science Teacher Does Real Research! Engaging and Motivating Students Using Experiences from the Field

    Science.gov (United States)

    Scott, C.

    2013-12-01

    Students respond to personal connections. When K-12 science teachers are able to participate as field assistants on research projects, their students can benefit greatly from the stories, pictures, and video transmitted or brought back from the field. Teachers can translate and tailor their learning while in the field to the level of their students. Students are ';hooked' into science content by seeing their own teacher out there actually ';doing' science. The teacher is able to provide a direct content connection for the student, an avenue for understanding why ';learning this' is relevant and important. This presentation provides a case for why science teachers and researchers should collaborate as much as possible. The NSF funded PolarTREC program (Teachers and Researchers Exploring and Collaborating) is an excellent example of how to make this collaboration work. The presentation will also provide a look into how teachers can make an effective connection for their students between field science and classroom learning. Alaskan secondary science teacher Carol Scott spent a month at the Kevo Research Station in northern Finland in May/June 2013 as a PolarTREC teacher, and is translating this experience for students. She has also worked on an NSF Research Experience for Teachers grant in Prince William Sound, AK, and has successfully used this work to engage students in the classroom.

  2. Thematic web portals for different user profiles in a virtual health science library: Bibliosalut's experience

    OpenAIRE

    Páez, Virgili; Font, Mònica; Pastor-Ramon, Elena; Sastre-Suárez, Sílvia; Costa-Marin, Maria

    2016-01-01

    Normally users of a virtual health library have different professional profiles (physicians, nurses, pharmacists...) and/or they are from different specialties (Primary Health Care, Internal Medicine, Oncology...). This poster shows the experience of the Virtual Health Sciences Library of the Balearic Islands (Bibliosalut) of creating thematic web portals, which aims is to improve the experience of our users to browse and query to information resources and services of the virtual library and ...

  3. Using Experiential Learning Through Science Experiments to Increase the Motivation of Students Classified as Emotionally Disturbed

    Science.gov (United States)

    Crozier, Marisa

    When learning is an adventure rather than an exercise in memorization, students can enjoy the process and be motivated to participate in classroom activities (Clem, Mennicke, & Beasley, 2014). Students classified as emotionally disturbed are prone to disruptive behaviors and struggle learning in a traditional science classroom consisting of lecture and demonstrations. They cannot maintain the necessary level of attention nor have the strong reading, writing or memory skills needed to succeed. Therefore, this study examined whether the use of experiential learning would increase on-task behavior and improve the motivation of emotionally disturbed, middle school students in science. Students completed four hands-on experiments aligned with the science curriculum. The data collection methods implemented were an observation checklist with corresponding journal entries, a summative assessment in the form of lab sheets, and student interviews. Through triangulation and analysis, data revealed that the students had more on-task behaviors, were engaged in the lessons, and improved grades in science.

  4. Enabling the Public to Experience Science from Beginning to End (Invited)

    Science.gov (United States)

    Trouille, L.; Chen, Y.; Lintott, C.; Lynn, S.; Simmons, B.; Smith, A.; Tremonti, C.; Whyte, L.; Willett, K.; Zevin, M.; Science Team; Moderator Team, G.

    2013-12-01

    In this talk we present the results of an experiment in collaborative research and article writing within the citizen science context. During July-September 2013, astronomers and the Zooniverse team ran Galaxy Zoo Quench (quench.galaxyzoo.org), investigating the mechanism(s) that recently and abruptly shut off star formation in a sample of post-quenched galaxies. Through this project, the public had the opportunity to experience the entire process of science, including galaxy classification, reading background literature, data analysis, discussion, debate, drawing conclusions, and writing an article to submit to a professional journal. The context was galaxy evolution, however, the lessons learned are applicable across the disciplines. The discussion will focus on how to leverage online tools to authentically engage the public in the entire process of science.

