WorldWideScience

Sample records for science experiment mars

  1. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  2. Mars: A Freshmen Year Seminar of Science and Science-fiction

    Science.gov (United States)

    Svec, Michael; Moffett, D. A.; Winiski, M.

    2013-06-01

    "Mars: On the shoulder of giants" is a freshmen year seminar developed collaboratively between the physics, education, and center for teaching and learning. This course focuses on how scientific knowledge is developed through the lens of our changing view of Mars throughout history. Analyses of current studies of Mars are juxtaposed against historical understanding and perceptions of the planet found in scientific and popular literature of the day, as well as the movies. Kim Stanley Robinson’s "Red Mars" provides a unifying story throughout the course complimented by Fredrick Taylor’s "The Scientific Exploration of Mars" and Hartmann’s "A Traveler’s Guide to Mars." Based on the three-years of experience, the authors advocate the use of the speculative science-fiction novel and argue for its use in high school and undergraduate courses including those for science majors. Many of the students who selected this seminar went on to major in science and in subsequent interviews discussed the influence of science fiction on their decision to major in science. Science fiction provided story, science, and speculation that became a rich medium for critical-thinking skills and critical literacy. Student reflections indicated that science fiction served as a reminder of why they study science, a source for imagination, and exploration of science as a human endeavor. Based on this experience, we propose five elements for selecting science-fiction for inclusion in science classes: 1) Provides a deep description of the science content or technologies, 2) Describes science and technologies are plausible or accurate to the time period, 3) Contains a novum or plausible innovation that plays a key element in the speculation, 4) Exploration of the impact on society or humanity, and, 5) Shows science and technology as human endeavors.

  3. Stationary Planetary Waves in the Mars Winter Atmosphere as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.

    2015-11-01

    Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.

  4. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  5. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing

  6. MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments

    Science.gov (United States)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-12-01

    Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.

  7. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.

    1999-01-01

    by the Mars Express Orbiter that is expected to be functional during the NetLander Mission's operational phase. Communication between the landers and the Earth would take place via a data relay onboard the Mars Express Orbiter. (C) 1999 COSPAR. Published by Elsevier Science Ltd.......The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first......, ionospheric, geodetic measurements and ground penetrating radar mapping supported by panoramic images. The payloads also include entry phase measurements of the atmospheric vertical structure. The scientific data could be combined with simultaneous observations of the atmosphere and surface of Mars...

  8. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  9. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    Science.gov (United States)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  10. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    -bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a

  11. Life sciences and Mars exploration

    Science.gov (United States)

    Sulzman, Frank M.; Rummel, John D.; Leveton, Lauren B.; Teeter, Ron

    1990-01-01

    The major life science considerations for Mars exploration missions are discussed. Radiation protection and countermeasures for zero gravity are discussed. Considerations of crew psychological health considerations and life support systems are addressed. Scientific opportunities presented by manned Mars missions are examined.

  12. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Meloy, T. P.; Hecht, H.; Anderson, M. S.; Buehler, M.; Frant, M.; Kounaves, S. P.; Manatt, K. S.; Pike, W. T.; Schubert, W.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry experiment (WCE). The WCE is the first application of electrochemical sensors to study soil chemistry on another planetary body, in addition to being the first measurement of soil/water solution properties on Mars. The chemical composition and properties of the watersoluble materials present in the Martian soil are of considerable interest to the planetary science community because characteristic salts are formed by the water-based weathering of rocks, the action of volcanic gases, and biological activity. Thus the characterization of water-soluble soil materials on Mars can provide information on the geochemical history of the planet surface. Additional information is contained in the original extended abstract.

  13. Testing a Mars science outpost in the Antarctic dry valleys

    Science.gov (United States)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  14. In Situ Strategy of the 2011 Mars Science Laboratory to Investigate the Habitability of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.

    2011-01-01

    The ten science investigations of the 2011 Mars Science Laboratory (MSL) Rover named "Curiosity" seek to provide a quantitative assessment of habitability through chemical and geological measurements from a highly capable robotic' platform. This mission seeks to understand if the conditions for life on ancient Mars are preserved in the near-surface geochemical record. These substantial payload resources enabled by MSL's new entry descent and landing (EDL) system have allowed the inclusion of instrument types nevv to the Mars surface including those that can accept delivered sample from rocks and soils and perform a wide range of chemical, isotopic, and mineralogical analyses. The Chemistry and Mineralogy (CheMin) experiment that is located in the interior of the rover is a powder x-ray Diffraction (XRD) and X-ray Fluorescence (XRF) instrument that provides elemental and mineralogical information. The Sample Analysis at Mars (SAM) suite of instruments complements this experiment by analyzing the volatile component of identically processed samples and by analyzing atmospheric composition. Other MSL payload tools such as the Mast Camera (Mastcam) and the Chemistry & Camera (ChemCam) instruments are utilized to identify targets for interrogation first by the arm tools and subsequent ingestion into SAM and CheMin using the Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem. The arm tools include the Mars Hand Lens Imager (MAHLI) and the Chemistry and Alpha Particle X-ray Spectrometer (APXX). The Dynamic Albedo of Neutrons (DAN) instrument provides subsurface identification of hydrogen such as that contained in hydrated minerals

  15. NASA Mars 2020 Rover Mission: New Frontiers in Science

    Science.gov (United States)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  16. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  17. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  18. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    NARCIS (Netherlands)

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  19. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    Science.gov (United States)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  20. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    Science.gov (United States)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  1. From Mars to Media: The Phoenix Mars Mission and the Challenges of Real-Time, Multimedia Science Communication and Public Education

    Science.gov (United States)

    Buxner, S.; Bitter, C.

    2008-12-01

    Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.

  2. Gravity Waves in the Atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    Science.gov (United States)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.

    2016-12-01

    Gravity waves are atmospheric waves whose restoring force is the buoyancy. They are known to play an essential role in the redistribution of energy, momentum and atmospheric constituents in all stably stratified planetary atmospheres. Possible excitation mechanisms comprise convection in an adjacent atmospheric layer, other atmospheric instabilities like wind shear instabilities, or air flow over orographic obstacles especially in combination with the strong winter jets on Mars. Gravity waves on Mars were observed in the lower atmosphere [1,2] but are also expected to play a major role in the cooling of the thermosphere [3] and the polar warming [4]. A fundamental understanding of the possible source mechanisms is required to reveal the influence of small scale gravity waves on the global atmospheric circulation. Radio occultation profiles from the MaRS experiment on Mars Express [5] with their exceptionally high vertical resolution can be used to study small-scale vertical gravity waves and their global distribution in the lower atmosphere from the planetary boundary layer up to 40 km altitude. Atmospheric instabilities, which are clearly identified in the data, are used to gain further insight into possible atmospheric processes contributing to the excitation of gravity waves. [1] Creasey, J. E., et al.,(2006), Geophys. Res. Lett., 33, L01803, doi:10.1029/2005GL024037. [2]Tellmann, S., et al.(2013), J. Geophys. Res. Planets, 118, 306-320, doi:10.1002/jgre.20058. [3]Medvedev, A. S., et al.(2015), J. Geophys. Res. Planets, 120, 913-927. doi:10.1002/2015JE004802.[4] Barnes, J. R. (1990), J. Geophys. Res., 95, B2, 1401-1421. [5] Pätzold, M., et al. (2016), Planet. Space Sci., 127, 44 - 90.

  3. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  4. Mars Science Laboratory Heatshield Flight Data Analysis

    Science.gov (United States)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  5. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    Science.gov (United States)

    Frew, D.

    2014-04-01

    be able to iterate over different planning horizons with the rest of the science ground segment. • Science Planning Decisions: the decision making process that will allow the science ground segment to converge on an agreed science plan in time for delivery of requests to the mission operations centre for subsequent uplink to the spacecraft. This paper will also show how the science planning process has been analysed to ensure compatibility with the broader mission-planning concept defined by the MOC. Evidently the science planning process has a strong dependence on the availability of planning inputs from the mission operations centre (MOC) to ensure that the science plans are assembled within operational constraints and that the latest information from flight dynamics is taken into account, critically the predicted orbit. Finally the science operations concept for TGO attempts to address some of the acknowledged shortcomings identified on previous ESA planetary missions. • Improved Long-Term Planning: One of the main responsibilities of the SOC will be to properly establish and maintain the long- EPSC Abstracts Vol. 9, EPSC2014-662, 2014 European Planetary Science Congress 2014 c Author(s) 2014 EPSC European Planetary Science Congress term plan baseline to ensure that progress is being made towards the desired science goals as well as allowing trade offs to be made at the science management level within a mission wide context. • Operationally Validity: All planning iterations will be placed within the known operational engineering constraints, and any decisions made with longer lead-in times must be robust to prediction uncertainties. The ExoMars 2016 science operations process will ensure that all proposed science plans are operationally valid, regardless of the level of abstraction used to iterate with the science management or the instrument teams. In summary the science-planning concept for the ExoMars 2016 Trace Gas Orbiter builds on the experience gained

  6. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  7. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  8. Antoni Quintana-Marí (1907-1998): A Pioneer of the Use of History of Science in Science Education

    Science.gov (United States)

    Roca-Rosell, Antoni; Grapí-Vilumara, Pere

    2010-09-01

    In the early 1930s, the young Antoni Quintana-Marí undertook some research on Antoni de Martí i Franquès, one of the most prominent Catalan scientists of the Enlightenment. This scientist worked in Tarragona, where Quintana-Marí lived. Quintana-Marí learnt about Martí i Franquès from Josep Estalella, his teacher of physics and chemistry at the secondary school. It was while researching on Martí i Franquès that Quintana-Marí became a true historian of science. He subsequently collaborated with other Spanish and foreign historians of science in the early years of this discipline. Quintana-Marí never forgot that his passion for history of science had been aroused by his school teacher.

  9. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Science.gov (United States)

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  10. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Science.gov (United States)

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  11. Mars Oxygen In-Situ Resource Utilization Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be the first in-situ resource utilization (ISRU) technology demonstration on Mars. Competitively...

  12. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  13. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  14. Experiments in reduced gravity sediment settling on Mars

    CERN Document Server

    Kuhn, Nikolaus

    2014-01-01

    Experiments in Reduced Gravity: Sediment Settling on Mars is the first book to be published that reflects experiments conducted on Martian geomorphology in reduced gravity. This brief yet important book on sediment experiments assesses the theoretical and empirical foundation of the models used to analyze the increasing information we have on the past geography on Mars. The book also evaluates the need to develop new methods for analyzing new information by providing a conceptual outline and a case study on how experiments can be used to test current theoretical considerations. The conceptual approach to identifying the need for and role of experiments will be of interest to planetary scientists and geoscientists not necessarily involved with Mars, but those using experiments in their research who can apply the book's concepts. Includes figures, diagrams, illustrations, and photographs to vividly explore experiments and outcomes in reduced gravity Provides an outline of planned experiments and questions relat...

  15. Cars on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2002-01-01

    Mars is one of the most fascinating planets in the solar system, featuring an atmosphere, water, and enormous volcanoes and canyons. The Mars Pathfinder, Global Surveyor, and Odyssey missions mark the first wave of the Planet Earth's coming invasion of the red planet, changing our views of the past and future of the planet and the possibilities of life. Scientist and science-fiction writer Geoffrey A. Landis will present experiences on the Pathfinder mission, the challenges of using solar power on the surface of Mars, and present future missions to Mars such as the upcoming Mars Twin Rovers, which will launch two highly-capable vehicles in 2003 to explore the surface of Mars.

  16. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  17. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  18. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  19. Radio Occultation Experiments with Venus Express and Mars Express using the Planetary Radio Interferometry and Doppler Experiment (PRIDE) Technique

    Science.gov (United States)

    Bocanegra Bahamon, T.; Gurvits, L.; Molera Calves, G.; Cimo, G.; Duev, D.; Pogrebenko, S.; Dirkx, D.; Rosenblatt, P.

    2017-12-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that can be used to enhance multiple radio science experiments of planetary missions. By 'eavesdropping' on the spacecraft signal using radio telescopes from different VLBI networks around the world, the PRIDE technique provides precise open-loop Doppler and VLBI observables to able to reconstruct the spacecraft's orbit. The application of this technique for atmospheric studies has been assessed by observing ESA's Venus Express (VEX) and Mars Express (MEX) during multiple Venus and Mars occultation events between 2012 and 2014. From these observing sessions density, temperature and pressure profiles of Venus and Mars neutral atmosphere and ionosphere have been retrieved. We present an error propagation analysis where the uncertainties of the atmospheric properties measured with this technique have been derived. These activities serve as demonstration of the applicability of the PRIDE technique for radio occultation studies, and provides a benchmark against the traditional Doppler tracking provided by the NASA's DSN and ESA's Estrack networks for these same purposes, in the framework of the upcoming ESA JUICE mission to the Jovian system.

  20. Using Mars Mission Analogs and Authentic Experiences to Stimulate STEM Learning in K-14 Students

    Science.gov (United States)

    Klug, S. L.; Grigsby, B.; Valderrama, P.; Watt, K.

    2005-12-01

    Today, in many of the classrooms across our nation, K-12 educators are finding it more difficult to engage their students in the subjects that will help them to succeed to a more productive way of life - science, technology, engineering, and math (STEM). Finally, add to this formidable task a diverse set of learners (demographically and skill level) of an average classroom and the constraints of high stakes testing. Quite a challenge, indeed! The Arizona State University (ASU) Mars Education Program, in partnership with the Jet Propulsion Laboratory Mars Public Engagement Team have created programming, curriculum, and activities that help to bridge the gap between STEM learning and student interest. Starting with the Standards in the STEM areas - the areas which teachers are tasked to teach already, our team has modeled the STEM-based curriculum after the way that NASA's Mars team conducts their work and research. There is much challenge in the statement "Science for All Americans" when it comes to applying it equally to all classrooms across the U.S. To make sure that these curricular materials and hands-on experiences are available to any teacher and student, the ASU Mars Education Program has adopted a "high-tech, low-tech, and no-tech" approach. In other words, materials and programming have to be available and doable with whatever capabilities a classroom might possess. Using this approach, successful examples of Mars-based educational materials include Marsbound and the Mars Student Imaging Project. The Marsbound simulation is based on National Technology Standards and seemingly low tech. However, the simplicity of this simulation is quickly forgotten as it follows the familiar NASA scenario of building a mission to Mars with engineering constraints. Student teams use a set of equipment cards and a playmat (both available at no cost) to build their mission and balance it according to the constraints given. Students soon realize there is a lot of complexity to

  1. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, Jennifer L.; Von der Heydt, Max O.; Mogensen, Claus T.; Canham, John; Harpold, Dan N.; Johnson, Joel; Errigo, Therese; Glavin, Daniel P.; Mahaffy, Paul R.

    2012-09-01

    Mars Science Laboratory's Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).

  2. Analysis of Organic Molecules Extracted from Mars Analogues and Influence of Their Mineralogy Using N-Methyl-N-(tert-butyldimethylsilyl)Trifluoroacetamide Derivatization Coupled with Gas Chromatography Mass Spectrometry in Preparation for the Sample Analysis at Mars Derivatization Experiment on the Mars Science Laboratory Mission

    Science.gov (United States)

    Stalport, F.; Glavin, D. P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids will require a chemical extraction and derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed, a one-pot extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment on the Mars Science Laboratory (MSL). The temperature and duration the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 C for several minutes of a variety of terrestrial Mars analogue materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analogue materials that contained high abundances of hydrated minerals and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA, The combination of pyrolysis and two different chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars,

  3. Mars Pathfinder Microrover- Implementing a Low Cost Planetary Mission Experiment

    Science.gov (United States)

    Matijevic, J.

    1996-01-01

    The Mars Pathfinder Microrover Flight Experiment (MFEX) is a NASA Office of Space Access and Technology (OSAT) flight experiment which has been delivered and integrated with the Mars Pathfinder (MPF) lander and spacecraft system. The total cost of the MFEX mission, including all subsystem design and development, test, integration with the MPF lander and operations on Mars has been capped at $25 M??is paper discusses the process and the implementation scheme which has resulted in the development of this first Mars rover.

  4. Measurement of Mars Analog Soil Dielectric Properties for Mars 2020 Radar Science Applications

    Science.gov (United States)

    Decrossas, E.; Bell, D. J.; Jin, C.; Steinfeld, D.; Batres, J.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. One important planetary application is the identification of subsurface water ice at Mars. Low frequency, 15 MHz to 25 MHz, instruments like SHARAD have been used from Mars orbit to investigate subsurface features from 10's to 1000's of meters below the surface of Mars with a vertical resolution of 15m and a horizontal resolution of 300 to 3000 meters. SHARAD has been able to identify vast layers of CO2 and water ice. The ground-penetrating RIMFAX instrument that will ride on the back of the Mars 2020 rover will operate over the 150 MHz to 1200 MHz band and penetrate to a depth of 10 meters with a vertical resolution of 15 to 30 cm. RIMFAX will be able to identify near surface water ice if it exists below the travel path of the Mars 2020 rover. Identification of near surface water ice has science application to current and past Mars hydrologic processes and to the potential for finding remnants of past Mars biologic activity. Identification of near surface water ice also has application to future human missions that would benefit from access to a Mars local water source. Recently, JPL investigators have been pursuing a secondary use of telecom signals to capture bistatic radar signatures from subsurface areas surrounding the rover but away from its travel path. A particularly promising potential source would be the telecom signal from a proposed Mars Helicopter back to the Mars 2020 rover. The Mars 2020 rover will be equipped with up to three telecom subsystems. The Rover Relay telecom subsystem operates at UHF receiving at 435 MHz frequency. Anticipating opportunistic collection of near-surface bistatic radar signatures from telecom signals received at the rover, it is valuable to understand the dielectric properties of the Martian soil in each of these three

  5. An Internationally Coordinated Science Management Plan for Samples Returned from Mars

    Science.gov (United States)

    Haltigin, T.; Smith, C. L.

    2015-12-01

    Mars Sample Return (MSR) remains a high priority of the planetary exploration community. Such an effort will undoubtedly be too large for any individual agency to conduct itself, and thus will require extensive global cooperation. To help prepare for an eventual MSR campaign, the International Mars Exploration Working Group (IMEWG) chartered the international Mars Architecture for the Return of Samples (iMARS) Phase II working group in 2014, consisting of representatives from 17 countries and agencies. The overarching task of the team was to provide recommendations for progressing towards campaign implementation, including a proposed science management plan. Building upon the iMARS Phase I (2008) outcomes, the Phase II team proposed the development of an International MSR Science Institute as part of the campaign governance, centering its deliberations around four themes: Organization: including an organizational structure for the Institute that outlines roles and responsibilities of key members and describes sample return facility requirements; Management: presenting issues surrounding scientific leadership, defining guidelines and assumptions for Institute membership, and proposing a possible funding model; Operations & Data: outlining a science implementation plan that details the preliminary sample examination flow, sample allocation process, and data policies; and Curation: introducing a sample curation plan that comprises sample tracking and routing procedures, sample sterilization considerations, and long-term archiving recommendations. This work presents a summary of the group's activities, findings, and recommendations, highlighting the role of international coordination in managing the returned samples.

  6. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  7. Mars in Motion: An online Citizen Science platform looking for changes on the surface of Mars

    Science.gov (United States)

    Sprinks, James Christopher; Wardlaw, Jessica; Houghton, Robert; Bamford, Steven; Marsh, Stuart

    2016-10-01

    The European FP7 iMars project has developed tools and 3D models of the Martian surface through the co-registration of NASA and ESA mission data dating from the Viking missions of the 1970s to the present day, for a much more comprehensive interpretation of the geomorphological and climatic processes that have taken and do take place. We present the Citizen Science component of the project, 'Mars in Motion', created through the Zooniverse's Panoptes framework to allow volunteers to look for and identify changes on the surface of Mars over time. 'Mars in Motion', as with many other current citizen science platforms of a planetary or other disciplinary focus, has been developed to compliment the results of automated data mining analysis software, both by validation through the creation of training data and by adding context - gathering more in-depth data on the type and metrics of change initially detected.Through the analysis of initial volunteer results collected in the second half of 2016, the accuracy and ability of untrained participants to identify geomorphological changes is considered, as well as the impact of their position in the system. Volunteer contribution, either as a filter for poor quality imagery pre-algorithm, validation of algorithmic analysis, or adding context to pre-detected change, and their awareness and interpretation of its importance, can directly influence engagement with the platform and therefore ultimately its success. Understanding the effect of the volunteer and software's role in the system on both the results of and engagement with planetary science citizen science platforms will be an important lesson for the future, especially as the next generation of planetary missions will likely collect data orders of magnitude greater in volume. To deal with the data overload, it is likely that human or software solutions alone will not be sufficient, and that a combination of the two working together in a complimentary system that combines

  8. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    Science.gov (United States)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  9. Mars Science Laboratory Rover System Thermal Test

    Science.gov (United States)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  10. Creating an Immersive Mars Experience Using Unity3D

    Science.gov (United States)

    Miles, Sarah

    2011-01-01

    Between the two Mars Exploration Rovers, Spirit and Opportunity, NASA has collected over 280,000 images while studying the Martian surface. This number will continue to grow, with Opportunity continuing to send images and with another rover, Curiosity, launching soon. Using data collected by and for these Mars rovers, I am contributing to the creation of virtual experiences that will expose the general public to Mars. These experiences not only work to increase public knowledge, but they attempt to do so in an engaging manner more conducive to knowledge retention by letting others view Mars through the rovers' eyes. My contributions include supporting image viewing (for example, allowing users to click on panoramic images of the Martian surface to access closer range photos) as well as enabling tagging of points of interest. By creating a more interactive way of viewing the information we have about Mars, we are not just educating the public about a neighboring planet. We are showing the importance of doing such research.