  5. Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment

    Science.gov (United States)

    Jung, Karl Gerhard

    Academic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students' science academic language use and development. This study investigates an elementary science teacher's engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom

  6. Dynamical charge fluctuation at FAIR energy

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Mukhopadhyay, Amitabha

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment to be held at the Facility for antiproton and ion research (FAIR) is being designed to investigate the baryonic matter under extreme thermodynamic conditions. The hot and dense matter produced in this experiment will be rich in baryon number. It would be worthwhile to examine how the signatures proposed for identifying and characterizing a baryon free QGP like state behave in a baryon rich environment. Event-by-event fluctuation of net electrical charge and/or baryon number is one such indicator of the formation of the QGP, used and tested in RHIC and LHC heavy-ion experiments. One starts by defining the net charge Q = (N + - N - ) and the total charge N ch = (N + + N - ) where the quantities N + and N - are respectively, the multiplicities of positively and negatively charged particles

  7. Science Teachers' Beliefs about the Influence of Their Summer Research Experiences on Their Pedagogical Practices

    Science.gov (United States)

    Miranda, Rommel J.; Damico, Julie B.

    2013-01-01

    This study sought to determine the beliefs that tenured, in-service high school science teachers hold about how their participation in a large mid-Atlantic university's 6-week summer research experiences for teachers (RET) program might influence their pedagogical practices. The findings show a number of factors that teachers believed helped them…

  8. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  9. OpenSesame: An Open-source, Graphical Experiment Builder for the Social Sciences

    NARCIS (Netherlands)

    Mathot, S.; Schreij, D.B.B.; Theeuwes, J.

    2012-01-01

    In the present article, we introduce OpenSesame, a graphical experiment builder for the social sciences. OpenSesame is free, open-source, and cross-platform. It features a comprehensive and intuitive graphical user interface and supports Python scripting for complex tasks. Additional functionality,

  10. The Lived Experience of Applied Science Graduates Who Complete the Applied Baccalaureate

    Science.gov (United States)

    Kujawa, Tricia A.

    2012-01-01

    The enrollment and transfer behaviors of college students are diverse. As a result college students travel various pathways to the baccalaureate degree. The purpose of this qualitative study was to better understand the lived experience of students who entered higher education through an associate of applied science (AAS) program and then…

  11. Japanese Family and Consumer Sciences Teachers' Lived Experiences: Self-Disclosure in the Classroom

    Science.gov (United States)

    Katadae, Ayako

    2008-01-01

    The purpose of this phenomenological study was to understand the lived experiences of Japanese family and consumer sciences teachers' self-disclosure in the classroom. Twelve secondary school teachers were interviewed, beginning with this primary question, "Think about a specific time and space when you self-disclosed in the classroom. Would you…

  12. Impact of Service-Learning Experiences in Culinary Arts and Nutrition Science

    Science.gov (United States)

    Daugherty, Jamie B.

    2015-01-01

    A grant from a regional nonprofit organization for the 2012-2013 academic year facilitated the revision of an existing course learning objective in a Culinary Nutrition lab course--performing effective culinary demonstrations--to include a service-learning experience. This course is a graduation requirement in a research- and science-based…

  13. Middle Years Science Teachers Voice Their First Experiences with Interactive Whiteboard Technology

    Science.gov (United States)

    Gadbois, Shannon A.; Haverstock, Nicole

    2012-01-01

    Among new technologies, interactive whiteboards (IWBs) particularly seem to engage students and offer entertainment value that may make them highly beneficial for learning. This study examined 10 Grade 6 teachers' initial experiences and uses of IWBs for teaching science. Through interviews, classroom visits, and field notes, the outcomes…

  14. Rethinking Environmental Science Education from Indigenous Knowledge Perspectives: An Experience with a Dene First Nation Community

    Science.gov (United States)

    Datta, Ranjan Kumar

    2018-01-01

    This auto-ethnographic article explores how land-based education might challenge Western environmental science education (ESE) in an Indigenous community. This learning experience was developed from two perspectives: first, land-based educational stories from Dene First Nation community Elders, knowledge holders, teachers, and students; and…

  15. An Experience of Science Theatre to Introduce Earth Interior and Natural Hazards to Children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-01-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of making them acquainted with a topic, the interior of the Earth, largely underestimated in compulsory school curricula worldwide. A not less important task was to encourage a positive attitude towards natural…

  16. Game Immersion Experience: Its Hierarchical Structure and Impact on Game-Based Science Learning

    Science.gov (United States)

    Cheng, M.-T.; She, H.-C.; Annetta, L. A.

    2015-01-01

    Many studies have shown the positive impact of serious educational games (SEGs) on learning outcomes. However, there still exists insufficient research that delves into the impact of immersive experience in the process of gaming on SEG-based science learning. The dual purpose of this study was to further explore this impact. One purpose was to…

  17. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    Science.gov (United States)

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  18. Publishing FAIR Data: An Exemplar Methodology Utilizing PHI-Base.

    Science.gov (United States)

    Rodríguez-Iglesias, Alejandro; Rodríguez-González, Alejandro; Irvine, Alistair G; Sesma, Ane; Urban, Martin; Hammond-Kosack, Kim E; Wilkinson, Mark D

    2016-01-01

    Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species vs. the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be "FAIR"-Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences-the Pathogen-Host Interaction Database (PHI-base)-to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings.

  19. Publishing FAIR Data: an exemplar methodology utilizing PHI-base

    Directory of Open Access Journals (Sweden)

    Alejandro eRodríguez Iglesias

    2016-05-01

    Full Text Available Pathogen-Host interaction data is core to our understanding of disease processes and their molecular/genetic bases. Facile access to such core data is particularly important for the plant sciences, where individual genetic and phenotypic observations have the added complexity of being dispersed over a wide diversity of plant species versus the relatively fewer host species of interest to biomedical researchers. Recently, an international initiative interested in scholarly data publishing proposed that all scientific data should be FAIR - Findable, Accessible, Interoperable, and Reusable. In this work, we describe the process of migrating a database of notable relevance to the plant sciences - the Pathogen-Host Interaction Database (PHI-base - to a form that conforms to each of the FAIR Principles. We discuss the technical and architectural decisions, and the migration pathway, including observations of the difficulty and/or fidelity of each step. We examine how multiple FAIR principles can be addressed simultaneously through careful design decisions, including making data FAIR for both humans and machines with minimal duplication of effort. We note how FAIR data publishing involves more than data reformatting, requiring features beyond those exhibited by most life science Semantic Web or Linked Data resources. We explore the value-added by completing this FAIR data transformation, and then test the result through integrative questions that could not easily be asked over traditional Web-based data resources. Finally, we demonstrate the utility of providing explicit and reliable access to provenance information, which we argue enhances citation rates by encouraging and facilitating transparent scholarly reuse of these valuable data holdings.

  20. ALFA: The new ALICE-FAIR software framework

    Science.gov (United States)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  1. Soil Science self-learning based on the design and conduction of experiments

    Science.gov (United States)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the

  2. African American eighth-grade female students' perceptions and experiences as learners of science literacy

    Science.gov (United States)

    Crim, Sharan R.

    The National Assessment of Educational Progress (2000) reports an achievement gap between male and female students and majority and minority students in science literacy. Rutherford and Algren (2000) describe a scientifically literate person as one who is aware that science, mathematics, and technology are interdependent human enterprises with strengths and limitations; understands key concepts and principles of science; is familiar with the natural world and recognizes both its diversity and unity; and uses scientific knowledge and scientific ways of thinking for individual and social purposes. The purpose of this qualitative case study research was to investigate African American eighth grade female students' perceptions and experiences as learners of science literacy. A social learning theory (Bandura, 1986) and constructivist theory (Vygotsky, 1977) served as a guide for the researcher. Two questions were explored: (1) What are African American eighth grade female students' perceptions and experiences as learners of science literacy? (2) In what ways do the perceptions and experiences of African American eighth grade female students influence their learning of science literacy? Purposeful sampling (Merriam, 1998) was used with four African American eighth grade female students selected as participants for the study. Data collection and analysis occurred between February and August in a single year. Data sources included an open-ended questionnaire, two in-depth interviews with each participant (Seidman, 1991); classroom observations, participant reflective journals, student artifacts, and a researcher's log. Data were analyzed through the constant comparative method (Glaser & Strauss, 1967), and richly descriptive participant portraits and qualitative case studies (Merriam, 1998) were used to report the findings. Three themes emerged from the study that positively affected the perceptions and experiences of African American eighth grade female students as