  11. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    Science.gov (United States)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  12. The Mars Science Laboratory Organic Check Material

    Science.gov (United States)

    Conrad, Pamela G.; Eigenbrode, J. E.; Mogensen, C. T.; VonderHeydt, M. O.; Glavin, D. P.; Mahaffy, P. M.; Johnson, J. A.

    2011-01-01

    The Organic Check Material (OCM) has been developed for use on the Mars Science Laboratory mission to serve as a sample standard for verification of organic cleanliness and characterization of potential sample alteration as a function of the sample acquisition and portioning process on the Curiosity rover. OCM samples will be acquired using the same procedures for drilling, portioning and delivery as are used to study martian samples with The Sample Analysis at Mars (SAM) instrument suite during MSL surface operations. Because the SAM suite is highly sensitive to organic molecules, the mission can better verify the cleanliness of Curiosity's sample acquisition hardware if a known material can be processed through SAM and compared with the results obtained from martian samples.

  13. Selection of the Mars Science Laboratory landing site

    Science.gov (United States)

    Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, Randolph L.; Fergason, Robin L.; Bellutta, P.; Calef, F.; Larsen, K.; Katayama, Y.; Huertas, A.; Beyer, R.; Chen, A.; Parker, T.; Pollard, B.; Lee, S.; Hoover, R.; Sladek, H.; Grotzinger, J.; Welch, R.; Dobrea, E. Noe; Michalski, J.; Watkins, M.

    2012-01-01

    The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.

  14. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    Science.gov (United States)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  15. SAM : an experiment dedicated to the Carbon Quest at Mars

    Science.gov (United States)

    Coll, Patrice; Mahaffy, Paul; Webster, Chris; Cabane, Michel; Tan, F.; Coscia, D.; Nolan, T.; Rahen, E.; Teinturier, S.; Goutail, J. P.; Martin, D.; Montaron, C.; Galic, A.

    SAM is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover. The SAM team consist of scientists and engineers at GSFC, U. Paris/CNRS, JPL, and Honeybee Robotics, along with many additional external partners. SAM's five science goals will address three of the most fundamental questions about the ability of Mars to support life -past, present, and future. Question 1: What does the inventory of carbon compounds near the surface of Mars tell us about its potential habitability? 1.Goal 1: Survey carbon compound sources and evaluate their possible mechanism of formation and destruction. 2.Goal 2: Search for organic compounds of biotic and prebiotic importance expecially methane. Question 2: What are the chemical and isotopic states of the lighter elements in the solids and atmosphere of Mars and what do they tell us about its potential habitability? 1.Goal 3: Reveal the chemical and isotopic state of elements (i.e., N, H, O, S and others) that are important for life as we know it. 2.Goal 4: Evaluate the habitability of Mars by studying its atmospheric chemistry and the composition of trace species that are evidence of interactions between the atmosphere and soil. Question 3: Were past habitability conditions different from today's? 1.Goal 5: Understand atmospheric and climatic evolution through measurements of noble gas and light element isotopes.

  16. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.

    Science.gov (United States)

    Köhler, J; Ehresmann, B; Zeitlin, C; Wimmer-Schweingruber, R F; Hassler, D M; Reitz, G; Brinza, D E; Appel, J; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Lohf, H; Martin, C; Posner, A; Rafkin, S

    2015-04-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011. Although designed for measuring the radiation on the surface of Mars, the Radiation Assessment Detector (RAD) measured the radiation environment inside the spacecraft during most of the 253-day, 560-million-kilometer cruise to Mars. An important factor for determining the biological impact of the radiation environment inside the spacecraft is the specific contribution of neutrons with their high biological effectiveness. We apply an inversion method (based on a maximum-likelihood estimation) to calculate the neutron and gamma spectra from the RAD neutral particle measurements. The measured neutron spectrum (12-436 MeV) translates into a radiation dose rate of 3.8±1.2 μGy/day and a dose equivalent of 19±5 μSv/day. Extrapolating the measured spectrum (0.1-1000 MeV), we find that the total neutron-induced dose rate is 6±2 μGy/day and the dose equivalent rate is 30±10 μSv/day. For a 360 day round-trip from Earth to Mars with comparable shielding, this translates into a neutron induced dose equivalent of about 11±4 mSv. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. The Search for Life on Mars

    Science.gov (United States)

    Mumma, Michael J.

    2012-01-01

    For centuries, the planet Mars has been regarded as a possible abode for life. Serious searches for the signatures of life began in the 19th century, and continue via telescopic investigations and landed missions. While early work focused on phenomenology and bordered on fantasy, modern scientific inquiry has emphasized the search for chemical signatures of life in the soil and rocks at the planet's surface, and the search for biomarker gases in the atmosphere. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. The discovery of methane on Mars will be described, along with the ongoing extended search for clues to its origins. The possible origins of Mars methane will be discussed in the context of terrestrial analogue sites where geologic and biologic methane production now occurs - ranging from sub-permafrost zones in the arctic to hydrothermal vents in the deep ocean. Terrestrial organisms that could prosper on Mars today will be mentioned. I will briefly touch upon experiments conducted by landed spacecraft, ranging from the Viking Life Science Experiments in 1976 to the impending Mars Science laboratory, and the Trace Gas Orbiter and ExoMars missions now being developed for flight in the coming decade.

  18. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    Science.gov (United States)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  19. In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols

    Science.gov (United States)

    Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.

    2013-01-01

    The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.

  20. First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)

    Science.gov (United States)

    Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.

    2018-05-01

    Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.

  1. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    Science.gov (United States)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  2. The Ricor K508 cryocooler operational experience on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-01-29

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data.

  3. The Ricor K508 cryocooler operational experience on Mars

    International Nuclear Information System (INIS)

    Johnson, Dean L.; Lysek, Mark J.; Morookian, John Michael

    2014-01-01

    The Mars Science Laboratory (Curiosity) landed successfully on Mars on August 5, 2012, eight months after launch. The chosen landing site of Gale Crater, located at 4.5 degrees south latitude, 137.4 degrees east longitude, has provided a much more benign environment than was originally planned for during the critical design and integration phases of the MSL Project when all possible landing sites were still being considered. The expected near-surface atmospheric temperatures at the Gale Crater landing site during Curiosity's primary mission (1 Martian year or 687 Earth days) are from −90°C to 0°C. However, enclosed within Curiosity's thermal control fluid loops the Chemistry and Mineralogy (CheMin) instrument is maintained at approximately +20°C. The CheMin instrument uses X-ray diffraction spectroscopy to make precise measurements of mineral constituents of Mars rocks and soil. The instrument incorporated the commercially available Ricor K508 Stirling cycle cryocooler to cool the CCD detector. After several months of brushing itself off, stretching and testing out its subsystems, Curiosity began the exploration of the Mars surface in October 2012. The CheMin instrument on the Mars Science Laboratory (MSL) received its first soil sample from Curiosity on October 24, and successfully analyzed its first soil sample. After a brief review of the rigorous Ricor K508 cooler qualification tests and life tests based on the original MSL environmental requirements this paper presents final pre-launch instrument integration and testing results, and details the operational data of the CheMin cryocooler, providing a snapshot of the resulting CheMin instrument analytical data

  4. Aerothermodynamic Environments Definition for the Mars Science Laboratory Entry Capsule

    Science.gov (United States)

    Edquist, Karl T.; Dyakonov, Artem A.; Wright, Michael J.; Tang, Chun Y.

    2007-01-01

    An overview of the aerothermodynamic environments definition status is presented for the Mars Science Laboratory entry vehicle. The environments are based on Navier-Stokes flowfield simulations on a candidate aeroshell geometry and worst-case entry heating trajectories. Uncertainties for the flowfield predictions are based primarily on available ground data since Mars flight data are scarce. The forebody aerothermodynamics analysis focuses on boundary layer transition and turbulent heating augmentation. Turbulent transition is expected prior to peak heating, a first for Mars entry, resulting in augmented heat flux and shear stress at the same heatshield location. Afterbody computations are also shown with and without interference effects of reaction control system thruster plumes. Including uncertainties, analysis predicts that the heatshield may experience peaks of 225 W/sq cm for turbulent heat flux, 0.32 atm for stagnation pressure, and 400 Pa for turbulent shear stress. The afterbody heat flux without thruster plume interference is predicted to be 7 W/sq cm on the backshell and 10 W/sq cm on the parachute cover. If the reaction control jets are fired near peak dynamic pressure, the heat flux at localized areas could reach as high as 76 W/sq cm on the backshell and 38 W/sq cm on the parachute cover, including uncertainties. The final flight environments used for hardware design will be updated for any changes in the aeroshell configuration, heating design trajectories, or uncertainties.

  5. Hypersonic and Supersonic Static Aerodynamics of Mars Science Laboratory Entry Vehicle

    Science.gov (United States)

    Dyakonov, Artem A.; Schoenenberger, Mark; Vannorman, John W.

    2012-01-01

    This paper describes the analysis of continuum static aerodynamics of Mars Science Laboratory (MSL) entry vehicle (EV). The method is derived from earlier work for Mars Exploration Rover (MER) and Mars Path Finder (MPF) and the appropriate additions are made in the areas where physics are different from what the prior entry systems would encounter. These additions include the considerations for the high angle of attack of MSL EV, ablation of the heatshield during entry, turbulent boundary layer, and other aspects relevant to the flight performance of MSL. Details of the work, the supporting data and conclusions of the investigation are presented.

  6. ExoMars entry, descent and landing science

    OpenAIRE

    Ferri, F.; Lewis, S. R.; Withers, P.; Aboudan, A.; Bettanini, C.; Colombatti, G.; Debei, S.; Golombek, M.; Harri, A. M.; Komatsu, G.; Leese, M. R.; Mäkinen, T.; Müller-Wodarg, I.; Ori, G. G.; Patel, M. R.

    2011-01-01

    The entry, descent and landing of ExoMars offer a rare (once-per-mission) opportunity to perform in situ investigation of the martian environment over a wide altitude range. Entry, Descent and Landing System (EDLS) measurements can provide essential data for atmospheric scientific investigations.\\ud \\ud We intend to perform atmospheric science measurements by exploiting data from EDLS engineering sensors and exploiting their readings beyond the expected engineering information.

  7. Mars science laboratory radiation assessment detector (MSL/RAD) modeling workshop proceedings

    Science.gov (United States)

    Hassler, Donald M.; Norbury, John W.; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) (Hassler et al., 2012; Zeitlin et al., 2016) onboard the Mars Science Laboratory (MSL) Curiosity rover (Grotzinger et al., 2012) is a sophisticated charged and neutral particle radiation analyzer developed by an international team of scientists and engineers from Southwest Research Institute in Boulder, Colorado as the leading institution, the University of Kiel and the German Aerospace Center in Cologne, Germany. RAD is a compact, powerful instrument capable of distinguishing between ionizing particles and neutral particles and providing neutron, gamma, and charged particle spectra from protons to iron as well as absorbed dose measurements in tissue-equivalent material. During the 6 month cruise to Mars, inside the MSL spacecraft, RAD served as a proxy to validate models of the radiation levels expected inside a spacecraft that future astronauts might experience (Zeitlin et al., 2013). RAD was turned on one day after the landing on August 7, 2012, exactly 100 years to the day after the discovery of cosmic rays on Earth by Victor Hess. These measurements are the first of their kind on the surface of another planet (Hassler et al., 2014), and the radiation data collected by RAD on the surface of Mars will inform projections of crew health risks and the design of protective surface habitats and other countermeasures for future human missions in the coming decades.

  8. Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars

    Science.gov (United States)

    Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick

    2016-07-01

    In December 2015, the "Third Community Workshop on Affording and Sustaining Human Mars Exploration" (AM III) was held, which was designed to provide community recommendations on the potential human exploration of Mars. To facilitate the workshop, we focused on two key questions: 1) From the dual and interrelated perspectives of affordability and sustainability, what are the strengths/challenges of Mars exploration scenarios?; and 2) From the perspective of prioritized scientific objectives for the martian system (the planet's surface or its moons), what are the most enabling capabilities of the different exploration architecture(s) and why? Group discussion over three days resulted in the following findings and observations: 1. NASA's incremental approach to deep-space exploration defines the so-called "Proving Ground," specifically in cis-lunar space, generally occurring in the 2020s and prior to human journeys to Mars. We concluded that there are capabilities directly related to, and on the critical path to, human exploration of Mars that could be developed in cis-lunar space. However, we also concluded that the Proving Ground should best be viewed as a campaign that occurs within a certain timeframe (including activities at Mars), rather than merely occurring at a specific location. 2. The workshop participants agreed that the most valuable purposes of sending humans to the martian system would be accomplished only by surface operations. We concluded that specific benefits, both technical and cost, of sending humans to the Mars system without landing on the martian surface should be assessed in depth. We discussed - although were unable to conclude - whether Mars orbit or Phobos/Deimos as a destination would make sufficient contributions towards humans landing on the martian surface or to answering high-priority science questions (as identified by the Decadal Survey) to justify their associated costs and possible risks. Further study on the value of an orbital

  9. A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments

    Science.gov (United States)

    Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.

    2008-06-01

    Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.

  10. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  11. Terrain Safety Assessment in Support of the Mars Science Laboratory Mission

    Science.gov (United States)

    Kipp, Devin

    2012-01-01

    In August 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems by delivering the largest and most capable rover to date to the surface of Mars. The process to select the MSL landing site took over five years and began with over 50 initial candidate sites from which four finalist sites were chosen. The four finalist sites were examined in detail to assess overall science merit, EDL safety, and rover traversability on the surface. Ultimately, the engineering assessments demonstrated a high level of safety and robustness at all four finalist sites and differences in the assessment across those sites were small enough that neither EDL safety nor rover traversability considerations could significantly discriminate among the final four sites. Thus the MSL landing site at Gale Crater was selected from among the four finalists primarily on the basis of science considerations.

  12. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  13. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  14. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  15. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  16. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    Science.gov (United States)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  17. Scientific results and lessons learned from an integrated crewed Mars exploration simulation at the Rio Tinto Mars analogue site

    Science.gov (United States)

    Orgel, Csilla; Kereszturi, Ákos; Váczi, Tamás; Groemer, Gernot; Sattler, Birgit

    2014-02-01

    Between 15 and 25 April 2011 in the framework of the PolAres programme of the Austrian Space Forum, a five-day field test of the Aouda.X spacesuit simulator was conducted at the Rio Tinto Mars-analogue site in southern Spain. The field crew was supported by a full-scale Mission Control Center (MCC) in Innsbruck, Austria. The field telemetry data were relayed to the MCC, enabling a Remote Science Support (RSS) team to study field data in near-real-time and adjust the flight planning in a flexible manner. We report on the experiences in the field of robotics, geophysics (Ground Penetrating Radar) and geology as well as life sciences in a simulated spaceflight operational environment. Extravehicular Activity (EVA) maps had been prepared using Google Earth and aerial images. The Rio Tinto mining area offers an excellent location for Mars analogue simulations. It is recognised as a terrestrial Mars analogue site because of the presence of jarosite and related sulphates, which have been identified by the NASA Mars Exploration Rover "Opportunity" in the El Capitan region of Meridiani Planum on Mars. The acidic, high ferric-sulphate content water of Rio Tinto is also considered as a possible analogue in astrobiology regarding the analysis of ferric sulphate related biochemical pathways and produced biomarkers. During our Mars simulation, 18 different types of soil and rock samples were collected by the spacesuit tester. The Raman results confirm the presence of minerals expected, such as jarosite, different Fe oxides and oxi-hydroxides, pyrite and complex Mg and Ca sulphates. Eight science experiments were conducted in the field. In this contribution first we list the important findings during the management and realisation of tests, and also a first summary of the scientific results. Based on these experiences suggestions for future analogue work are also summarised. We finish with recommendations for future field missions, including the preparation of the experiments

  18. The Topography of Mars: Understanding the Surface of Mars Through the Mars Orbiter Laser Altimeter

    Science.gov (United States)

    Derby, C. A.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    The Mars Orbiter Laser Altimeter has been orbiting Mars since 1997 and has measured the topography of Mars with a meter of vertical accuracy. This new information has improved our understanding of both the surface and the interior of Mars. The topographic globe and the labeled topographic map of Mars illustrate these new data in a format that can be used in a classroom setting. The map is color shaded to show differences in elevation on Mars, presenting Mars with a different perspective than traditional geological and geographic maps. Through the differences in color, students can see Mars as a three-dimensional surface and will be able to recognize features that are invisible in imagery. The accompanying lesson plans are designed for middle school science students and can be used both to teach information about Mars as a planet and Mars in comparison to Earth, fitting both the solar system unit and the Earth science unit in a middle school curriculum. The lessons are referenced to the National Benchmark standards for students in grades 6-8 and cover topics such as Mars exploration, the Mars Orbiter Laser Altimeter, resolution and powers of 10, gravity, craters, seismic waves and the interior structure of a planet, isostasy, and volcanoes. Each lesson is written in the 5 E format and includes a student content activity and an extension showing current applications of Mars and MOLA data. These activities can be found at http://ltpwww.gsfc.nasa.gov/education/resources.html. Funding for this project was provided by the Maryland Space Grant Consortium and the MOLA Science Team, Goddard Space Flight Center.

  19. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  20. The Athena Mars Rover Science Payload

    Science.gov (United States)

    Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.

    1998-01-01

    The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0

  1. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R.; Goedhart, P.W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars

  2. Mars for Earthlings: an analog approach to Mars in undergraduate education.

    Science.gov (United States)

    Chan, Marjorie; Kahmann-Robinson, Julia

    2014-01-01

    Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html.

  3. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    Science.gov (United States)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  4. Deep Space 2: The Mars Microprobe Mission

    Science.gov (United States)

    Smrekar, Suzanne; Catling, David; Lorenz, Ralph; Magalhães, Julio; Moersch, Jeffrey; Morgan, Paul; Murray, Bruce; Presley-Holloway, Marsha; Yen, Albert; Zent, Aaron; Blaney, Diana

    The Mars Microprobe Mission will be the second of the New Millennium Program's technology development missions to planetary bodies. The mission consists of two penetrators that weigh 2.4 kg each and are being carried as a piggyback payload on the Mars Polar Lander cruise ring. The spacecraft arrive at Mars on December 3, 1999. The two identical penetrators will impact the surface at ~190 m/s and penetrate up to 0.6 m. They will land within 1 to 10 km of each other and ~50 km from the Polar Lander on the south polar layered terrain. The primary objective of the mission is to demonstrate technologies that will enable future science missions and, in particular, network science missions. A secondary goal is to acquire science data. A subsurface evolved water experiment and a thermal conductivity experiment will estimate the water content and thermal properties of the regolith. The atmospheric density, pressure, and temperature will be derived using descent deceleration data. Impact accelerometer data will be used to determine the depth of penetration, the hardness of the regolith, and the presence or absence of 10 cm scale layers.

  5. Mars Rover Curriculum: Teacher Self Reporting of Increased Frequency and Confidence in their Science and Language Arts Instruction

    Science.gov (United States)

    Bering, E. A.; Carlson, C.; Nieser, K.; Slagle, E.

    2013-12-01

    The University of Houston is in the process of developing a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model Mars rover. The program is called the Mars Rover Model Celebration (MRC). It focuses on students, teachers and parents in grades 3-8. Students design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. A total of 65 Mars Rover teachers from the 2012-2013 cohort were invited to complete the Mars Rover Teacher Evaluation Survey. The survey was administered online and could be taken at the convenience of the participant. In total, 29 teachers participated in the survey. Teachers were asked to rate their current level of confidence in their ability to teach specific topics within the Earth and Life Science realms, as well as their confidence in their ability to implement teaching strategies with their students. In addition, they were asked to rate the degree to which they felt their confidence increased in the past year as a result of their participation in the MRC program. The majority of teachers (81-90%) felt somewhat to very confident in their ability to effectively teach concepts related to earth and life sciences to their students. In addition, many of the teachers felt that their confidence in teaching these concepts increased somewhat to quite a bit as a result of their participation in the MRC program (54-88%). The most striking increase in this area was the reported 48% of teachers who felt their confidence in teaching 'Earth and the solar system and universe' increased 'Quite a bit' as a result of their participation in the MRC program. The vast majority of teachers (86-100%) felt somewhat to very confident in their ability to effectively implement all of the listed teaching strategies. In addition, the vast majority reported believing that their confidence increased somewhat to quite a bit as a result of their

  6. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  7. 6th international conference on Mars polar science and exploration: Conference summary and five top questions

    Science.gov (United States)

    Smith, Isaac B.; Diniega, Serina; Beaty, David W.; Thorsteinsson, Thorsteinn; Becerra, Patricio; Bramson, Ali; Clifford, Stephen M.; Hvidberg, Christine S.; Portyankina, Ganna; Piqueux, Sylvain; Spiga, Aymeric; Titus, Timothy N.

    2018-01-01

    We provide a historical context of the International Conference on Mars Polar Science and Exploration and summarize the proceedings from the 6th iteration of this meeting. In particular, we identify five key Mars polar science questions based primarily on presentations and discussions at the conference and discuss the overlap between some of those questions. We briefly describe the seven scientific field trips that were offered at the conference, which greatly supplemented conference discussion of Mars polar processes and landforms. We end with suggestions for measurements, modeling, and laboratory and field work that were highlighted during conference discussion as necessary steps to address key knowledge gaps.

  8. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    Science.gov (United States)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  9. Trajectory Options for a Potential Mars Mission Combining Orbiting Science, Relay and a Sample Return Rendezvous Demonstration

    Science.gov (United States)

    Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.

    2012-01-01

    Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.

  10. Primary school children and teachers discover the nature and science of planet Earth and Mars

    Science.gov (United States)

    Kleinhans, Maarten; Verkade, Alex; Bastings, Mirjam; Reichwein, Maarten

    2016-04-01

    For various reasons primary schools emphasise language and calculus rather than natural sciences. When science is taught at all, examination systems often favour technological tricks and knowledge of the 'right' answer over the process of investigation and logical reasoning towards that answer. Over the long term, this is not conducive to curiosity and scientific attitude in large parts of the population. Since the problem is more serious in primary than in secondary education, and as children start their school career with a natural curiosity and great energy to explore their world, we focus our efforts on primary school teachers in close collaboration with teachers and researchers. Our objective was to spark children's curiosity and their motivation to learn and discover, as well as to help teachers develop self-afficacy in science education. To this end we developed a three-step program with a classroom game and sand-box experiments related to planet Earth and Mars. The classroom game Expedition Mundus simulates science in its focus on asking questions, reasoning towards answers on the basis of multiple sources and collaboration as well as growth of knowledge. Planet Mundus is entirely fictitional to avoid differences in foreknowledge between pupils. The game was tested in hundreds of classes in primary schools and the first years of secondary education and was printed (in Dutch) and distributed over thousands of schools as part of teacher education through university science hubs. Expedition Mundus was developed by the Young Academy of the Royal Netherlands Academy of Arts and Sciences and De Praktijk. The tested translations in English and German are available on http://www.expeditionmundus.org. Following the classroom game, we conducted simple landscape experiments in sand boxes supported by google earth imagery of real rivers, fans and deltas on Earth and Mars. This was loosely based on our fluvial morphodynamics research. This, in the presence of a

  11. The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission.

    Science.gov (United States)

    Michalski, Joseph R; Jean-PierreBibring; Poulet, François; Loizeau, Damien; Mangold, Nicolas; Dobrea, Eldar Noe; Bishop, Janice L; Wray, James J; McKeown, Nancy K; Parente, Mario; Hauber, Ernst; Altieri, Francesca; Carrozzo, F Giacomo; Niles, Paul B

    2010-09-01

    The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1 × 10⁶ km²) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150 m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability.

  12. Mars: The Viking Discoveries.

    Science.gov (United States)

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  13. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  14. The Get Going to Mars campaign: an outreach experiment in art, literacy, and science

    Science.gov (United States)

    Renfrow, S.; Mason, T.; Christofferson, R.

    2013-12-01

    The 6-month Going to Mars campaign brought crowdsourcing to the next NASA Mars mission: a student art contest flooded us in the colorful imagination of children; a haiku contest gave us poetry about dunes and ice caps, love, humor, and our place in the universe; and a send-your-name activity connected MAVEN with tens of thousands of people. In this discussion, we'll dive into the statistics (1+ million page views, 15,000+ message submissions, 375+ art entries), the individual winners from small-town USA and across the globe, and the dirt and grit that made the Going to Mars campaign come alive. View the archived site at http://lasp.colorado.edu/home/maven/goingtomars.

  15. Evolved Gas Analysis of Mars Analog Samples from the Arctic Mars Analog Svalbard Expedition: Implications for Analyses by the Mars Science Laboratory

    Science.gov (United States)

    McAdam, A.; Stern, J. C.; Mahaffy, P. R.; Blake, D. F.; Bristow, T.; Steele, A.; Amundsen, H. E. F.

    2012-01-01

    The 2011 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings on Svalbard, using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL). The Sample Analysis at Mars (SAM) instrument suite on MSL consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS), which analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-QMS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during AMASE. AMASE 2011 sites spanned a range of environments relevant to understanding martian surface materials, processes and habitability. They included the basaltic Sverrefjell volcano, which hosts carbonate globules, cements and coatings, carbonate and sulfate units at Colletth0gda, Devonian sandstone redbeds in Bockfjorden, altered basaltic lava delta deposits at Mt. Scott Keltie, and altered dolerites and volcanics at Botniahalvoya. Here we focus on SAM-like EGA-MS of a subset of the samples, with mineralogy comparisons to CheMin team results. The results allow insight into sample organic content as well as some constraints on sample mineralogy.

  16. Martian Multimedia: The Agony and Ecstasy of Communicating Real-Time, Authentic Science During the Phoenix Mars Mission

    Science.gov (United States)

    Bitter, C.; Buxner, S. R.

    2009-03-01

    The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.

  17. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  18. Mars Science Laboratory Flight Software Internal Testing

    Science.gov (United States)

    Jones, Justin D.; Lam, Danny

    2011-01-01

    The Mars Science Laboratory (MSL) team is sending the rover, Curiosity, to Mars, and therefore is physically and technically complex. During my stay, I have assisted the MSL Flight Software (FSW) team in implementing functional test scripts to ensure that the FSW performs to the best of its abilities. There are a large number of FSW requirements that have been written up for implementation; however I have only been assigned a few sections of these requirements. There are many stages within testing; one of the early stages is FSW Internal Testing (FIT). The FIT team can accomplish this with simulation software and the MSL Test Automation Kit (MTAK). MTAK has the ability to integrate with the Software Simulation Equipment (SSE) and the Mission Processing and Control System (MPCS) software which makes it a powerful tool within the MSL FSW development process. The MSL team must ensure that the rover accomplishes all stages of the mission successfully. Due to the natural complexity of this project there is a strong emphasis on testing, as failure is not an option. The entire mission could be jeopardized if something is overlooked.

  19. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    Science.gov (United States)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  20. Bridging a High School Science Fair Experience with First Year Undergraduate Research: Using the E-SPART Analyzer to Determine Electrostatic Charge Properties of Compositionally Varied Rock Dust Particles as Terrestrial Analogues to Mars Materials

    Science.gov (United States)

    Scott, A. G.; Williams, W. J. W.; Mazumder, M. K.; Biris, A.; Srirama, P. K.

    2005-01-01

    NASA missions to Mars confirm presence of surficial particles, as well as dramatic periods of aeolian reworking. Dust deposition on, or infiltration into, exploration equipment such as spacecraft, robotic explorers, solar panel power supplies, and even spacesuits, can pose significant problems such as diminished power collection, short circuits / discharges, and added weight. We report results conducted initially as a science fair project and a study now part of a first year University undergraduate research experience.

  1. Mass Spectrometry on Future Mars Landers

    Science.gov (United States)

    Brinckerhoff, W. B.; Mahaffy, P. R.

    2011-01-01

    Mass spectrometry investigations on the 2011 Mars Science Laboratory (MSL) and the 2018 ExoMars missions will address core science objectives related to the potential habitability of their landing site environments and more generally the near-surface organic inventory of Mars. The analysis of complex solid samples by mass spectrometry is a well-known approach that can provide a broad and sensitive survey of organic and inorganic compounds as well as supportive data for mineralogical analysis. The science value of such compositional information is maximized when one appreciates the particular opportunities and limitations of in situ analysis with resource-constrained instrumentation in the context of a complete science payload and applied to materials found in a particular environment. The Sample Analysis at Mars (SAM) investigation on MSL and the Mars Organic Molecule Analyzer (MOMA) investigation on ExoMars will thus benefit from and inform broad-based analog field site work linked to the Mars environments where such analysis will occur.

  2. Mars Science Laboratory: Mission, Landing Site, and Initial Results

    Science.gov (United States)

    Grotzinger, John; Blake, D.; Crisp, J.; Edgett, K.; Gellert, R.; Gomez-Elvira, J.; Hassler, D.; Mahaffy, P.; Malin, M.; Meyer, M.; Mitrofanov, I.; Vasavada, A.; Wiens, R.

    2012-10-01

    Scheduled to land on August 5, 2012, the Mars Science Laboratory rover, Curiosity, will conduct an investigation of modern and ancient environments. Recent mission results will be discussed. Curiosity has a lifetime of at least one Mars year ( 23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere; an x-ray diffractometer that will determine mineralogical diversity; focusable cameras that can image landscapes and rock/regolith textures in natural color; an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry; a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals; an active neutron spectrometer designed to search for water in rocks/regolith; a weather station to measure modern-day environmental variables; and a sensor designed for continuous monitoring of background solar and cosmic radiation. The 155-km diameter Gale Crater was chosen as Curiosity’s field site based on several attributes: an interior mound of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale’s regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, insure preservation of a rich record of the environmental history of early Mars.

  3. Introduction: The 6th special issue of Mars Polar Science

    Science.gov (United States)

    Sori, Michael M.; Brown, Adrian J.

    2018-07-01

    Polar science at Mars has the ability to elucidate outstanding problems in the planet's history. The long-lived, kilometers-thick deposits at both poles hold a climate record that is still being steadily deciphered (e.g., Becerra et al., 2017), seasonal volatiles are important drivers of geomorphological change (e.g., Pilorget and Forget, 2015), and there is a growing recognition that water ice at lower latitudes is an important piece of the story in understanding polar processes (e.g., Bramson et al., 2015). Additionally, the icy volatiles trapped in the mid-latitudes will be an important resource for future human explorers (e.g., Viola et al., 2015). One task of this generation of Martian polar explorers is to understand the evolution of water as it cycles through the polar and mid-latitudes on geologic timescales in anticipation of its eventual utilization by the next generation of human and robotic explorers. To address these and other topics, the 6th International Mars Polar Science Conference was held in September 2016 in Reykjavik, Iceland (Smith et al., 2018). This special issue represents 16 papers presented at that conference.

  4. Organics on Mars : Laboratory studies of organic material under simulated martian conditions

    NARCIS (Netherlands)

    Kate, Inge Loes ten

    2006-01-01

    The search for organic molecules and traces of life on Mars has been a major topic in planetary science for several decades, and is the future perspective of several missions to Mars. In order to determine where and what those missions should be looking for, laboratory experiments under simulated

  5. Preliminary Analysis of Rapid Condensation Experiment with MARS-KS Code

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Ho; Jun, Hwang Yong; Jeong, Hae Yong [Sejong University, Seoul (Korea, Republic of)

    2016-05-15

    In the present study, the rapid condensation experiment performed in MANOTEA facility is analyzed with the MARS-KS code. It is known that there exists some limitation with a system code to predict this kind of a very active condensation due to direct mixing of cold injection flow and steam. Through the analysis we investigated the applicability of MARS-KS code for the design of various passive safety systems in the future. The configuration of the experimental facility MANOTEA, which has been constructed at the University of Maryland - United States Naval Academy, is described and the modeling approach using the MARS-KS code is also provided. The preliminary result shows that the MARS-KS predicts the general trend of pressure and temperature in the condensing part correctly. However, it is also found that there exist some limitations in the simulation such as an unexpected pressure peak or a sudden temperature change.

  6. "Some curious drawings". Mars through Giovanni Schiaparelli's eyes: between science and fiction.

    Science.gov (United States)

    Canadelli, Elena

    2009-01-01

    From the second half of the 19th century up to the first part of the 20th century the drawings of Mars by the Italian astronomer Giovanni Schiaparelli became the centre of an international controversy concerning the existence of canals and the hypothetical habitability of the red planet. These images also generated a full impact on the popular culture of the time. This essays follows the scientific representations of Mars by Schiaparelli (drawings of discs and maps) from their birth in the hands of the astronomy community up to their growing old in the hands of scientific popularizers such as Camille Flammarion and science fiction writers such as Herbert George Wells. With its seas and canyons Mars turned into the ideal background for scientific and exotic romanticism, offering a suitable setting for novels and tales. The core question crossed paths with the contemporary early 20th century debate raging on about the evolutionary theory. The study of Mars moved from astronomy to extraterrestrial physiology, biology, meteorology and geography: astronomical images then became imaginary portraits of Martians and artificial Martian landscapes.

  7. Implementing planetary protection measures on the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Beaudet, Robert A; Koukol, Robert

    2014-01-01

    The Mars Science Laboratory (MSL), comprising a cruise stage; an aeroshell; an entry, descent, and landing system; and the radioisotope thermoelectric generator-powered Curiosity rover, made history with its unprecedented sky crane landing on Mars on August 6, 2012. The mission's primary science objective has been to explore the area surrounding Gale Crater and assess its habitability for past life. Because microbial contamination could profoundly impact the integrity of the mission and compliance with international treaty was required, planetary protection measures were implemented on MSL hardware to verify that bioburden levels complied with NASA regulations. By applying the proper antimicrobial countermeasures throughout all phases of assembly, the total bacterial endospore burden of MSL at the time of launch was kept to 2.78×10⁵ spores, well within the required specification of less than 5.0×10⁵ spores. The total spore burden of the exposed surfaces of the landed MSL hardware was 5.64×10⁴, well below the allowed limit of 3.0×10⁵ spores. At the time of launch, the MSL spacecraft was burdened with an average of 22 spores/m², which included both planned landed and planned impacted hardware. Here, we report the results of a campaign to implement and verify planetary protection measures on the MSL flight system.

  8. Entry, Descent, and Landing Communications for the 2011 Mars Science Laboratory

    Science.gov (United States)

    Abilleira, Fernando; Shidner, Jeremy D.

    2012-01-01

    The Mars Science Laboratory (MSL), established as the most advanced rover to land on the surface of Mars to date, launched on November 26th, 2011 and arrived to the Martian Gale Crater during the night of August 5th, 2012 (PDT). MSL will investigate whether the landing region was ever suitable to support carbon-based life, and examine rocks, soil, and the atmosphere with a sophisticated suite of tools. This paper addresses the flight system requirement by which the vehicle transmitted indications of the following events using both X-band tones and UHF telemetry to allow identification of probable root causes should a mission anomaly have occurred: Heat-Rejection System (HRS) venting, completion of the cruise stage separation, turn to entry attitude, atmospheric deceleration, bank angle reversal commanded, parachute deployment, heatshield separation, radar ground acquisition, powered descent initiation, rover separation from the descent stage, and rover release. During Entry, Descent, and Landing (EDL), the flight system transmitted a UHF telemetry stream adequate to determine the state of the spacecraft (including the presence of faults) at 8 kbps initiating from cruise stage separation through at least one minute after positive indication of rover release on the surface of Mars. The flight system also transmitted X-band semaphore tones from Entry to Landing plus one minute although since MSL was occulted, as predicted, by Mars as seen from the Earth, Direct-To-Earth (DTE) communications were interrupted at approximately is approx. 5 min after Entry ( approximately 130 prior to Landing). The primary data return paths were through the Deep Space Network (DSN) for DTE and the existing Mars network of orbiting assets for UHF, which included the Mars Reconnaissance Orbiter (MRO), Mars Odyssey (ODY), and Mars Express (MEX) elements. These orbiters recorded the telemetry data stream and returned it back to Earth via the DSN. The paper also discusses the total power

  9. RAT magnet experiment on the Mars Exploration Rovers: Spirit and Opportunity beyond sol 500

    DEFF Research Database (Denmark)

    Leer, Kristoffer; Goetz, Walter; Chan, Marjorie A.

    2011-01-01

    The Rock Abrasion Tool (RAT) magnet experiment on the Mars Exploration Rovers was designed to collect dust from rocks ground by the RAT of the two rovers on the surface of Mars. The dust collected on the magnets is now a mixture of dust from many grindings. Here the new data from the experiment...

  10. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  11. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  12. Mars Science Laboratory (MSL) - First Results of Pressure Observations

    Science.gov (United States)

    Harri, Ari-Matti; Kahanpää, Henrik; Kemppinen, Osku; Genzer, Maria; Gómez-Elvira, Javier; Haberle, Robert M.; Schmidt, Walter; Savijärvi, Hannu; Rodríquez-Manfredi, Jose Antonio; Rafkin, Scott; Polkko, Jouni; Richardson, Mark; Newman, Claire; de la Torre Juárez, Manuel; Martín-Torres, Javier; Paz Zorzano-Mier, Maria; Atlaskin, Evgeny; Kauhanen, Janne; Paton, Mark; Haukka, Harri

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS pressure observations and comparison of the measurements with modeling results. The REMS pressure device is provided by the Finnish Meteorological Institute. It is based on silicon micro-machined capacitive pressure sensors developed by Vaisala Inc. The pressure device makes use of two transducer electronics sections placed on a single multi-layer PCB inside the REMS Instrument Control Unit (ICU) with a filter-protected ventilation inlet to the ambient atmosphere. The absolute accuracy of the pressure device (< 3 Pa) and zero-drift (< 1 Pa/year) enables the investigations of long term and seasonal cycles of the Martian atmosphere. The relative accuracy, or repeatability, in the diurnal time scale is < 1.5 Pa, less than 2 % of the observed diurnal pressure variation at the landing site. The pressure device has special sensors with very high precision (less than 0.2 Pa) that makes it a good tool to study short-term atmospheric phenomena, e.g., dust devils and other convective vortices. The observed MSL pressure data enable us to study both the long term and short-term phenomena of the Martian atmosphere. This would add knowledge of these phenomena to that gathered by earlier Mars missions and modeling experiments [2,3]. Pressure observations are revealing new information on the local atmosphere and climate at Gale crater, and will shed light on the mesoscale and micrometeorological phenomena. Pressure observations show also

  13. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  14. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    Science.gov (United States)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  15. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    Science.gov (United States)

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.

    2012-01-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  16. Implementing a Science-driven Mars Exploration Program

    Science.gov (United States)

    Garvin, J. B.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) was developed on the basis of the goals, objectives, investigations, and prioritizations established by the Mars Exploration Payload Analysis Group (as summarized previously by Greeley et al., 2001). The underlying scientific strategy is linked to common threads which include the many roles water has played on and within Mars as a "system". The implementation strategy that has been adopted relies heavily on an ever-sharpening program of reconnaissance, beginning with the legacy of the Mars Global Surveyor, continuing with the multispectral and compositional observations of the Mars Odyssey orbiter, and extending to a first step in surface-based reconnaissance with the 2003 Mars Exploration Rovers. The results of MGS and Odyssey will serve to focus the trade space of localities where the record, for example, of persistent surface water may have been preserved in a mineralogical sense. The 2005 Mars Reconnaissance Orbiter will further downselect the subset of sites on Mars where evidence of depositional patterns and aqueous mineralogies (i.e., diagenetic minerals) are most striking at scales as fine as tens to hundreds of meters. Reconnaissance will move to the surface and shallow subsurface in 2007 with the Mars "Smart Lander" (MSL), at which time an extensive array of mobile scientific exploration tools will be used to examine a locality at 10km traverse scales, ultimately asking scientific questions which can be classed as paleobiological (i.e., life inference). Further orbital reconnaissance may be undertaken in 2009, perhaps involving targeted multi-wavelength SAR imaging, in anticipation of a precisely targeted Mars Sample Return mission as early as 2011. This sequence of core program MEP missions will be amplified by the selection of PI-led SCOUT missions, starting in 2007, and continuing every other Mars launch opportunity.

  17. Managing the Mars Science Laboratory Thermal Vacuum Test for Safety and Success

    Science.gov (United States)

    Evans, Jordan P.

    2010-01-01

    The Mars Science Laboratory is a NASA/JPL mission to send the next generation of rover to Mars. Originally slated for launch in 2009, development problems led to a delay in the project until the next launch opportunity in 2011. Amidst the delay process, the Launch/Cruise Solar Thermal Vacuum Test was undertaken as risk reduction for the project. With varying maturity and capabilities of the flight and ground systems, undertaking the test in a safe manner presented many challenges. This paper describes the technical and management challenges and the actions undertaken that led to the ultimate safe and successful execution of the test.

  18. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  19. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.

    Science.gov (United States)

    Levin, Gilbert V; Straat, Patricia Ann

    2016-10-01

    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples. Key Words: Extant life on Mars-Viking Labeled Release experiment-Astrobiology-Extraterrestrial life-Mars. Astrobiology 16, 798-810.

  20. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  1. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  2. Nomad rover field experiment, Atacama Desert, Chile 1. Science results overview

    Science.gov (United States)

    Cabrol, N. A.; Thomas, G.; Witzke, B.

    2001-04-01

    Nomad was deployed for a 45 day traverse in the Atacama Desert, Chile, during the summer of 1997. During this traverse, 1 week was devoted to science experiments. The goal of the science experiments was to test different planetary surface exploration strategies that included (1) a Mars mission simulation, (2) a science on the fly experiment, where the rover was kept moving 75% of the operation time. (The goal of this operation was to determine whether or not successful interpretation of the environment is related to the time spent on a target. The role of mobility in helping the interpretation was also assessed.) (3) a meteorite search using visual and instrumental methods to remotely identify meteorites in extreme environments, and (4) a time-delay experiment with and without using the panospheric camera. The results were as follow: the remote science team positively identified the main characteristics of the test site geological environment. The science on the fly experiment showed that the selection of appropriate targets might be even more critical than the time spent on a study area to reconstruct the history of a site. During the same operation the science team members identified and sampled a rock from a Jurassic outcrop that they proposed to be a fossil. The presence of paleolife indicators in this rock was confirmed later by laboratory analysis. Both visual and instrumental modes demonstrated the feasibility, in at least some conditions, of carrying out a field search for meteorites by using remote-controlled vehicles. Finally, metrics collected from the observation of the science team operations, and the use team members made of mission data, provided critical information on what operation sequences could be automated on board rovers in future planetary surface explorations.

  3. Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign

    Science.gov (United States)

    Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.

    2012-01-01

    The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.

  4. ACS experiment for atmospheric studies on "ExoMars-2016" Orbiter

    Science.gov (United States)

    Korablev, O. I.; Montmessin, F.; Fedorova, A. A.; Ignatiev, N. I.; Shakun, A. V.; Trokhimovskiy, A. V.; Grigoriev, A. V.; Anufreichik, K. A.; Kozlova, T. O.