  3. Senior science teachers' experience of teaching in a changing multicultural classroom: A case study

    Science.gov (United States)

    Ryan, Mark

    Demographic changes within the US are bringing significant changes in the cultural make-up of the classrooms in our schools. Results from national and state assessments indicate a growing achievement gap between the science scores of white students and students from minority communities. This gap indicates a disconnect somewhere in the science classrooms. This study examines the teacher's perspective of the changing learning environment. The study focuses on senior teachers with traditional Midwestern backgrounds and little multicultural experience assuming these teachers had little or no education in multicultural education. Senior teachers are also more likely to have completed their science education within a traditional Universalist perspective of science and likewise have little or no education in multicultural science. The research method was comparative case studies of a purposeful sample of nine science teachers within a community experiencing significant demographic change, seven core senior teachers and two frame of reference teachers. The interviews examined the teachers' awareness of their own cultural beliefs and the impact of those beliefs on classroom practices, the teachers' understanding of cultural influences on the students' academic performance, and the relationships between the teachers' understanding of the cultural aspects of the nature of science and their classroom practices. Analysis of the interview data revealed that the teachers maintain a strong, traditional Midwestern worldview for classroom expectations and they are generally unaware of the impact of those standards on the classroom environment. The teachers were supportive of minority students within their classroom, changing several practices to accommodate student needs, but they were unaware of the broader cultural influences on student learning. The teachers had a poor understanding of the nature of science and none of them recognized a cultural element of NOS. They maintained a

  4. EXAMINE THE PAST FOR GOING FURTHER: A LITERATURE REVIEW IN THE FIELD OF FAIR VALUE

    Directory of Open Access Journals (Sweden)

    Andreicovici Ionela - Irina

    2011-12-01

    Full Text Available The current study is part of the scientific approach being assumed at the beginning of the Ph.D. as the theme 'New valence of evaluation in accounting' under the guidance of prof. univ. dr. Dumitru Matis. This article aims to realize a more comprehensive study of relevant literature in accounting with fair value as the main subject. We have built our study attempting to answer the following research questions: How much fair value activity has there been since 2008? What research topics are being addressed? Who is leading fair value research? What are the limitations of current research? To achieve our proposed objectives we analyzed two databases (Science Direct and Business Source Premier during 2008-2011, analyzing in detail a total of 22 articles divided into five specific research directions: international regulations on fair value accounting, fair Value Accounting and Financial Crisis, financial reporting at fair value, the relevance of fair value and fair value versus historical cost. With this research we try to see 'what is known' in the field of fair value so far . In addition to qualitative analysis which we performed to discover the interest of researchers in this field, we conducted a quantitative analysis concerning the reported studies , being divided into research themes, research methodology and year of the article publication. Quantitative research results are those anticipated, that the most 'fair value activity ' took place in 2008 and 2009, surveys having as main research theme international regulations on fair value accounting.

  5. The Laboratory of the Mind Thought Experiments in the Natural Sciences

    CERN Document Server

    Brown, James Robert

    2010-01-01

    Newton's bucket, Einstein's elevator, Schrödinger's cat - these are some of the best-known examples of thought experiments in the natural sciences. But what function do these experiments perform? Are they really experiments at all? Can they help us gain a greater understanding of the natural world?  How is it possible that we can learn new things just by thinking?   In this revised and updated new edition of his classic text The Laboratory of the Mind, James Robert Brown continues to defend apriorism in the physical world. This edition features two new chapters, one on "counter

  6. Rewarding leadership and fair procedures as determinants of self-esteem

    OpenAIRE

    De Cremer, D.; Knippenberg, D.; Knippenberg, B.; Mullenders, D.; Stinglhamber, F.