    2015-12-01

    ACS is a set of spectrometers for atmospheric studies (Atmospheric Chemistry Suite). It is one of the Russian instruments for the Trace Gas Orbiter (TGO) of the Russian-European "ExoMars" program. The purpose of the experiment is to study the Martian atmosphere by means of two observations regimes: sensitive trace gases measurements in solar occultations and by monitoring the atmospheric state during nadir observations. The experiment will allow us to approach global problems of Mars research such as current volcanism, and the modern climate status and its evolution. Also, the experiment is intended to solve the mystery of methane presence in the Martian atmosphere. Spectrometers of the ACS set cover the spectral range from the near IR-range (0.7 μm) to the thermal IR-range (17 μm) with spectral resolution λ/Δλ reaching 50000. The ACS instrument consists of three independent IR spectrometers and an electronics module, all integrated in a single unit with common mechanical, electrical and thermal interfaces. The article gives an overview of scientific tasks and presents the concept of the experiment.

  5. MEDA, The New Instrument for Mars Environment Analysis for the Mars 2020 Mission

    Science.gov (United States)

    Moreno-Alvarez, Jose F.; Pena-Godino, Antonio; Rodriguez-Manfredi, Jose Antonio; Cordoba, Elizabeth; MEDA Team

    2016-08-01

    The Mars 2020 rover mission is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Designed to advance high-priority science goals for Mars exploration, the mission will address key questions about the potential for life on Mars. The mission will also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.The Mars Environmental Dynamics Analyzer (MEDA) is an integrated full suite of sensors designed to address the Mars 2020 mission objectives of characterization of dust size and morphology and surface weather measurements.MEDA system consists of one control unit and 10 separated sensor enclosures distributed in different positions along the Mars 2020 rover. MEDA is composed of an ARM-based control computer with its flight software application, two wind sensors including mixed ASICs inside, five air temperature sensors, one sky pointing camera complemented with 16 photo- detectors looking up and around, one thermal infrared sensor using five measurement bands, one relative humidity sensor, one pressure sensor and the harness that interconnects all of them. It is a complex system intended to operate in one of the harshest environments possible, the Mars surface, for many years to come.This will become a short term reality thanks to the combination of a strong international science team driving the science and system requirements working together with a powerful industrial organization to design and build the instrument. The instrument is being built right now, with its Critical Design Review at the end of 2016, and the flight model to be provided in 2018.This paper summarizes the main scientific objective of the MEDA instrument, the links between the Mission and the MEDA science objectives, and the challenging environmental Mars requirements. It will then focus on the engineered definition of the instrument, showing the overall

  6. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  7. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy

    Science.gov (United States)

    Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.

    2004-01-01

    Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS

  8. The Mars Environmental Compatibility Assessment (MECA) Wet Chemistry Experiment on the Mars 2001 Lander

    Science.gov (United States)

    Grannan, S. M.; Frant, M.; Hecht, M. H.; Kounaves, S. P.; Manatt, K.; Meloy, T. P.; Pike, W. T.; Schubert, W.; West, S.; Wen, X.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) is an instrument suite that will fly on the Mars Surveyor 2001 Lander Spacecraft. MECA is sponsored by the Human Exploration and Development of Space (HEDS) program and will evaluate potential hazards that the dust and soil of Mars might present to astronauts and their equipment on a future human mission to Mars. Four elements constitute the integrated MECA payload: a microscopy station, patch plates, an electrometer, and the wet chemistry laboratory (WCL). The WCL consists of four identical cells, each of which will evaluate a sample of Martian soil in water to determine conductivity, pH, redox potential, dissolved C02 and 02 levels, and concentrations of many soluble ions including sodium, potassium, magnesium, calcium and the halides. In addition, cyclic voltammetry will be used to evaluate reversible and irreversible oxidants present in the water/soil solution. Anodic stripping voltammetry will be used to measure concentrations of trace metals including lead, copper, and cadmium at ppb levels. Voltammetry is a general electrochemical technique that involves controlling the potential of an electrode while simultaneously measuring the current flowing at that electrode. The WCL experiments will provide information on the corrosivity and reactivity of the Martian soil, as well as on soluble components of the soil which might be toxic to human explorers. They will also guide HEDS scientists in the development of high fidelity Martian soil simulants. In the process of acquiring information relevant to HEDS, the WCL will assess the chemical composition and properties of the salts present in the Martian soil.

  9. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    Science.gov (United States)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  10. Remote Sensing Mars Landing Sites: An Out-of-School Time Planetary Science Education Activity for Middle School Students

    Science.gov (United States)

    Anderson, R. B.; Gaither, T. A.; Edgar, L. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    As part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project, we have developed an out-of-school time unit for middle school students focused on planetary remote sensing. The activity is divided into two exercises, with the goal of choosing a scientifically interesting and safe landing site for a future Mars mission. Students are introduced to NASA data from several actual and proposed landing sites and must use what they learn about remote sensing to choose a site that satisfies scientific and engineering criteria. The activity also includes background information for educators, including a summary of how landing on Mars helps answer major scientific questions, brief overviews of the data sets that the students will use, summaries of the site geology, and a list of relevant vocabulary. The first exercise introduces students to the concept of reflectance spectroscopy and how it can be used to identify the "fingerprints" of different minerals on the surface of Mars. Students are provided with simplified maps of mineral spectra at the four sites, based on Compact Reconnaissance Imaging Spectrometer (CRISM) observations, as well as a reference sheet with the spectra of common minerals on Mars. They can use this information to determine which sites have hydrated minerals, mafic minerals, or both. The second exercise adds data from the Mars Orbital Laser Altimeter (MOLA), and high resolution visible data from the Context Camera (CTX) on the Mars Reconnaissance Orbiter. Students learn about laser altimetry and how to interpret topographic contours to assess whether a landing site is too rough. The CTX data allow students to study the sites at higher resolution, with annotations that indicate key landforms of interest. These data, along with the spectroscopy data, allow students to rank the sites based on science and engineering criteria. This activity was developed as a collaboration between subject matter experts at

  11. Filter Strategies for Mars Science Laboratory Orbit Determination

    Science.gov (United States)

    Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.

    2013-01-01

    The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.

  12. Processing of Mars Exploration Rover Imagery for Science and Operations Planning

    Science.gov (United States)

    Alexander, Douglass A.; Deen, Robert G.; Andres, Paul M.; Zamani, Payam; Mortensen, Helen B.; Chen, Amy C.; Cayanan, Michael K.; Hall, Jeffrey R.; Klochko, Vadim S.; Pariser, Oleg; hide

    2006-01-01

    The twin Mars Exploration Rovers (MER) delivered an unprecedented array of image sensors to the Mars surface. These cameras were essential for operations, science, and public engagement. The Multimission Image Processing Laboratory (MIPL) at the Jet Propulsion Laboratory was responsible for the first-order processing of all of the images returned by these cameras. This processing included reconstruction of the original images, systematic and ad hoc generation of a wide variety of products derived from those images, and delivery of the data to a variety of customers, within tight time constraints. A combination of automated and manual processes was developed to meet these requirements, with significant inheritance from prior missions. This paper describes the image products generated by MIPL for MER and the processes used to produce and deliver them.

  13. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Directory of Open Access Journals (Sweden)

    J. Köhler

    2016-01-01

    Full Text Available The Radiation Assessment Detector (RAD, on board the Mars Science Laboratory (MSL rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements. We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements. We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  14. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  15. Cerberus: The Mars Crowdsourcing Experiment

    Science.gov (United States)

    Van't Woud, J. S. S.; Sandberg, J. A. C.; Wielinga, B. J.

    2012-05-01

    This article discusses the use of crowdsourcing in a serious game. A computer game, called Cerberus, which allows players to tag surface features on Mars, has been developed. Developing the game has allowed us to investigate the effects of different help levels in supporting the transfer of knowledge, and also how changing the game features can affect the quality of the gaming experience. The performance of the players is measured in terms of precision and motivation. Precision reflects the quality of the work done and motivation is represented by the amount of work done by the players. Games with an explicit help function combined with a "rich gaming experience" resulted in significantly more motivation among the players than games with an implicit help function combined with a "poor gaming experience". There was no significant difference in the precision achieved under different game conditions, but it was high enough to generate Martian maps exposing aeolian processes, surface layering, river meanders and other concepts. The players were able to assimilate deeper concepts about Martian geology, and the data from the games were of such high quality that they could be used to support scientific research.

  16. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  17. Mars Colony: Using Role-Play as a Pedagogical Approach to Teaching Science

    Science.gov (United States)

    Dolenc, Nathan; Wood, Aja; Soldan, Katie; Tai, Robert H.

    2016-01-01

    In this article, the authors discuss role-play as a pedagogical strategy to engage kindergarten and first-grade students in science and engineering. They present a five-part Mars colony lesson that they developed for a blended class, during which students role-play a space-exploration story that enables them to gain a firsthand perspective of what…

  18. Russian contribution to the ExoMars project

    Science.gov (United States)

    Zelenyi, L.; Korablev, O.; Rodionov, D.; Khartov, V.; Martynov, M.; Lukyanchikov, A.

    2014-04-01

    goal of the descent module consists of the delivery of the 300-kg rover on the surface. The full mass of the module should not exceed 2000 kg. An aerodynamic shield and a parachute system assure the entry phase. A descent scenario with integrated retro-propulsion engines and landing on feet is being developed. Subsystems of the descend module are supplied by both Roscosmos and ESA. On the rover, Russia contributes two science instruments. ADRON-RM is a passive neutron detector to assess water contents in the Mars surface along the rover track. ISEM is a pencil-beam infrared spectrometer mounted at the mast of the rover and is primarily dedicated for the assessment of mineralogical composition, operating in coordination with high-resolution channel of PANCAM. Both instruments will assist with planning rover traverse, rover targeting operations, and sample selection. A major effort of the Russian science is concentrated on the 2018 landing platform. This is the part of the descent module remaining immobile after the rover egress. The platform, or the longliving geophysical station shall have guaranteed lifetime of one Martian year, and will be able to accommodate up to 50 kg of science payload. The final list of science investigations, which is yet to be finalized, includes the meteorological station, instruments to analyse atmospheric composition, geophysical instruments. Other investigations will provide analyses of the surface/shallow subsurface material complimentary to these on the rover, and other experiments, if resources permit. Current status of the project and the developments will be presented

  19. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  20. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  1. The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites

    Science.gov (United States)

    Gwinner, K.; Jaumann, R.; Hauber, E.; Hoffmann, H.; Heipke, C.; Oberst, J.; Neukum, G.; Ansan, V.; Bostelmann, J.; Dumke, A.; Elgner, S.; Erkeling, G.; Fueten, F.; Hiesinger, H.; Hoekzema, N. M.; Kersten, E.; Loizeau, D.; Matz, K.-D.; McGuire, P. C.; Mertens, V.; Michael, G.; Pasewaldt, A.; Pinet, P.; Preusker, F.; Reiss, D.; Roatsch, T.; Schmidt, R.; Scholten, F.; Spiegel, M.; Stesky, R.; Tirsch, D.; van Gasselt, S.; Walter, S.; Wählisch, M.; Willner, K.

    2016-07-01

    The High Resolution Stereo Camera (HRSC) of ESA's Mars Express is designed to map and investigate the topography of Mars. The camera, in particular its Super Resolution Channel (SRC), also obtains images of Phobos and Deimos on a regular basis. As HRSC is a push broom scanning instrument with nine CCD line detectors mounted in parallel, its unique feature is the ability to obtain along-track stereo images and four colors during a single orbital pass. The sub-pixel accuracy of 3D points derived from stereo analysis allows producing DTMs with grid size of up to 50 m and height accuracy on the order of one image ground pixel and better, as well as corresponding orthoimages. Such data products have been produced systematically for approximately 40% of the surface of Mars so far, while global shape models and a near-global orthoimage mosaic could be produced for Phobos. HRSC is also unique because it bridges between laser altimetry and topography data derived from other stereo imaging instruments, and provides geodetic reference data and geological context to a variety of non-stereo datasets. This paper, in addition to an overview of the status and evolution of the experiment, provides a review of relevant methods applied for 3D reconstruction and mapping, and respective achievements. We will also review the methodology of specific approaches to science analysis based on joint analysis of DTM and orthoimage information, or benefitting from high accuracy of co-registration between multiple datasets, such as studies using multi-temporal or multi-angular observations, from the fields of geomorphology, structural geology, compositional mapping, and atmospheric science. Related exemplary results from analysis of HRSC data will be discussed. After 10 years of operation, HRSC covered about 70% of the surface by panchromatic images at 10-20 m/pixel, and about 97% at better than 100 m/pixel. As the areas with contiguous coverage by stereo data are increasingly abundant, we also

  2. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    Science.gov (United States)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  3. Soil Crystallinity As a Climate Indicator: Field Experiments on Earth and Mars

    Science.gov (United States)

    Horgan, Briony; Scudder, Noel; Rampe, Elizabeth; Rutledge, Alicia

    2016-01-01

    Soil crystallinity is largely determined by leaching rates, as high leaching rates favor the rapid precipitation of short order or poorly-crystalline phases like the aluminosilicate allophane. High leaching rates can occur due to high precipitation rates, seasonal monsoons, or weathering of glass, but are also caused by the rapid onset of seasonal melting of snow and ice in cold environments. Thus, cold climate soils are commonly dominated by poorly crystalline phases, which mature into kaolin minerals over time. Thus, we hypothesize that, in some contexts, soils with high abundances of poorly crystalline phases could indicate formation under cold climatic conditions. This model could be helpful in interpreting the poorly-constrained paleoclimate of ancient Mars, as the crystallinity of ancient soils and soil-derived sediments appears to be highly variable in time and space. While strong signatures of crystalline phyllosilicates have been identified in possible ancient paleosols on Mars, Mars Science Laboratory rover investigations of diverse ancient sediments at Gale Crater has shown that they can contain very high abundances (40-50 wt%) of poorly crystalline phases. We hypothesize that these poorly crystalline phases could be the result of weathering by ice/snow melt, perhaps providing support for sustained cold climates on early Mars punctuated by more limited warm climates. Furthermore, such poorly crystalline soils could be highly fertile growth media for future human exploration and colonization on Mars. To test this hypothesis, we are currently using rover-like instrumentation to investigate the mineralogy and chemistry of weathering products generated by snow and ice melt in a Mars analog alpine environment: the glaciated Three Sisters volcanic complex in central Oregon. Alteration in this glacial environment generates high abundances of poorly crystalline phases, many of which have compositions distinct from those identified in previous terrestrial

  4. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  5. The Mars Reconnaissance Orbiter Mission: 10 Years of Exploration from Mars Orbit

    Science.gov (United States)

    Johnston, M. Daniel; Zurek, Richard W.

    2016-01-01

    The Mars Reconnaissance Orbiter ( MRO ) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low -altitude science orbit. The spacecraft has been on station in its 255 x 320 k m, sun -synchronous (approximately 3 am -pm ), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.

  6. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  7. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    DEFF Research Database (Denmark)

    Schofield, J.T.; Barnes, J.R.; Crisp, D.

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24...

  8. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning

  9. Mars Exploration Student Data Teams: Building Foundations and Influencing Students to Pursue STEM Careers through Experiences with Authentic Research

    Science.gov (United States)

    Turney, D.; Grigsby, B.; Murchie, S. L.; Buczkowski, D.; Seelos, K. D.; Nair, H.; McGovern, A.; Morgan, F.; Viviano, C. E.; Goudge, T. A.; Thompson, D.

    2013-12-01

    The Mars Exploration Student Data Teams (MESDT) immerses diverse teams of high school and undergraduate students in an authentic research Science, Technology, Engineering and Mathematics (STEM) based experience and allows students to be direct participants in the scientific process by working with scientists to analyze data sets from NASA's Mars program, specifically from the CRISM instrument. MESDT was created by Arizona State University's Mars Education Program, and is funded through NASA's Compact Reconnaissance Imaging Spectrometer for Mars or CRISM, an instrument onboard the Mars Reconnaissance Orbiter (MRO). Students work with teacher mentors and CRISM team members to analyze data, develop hypotheses, conduct research, submit proposals, critique and revise work. All students begin the program with basic Mars curriculum lessons developed by the MESDT education team. This foundation enables the program to be inclusive of all students. Teachers have reported that populations of students with diverse academic needs and abilities have been successful in this program. The use of technology in the classroom allows the MESDT program to successfully reach a nationwide audience and funding provided by NASA's CRISM instrument allows students to participate free of charge. Recent changes to the program incorporate a partnership with United States Geological Survey (USGS) and a CRISM sponsored competitive scholarship for two teams of students to present their work at the annual USGS Planetary Mappers Meeting. Returning MESDT teachers have attributed an increase in student enrollment and interest to this scholarship opportunity. The 2013 USGS Planetary Mappers Meeting was held in Washington DC which provided an opportunity for the students to meet with their Senators at the US Capitol to explain the science work they had done throughout the year as well as the impact that the program had had on their goals for the future. This opportunity extended to the students by the

  10. The UV Sensor Onboard the Mars Science Laboratory Mission: Correction and Generation of UV Fluxes

    Science.gov (United States)

    Vicente-Retortillo, Á.; Martinez, G.; Renno, N. O.; Lemmon, M. T.; Gomez-Elvira, J.

    2017-12-01

    The Rover Environmental Monitoring Station UV sensor (UVS) onboard the Mars Science Laboratory mission has completed more than 1750 sols of measurements, providing an unprecedented coverage ranging from diurnal to interannual times scales [1,2]. The UVS is comprised of six photodiodes to measure the UV flux in the ranges 200-380, 320-380, 280-320, 200-280, 230-290 and 300-350 nm [3]. UV fluxes in units of W/m2 can be found in the NASA Planetary Data System (PDS). However, dust deposition on the UVS and a non-physical discontinuity in the calibration functions when the solar zenith angle is above 30º cause errors in these fluxes that increase with time. We have developed a technique to correct UV fluxes from the effects of dust degradation and inconsistencies in the angular response of the UVS. The photodiode output currents (available in the PDS as lower-level TELRDR products), ancillary data records (available in the PDS as ADR products) and dust opacity values derived from Mastcam observations are used for performing the corrections. The corrections have been applied to the UVA band (320-380 nm) for the first 1000 sols of the mission, providing excellent results [4]. We plan to correct the UV fluxes on each of the six UVS bands and to make these results available in the PDS. Data products generated by this study will allow comparisons of the UV radiation environment at Gale crater with that at the locations of the future missions ExoMars 2020 and Mars 2020, as well as the assessment of the potential survivability of biological contaminants brought to Mars from Earth. References: [1] Smith, M. D., et al. (2016), Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes, Icarus, 280, 234-248. [2] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, Geophys. Res. Lett., 44, 3502-3508. [3] Gómez-Elvira, J., et al. (2012), REMS: The environmental sensor

  11. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science

    Science.gov (United States)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2016-01-01

    We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.

  12. "Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory", Köhler et al.

    Science.gov (United States)

    Miller, Jack

    2015-04-01

    The Mars Science Laboratory (MSL) spacecraft carried the Curiosity rover to Mars. While the dramatic, successful landing of Curiosity and its subsequent exploration of the Martian surface have justifiably generated great excitement, from the standpoint of the health of crewmembers on missions to Mars, knowledge of the environment between Earth and Mars is critical. This paper reports data taken during the cruise phase of the MSL by the Radiation Assessment Detector (RAD). The results are of great interest for several reasons. They are a direct measurement of the radiation environment during what will be a significant fraction of the duration of a proposed human mission to Mars; they were made behind the de facto shielding provided by various spacecraft components; and, in particular, they are a measurement of the contribution to radiation dose by neutrons. The neutron environment inside spacecraft is produced primarily by galactic cosmic ray ions interacting in shielding materials, and given the high biological effectiveness of neutrons and the increased contribution of neutrons to dose with increased depth in shielding, accurate knowledge of the neutron energy spectrum behind shielding is vital. The results show a relatively modest contribution from neutrons and gammas compared to that from charged particles, but also a discrepancy in both dose and dose rate between the data and simulations. The failure of the calculations to accurately reproduce the data is significant, given that future manned spacecraft will be more heavily shielded (and thus produce more secondary neutrons) and that spacecraft design will rely on simulations and model calculations of radiation transport. The methodology of risk estimation continues to evolve, and incorporates our knowledge of both the physical and biological effects of radiation. The relatively large uncertainties in the biological data, and the difficulties in reducing those uncertainties, makes it all the more important to

  13. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  14. Europe is going to Mars

    Science.gov (United States)

    1999-06-01

    The Agency's Science Programme Committee (SPC) approved Mars Express after ESA's Council, meeting at ministerial level in Brussels on 11 and 12 May, had agreed the level of the science budget for the next 4 years, just enough to make the mission affordable. "Mars Express is a mission of opportunity and we felt we just had to jump in and do it. We are convinced it will produce first-rate science", says Hans Balsiger, SPC chairman. As well as being a first for Europe in Mars exploration, Mars Express will pioneer new, cheaper ways of doing space science missions. "With a total cost of just 150 million euros, Mars Express will be the cheapest Mars mission ever undertaken", says Roger Bonnet, ESA's Director of Science. Mars Express will be launched in June 2003. When it arrives at the red planet six months later, it will begin to search for water and life. Seven instruments, provided by space research institutes throughout Europe, will make observations from the main spacecraft as it orbits the planet. Just before the spacecraft arrives, it will release a small lander, provided by research institutes in the UK, that will journey on to the surface to look for signs of life. The lander is called Beagle 2 after the ship in which Charles Darwin sailed round the world in search of evidence supporting his theory of evolution. But just as Darwin had to raise the money for his trip, so the search is on for public and private finance for Beagle 2. "Beagle 2 is an extremely important element of the mission", says Bonnet. Europe's space scientists have envisaged a mission to Mars for over fifteen years. But limited funding has prevented previous proposals from going ahead. The positioning of the planets in 2003, however, offers a particularly favourable passage to the red planet - an opportunity not to be missed. Mars Express will be joined by an international flotilla of spacecraft that will also be using this opportunity to work together on scientific questions and pave the way

  15. Mars Science Laboratory Flight Software Boot Robustness Testing Project Report

    Science.gov (United States)

    Roth, Brian

    2011-01-01

    On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning, having charged the batteries through the night. This boot process is complicated, critical, and affected by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate testing a long duration of back-to-back unmanned automated tests, and although the software simulation has provided the necessary functionality and fidelity for this boot testing, there has not been support for the full flexibility necessary for this task. Therefore to perform this testing a framework has been build around the software simulation that supports running automated tests loading a variety of starting configurations for software and hardware states. This implementation has been tested against the nominal cases to validate the methodology, and support for configuring off-nominal cases is ongoing. The implication of this testing is that the introduction of input configurations that have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases increase confidence in the robustness of the flight software boot process.

  16. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this ICSP, experimental data obtained from MASLWR (Mulit-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are 1) loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels. In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation.

  17. The Antarctic permafrost as a testbed for REMS (Rover Environmental Monitoring Station-Mars Science Laboratory)

    Science.gov (United States)

    Esteban, B.; Ramos, M.; Sebastián, E.; Armiens, C.; Gómez-Elvira, J.; Cabos, W.; de Pablo, M. A.

    2009-04-01

    The present climatic characteristics of Mars favor the presence of extense permafrost areas in this lonely planet. Therefore environmental parameters that are included in Martian Rover missions are also used for monitoring thermal soil surface evolution in order to study the permafrost active layer thickness and the energy balance in the soil-atmosphere boundary limit layer. The REMS (Rover Environmental Monitoring Station) is an environmental station designed by the Centro de Astrobiología (CAB- Spain) with the collaboration of national and international partners (CRISA/EADS, UPC and FMI), which is part of the payload of the MSL (Mars Science Laboratory) NASA mission to Mars (http://mars.jpl.nasa.gov/msl/overview/). This mission is expected to be launched in the final months of 2009, and mainly consists of a Rover, with a complete set of scientific instruments; the Rover will carry the biggest, most advanced suite of instruments for scientific studies ever sent to the Martian surface. Five sensors compose the REMS instrument: ground (GT-REMS) and air temperatures, wind speed and direction, pressure, humidity and ultraviolet radiation (UV-REMS). A simplified setup of the REMS was deployed on Antarctica in the surroundings of the Spanish Antarctic Stations on Livingston and Deception Islands (Maritime Antarctica), where the permafrost distribution is well-known. The aim of the experiment was to check REMS's sensors response against hard environmental conditions and calibrates their measures with standard Antarctic devices. The experimental apparatuses included some standard meteorological and thermopiles sensors corresponding to the REMS. All the sensors are mounted in a 1.8 m mast and include a Pt100 air temperature sensor with shield solar protection on the mast top, a Kipp and Zonnen CNR1 net radiometer for measuring infrared (5-50 μm) and short wave solar (305-2800 nm) radiation at 1.5 m high, GT-REMS sensor and its amplification box at 0.7 m high and finally

  18. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

    Science.gov (United States)

    Rummel, John D; Beaty, David W; Jones, Melissa A; Bakermans, Corien; Barlow, Nadine G; Boston, Penelope J; Chevrier, Vincent F; Clark, Benton C; de Vera, Jean-Pierre P; Gough, Raina V; Hallsworth, John E; Head, James W; Hipkin, Victoria J; Kieft, Thomas L; McEwen, Alfred S; Mellon, Michael T; Mikucki, Jill A; Nicholson, Wayne L; Omelon, Christopher R; Peterson, Ronald; Roden, Eric E; Sherwood Lollar, Barbara; Tanaka, Kenneth L; Viola, Donna; Wray, James J

    2014-11-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of

  19. Mars Stratigraphy Mission

    Science.gov (United States)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  20. Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory

    Science.gov (United States)

    Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia

    2014-01-01

    Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.

  1. Direct-to-Earth Communications with Mars Science Laboratory During Entry, Descent, and Landing

    Science.gov (United States)

    Soriano, Melissa; Finley, Susan; Fort, David; Schratz, Brian; Ilott, Peter; Mukai, Ryan; Estabrook, Polly; Oudrhiri, Kamal; Kahan, Daniel; Satorius, Edgar

    2013-01-01

    Mars Science Laboratory (MSL) undergoes extreme heating and acceleration during Entry, Descent, and Landing (EDL) on Mars. Unknown dynamics lead to large Doppler shifts, making communication challenging. During EDL, a special form of Multiple Frequency Shift Keying (MFSK) communication is used for Direct-To-Earth (DTE) communication. The X-band signal is received by the Deep Space Network (DSN) at the Canberra Deep Space Communication complex, then down-converted, digitized, and recorded by open-loop Radio Science Receivers (RSR), and decoded in real-time by the EDL Data Analysis (EDA) System. The EDA uses lock states with configurable Fast Fourier Transforms to acquire and track the signal. RSR configuration and channel allocation is shown. Testing prior to EDL is discussed including software simulations, test bed runs with MSL flight hardware, and the in-flight end-to-end test. EDA configuration parameters and signal dynamics during pre-entry, entry, and parachute deployment are analyzed. RSR and EDA performance during MSL EDL is evaluated, including performance using a single 70-meter DSN antenna and an array of two 34-meter DSN antennas as a back up to the 70-meter antenna.

  2. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hardgrove, C., E-mail: craig.hardgrove@stonybrook.edu [Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN (United States); Moersch, J.; Drake, D. [Techsource, Santa Fe, NM (United States)

    2011-12-11

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called 'neutron die-away' that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER

  3. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Science.gov (United States)

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  4. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Directory of Open Access Journals (Sweden)

    G W Wieger Wamelink

    Full Text Available When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant; the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  5. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation. Since 2009, IAEA has conducted a research program entitled as ICSP (International Collaborative Standard Problem) on integral PWR design to evaluate current the state of the art of thermal-hydraulic code in simulating natural circulation flow within integral type reactor. In this ICSP, experimental data obtained from MASLWR (Multi-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3)

  6. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  7. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    Science.gov (United States)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  8. Demonstration of Critical Systems for Propellant Production on Mars for Science and Exploration Missions

    Science.gov (United States)

    Linne, Diane L.; Gaier, James R.; Zoeckler, Joseph G.; Kolacz, John S.; Wegeng, Robert S.; Rassat, Scot D.; Clark, D. Larry

    2013-01-01

    A Mars hopper has been proposed as a Mars mobility concept that will also demonstrate and advance in-situ resource utilization. The components needed in a Mars propellant production plant have been developed to various levels of technology maturity, but there is little experience with the systems in a Mars environment. Two systems for the acquisition and compression of the thin carbon dioxide atmosphere were designed, assembled, and tested in a Mars environment chamber. A microchannel sorption pump system was able to raise the pressure from 7 Torr to 450 Torr or from 12 Torr to over 700 Torr in two stages. This data now provides information needed to make additional improvements in the sorption pump technology to increase performance, although a system-level analysis might prove that some amount of pre- or post-compression may be a preferred solution. A mini cryofreezer system was also evaluated as an alternative method for carbon dioxide acquisition and compression. Finally, an electrolysis system was tested and successfully demonstrated start-up operation and thermal stability of all components during long-term operation in the chamber.

  9. Simulations of the magnetic properties experiment on Mars Exploration Rovers

    International Nuclear Information System (INIS)

    Gunnlaugsson, H. P.; Worm, E. S.; Bertelsen, P.; Goetz, W.; Kinch, K.; Madsen, M. B.; Merrison, J. P.; Nornberg, P.

    2005-01-01

    We present some of the main findings from simulation studies of the Magnetic Properties Experiment on the Mars Exploration Rovers. The results suggest that the dust has formed via mechanical breakdown of surface rocks through the geological history of the planet, and that liquid water need not have played any significant role in the dust formation processes.

  10. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  11. MarsSI: Martian surface data processing information system

    Science.gov (United States)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  12. Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment

    International Nuclear Information System (INIS)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin

    2015-01-01

    In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow

  13. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1994-06-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  14. Mars aqueous chemistry experiment

    Science.gov (United States)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  15. Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations

    Science.gov (United States)

    Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.

    2006-01-01

    With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.

  16. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  17. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    Science.gov (United States)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  18. Mars Aeronomy Observer: Report of the Science Working Team

    Science.gov (United States)

    Hunten, Donald M.; Slavin, James A.; Brace, Lawrence H.; Deming, Drake; Frank, Louis A.; Grebowsky, Joseph M.; Haberle, Robert M.; Hanson, William B.; Intriligator, Devrie S.; Killeen, Timothy L.; hide

    1986-01-01

    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region.

  19. Recent Accomplishments in Mars Exploration: The Rover Perspective

    Science.gov (United States)

    McLennan, S. M.; McSween, H. Y.

    2018-04-01

    Mobile rovers have revolutionized our understanding of Mars geology by identifying habitable environments and addressing critical questions related to Mars science. Both the advances and limitations of rovers set the scene for Mars Sample Return.

  20. Mars exploration program analysis group goal one: determine if life ever arose on Mars.

    Science.gov (United States)

    Hoehler, Tori M; Westall, Frances

    2010-11-01

    The Mars Exploration Program Analysis Group (MEPAG) maintains a standing document that articulates scientific community goals, objectives, and priorities for mission-enabled Mars science. Each of the goals articulated within the document is periodically revisited and updated. The astrobiology-related Goal One, "Determine if life ever arose on Mars," has recently undergone such revision. The finalized revision, which appears in the version of the MEPAG Goals Document posted on September 24, 2010, is presented here.

  1. Mars Target Encyclopedia: Information Extraction for Planetary Science

    Science.gov (United States)

    Wagstaff, K. L.; Francis, R.; Gowda, T.; Lu, Y.; Riloff, E.; Singh, K.

    2017-06-01

    Mars surface targets / and published compositions / Seek and ye will find. We used text mining methods to extract information from LPSC abstracts about the composition of Mars surface targets. Users can search by element, mineral, or target.

  2. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  3. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    Science.gov (United States)

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  4. Touring Mars Online, Real-time, in 3D for Math and Science Educators and Students

    Science.gov (United States)

    Jones, Greg; Kalinowski, Kevin

    2007-01-01

    This article discusses a project that placed over 97% of Mars' topography made available from NASA into an interactive 3D multi-user online learning environment beginning in 2003. In 2005 curriculum materials that were created to support middle school math and science education were developed. Research conducted at the University of North Texas…

  5. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  6. Mars Science Laboratory Differential Restraint: The Devil is in the Details

    Science.gov (United States)

    Jordan, Elizabeth

    2012-01-01

    The Differential Restraint, a mechanism used on the Mars Science Laboratory (MSL) rover to maintain symmetry of the mobility system during the launch, cruise, and entry descent and landing phases of the MSL mission, completed nearly three full design cycles before a finalized successful design was achieved. This paper address the lessons learned through these design cycles, including three major design elements that can easily be overlooked during the design process, including, tolerance stack contribution to load path, the possibility of Martian dirt as a failure mode, and the effects of material properties at temperature extremes.

  7. Examining Mars with SPICE

    Science.gov (United States)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  8. Pumped Fluid Loop Heat Rejection and Recovery Systems for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael

    2006-01-01

    This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.

  9. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  10. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  11. The Mars Science Laboratory Mission: Early Results from Gale Crater Landing Site

    Science.gov (United States)

    Flatow, I.; Grotzinger, J. P.; Blake, D.; Crisp, J. A.; Edgett, K. S.; Gellert, R.; Gomez-Elvira, J.; Hassler, D. M.; Mahaffy, P. R.; Malin, M. C.; Meyer, M. A.; Mitrofanov, I.; Vasavada, A. R.; Wiens, R. C.

    2012-12-01

    The Mars Science Laboratory rover, Curiosity, landed at Gale Crater on August 5th (PDT) and initiated an investigation of modern and ancient environments. The 155-km diameter Gale Crater was chosen as Curiosity's field site based on several attributes: the interior Mount Sharp preserves a succession of flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale's regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, ensure preservation of a rich record of the environmental history of early Mars. Curiosity has an expected lifetime of at least one Mars year (~23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM); an x-ray diffractometer that will determine mineralogical diversity (CheMin); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, Mastcam); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam); an active/passive neutron spectrometer designed to search for water in rocks/regolith (DAN); a weather station to measure modern-day environmental variables (REMS); and a sensor designed for continuous monitoring of

  12. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  13. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  14. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  15. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  16. The Role of the Photogeologic Mapping in the Morocco 2013 Mars Analog Field Simulation (Austrian Space Forum)

    Science.gov (United States)

    Losiak, Anna; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Gołębiowska, Izabela; Wittek, Steffen; Boyd, Andrea; Achorner, Isabella; Rampey, Mike; Bartenstein, Thomas; Jones, Natalie; Luger, Ulrich; Sans, Alejandra; Hettrich, Sebastian

    2013-04-01

    The MARS2013 mission: The Austrian Space Forum together with multiple scientific partners will conduct a Mars analog field simulation. The project takes place between 1st and 28th of February 2013 in the northern Sahara near Erfoud. During the simulation a field crew (consisting of suited analog astronauts and a support team) will conduct several experiments while being managed by the Mission Support Center (MSC) located in Innsbruck, Austria. The aim of the project is to advance preparation of the future human Mars missions by testing: 1) the mission design with regard to operational and engineering challenges (e.g., how to work efficiently with introduced time delay in communication between field team and MSC), 2) scientific instruments (e.g., rovers) and 3) human performance in conditions analogous to those that will be encountered on Mars. The Role of Geological Mapping: Remote Science Support team (RSS) is responsible for processing science data obtained in the field. The RSS is also in charge of preparing a set of maps to enable planning activities of the mission (including the development of traverses) [1, 2]. The usage of those maps will increase the time-cost efficiency of the entire mission. The RSS team members do not have any prior knowledge about the area where the simulation is taking place and the analysis is fully based on remote sensing satellite data (Landsat, GoogleEarth) and a digital elevation model (ASTER GDEM)from the orbital data. The maps design: The set of maps (covering area 5 km X 5 km centered on the Mission Base Camp) was designed to simplify the process of site selection for the daily traverse planning. Additionally, the maps will help to accommodate the need of the field crew for the increased autonomy in the decision making process, forced by the induced time delay between MSC and "Mars". The set of provided maps should allow the field team to orientate and navigate in the explored areas as well as make informed decisions about

  17. Advanced Communication and Networking Technologies for Mars Exploration

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  18. The CheMin XRD on the Mars Science Laboratory Rover Curiosity: Construction, Operation, and Quantitative Mineralogical Results from the Surface of Mars

    Science.gov (United States)

    Blake, David F.

    2015-01-01

    The Mars Science Laboratory mission was launched from Cape Canaveral, Florida on Nov. 26, 2011 and landed in Gale crater, Mars on Aug. 6, 2012. MSL's mission is to identify and characterize ancient "habitable" environments on Mars. MSL's precision landing system placed the Curiosity rover within 2 km of the center of its 20 X 6 km landing ellipse, next to Gale's central mound, a 5,000 meter high pile of laminated sediment which may contain 1 billion years of Mars history. Curiosity carries with it a full suite of analytical instruments, including the CheMin X-ray diffractometer, the first XRD flown in space. CheMin is essentially a transmission X-ray pinhole camera. A fine-focus Co source and collimator transmits a 50µm beam through a powdered sample held between X-ray transparent plastic windows. The sample holder is shaken by a piezoelectric actuator such that the powder flows like a liquid, each grain passing in random orientation through the beam over time. Forward-diffracted and fluoresced X-ray photons from the sample are detected by an X-ray sensitive Charge Coupled Device (CCD) operated in single photon counting mode. When operated in this way, both the x,y position and the energy of each photon are detected. The resulting energy-selected Co Kalpha Debye-Scherrer pattern is used to determine the identities and amounts of minerals present via Rietveld refinement, and a histogram of all X-ray events constitutes an X-ray fluorescence analysis of the sample.The key role that definitive mineralogy plays in understanding the Martian surface is a consequence of the fact that minerals are thermodynamic phases, having known and specific ranges of temperature, pressure and composition within which they are stable. More than simple compositional analysis, definitive mineralogical analysis can provide information about pressure/temperature conditions of formation, past climate, water activity and the like. Definitive mineralogical analyses are necessary to establish

  19. Ionospheric Electron Densities at Mars: Comparison of Mars Express Ionospheric Sounding and MAVEN Local Measurement

    Czech Academy of Sciences Publication Activity Database

    Němec, F.; Morgan, D. D.; Fowler, C.M.; Kopf, A.J.; Andersson, L.; Gurnett, D. A.; Andrews, D.J.; Truhlík, Vladimír

    2017-01-01

    Roč. 122, č. 12 (2017), s. 12393-12405 E-ISSN 2169-9402 Institutional support: RVO:68378289 Keywords : Mars * ionosphere * MARSIS * Mars Express * MAVEN * radar sounding Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) http://onlinelibrary.wiley.com/doi/10.1002/2017JA024629/full

  20. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  1. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Science.gov (United States)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; Achilles, C. N.; Yen, A. S.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Farmer, J. D.; Rampe, E. B.; Stolper, E. M.; Spanovich, N.; Achilles, Cherie; Agard, Christophe; Verdasca, José Alexandre Alves; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F.; Avalos, Juan J. Blanco; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John "Iain"; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie "Kenzie"; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Malvitte, Alain Lepinette; Leshin, Laurie; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Mahaffy, Paul; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Jiménez, Mercedes Marín; García, César Martín; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Jurado, Antonio Molina; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Caro, Guillermo Muñoz; Nachon, Marion; López, Sara Navarro; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Dobrea, Eldar Noe; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; Hernández, Miguel Ángel de Pablo; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio J.; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Fuentes, Sara Alejandra Sans; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel "Dan"; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Martinez, Eduardo Sebastian; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sánchez, Pablo Sobrón; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Steele, Andrew; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Redondo, Josefina Torres; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B. "Mouser"; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Mier, María-Paz Zorzano

    2013-09-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe3+- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  2. Moon-Mars simulation campaign in volcanic Eifel: Remote science support and sample analysis

    Science.gov (United States)

    Offringa, Marloes; Foing, Bernard H.; Kamps, Oscar

    2016-07-01

    Moon-Mars analogue missions using a mock-up lander that is part of the ESA/ILEWG ExoGeoLab project were conducted during Eifel field campaigns in 2009, 2015 and 2016 (Foing et al., 2010). In the last EuroMoonMars2016 campaign the lander was used to conduct reconnaissance experiments and in situ geological scientific analysis of samples, with a payload that mainly consisted of a telescope and a UV-VIS reflectance spectrometer. The aim of the campaign was to exhibit possibilities for the ExoGeoLab lander to perform remotely controlled experiments and test its applicability in the field by simulating the interaction with astronauts. The Eifel region in Germany where the experiments with the ExoGeoLab lander were conducted is a Moon-Mars analogue due to its geological setting and volcanic rock composition. The research conducted by analysis equipment on the lander could function in support of Moon-Mars sample return missions, by providing preliminary insight into characteristics of the analyzed samples. The set-up of the prototype lander was that of a telescope with camera and solar power equipment deployed on the top, the UV-VIS reflectance spectrometer together with computers and a sample webcam were situated in the middle compartment and to the side a sample analysis test bench was attached, attainable by astronauts from outside the lander. An alternative light source that illuminated the samples in case of insufficient daylight was placed on top of the lander and functioned on solar power. The telescope, teleoperated from a nearby stationed pressurized transport vehicle that functioned as a base control center, attained an overview of the sampling area and assisted the astronauts in their initial scouting pursuits. Locations of suitable sampling sites based on these obtained images were communicated to the astronauts, before being acquired during a simulated EVA. Sampled rocks and soils were remotely analyzed by the base control center, while the astronauts

  3. Mars Analog Rio Tinto Experiment (MARTE): An Experimental Demonstration of Key Technologies for Searching for Life on Mars

    Science.gov (United States)

    Stoker, Carol

    2004-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms.

  4. Hydrovolcanic features on Mars: Preliminary observations from the first Mars year of HiRISE imaging

    Science.gov (United States)

    Keszthelyi, L.P.; Jaeger, W.L.; Dundas, C.M.; Martinez-Alonso, S.; McEwen, A.S.; Milazzo, M.P.

    2010-01-01

    We provide an overview of features indicative of the interaction between water and lava and/or magma on Mars as seen by the High Resolution Imaging Science Experiment (HiRISE) camera during the Primary Science Phase of the Mars Reconnaissance Orbiter (MRO) mission. The ability to confidently resolve meter-scale features from orbit has been extremely useful in the study of the most pristine examples. In particular, HiRISE has allowed the documentation of previously undescribed features associated with phreatovolcanic cones (formed by the interaction of lava and groundwater) on rapidly emplaced flood lavas. These include "moats" and "wakes" that indicate that the lava crust was thin and mobile, respectively [Jaeger, W.L., Keszthelyi, L.P., McEwen, A.S., Dundas, C.M., Russel, P.S., 2007. Science 317, 1709-1711]. HiRISE has also discovered entablature-style jointing in lavas that is indicative of water-cooling [Milazzo, M.P., Keszthelyi, L.P., Jaeger, W.L., Rosiek, M., Mattson, S., Verba, C., Beyer, R.A., Geissler, P.E., McEwen, A.S., and the HiRISE Team, 2009. Geology 37, 171-174]. Other observations strongly support the idea of extensive volcanic mudflows (lahars). Evidence for other forms of hydrovolcanism, including glaciovolcanic interactions, is more equivocal. This is largely because most older and high-latitude terrains have been extensively modified, masking any earlier 1-10 m scale features. Much like terrestrial fieldwork, the prerequisite for making full use of HiRISE's capabilities is finding good outcrops.