    2005-01-01

    In the present research, the authors examined the effect of procedural fairness and rewarding leadership style on an important variable for employees: self-esteem. The authors predicted that procedural fairness would positively influence people's reported self-esteem if the leader adopted a style of rewarding behavior for a job well done. Results from a scenario experiment, a laboratory experiment, and an organizational survey indeed show that procedural fairness and rewarding leadership styl...

  7. The influences and experiences of African American undergraduate science majors at predominately White universities

    Science.gov (United States)

    Blockus, Linda Helen

    The purpose of this study is to describe and explore some of the social and academic experiences of successful African American undergraduate science majors at predominately White universities with the expectation of conceptualizing emerging patterns for future study. The study surveyed 80 upperclass African Americans at 11 public research universities about their perceptions of the influences that affect their educational experiences and career interests in science. The mailed survey included the Persistence/ voluntary Dropout Decision Scale, the Cultural Congruity Scale and the University Environment Scale. A variety of potential influences were considered including family background, career goals, psychosocial development, academic and social connections with the university, faculty relationships, environmental fit, retention factors, validation, participation in mentored research projects and other experiences. The students' sources of influences, opportunities for connection, and cultural values were considered in the context of a research university environment and investigated for emerging themes and direction for future research. Results indicate that performance in coursework appears to be the most salient factor in African American students' experience as science majors. The mean college gpa was 3.01 for students in this study. Challenging content, time demands, study habits and concern with poor grades all serve to discourage students; however, for most of the students in this study, it has not dissuaded them from their educational and career plans. Positive course performance provided encouragement. Science faculty provide less influence than family members, and more students find faculty members discouraging than supportive. Measures of faculty relations were not associated with academic success. No evidence was provided to confirm the disadvantages of being female in a scientific discipline. Students were concerned with lack of minority role models

  8. The NUSTAR program at FAIR

    Directory of Open Access Journals (Sweden)

    Herlert Alexander

    2014-04-01

    Full Text Available The NUSTAR Collaboration brings together several hundred scientists to form one of the four scientific pillars of the future FAIR facility. NUSTAR aims at the exploitation of intense radioactive beams with energies up to 1.5 GeV/u in order to explore nuclei with large neutron or proton excess. The project has evolved over the last years and now reached a state where a large fraction of the core program is financed, partly built, and even ready for operation. With the signing of the FAIR convention in 2010 and the start of construction, the sub-projects in NUSTAR gain momentum and look forward to commissioning and first beams in this decade. The present status of the project will be presented, focusing on the instrumentation to be applied in the various experimental areas behind the Super-FRS fragment separator, which is the central instrument of NUSTAR.

  9. The psychological characteristics of experiences that influence science motivation and content knowledge

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2017-11-01

    While motivational changes towards science are common during adolescence, our work asks which perceived classroom experiences are most strongly related to these changes. Additionally, we examine which experiences are most strongly associated with learning classroom content. In particular, using self-reports from a sample of approximately 3000 middle school students, this study investigates the influence of perceived science classroom experiences, namely student engagement and perceived success, on motivational change (fascination, values, competency belief) and content knowledge. Controlling for demographic information, school effects, and initial levels of motivation and content knowledge, we find that dimensions of engagement (affect, behavioural/cognitive) and perceived success are differentially associated with changes in particular motivational constructs and learning. Affective engagement is positively associated with motivational outcomes and negatively associated with learning outcomes, behavioural-cognitive engagement is associated only with learning, and perceived success is related only to motivational outcomes. Theoretical and practical implications are discussed.