  5. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    Science.gov (United States)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  6. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  7. Reaching Mars: multi-criteria R&D portfolio selection for Mars exploration technology planning

    Science.gov (United States)

    Smith, J. H.; Dolgin, B. P.; Weisbin, C. R.

    2003-01-01

    The exploration of Mars has been the focus of increasing scientific interest about the planet and its relationship to Earth. A multi-criteria decision-making approach was developed to address the question, Given a Mars program composed of mission concepts dependent on a variety of alternative technology development programs, which combination of technologies would enable missions to maximize science return under a constrained budget?.

  8. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  9. Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution

    Science.gov (United States)

    Dehant, Veronique; Banerdt, Bruce; Lognonné, Philippe; Grott, Matthias; Asmar, Sami; Biele, Jens; Breuer, Doris; Forget, François; Jaumann, Ralf; Johnson, Catherine; Knapmeyer, Martin; Langlais, Benoit; Le Feuvre, Mathieu; Mimoun, David; Mocquet, Antoine; Read, Peter; Rivoldini, Attilio; Romberg, Oliver; Schubert, Gerald; Smrekar, Sue; Spohn, Tilman; Tortora, Paolo; Ulamec, Stephan; Vennerstrøm, Susanne

    2012-08-01

    Our fundamental understanding of the interior of the Earth comes from seismology, geodesy, geochemistry, geomagnetism, geothermal studies, and petrology. For the Earth, measurements in those disciplines of geophysics have revealed the basic internal layering of the Earth, its dynamical regime, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. Planetary interiors not only record evidence of conditions of planetary accretion and differentiation, they exert significant control on surface environments. We present recent advances in possible in-situ investigations of the interior of Mars, experiments and strategies that can provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. Such investigations applied on Mars have been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years. New seismological methods and approaches based on the cross-correlation of seismic noise by two seismic stations/landers on the surface of Mars and on joint seismic/orbiter detection of meteorite impacts, as well as the improvement of the performance of Very Broad-Band (VBB) seismometers have made it possible to secure a rich scientific return with only two simultaneously recording stations. In parallel, use of interferometric methods based on two Earth-Mars radio links simultaneously from landers tracked from Earth has increased the precision of radio science experiments by one order of magnitude. Magnetometer and heat flow measurements will complement seismic and geodetic data in order to obtain the best information on the interior of Mars. In addition to studying the present structure and dynamics of Mars, these measurements will provide important constraints for the astrobiology of Mars by helping to understand why Mars failed to sustain a magnetic field, by

  10. Mars 2020 Rover SHERLOC Calibration Target

    Science.gov (United States)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  11. Power requirements assessment for lunar and Mars scientific and experimental payloads

    International Nuclear Information System (INIS)

    Kotas, J.F.

    1992-01-01

    This paper reports on an evaluation of prospective scientific payloads and surface experiments for future manned missions to the moon and Mars which determined that overall mission objectives and requirements influence the selection of candidate power systems. A generic classification of these science missions was developed to examine these relationships. Scientific missions were defined for the four Synthesis Report architectures and cumulative power load and payload mix computed. Approximately half of all deployed science payloads were sited within the main surface outpost and powered by the central power generation facility. The remaining remote science payloads require either autonomous or smaller central power facilities

  12. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  13. Evidence for Basinwide Mud Volcanism in Acidalia Planitia, Mars

    Science.gov (United States)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2010-01-01

    High-albedo mounds in Acidalia Planitia occur in enormous numbers. They have been variously interpreted as pseudocraters, cinder cones, tuff cones, pingos, ice disintegration features, or mud volcanoes. Our work uses regional mapping, basin analysis, and new data from the Context Camera (CTX), High Resolution Imaging Science Experiment (HiRISE), and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to re-assess the origin and significance of these structures.

  14. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  15. Mineralogical Results from the Mars Science Laboratory Rover Curiosity

    Science.gov (United States)

    Blake, David Frederick.

    2017-01-01

    NASA's CheMin instrument, the first X-ray Diffractometer flown in space, has been operating on Mars for nearly five years. CheMin was first to establish the quantitative mineralogy of the Mars global soil (1). The instrument was next used to determine the mineralogy of a 3.7 billion year old lacustrine mudstone, a result that, together with findings from other instruments on the MSL Curiosity rover, documented the first habitable environment found on another planet (2). The mineralogy of this mudstone from an ancient playa lake was also used to derive the maximum concentration of CO2 in the early Mars atmosphere, a surprisingly low value that calls into question the current theory that CO2 greenhouse warming was responsible for the warm and wet environment of early Mars. CheMin later identified the mineral tridymite, indicative of silica-rich volcanism, in mudstones of the Murray formation on Mt. Sharp. This discovery challenges the paradigm of Mars as a basaltic planet and ushers in a new chapter of comparative terrestrial planetology (3). CheMin is now being used to systematically sample the sedimentary layers that comprise the lower strata of Mt. Sharp, a 5,000 meter sequence of sedimentary rock laid down in what was once a crater lake, characterizing isochemical sediments that through their changing mineralogy, document the oxidation and drying out of the Mars in early Hesperian time.

  16. Towards Mars — Stratospheric Balloons as Test-Beds for Mars Exploration

    Science.gov (United States)

    Dannenberg, K.

    2018-04-01

    The abstract deals with the possibilities to use stratospheric balloons for Mars science and technology needs, especially with the opportunities offered by the new European infrastructure project HEMERA, recently selected by the European Commission.

  17. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  18. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  19. Environment of Mars, 1988

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    1988-10-01

    A compilation of scientific knowledge about the planet Mars is provided. Information is divided into three categories: atmospheric data, surface data, and astrodynamic data. The discussion of atmospheric data includes the presentation of nine different models of the Mars atmosphere. Also discussed are Martian atmospheric constituents, winds, clouds, and solar irradiance. The great dust storms of Mars are presented. The section on Mars surface data provides an in-depth examination of the physical and chemical properties observed at the two Viking landing sites. Bulk densities, dielectric constants, and thermal inertias across the planet are then described and related back to those specific features found at the Viking landing sites. The astrodynamic materials provide the astronomical constants, time scales, and reference coordinate frames necessary to perform flightpath analysis, navigation design, and science observation design

  20. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques: A Mid-term Report

    Science.gov (United States)

    Muller, J.-P.; Yershov, V.; Sidiropoulos, P.; Gwinner, K.; Willner, K.; Fanara, L.; Waelisch, M.; van Gasselt, S.; Walter, S.; Ivanov, A.; Cantini, F.; Morley, J. G.; Sprinks, J.; Giordano, M.; Wardlaw, J.; Kim, J.-R.; Chen, W.-T.; Houghton, R.; Bamford, S.

    2015-10-01

    Understanding the role of different solid surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 8 years, especially in 3D imaging of surface shape (down to resolutions of 10s of cms) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the potential to be able to overlay different epochs back to the mid-1970s. Within iMars, a processing system has been developed to generate 3D Digital Terrain Models (DTMs) and corresponding OrthoRectified Images (ORIs) fully automatically from NASA MRO HiRISE and CTX stereo-pairs which are coregistered to corresponding HRSC ORI/DTMs. In parallel, iMars has developed a fully automated processing chain for co-registering level-1 (EDR) images from all previous NASA orbital missions to these HRSC ORIs and in the case of HiRISE these are further co-registered to previously co-registered CTX-to-HRSC ORIs. Examples will be shown of these multi-resolution ORIs and the application of different data mining algorithms to change detection using these co-registered images. iMars has recently launched a citizen science experiment to evaluate best practices for future citizen scientist validation of such data mining processed results. An example of the iMars website will be shown along with an embedded Version 0 prototype of a webGIS based on OGC standards.

  1. Biological life support systems for a Mars mission planetary base: Problems and prospects

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  2. HEAT OF MARS IS LOVE OF LIFE?! TWO WAYS TO LOOK AT MARS

    Directory of Open Access Journals (Sweden)

    S. K. Alavipanah

    2013-09-01

    Full Text Available Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a the amount of energy they receive from the sun and, (b the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.

  3. Heat of Mars is Love of LIFE?! Two Ways to Look at Mars

    Science.gov (United States)

    Alavipanah, S. K.; Van Gasselt, S.; Mulder, N. J.; Nezammahalleh, M. A.

    2013-09-01

    Earth and Mars travel in neighboring orbits around the sun. Both are rocky planets, but only the earth has the conditions to support life on. Is such a great difference due to their surface temperatures? It is obvious that the surface temperatures of these planets are governed by two factors of: (a) the amount of energy they receive from the sun and, (b) the composition of their atmospheres. If it is true, we must focus more on the Thermal Remote Sensing on Mars. Since heat is an important factor in any physical, chemical and biological study, it can be said that the heat in the form of love and psychological processes is effective for these studies. In study about life on another planet, not only the thermal characteristics are essential but love or passion in Scientists' efforts that are related to inner heat should also be considered. Therefore, in this paper we review the studies on Mars with the emphasis on the temperature. We consider science, art, literature, and technology as well as any things related to the heat including ice melting, volcanology, soil, morphology, and geothermal. As we believe that it must be bridged between mental and science gaps, shouldn't we make both the art and the science convergent? Therefore, we have used different scientific and art resources to make the role of heat in the Mars clear. We are seeking to answer the question whether the heat can be as a common factor in the researches.

  4. Massive stereo-based DTM production for Mars on cloud computers

    Science.gov (United States)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Xiong, Si-Ting; Putri, A. R. D.; Walter, S. H. G.; Veitch-Michaelis, J.; Yershov, V.

    2018-05-01

    Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system.

  5. Planned Products of the Mars Structure Service for the InSight Mission to Mars

    Science.gov (United States)

    Panning, Mark P.; Lognonné, Philippe; Bruce Banerdt, W.; Garcia, Raphaël; Golombek, Matthew; Kedar, Sharon; Knapmeyer-Endrun, Brigitte; Mocquet, Antoine; Teanby, Nick A.; Tromp, Jeroen; Weber, Renee; Beucler, Eric; Blanchette-Guertin, Jean-Francois; Bozdağ, Ebru; Drilleau, Mélanie; Gudkova, Tamara; Hempel, Stefanie; Khan, Amir; Lekić, Vedran; Murdoch, Naomi; Plesa, Ana-Catalina; Rivoldini, Atillio; Schmerr, Nicholas; Ruan, Youyi; Verhoeven, Olivier; Gao, Chao; Christensen, Ulrich; Clinton, John; Dehant, Veronique; Giardini, Domenico; Mimoun, David; Thomas Pike, W.; Smrekar, Sue; Wieczorek, Mark; Knapmeyer, Martin; Wookey, James

    2017-10-01

    The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

  6. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater.

  7. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    Science.gov (United States)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14Mars surface. Samples of 45-65 mm 3 from material sieved to less than 150 micrometers will be delivered through a funnel to one of 27 reusable sample cells (five additional cells on the sample wheel contain diffraction of fluorescence standards). Sample cells are 8-mm diamater discs with 7-micrometer thick Mylar or Kapton windows spaced 170 micrometers apart. Within this volume, the sample is shaken by piezoelectric vibration at sonic frequencies, causing the powder to flow past a narrow, collimated -ray beam in random orientation can be obtained even from minnerals exhibiting strong preferred orientation such as phylosilicates.

  8. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  9. Why, from a Life Sciences Perspective, This Mission to Mars?

    Science.gov (United States)

    McKay, Christopher P.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Mars may have had water and life early in its history and this make it a key target for robotic and human exploration. Extensive human exploration of Mars will of necessity depend on life support systems that rely on agricultural plants. If current concept for recreating, a biosphere on Mars are implemented this would involve widespread use of plants, particularly species from Arctic and alpine environments.

  10. Tales from the Mars Science Laboratory Thermal Protection System Development (or, Try Not to Panic When Your Heatshield Material Disappears)

    Science.gov (United States)

    Hwang, Helen H.

    2018-01-01

    In 2012, the entry vehicle for the Mars Science Laboratory (MSL) mission was the largest and heaviest vehicle flown to another planet, designed to be able to withstand the largest heat fluxes in the Martian atmosphere ever attempted. The heatshield material that had been successfully used for all previous Mars missions had been baselined in the design, but during the development and qualification testing demonstrated catastrophic and unexplained failures. With only 10 months remaining before the original launch date, the TPS team led by NASA Ames designed and implemented a first-ever tiled, ablative heatshield. Highlights from MSL of the testing difficulties and innovations required to execute a new heatshield design will be presented, along with a sneak peak of the Mars 2020 mission.

  11. Powered Flight Design and Reconstructed Performance Summary for the Mars Science Laboratory Mission

    Science.gov (United States)

    Sell, Steven; Chen, Allen; Davis, Jody; San Martin, Miguel; Serricchio, Frederick; Singh, Gurkirpal

    2013-01-01

    The Powered Flight segment of Mars Science Laboratory's (MSL) Entry, Descent, and Landing (EDL) system extends from backshell separation through landing. This segment is responsible for removing the final 0.1% of the kinetic energy dissipated during EDL and culminating with the successful touchdown of the rover on the surface of Mars. Many challenges exist in the Powered Flight segment: extraction of Powered Descent Vehicle from the backshell, performing a 300m divert maneuver to avoid the backshell and parachute, slowing the descent from 85 m/s to 0.75 m/s and successfully lowering the rover on a 7.5m bridle beneath the rocket-powered Descent Stage and gently placing it on the surface using the Sky Crane Maneuver. Finally, the nearly-spent Descent Stage must execute a Flyaway maneuver to ensure surface impact a safe distance from the Rover. This paper provides an overview of the powered flight design, key features, and event timeline. It also summarizes Curiosity's as flown performance on the night of August 5th as reconstructed by the flight team.

  12. Tactile Earth and Space Science Materials for Students with Visual Impairments: Contours, Craters, Asteroids, and Features of Mars

    Science.gov (United States)

    Rule, Audrey C.

    2011-01-01

    New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…

  13. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  14. PDS4 vs PDS3 - A Comparison of PDS Data for Two Mars Rovers - Existing Mars Curiosity Mission Mass Spectrometer (SAM) PDS3 Data vs Future ExoMars Rover Mass Spectrometer (MOMA) PDS4 Data

    Science.gov (United States)

    Lyness, E.; Franz, H. B.; Prats, B.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.

  15. Mars atmosphere studies with the OMEGA/Mars Express experiment: I. Overview and detection of lfuorescent emission by CO2

    Science.gov (United States)

    Drossart, P.; Combes, M.; Encrenaz, T.; Melchiorri, R.; Fouchet, T.; Forget, F.; Moroz, V.; Ignatiev, N.; Bibring, J.-P.; Langevin, Y.; OMEGA Team

    Observations of Mars by the OMEGA/Mars Express experiment provide extended maps of the martian disk at all latitudes, and with various conditions of illumination, between 0.4 to 5 micron. The atmospheric investigations so far conducted by our team are focussed on the infrared part of the spectrum (1-5 micron), and include: the development of a correction algorithm for atmospheric gaseous absorption, to give access to fine mineralogic studies, largely decorrelated from atmospheric effects the study of dust opacity effects in the near infrared, with the aim to correct also the rough spectra from dust opacity perturbation the study of minor constituents like CO, to search for regional or global variations the study of CO2 emission at 4.3 micron related to fluorescent emission This last effect is prominently detected in limb observations obtained in 3-axis stabilized mode of Mars Express, with high altitude emission in the CO2 fundamental at 4.3 micron, usually seen in absorption in nadir observations. These emissions are related to non-LTE atmospheric layers, well above the solid surface in the mesosphere. Such emissions are also present in Earth and Venus limb observations. They are present also in nadir observations, but are reinforced in limb viewing geometry due to the tangential view. A numerical model of these emission will be presented.

  16. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  17. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  18. Comparison of MARS-KS and SPACE for UPTF TRAM Loop Seal Clearing Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gil; Lee, Won Woong; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Bang, Young Seok [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, the authors assessed SPACE code, which was developed by a consortium led by Korea Hydro and Nuclear Power Co., Ltd. (KHNP), now in licensing process and MARS-KS code for UPTF TRAM loop seal clearing experiment to evaluate the code predictability regarding loop seal clearing for supporting the regulatory review. The sensitivity of PT/CT sagging contact angle has been studied. The results of sagging contact angle could explain in different ways. In the case of wide sagging contact angle, the result is quite conservative in the aspect of containment as the heat is well-transferred to moderator. it causes the moderator to heat up. On the other hand, the narrow sagging contact angle results fuel heatup and give limiting condition for fuel integrity. As a result of estimation, a proper application of sagging contact angle is required to provide limiting condition for subsequent analysis. The results from the two codes were compared to the experimental data, but due to the lack of information on the uncertainties it is too early to conclude the both code's performance. However, from the obtained analysis results, some differences between MARS-KS and SPACE are initially observed. Especially, SPACE has larger oscillation in the calculated mass flow rate value than MARS-KS. This phenomenon was observed in comparison of SPACE and MARS-KS CCFL model as well.

  19. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  20. Mars Surface Mobility Leading to Sustainable Exploration

    Science.gov (United States)

    Linne, Diane L.; Barsi, Stephen J.; Sjauw En Wa, Waldy K.; Landis, Geoffrey A.

    2012-01-01

    A Mars rocket-propelled hopper concept was evaluated for feasibility through analysis and experiments. The approach set forth in this paper is to combine the use of in-situ resources in a new Mars mobility concept that will greatly enhance the science return while providing the first opportunity towards reducing the risk of incorporating ISRU into the critical path for the highly coveted, but currently unaffordable, sample return mission. Experimental tests were performed on a high-pressure, self-throttling gaseous oxygen/methane propulsion system to simulate a two-burn-with-coast hop profile. Analysis of the trajectory, production plant requirements, and vehicle mass indicates that a small hopper vehicle could hop 2 km every 30 days with an initial mass of less than 60 kg. A larger vehicle can hop 15 km every 30 to 60 days with an initial mass of 300 to 430 kg.

  1. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    Science.gov (United States)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  2. Mars Express - ESA sets ambitious goals for the first European mission to Mars

    Science.gov (United States)

    2003-05-01

    built by group of scientific institutes from all over Europe, plus Russia, the United States, Japan and China. These instruments are a subsurface sounding radar; a high-resolution camera, several surface and atmospheric spectrometers, a plasma analyzer and a radio science experiment. The high-resolution camera will image the entire planet in full colour, in 3D, at a resolution of up to 2 metres in selected areas. One of the spectrometers will map the mineral composition of the surface with great accuracy. The missing water Data from some of the instruments will be key to finding out what happened with the water which was apparently so abundant in the past. For instance, the radar altimeter will search for subsurface water and ice, down to a depth of a few kilometres. Scientists expect to find a layer of ice or permafrost, and to measure its thickness. Other observations with the spectrometers will determine the amount of water remaining in the atmosphere. They will also tell whether there is a still a full ‘water cycle’ on Mars, for example how water is deposited in the poles and how it evaporates, depending on the seasons. "These data will determine how much water there is left. We have clear evidence for the presence of water in the past, we have seen dry river beds and sedimentary layers, and there is also evidence for water on present-day Mars. But we do not know how much water there is. Mars Express will tell us,” says Chicarro. The search for life The instruments on board Beagle 2 will investigate the geology and the climate of the landing site. But, above all, it will look for signs of life. Contrary to the Viking missions, Mars Express will search for evidence for both present and past life. Scientists are now more aware that a few biological experiments are not enough to search for life - they will combine many different types of tests to help discard contradictory results. To ‘sniff’ out direct evidence of past or present biological activity, Beagle

  3. An Undergraduate Endeavor: Assembling a Live Planetarium Show About Mars

    Science.gov (United States)

    McGraw, Allison M.

    2016-10-01

    Viewing the mysterious red planet Mars goes back thousands of years with just the human eye but in more recent years the growth of telescopes, satellites and lander missions unveil unrivaled detail of the Martian surface that tells a story worth listening to. This planetarium show will go through the observations starting with the ancients to current understandings of the Martian surface, atmosphere and inner-workings through past and current Mars missions. Visual animations of its planetary motions, display of high resolution images from the Hi-RISE (High Resolution Imaging Science Experiment) and CTX (Context Camera) data imagery aboard the MRO (Mars Reconnaissance Orbiter) as well as other datasets will be used to display the terrain detail and imagery of the planet Mars with a digital projection system. Local planetary scientists and Mars specialists from the Lunar and Planetary Lab at the University of Arizona (Tucson, AZ) will be interviewed and used in the show to highlight current technology and understandings of the red planet. This is an undergraduate project that is looking for collaborations and insight in order gain structure in script writing that will teach about this planetary body to all ages in the format of a live planetarium show.

  4. Innovations in Delta Differential One-Way Range: from Viking to Mars Science Laboratory

    Science.gov (United States)

    Border, James S.

    2009-01-01

    The Deep Space Network has provided the capability for very-long-baseline interferometry measurements in support of spacecraft navigation since the late 1970s. Both system implementation and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to much better performance. This paper provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support Mars Science Laboratory.

  5. Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR

    Science.gov (United States)

    Korablev, O. I.; Bertaux, J. L.; Kalinnikov, Yu. K.; Fedorova, A. A.; Moroz, V. I.; Kiselev, A. V.; Stepanov, A. V.; Grigoriev, A. V.; Zhegulev, V. S.; Rodin, A. V.; Dimarellis, E.; Dubois, J. P.; Reberac, A.; van Ransbeeck, E.; Gondet, B.

    2006-07-01

    The acousto-optic spectrometer of the near infrared range, which is a part of the spectrometer SPICAM onboard the Mars-Express spacecraft, began to operate in the orbit of Mars in January 2004. In the SPICAM experiment, a spectrometer on the basis of an acousto-optic filter was used for the first time to investigate other planets. During one and a half years of operation, the IR channel of SPICAM obtained more than half a million spectra in the 1-1.7 μm range with a resolving power of more than 1500 in different modes of observation: limb, nadir, and solar eclipses. The main goal of the experiment is to study the content of water vapor in the Martian atmosphere by measuring the absorption spectrum in the 1.38 μm band. Characteristics of the instrument (high spectral resolution and signal-to-noise ratio) allow one to solve a number of additional scientific problems including the study of ozone distribution by emission of singlet oxygen (O2 1Δg), detection of the water and carbonic dioxide ices, and also the study of the vertical distribution and optical characteristics of aerosol in the Martian atmosphere. We present a description of the instrument, the results of its ground and in-flight calibrations, and a brief survey of the basic scientific results obtained by the SPICAM spectrometer during a year-and-half of operation.

  6. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  7. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  8. Investigation of small scale roughness properties of Martian terrains using Mars Reconnaissance Orbiter data.

    Science.gov (United States)

    Ivanov, A. B.; Rossi, A.

    2009-04-01

    . 2003. [5] A. B. Ivanov and J. J. Lorre. Analysis of Mars Orbiter Camera Stereo Pairs. In Lunar and Planetary Institute Conference Abstracts, volume 33 of Lunar and Planetary Inst. Technical Report, pages 1845-+, Mar. 2002. [6] R. Jaumann, et al. The high-resolution stereo camera (HRSC) experiment on mars express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7-8):928-952, MAY 2007. [7] R. L. Kirk, et al. Ultrahigh resolution topographic mapping of mars with MRO HIRISE stereo images: Meter-scale slopes of candidate phoenix landing sites. Journal of Geophysical Research-Planets, 113, NOV 15 2008. [8] S. Lavoie, et al. Processing and analysis of mars pathfinder science data at the jet propulsion laboratory's science data processing systems section. Journal of Geophysical Research-Planets, 104(E4):8831-8852, APR 25 1999. [9] J. J. Lorre, et al. Recent developments at JPL in the application of image processing to astronomy. In D. L. Crawford, editor, Instrumentation in Astronomy III, volume 172 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 394-402, 1979. [10] M. Malin, et al. Early views of the martian surface from the mars orbiter camera of mars global surveyor. Science, 279(5357):1681-1685, MAR 13 1998. [11] M. C. Malin,et al. Context camera investigation on board the mars reconnaissance orbiter. Journal of Geophysical Research-Planets, 112(E5), MAY 18 2007. [12] A. S. McEwen, et al.. Mars reconnaissance orbiter's high resolution imaging science experiment (HIRISE). Journal of Geophysical Research-Planets, 112(E5), MAY 17 2007. [13] A. Rossi, et al. Multi-spacecraft synergy with MEX HRSC and MRO SHARAD: Light-Toned Deposits in crater bulges. AGU Fall Meeting Abstracts, pages B1371+, Dec. 2008. [14] A. P. Rossi, et al. Stratigraphic architecture and structural control on sediment emplacement in Becquerel crater (Mars). volume 40. Lunar and Planetary

  9. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  10. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  11. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  12. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results

  13. The AMADEE-15 Mars simulation

    Science.gov (United States)

    Groemer, Gernot; Losiak, Anna; Soucek, Alexander; Plank, Clemens; Zanardini, Laura; Sejkora, Nina; Sams, Sebastian

    2016-12-01

    We report on the AMADEE-15 mission, a 12-day Mars analog field test at the Kaunertal Glacier in Austria. Eleven experiments were conducted by a field crew at the test site under simulated martian surface exploration conditions and coordinated by a Mission Support Center in Innsbruck, Austria. The experiments' research fields encompassed geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. A Remote Science Support team analyzed field data in near real time, providing planning input for a flight control team to manage a complex system of field assets in a realistic work flow, including: two advanced space suit simulators; and four robotic and aerial vehicles. Field operations were supported by a dedicated flight planning group, an external control center tele-operating the PULI-rover, and a medical team. A 10-min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, with a focus on the mission's communication infrastructure. We report on the operational workflows and the experiments conducted, as well as a novel approach of measuring mission success through the introduction of general analog mission transferrable performance indicators.

  14. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Westall, Frances; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Goesmann, Fred; Steininger, Harald; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe

    2017-01-01

    Abstract The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures—ExoMars—Landing sites—Mars rover—Search for life. Astrobiology 17, 471–510.

  15. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  16. Thermochemolysis and the Search for Organic Material on Mars Onboard the MOMA Experiment

    Science.gov (United States)

    Morisson, Marietta; Buch, Arnaud; Szopa, Cyril; Glavin, Daniel; Freissinet, Carolinette; Pinnick, Veronica; Goetz, Walter; Stambouli, Moncef; Belmahdi, Imene; Coll, Patrice; Stalport, Fabien; Grand, Noël; Brinckerhoff, William; Goesmann, Fred; Raulin, François; Mahaffy, Paul

    2016-04-01

    Following the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment onboard the future ExoMars 2018 mission will continue to investigate the organic composition of the martian subsurface. MOMA will have the advantage of extracting the sample from as deep as 2 meters below the martian surface where the deleterious effects of radiation and oxidation on organic matter are minimized. To analyse the wide range of organic compounds (volatile and non-volatile compounds) potentially present in the martian soil, MOMA includes two operational modes: UV laser desorption / ionization ion trap mass spectrometry (LDI-ITMS) and pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyse refractory organic compounds and chirality, samples which undergo GC-ITMS analysis may be derivatized beforhands, consisting in the reaction of the sample components with specific chemical reagents (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). To prove the feasibility of the derivatization within the MOMA conditions we have adapated our laboratory procedure for the space conditions (temperature, time, pressure and size). Goal is optimize our detection limits and increase the range of the organic compounds that MOMA will be able to detect. Results of this study, show that Thermochemolysis is one of the most promising technique onboard MOMA to detect organic material. References : [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet, C. et al. (2013) J Chrom. A, 1306, 731-740. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.

  17. Identification of the Beagle 2 lander on Mars

    Science.gov (United States)

    Bridges, J. C.; Clemmet, J.; Croon, M.; Sims, M. R.; Pullan, D.; Muller, J.-P.; Tao, Y.; Xiong, S.; Putri, A. R.; Parker, T.; Turner, S. M. R.; Pillinger, J. M.

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  18. Identification of the Beagle 2 lander on Mars.

    Science.gov (United States)

    Bridges, J C; Clemmet, J; Croon, M; Sims, M R; Pullan, D; Muller, J-P; Tao, Y; Xiong, S; Putri, A R; Parker, T; Turner, S M R; Pillinger, J M

    2017-10-01

    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing.

  19. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    Science.gov (United States)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  20. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World

    Science.gov (United States)

    1996-01-01

    This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?

  1. A Case Study in the Mars Landing Site Selection for Science Objects

    Directory of Open Access Journals (Sweden)

    Haingja Seo

    2012-12-01

    Full Text Available It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

  2. Materials science experiments in space

    Science.gov (United States)

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  3. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  4. NASA's strategy for Mars exploration in the 1990s and beyond

    Science.gov (United States)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  5. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Journal of Chemical Sciences. Volumes & Issues. Volume 130. Issue 1. Jan 2018; Issue 2. Feb 2018; Issue 3. Mar 2018; Issue 4. Apr 2018. Volume 129. Issue 1. Jan 2017; Issue 2. Feb 2017; Issue 3. Mar 2017; Issue 4. Apr 2017; Issue 5. May 2017; Issue 6. Jun 2017; Issue 7

  7. Pressure Balance at Mars and Solar Wind Interaction with the Martian Atmosphere

    Science.gov (United States)

    Krymskii, A. M.; Ness, N. F.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.

    2003-01-01

    The strongest crustal fields are located in certain regions in the Southern hemisphere. In the Northern hemisphere, the crustal fields are rather weak and usually do not prevent direct interaction between the SW and the Martian ionosphere/atmosphere. Exceptions occur in the isolated mini-magnetospheres formed by the crustal anomalies. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A study of 523 electron density profiles obtained at latitudes from +67 deg. to +77 deg. has been conducted. The effective scale-height of the electron density for two altitude ranges, 145-165 km and 165-185 km, and the effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak have been derived for each of the profiles studied. For the regions outside of the potential mini-magnetospheres, the thermal pressure of the ionospheric plasma for the altitude range 145-185 km has been estimated. In the high latitude ionosphere at Mars, the total pressure at altitudes 160 and 180 km has been mapped. The solar wind interaction with the ionosphere of Mars and origin of the sharp drop of the electron density at the altitudes 200-210 km will be discussed.

  8. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  9. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  10. Evolved Gas Measurements Planned for the Lower Layers of the Gale Crater Mound with the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Mahaffy, P. R.; Franz, H.; McAdam, A.; Conrad, P. G.; Brunner, A.; Cabane, M.; Webster, C. R.

    2011-12-01

    The lower mound strata of Gale Crater provide a diverse set of chemical environments for exploration by the varied tools of the Curiosity Rover of the Mars Science Laboratory (MSL) Mission. Orbital imaging and spectroscopy clearly reveal distinct layers of hydrated minerals, sulfates, and clays with abundant evidence of a variety of fluvial processes. The three instruments of the MSL Sample Analysis at Mars (SAM) investigation, the Quadrupole Mass Spectrometer (QMS), the Tunable Laser Spectrometer (TLS), and the Gas Chromatograph (GC) are designed to analyze either atmospheric gases or volatiles thermally evolved or chemically extracted from powdered rock or soil. The presence or absence of organic compounds in these layers is of great interest since such an in situ search for this type of record has not been successfully implemented since the mid-70s Viking GCMS experiments. However, regardless of the outcome of the analysis for organics, the abundance and isotopic composition of thermally evolved inorganic compounds should also provide a rich data set to complement the mineralogical and elemental information provided by other MSL instruments. In addition, these evolved gas analysis (EGA) experiments will help test sedimentary models proposed by Malin and Edgett (2000) and then further developed by Milliken et al (2010) for Gale Crater. In the SAM EGA experiments the evolution temperatures of H2O, CO2, SO2, O2, or other simple compounds as the samples are heated in a helium stream to 1000C provides information on mineral types and their associations. The isotopic composition of O, H, C, and S can be precisely determined in several evolved compounds and compared with the present day atmosphere. Such SAM results might be able to test mineralogical evidence of changing sedimentary and alteration processes over an extended period of time. For example, Bibring et al (2006) have suggested such a major shift from early nonacidic to later acidic alteration. We will

  11. Deployment of the MARSIS Radar Antennas On-Board Mars Express

    Science.gov (United States)

    Denis, Michel; Moorhouse, A.; Smith, A.; McKay, Mike; Fischer, J.; Jayaraman, P.; Mounzer, Z.; Schmidt, R.; Reddy, J.; Ecale, E.; hide

    2006-01-01

    On the first European planetary mission, the deployment of the two 20-meter long MARSIS antennas onboard the ESA Mars Express spacecraft has represented an unprecedented technological challenge, in the middle of a successful science mission. While Mars Express was already performing regular observations at Mars, a complex process has been performed on Earth, involving the ESA Project, coordination between ESA, NASA and ASI, the Mars Science community, the spacecraft manufacturer EADS Astrium and the Mission Control Centre at ESOC. This paper describes the steps that led from an initial nogo in 2004 to deployment one year later, as well as the conditions and difficulties encountered during the actual deployment. It provides insights in the technical and managerial processes that made it a success, and analyses the rationale behind the decisions.

  12. Emotions and Habitability study in Moon Mars Analogue.

    Science.gov (United States)

    Mertens, Alexandre; Lia Schlacht, Irene

    Euro Moon Mars mission have been conducted by students and field researchers in the Mars Desert Research Station (MDRS) a habitat installed by the Mars Society (MS) in the Utah desert. The campaign was supported by ILEWG International Lunar Exploration Working Group, ESTEC, NASA Ames, and partners. It investigated human aspects of isolation in a Mars analogue base. The project is in line with the ILEWG which coordinates several MDRS missions, and contributes to the preparation of future Mars sample return missions. The objective is to study and improve the habitat dynamics in a closed and small environment. Investigation cover different fields as emotional, sociological and psychological aspects and a food study but also habitability aspects. The study has been conducted by asking to the crew members to perform task and fill in questionnaires before, during and after the simulation. Video recovering, pictures and heart rate counting will also be used. One of the main study subject, conducted by Bernard Rimé, concerns the sharing of emotions in an isolated environ-e ment. Another is "Mars Habitability Experiment", which responsible is Irene Schlacht, will try to determine whether humans need variability of stimuli such as it happens in the natural environment -e.g. seasonal changing -to gain efficiency, reliability and well-being. This study have been conducted from February 19 to April 19 on two crews presenting different aspects that could lead to various behaviours. The first crew is made of people from different countries that don't know each other very well. On the opposite, the second crew members have the same cultural background -they come from the same country, university -and they know each other for at least six months. This allow studying how the extreme conditions of the isolation affect the crew efficiency, creativity and sanity according to its homogeneity. Report on the science and technical results, and implications for Earth-Mars comparative stud

  13. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    Science.gov (United States)

    Vago, Jorge L.; Westall, Frances; Pasteur Instrument Team; Pasteur Landing Team; Coates, Andrew J.; Jaumann, Ralf; Korablev, Oleg; Ciarletti, Valérie; Mitrofanov, Igor; Josset, Jean-Luc; De Sanctis, Maria Cristina; Bibring, Jean-Pierre; Rull, Fernando; Goesmann, Fred; Steininger, Harald; Goetz, Walter; Brinckerhoff, William; Szopa, Cyril; Raulin, François; Westall, Frances; Edwards, Howell G. M.; Whyte, Lyle G.; Fairén, Alberto G.; Bibring, Jean-Pierre; Bridges, John; Hauber, Ernst; Ori, Gian Gabriele; Werner, Stephanie; Loizeau, Damien; Kuzmin, Ruslan O.; Williams, Rebecca M. E.; Flahaut, Jessica; Forget, François; Vago, Jorge L.; Rodionov, Daniel; Korablev, Oleg; Svedhem, Håkan; Sefton-Nash, Elliot; Kminek, Gerhard; Lorenzoni, Leila; Joudrier, Luc; Mikhailov, Viktor; Zashchirinskiy, Alexander; Alexashkin, Sergei; Calantropio, Fabio; Merlo, Andrea; Poulakis, Pantelis; Witasse, Olivier; Bayle, Olivier; Bayón, Silvia; Meierhenrich, Uwe; Carter, John; García-Ruiz, Juan Manuel; Baglioni, Pietro; Haldemann, Albert; Ball, Andrew J.; Debus, André; Lindner, Robert; Haessig, Frédéric; Monteiro, David; Trautner, Roland; Voland, Christoph; Rebeyre, Pierre; Goulty, Duncan; Didot, Frédéric; Durrant, Stephen; Zekri, Eric; Koschny, Detlef; Toni, Andrea; Visentin, Gianfranco; Zwick, Martin; van Winnendael, Michel; Azkarate, Martín; Carreau, Christophe; ExoMars Project Team

    2017-07-01

    The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information.

  14. Candidate cave entrances on Mars

    Science.gov (United States)

    Cushing, Glen E.

    2012-01-01

    This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.

  15. Database and Library Development of Organic Species using Gas Chromatography and Mass Spectral Measurements in Support of the Mars Science Laboratory

    Science.gov (United States)

    Garcia, Raul; Mahaffy, Paul; Misra, Prabhakar

    2010-02-01

    Our work involves the development of an organic contaminants database that will allow us to determine which compounds are found here on Earth and would be inadvertently detected in the Mars soil and gaseous samples as impurities. It will be used for the Sample Analysis at Mars (SAM) instrumentation analysis in the Mars Science Laboratory (MSL) rover scheduled for launch in 2011. In order to develop a comprehensive target database, we utilize the NIST Mass Spectral Library, Automated Mass Spectral Deconvolution and Identification System (AMDIS) and Ion Fingerprint Deconvolution (IFD) software to analyze the GC-MS data. We have analyzed data from commercial samples, such as paint and polymers, which have not been implemented into the rover and are now analyzing actual data from pyrolyzation on the rover. We have successfully developed an initial target compound database that will aid SAM in determining whether the components being analyzed come from Mars or are contaminants from either the rover itself or the Earth environment and are continuing to make improvements and adding data to the target contaminants database. )

  16. A Powder Delivery System (PoDS) for Mars in situ Science

    Science.gov (United States)

    Bryson, C.; Blake, D.; Saha, C.; Sarrazin, P.

    2004-12-01

    Many instruments proposed for in situ Mars science investigations work best with fine-grained samples of rocks or soils. Such instruments include the mineral analyzer CheMin [1] and any instrument that requires samples having high surface areas (e.g., mass spectrometers, organic analyzers, etc). The Powder Delivery System (PoDS) is designed to deliver powders of selected grain sizes from a sample acquisition device such as an arm-deployed robotic driller or corer to an instrument suite located on the body of a rover/lander. PoDS is capable of size-selective sampling of crushed rocks, soil or drill powder for delivery to instruments that require specific grain sizes (e.g. 5-50 mg of less than150 micron powder for CheMin). Sample material is transported as an aerosol of particles and gas by vacuum advection. In the laboratory a venturi pump driven by compressed air provides the impulse. On Mars, the ambient atmosphere is a source of CO2 that can be captured and compressed by adsorption pumping during diurnal temperature cycling [2]. The lower atmospheric pressure on the surface of Mars (7 torr) will affect fundamental parameters of gas-particle interaction such as Reynolds, Stocks and Knudsen numbers [3]. However, calculations show that the PoDS will operate under both Martian and terrestrial atmospheric conditions. Cyclone separators with appropriate particle size selection ranges remove particles from the aerosol stream. The vortex flow inside the cyclone causes grains larger than a specific size to be collected, while smaller grains remain entrained in the gas. Cyclones are very efficient inertial and centrifugal particle separators with cut sizes (d50) as low as 4 microns. Depending on the particle size ranges desired, a series of cyclones with descending cut sizes may be used, the simplest case being a single cyclone for particle deposition without mass separation. Transmission / membrane filters of appropriate pore sizes may also be used to collect powder from

  17. Is Mars Dead and Does it Matter: The Crucial Scientific Importance of a Lifeless Mars

    Science.gov (United States)

    Fries, M.; Conrad, P. G.; Steele, A.

    2017-12-01

    The quest for signatures of ancient and/or present-day life on Mars is an important driving force in modern Mars science and exploration. The reasons for this have been spelled out in detail elsewhere, such as in the 2013-2022 Planetary Science decadal survey. We do not question the importance of the search for life, but would like to expound on the inverse case. Namely, if Mars is lifeless then it is one of the most astrobiologically important locales in the Solar System and is worthy of detailed and thorough investigation as such. At present we are aware of only one place in the universe that hosts biology, the Earth. Arguably one of the most important aspects of understanding life is the quandary of how life arose, and considerable work has been done on understanding this question. However, progress has been hampered by the fact that the conditions that facilitated the rise of life on Earth are almost completely lost; they have been overprinted by biological activity, altered by our oxygen- and water-rich modern environment, and physically destroyed by crustal recycling. None of these effects are present on a lifeless Mars. Whereas on a "living" Mars any habitable environment would be colonized and altered, a lifeless Mars should retain preserved environments - either planetary-scale or microenvironments - which preserve a record of the original physiochemical conditions suitable for the origin of life on a terrestrial planet. No other world has the same potential to preserve this record; Mercury, the Moon, Phobos and Deimos do not show signs of ever being habitable, Venus has a surface that has been mercilessly thermally altered and is difficult to access, and even the Earth itself has been extensively altered. Ceres is uncertain in this respect as that world is unlikely to ever have hosted a significant atmosphere and its potential status as an early ocean world is still debated. The irony here is that a Mars free of life is a unique and scientifically

  18. Operations and Autonomy of the Mars Pathfinder Microrover

    Science.gov (United States)

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.

    1998-01-01

    The Microrover Flight Experiment (MFEX) is a NSAS OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Journal of Earth System Science. Volumes & Issues. Volume 127. Issue 1. Feb 2018; Issue 2. Mar 2018; Issue 3. Apr 2018. Volume 126. Issue 1. Feb 2017; Issue 2. Mar 2017; Issue 3. Apr 2017; Issue 4. Jun 2017; Issue 5. Jul 2017; Issue 6. Aug 2017; Issue 7. Oct 2017 ...

  20. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    Science.gov (United States)

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  1. A concept for NASA's Mars 2016 astrobiology field laboratory.

    Science.gov (United States)

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  2. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    International Nuclear Information System (INIS)

    Campbell, J.L.; King, P.L.; Burkemper, L.; Berger, J.A.; Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I.; Thompson, L.; Edgett, K.S.; Yingst, R.A.

    2014-01-01

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe 2 O 3 , SO 3 , Cl and Na 2 O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate

  3. Mars Rover Model Celebration: Using Planetary Exploration To Enrich STEM Teaching In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Dominey, W.; Kapral, A.; Carlson, C.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2011-12-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The program culminates in a capstone event held at the University of Houston (or other central location in the other communities that will be involved

  4. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    Science.gov (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  5. Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars

    Science.gov (United States)

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.; Hazen, R. M.; Fendrich, K. V.; Craig, P. I.; Grotzinger, J. P.; Des Marais, D. J.; Farmer, J. D.; Sarrazin, P. C.; Morookian, J. M.

    2017-11-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the history of the dune material and offers an important opportunity for ground truth of orbital observations. CheMin's analysis of the mineralogy and phase chemistry of modern and ancient Gale crater dune fields, together with other measurements by Curiosity's science payload, provides new insights into present and past eolian processes on Mars.

  6. Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment

    Science.gov (United States)

    Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.

    2001-01-01

    The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.

  7. Goldstone Radar Observations of the 1999 Mars Opposition and other Observing Opportunities

    Science.gov (United States)

    Slade, M. A.