  10. Developing Conceptions of Fair Contest Procedures and the Understanding of Skill and Luck.

    Science.gov (United States)

    Thorkildsen, Theresa A.; White-McNulty, Lisa

    2002-01-01

    Contrary to assumptions about aversive effects of competition on achievement motivation, in this study young people saw academic contests as fair. When participants completed structural interviews on fair ways to organize science contests and on differentiation of skill and luck, age-related trends in their conceptions of procedural justice were…

  11. Expanded HTA: Enhancing Fairness and Legitimacy.

    Science.gov (United States)

    Daniels, Norman; Porteny, Thalia; Urritia, Julian

    2015-11-06

    All societies face the need to make judgments about what interventions (both public health and personal medical) to provide to their populations under reasonable resource constraints. Their decisions should be informed by good evidence and arguments from health technology assessment (HTA). But if HTA restricts itself to evaluations of safety, efficacy, and cost-effectiveness, it risks being viewed as insufficient to guide health decision-makers; if it addresses other issues, such as budget impact, equity, and financial protection, it may be accused of overreaching. But the risk of overreaching can be reduced by embedding HTA in a fair, deliberative process that meets the conditions required by accountability for reasonableness. © 2016 by Kerman University of Medical Sciences.

  12. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    Science.gov (United States)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  13. Undergraduate Science Research: A Comparison of Influences and Experiences between Premed and Non–Premed Students

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non–premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non–premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non–premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non–premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school. PMID:21633068

  14. Undergraduate science research: a comparison of influences and experiences between premed and non-premed students.

    Science.gov (United States)

    Pacifici, Lara Brongo; Thomson, Norman

    2011-01-01

    Most students participating in science undergraduate research (UR) plan to attend either medical school or graduate school. This study examines possible differences between premed and non-premed students in their influences to do research and expectations of research. Questionnaire responses from 55 premed students and 80 non-premed students were analyzed. No differences existed in the expectations of research between the two groups, but attitudes toward science and intrinsic motivation to learn more about science were significantly higher for non-premed students. Follow-up interviews with 11 of the students, including a case study with one premed student, provided explanation for the observed differences. Premed students, while not motivated to learn more about science, were motivated to help people, which is why most of them are pursuing medicine. They viewed research as a way to help them become doctors and to rule out the possibility of research as a career. Non-premed students participated in research to learn more about a specific science topic and gain experience that may be helpful in graduate school research. The difference in the reasons students want to do UR may be used to tailor UR experiences for students planning to go to graduate school or medical school.

  15. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  16. Accounting for Fair Value Headging

    OpenAIRE

    Botea Elena Mihaela; Stanila Oana Georgiana; SSahlian Daniela Nicoleta

    2010-01-01

    The derivatives appearance was generated by the discovery of new ways to limit and manage current activity risks. Derivatives couldn’t hedge any type of risk. Derivative operations can be used to hedge: interest rate risks, foreign currency exchange rate risks, credit risks. Derivatives used to hedge these risks can be handled to cover fair value exposure, cash flow exposure and exposure to changes in the value of a net investment in a foreign operation. The hedging accounting roll is to prot...

  17. Hadronic resonances at FAIR energies

    International Nuclear Information System (INIS)

    Vogel, Sascha

    2013-01-01

    These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.

  18. Life science experiments during parabolic flight: The McGill experience

    Science.gov (United States)

    Watt, D. G. D.

    1988-01-01

    Over the past twelve years, members of the Aerospace Medical Research Unit of McGill University have carried out a wide variety of tests and experiments in the weightless condition created by parabolic flight. This paper discusses the pros and cons of that environment for the life scientist, and uses examples from the McGill program of the types of activities which can be carried out in a transport aircraft such as the NASA KC-135.

  19. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  20. The Relationship between Family Experiences and Motivation to Learn Science for Different Groups of Grade 9 Students in South Africa

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2016-01-01

    Worldwide science education is a national priority due to the role played by science performance in economic growth and the supply and quality of the human capital pool in scientific fields. One factor that may impact on the motivation to learn science is family experiences. This study therefore explored the relationship between family experiences…