    1997-07-01

    As part of the International Mars Watch, Goldstone radar observations of Mars are planned during the 1999 Opposition ( Feb.'99-Aug'99). While some observing time is already allocated, a number of tracks could be made available for well-focused scientific objectives. Since the Deep Space Network plans far in advance, now is the time to develop your plans. During the next Mars opposition, the sub-Earth latitudes are in Mars' Northern hemisphere over the most northerly terrain accessible, which has not been previously examined with current sensitivity. The North residual ice cap is of particular interest. As a reminder to the Planetary Science community, observing proposals from any scientist with peer-reviewed planetary funding are solicited and should be forwarded to Martin.A.Slade@jpl.nasa.gov by email. Data reduction can, in principle, be carried out over the Internet. A graduate student or postdoctoral fellow resident at JPL for short period is recommended, however, to become familiar with suite of software for data analysis. Unfortunately, JPL cannot guarantee travel reimbursement due to funding limitations. We urge your consideration of becoming involved with the acquisition and analysis of Goldstone radar data. In the recent past, P.I.'s or co-I.s from Cornell, Arecibo/NAIC, Washington State University, Univ. Cal. Berkeley, Harvard -Smithsonian Center for Astrophysics, Univ. of Chicago, the DLR, Kashima SRC, ISAS, the Russian Academy of Science, the Russian Space Agency, and the USGS, have participated in radar experiments with Goldstone transmitting. This work is supported by the California Institute of Technology, under contract with NASA.

  8. Preservice science teachers' experiences with repeated, guided inquiry

    Science.gov (United States)

    Slack, Amy B.

    The purpose of this study was to examine preservice science teachers' experiences with repeated scientific inquiry (SI) activities. The National Science Education Standards (National Research Council, 1996) stress students should understand and possess the abilities to do SI. For students to meet these standards, science teachers must understand and be able to perform SI; however, previous research demonstrated that many teachers have naive understandings in this area. Teacher preparation programs provide an opportunity to facilitate the development of inquiry understandings and abilities. In this study, preservice science teachers had experiences with two inquiry activities that were repeated three times each. The research questions for this study were (a) How do preservice science teachers' describe their experiences with repeated, guided inquiry activities? (b) What are preservice science teachers' understandings and abilities of SI? This study was conducted at a large, urban university in the southeastern United States. The 5 participants had bachelor's degrees in science and were enrolled in a graduate science education methods course. The researcher was one of the course instructors but did not lead the activities. Case study methodology was used. Data was collected from a demographic survey, an open-ended questionnaire with follow-up interviews, the researcher's observations, participants' lab notes, personal interviews, and participants' journals. Data were coded and analyzed through chronological data matrices to identify patterns in participants' experiences. The five domains identified in this study were understandings of SI, abilities to conduct SI, personal feelings about the experience, science content knowledge, and classroom implications. Through analysis of themes identified within each domain, the four conclusions made about these preservice teachers' experiences with SI were that the experience increased their abilities to conduct inquiry

  9. An experimental study to support the search for organics at Mars

    Science.gov (United States)

    Poch, Olivier; Stalport, Fabien; Noblet, Audrey; Szopa, Cyril; Coll, Patrice

    2012-07-01

    Several evidences suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that processes related to prebiotic chemistry, and even the emergence of life, may have occurred on early Mars. In those days, organic matter may have been widespread on Mars, due to exogenous delivery from small bodies, or endogenous chemical processes. The search for these organic relics is one of the main objectives of Mars exploration missions to come. But for about 3 Gy, due to the harsh environmental conditions of the Mars surface (UV radiation, oxidants etc.), the inventory of organic compounds at the current surface or subsurface of Mars may have been narrowed. Two major questions raised by this putative evolution are: What is the evolution pattern of organics in the Martian environment? What types of molecules would have been preserved, and if so, in which conditions? We address these questions using an experimental device dedicated to simulate the processes susceptible to have an effect on organic matter in the current environmental conditions of the Mars surface and subsurface. This experimental setup is part of a project called MOMIE, for Mars Organic Molecules Irradiation and Evolution. We study the evolution of some of the most likely molecular compounds potentially synthesized or brought to Mars (amino acids, hydrocarbons, nucleobases etc.). Nanometers thin deposits of a molecular compound or of a mineral in which the molecular compound has been embedded are allowed to evolve at mean Martian pressure and temperature, under a UV radiation environment similar to the Martian one. Qualitative and quantitative changes of the sample are monitored during the simulation, especially using infrared spectroscopy. We will present and compare the evolution of several organics submitted to these conditions. These experiments will provide essential insights to guide and discuss in situ analyses at Mars, particularly during the

  10. The Mars Science Laboratory (MSL) Bagnold Dunes Campaign, Phase I: Overview and introduction to the special issue

    Science.gov (United States)

    Bridges, Nathan T.; Ehlmann, Bethany L.

    2018-01-01

    The Bagnold dunes in Gale Crater, Mars, are the first active aeolian dune field explored in situ on another planet. The Curiosity rover visited the Bagnold dune field to understand modern winds, aeolian processes, rates, and structures; to determine dune material composition, provenance, and the extent and type of compositional sorting; and to collect knowledge that informs the interpretation of past aeolian processes that are preserved in the Martian sedimentary rock record. The Curiosity rover conducted a coordinated campaign of activities lasting 4 months, interspersed with other rover activities, and employing all of the rover's science instruments and several engineering capabilities. Described in 13 manuscripts and summarized here, the major findings of the Bagnold Dunes Campaign, Phase I, include the following: the characterization of and explanation for a distinctive, meter-scale size of sinuous aeolian bedform formed in the high kinetic viscosity regime of Mars' thin atmosphere; articulation and evaluation of a grain splash model that successfully explains the occurrence of saltation even at wind speeds below the fluid threshold; determination of the dune sands' basaltic mineralogy and crystal chemistry in comparison with other soils and sedimentary rocks; and characterization of chemically distinctive volatile reservoirs in sand-sized versus dust-sized fractions of Mars soil, including two volatile-bearing types of amorphous phases.

  11. Radiological Contingency Planning for the Mars Science Laboratory Launch

    Energy Technology Data Exchange (ETDEWEB)

    Paul P. Guss

    2008-04-01

    This paper describes the contingency planning for the launch of the Mars Science Laboratory scheduled for the 21-day window beginning on September 15, 2009. National Security Technologies, LLC (NSTec), based in Las Vegas, Nevada, will support the U.S. Department of Energy (DOE) in its role for managing the overall radiological contingency planning support effort. This paper will focus on new technologies that NSTec’s Remote Sensing Laboratory (RSL) is developing to enhance the overall response capability that would be required for a highly unlikely anomaly. This paper presents recent advances in collecting and collating data transmitted from deployed teams and sensors. RSL is responsible to prepare the contingency planning for a range of areas from monitoring and assessment, sample collection and control, contaminated material release criteria, data management, reporting, recording, and even communications. The tools RSL has available to support these efforts will be reported. The data platform RSL will provide shall also be compatible with integration of assets and field data acquired with other DOE, National Space and Aeronautics and Space Administration (NASA), state, and local resources, personnel, and equipment. This paper also outlines the organizational structure for response elements in radiological contingency planning.

  12. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    Science.gov (United States)

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  13. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  14. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low

  15. Carl Sagan and the Exploration of Mars and Venus

    Science.gov (United States)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1997-01-01

    Inspired by childhood readings of books by Edgar Rice Burroughs, Carl Sagan's first interest in planetary science focused on Mars and Venus. Typical of much of his career he was skeptical of early views about these planets. Early in this century it was thought that the Martian wave of darkening, a seasonal albedo change on the planet, was biological in origin. He suggested instead that it was due to massive dust storms, as was later shown to be the case. He was the first to recognize that Mars has huge topography gradients across its surface. During the spacecraft era, as ancient river valleys were found on the planet, he directed studies of Mars' ancient climate. He suggested that changes in the planets orbit were involved in climate shifts on Mars, just as they are on Earth. Carl had an early interest in Venus. Contradictory observations led to a controversy about the surface temperature, and Carl was one of the first to recognize that Venus has a massive greenhouse effect at work warming its surface. His work on radiative transfer led to an algorithm that was extensively used by modelers of the Earth's climate and whose derivatives still dominate the calculation of radiative transfer in planetary atmospheres today. Carl inspired a vast number of young scientists through his enthusiasm for new ideas and discoveries, his skeptical approach, and his boundless energy. I had the privilege to work in Carl's laboratory during the peak of the era of Mars' initial exploration. It was an exciting time, and place. Carl made it a wonderful experience.

  16. Experiments On Sublimating Carbon Dioxide Ice And Implications For Contemporary Surface Processes On Mars.

    Science.gov (United States)

    Mc Keown, L E; Bourke, M C; McElwaine, J N

    2017-10-27

    Carbon dioxide is Mars' primary atmospheric constituent and is an active driver of Martian surface evolution. CO 2 ice sublimation mechanisms have been proposed for a host of features that form in the contemporary Martian climate. However, there has been very little experimental work or quantitative modelling to test the validity of these hypotheses. Here we present the results of the first laboratory experiments undertaken to investigate if the interaction between sublimating CO 2 ice blocks and a warm, porous, mobile regolith can generate features similar in morphology to those forming on Martian dunes today. We find that CO 2 sublimation can mobilise grains to form (i) pits and (ii) furrows. We have documented new detached pits at the termini of linear gullies on Martian dunes. Based on their geomorphic similarity to the features observed in our laboratory experiments, and on scaling arguments, we propose a new hypothesis that detached pits are formed by the impact of granular jets generated by sublimating CO 2 . We also study the erosion patterns formed underneath a sublimating block of CO 2 ice and demonstrate that these resemble furrow patterns on Mars, suggesting similar formation mechanisms.

  17. Analysis of the ATLAS Cold Leg Top-Slot Break Experiment Using the MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Ha, T. W.; Jeong, J. J. [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    During a small-break loss of coolant accident (SBLOCA) or intermediate-break loss of coolant accident (IBLOCA) in a PWR, such as the APR1400, the steam volume in the reactor vessel upper plenum may continue to expand until the liquid phase in the horizontal intermediate legs is released, called loop seal clearing (LSC), due to the increase of the pressure in the upper plenum. A domestic standard problem (DSP) exercise using the ATLAS facility was promoted in order to transfer the database to domestic nuclear industries. For 4th DSP (DSP-04), the ATLAS cold leg top-slot break experiment was postulated. For the DSP-04, main concerns are to predict the LSC and LSR having a significantly effect on the behavior of the system under long term cooling. In this study, we simulated the ATLAS cold leg top-slot break experiment using the MARS code and the predicted LSC and LSR are compared to experimental results. The LTC-CL-04R was simulated using the MARS code. Most of the predicted results agree well with the experimental data. However, the timing of LSC and LSR is slightly different from each other and, thus, the behavior of the primary system is slightly different. The core heat up was not observed in the experiment and the calculation.

  18. Influence of Fault-Controlled Topography on Fluvio-Deltaic Sedimentary Systems in Eberswalde Crater, Mars

    Science.gov (United States)

    Rice, Melissa S.; Gupta, Sanjeev; Bell, James F., III; Warner, Nicholas H.

    2011-01-01

    Eberswalde crater was selected as a candidate landing site for the Mars Science Laboratory (MSL) mission based on the presence of a fan-shaped sedimentary deposit interpreted as a delta. We have identified and mapped five other candidate fluvio -deltaic systems in the crater, using images and digital terrain models (DTMs) derived from the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). All of these systems consist of the same three stratigraphic units: (1) an upper layered unit, conformable with (2) a subpolygonally fractured unit, unconformably overlying (3) a pitted unit. We have also mapped a system of NNE-trending scarps interpreted as dip-slip faults that pre-date the fluvial -lacustrine deposits. The post-impact regional faulting may have generated the large-scale topography within the crater, which consists of a Western Basin, an Eastern Basin, and a central high. This topography subsequently provided depositional sinks for sediment entering the crater and controlled the geomorphic pattern of delta development.

  19. An ordinary camera in an extraordinary location: Outreach with the Mars Webcam

    Science.gov (United States)

    Ormston, T.; Denis, M.; Scuka, D.; Griebel, H.

    2011-09-01

    The European Space Agency's Mars Express mission was launched in 2003 and was Europe's first mission to Mars. On-board was a small camera designed to provide ‘visual telemetry’ of the separation of the Beagle-2 lander. After achieving its goal it was shut down while the primary science mission of Mars Express got underway. In 2007 this camera was reactivated by the flight control team of Mars Express for the purpose of providing public education and outreach—turning it into the ‘Mars Webcam’.The camera is a small, 640×480 pixel colour CMOS camera with a wide-angle 30°×40° field of view. This makes it very similar in almost every way to the average home PC webcam. The major difference is that this webcam is not in an average location but is instead in orbit around Mars. On a strict basis of non-interference with the primary science activities, the camera is turned on to provide unique wide-angle views of the planet below.A highly automated process ensures that the observations are scheduled on the spacecraft and then uploaded to the internet as rapidly as possible. There is no intermediate stage, so that visitors to the Mars Webcam blog serve as ‘citizen scientists’. Full raw datasets and processing instructions are provided along with a mechanism to allow visitors to comment on the blog. Members of the public are encouraged to use this in either a personal or an educational context and work with the images. We then take their excellent work and showcase it back on the blog. We even apply techniques developed by them to improve the data and webcam experience for others.The accessibility and simplicity of the images also makes the data ideal for educational use, especially as educational projects can then be showcased on the site as inspiration for others. The oft-neglected target audience of space enthusiasts is also important as this allows them to participate as part of an interplanetary instrument team.This paper will cover the history of the

  20. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    Science.gov (United States)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  1. Part 3. Assessment of adaptation reactions in the participants of the long-term medical & ecological investigations during the experiment Mars-500

    Directory of Open Access Journals (Sweden)

    Roman M. Baevsky

    2013-05-01

    Full Text Available The paper presents the results of the long-term medical & ecological investigations conducted during the experiment Mars-500. Methodology of conducting the long-term medical & ecological investigations and the applied methods are considered. The results are presented in the materials of the research conducted in Russian Federation and Republic of Belarus (Moscow, Syktyvkar, Yekaterinburg, Izhevsk, Magadan and Minsk. For comparative evaluation of the functional state of different reference groups the notion of “ecological stress” was introduced. It depends upon the degree of dominance of the activity of the sympathetic member of the regulatory system over the parasympathetic member. Application of probabilistic approach to the assessment of the functional state and adaptation level with the FR (functional reserve and the DT (the degree of tension of the regulatory mechanisms proved the detected peculiarities of the heart rhythm vegetative regulation. Clear dependency of the functional state of the volunteers on geographic location of regions and climatic parameters is observed. Almost every HRV indicator is characterized by seasonal dynamics. Seasonal dynamics data is exemplified by the research conducted in Yekaterinburg and Syktyvkar. During the earth-bound experiment Mars-500 flight conditions to Mars were simulated. Results of the long-term medical & ecological investigations conducted simultaneously with the experiment Mars-500 showed that health changes in practically healthy people do not usually exceed the limits of the prenosological state.

  2. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  3. Micro-Pressure Sensors for Future Mars Missions

    Science.gov (United States)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  4. A year on Mars: Life science investigations using a laboratory simulator

    Science.gov (United States)

    Todd, Paul; Kurk, Michael Andy

    2012-07-01

    A planetary environment simulator in Indiana, USA has been in use for about 5 years with visiting investigators having logged nearly one year of exposure time in intervals ranging from 7 days to 5 weeks. More than 20 investigators have studied a similar number of organisms in experiments ranging from the chemistry of the origin of life to the survival of invertebrate organisms in regolith. The simulator allows investigators to canvass several independent planetary variables, including diurnal temperature cycle, solar spectrum, light intensity, daytime shade, day length, depth and compositon of regolith, atmospheric pressure and composition, and moisture level. Gravity and ionizing radiation, of course, are not variable. Many experiments were performed at higher atmospheric pressure and moisture level than found on Mars, for example. The most popular conditions were simulations of light and temperature cycles resembling those at equatiorial and low latitudes and medium altitudes on Mars. Examples of completed and published studies include amino acid evolution, macroscopic microbial viability assays, the role of microbial community relationships in survival in extreme conditions, genomics of microbial communities, biological photoprotection by regolith, adaptability of cyanobacteria, and survival of extremophiles and small invertebrates as a function of regolith depth. Investigators have worked individually and as consortia exposing sometimes a few hundred samples at a time. As a general result, the survival of extremophiles has been found to be highly dependent on regolith cover, which is the dominant factor in affecting ultraviolet radiation exposure and moisture. A summary of the results of these investigations points the way toward further utilization of simulated extreme conditions relevant to the chemical origin of life, cellular evolution, gene expression in environmental adaptation, habitability parameters, life support systems, ecopoiesis and terraforming

  5. Performance of the Mechanically Pumped Fluid Loop Rover Heat Rejection System Used for Thermal Control of the Mars Science Laboratory Curiosity Rover on the Surface of Mars

    Science.gov (United States)

    Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin

    2013-01-01

    The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.

  6. Development and testing of the data automation subsystem for the Mariner Mars 1971 spacecraft

    Science.gov (United States)

    1971-01-01

    The data automation subsystem designed and built as part of the Mariner Mars 1971 program, sequences and controls the science instruments and formats all science data. A description of the subsystem with emphasis on major changes relative to Mariner Mars 1969 is presented. In addition, the complete test phase is described.

  7. Magnetic Properties Experiments on the Mars exploration Rover Spirit at Gusev crater

    DEFF Research Database (Denmark)

    Bertelsen, Pernille; Goetz, W.; Madsen, M.B.

    2004-01-01

    The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere...... must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of similar to2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit....

  8. A Draft Science Management Plan for Returned Samples from Mars: Recommendations from the International Mars Architecture for the Return of Samples (iMARS) Phase II Working Group

    Science.gov (United States)

    Haltigin, T.; Lange, C.; Mugnuolo, R.; Smith, C.

    2018-04-01

    This paper summarizes the findings and recommendations of the International Mars Architecture for the Return of Samples (iMARS) Phase II Working Group, an international team comprising 38 members from 16 countries and agencies.

  9. Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, K.W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhfer, G.; McEwen, A.; Rice, J.W.; Rice, M.; deSouza, P.; Hurowitz, J.

    2011-01-01

    Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity

  10. Lunar and Planetary Science Conference, 20th, Houston, TX, Mar. 13-17, 1989, Proceedings

    International Nuclear Information System (INIS)

    Sharpton, V.L.; Ryder, G.

    1990-01-01

    Topics discussed include the petrology and geochemistry of the moon, the geology of the moon, lunar regolith processes and resources, the petrology and geochemistry of achondrites, comets and interplanetary dust, shock and terrestrial cratering, the geology of Mars, and the geology of Venus. Papers are presented on silicate liquid immiscibility in isothermal crystallization experiments; highly evolved and ultramafic lithologies from Apollo 14 soils; the relationship between orbital, earth-based, and sample data for lunar landing sites; and the volcanotectonic evolution of Mare Frigoris. Attention is also given to glass variants and multiple HASP trends in Apollo 14 regolith breccias, the characterization of lunar ilmenite resources, the U-Th-Pb systematics of the Estherville mesosiderite, and the extraterrestrial halogen and sulfur contents of the stratosphere. Other papers are on argon-40/argon-39 dating of impact craters; the outliers of dust along the southern margin of the Tharsis region, Mars; and the geology of southern Guinevere Planitia, Venus, based on analyses of Goldstone radar data

  11. The Search for Hesperian Organic Matter on Mars: Pyrolysis Studies of Sediments Rich in Sulfur and Iron.

    Science.gov (United States)

    Lewis, James M T; Najorka, Jens; Watson, Jonathan S; Sephton, Mark A

    2018-04-01

    Jarosite on Mars is of significant geological and astrobiological interest, as it forms in acidic aqueous conditions that are potentially habitable for acidophilic organisms. Jarosite can provide environmental context and may host organic matter. The most common extraction technique used to search for organic compounds on the surface of Mars is pyrolysis. However, thermal decomposition of jarosite releases oxygen into pyrolysis ovens, which degrades organic signals. Jarosite has a close association with the iron oxyhydroxide goethite in many depositional/diagenetic environments. Hematite can form by dehydration of goethite or directly from jarosite under certain aqueous conditions. Goethite and hematite are significantly more amenable than jarosite for pyrolysis experiments employed to search for organic matter. Analysis of the mineralogy and organic chemistry of samples from a natural acidic stream revealed a diverse response for organic compounds during pyrolysis of goethite-rich layers but a poor response for jarosite-rich or mixed jarosite-goethite samples. Goethite units that are associated with jarosite, but do not contain jarosite themselves, should be targeted for organic detection pyrolysis experiments on Mars. These findings are extremely timely, as exploration targets for Mars Science Laboratory include Vera Rubin Ridge (formerly known as "Hematite Ridge"), which may have formed from goethite precursors. Key Words: Mars-Pyrolysis-Jarosite-Goethite-Hematite-Biosignatures. Astrobiology 18, 454-464.

  12. Reaching High Altitudes on Mars with an Inflatable Hypersonic Drag Balloon (Ballute)

    CERN Document Server

    Griebel, Hannes

    2010-01-01

    The concept of probing the atmosphere of planet Mars by means of a hypersonic drag balloon, a device known as a “ballute”, is a novel approach to planetary science. In this concept, the probe deploys an inflatable drag body out in space and may then enter the atmosphere either once or several times until it slowly descends towards the ground, taking continuous atmospheric and other readings across a large altitude and ground range. Hannes Griebel discusses the theory behind such a mission along with experience gained during its practical implementation, such as mission design, manufacturing, packing and deployment techniques as well as ground and flight tests. The author also studies other ballute applications, specifically emergency low Earth orbit recovery and delivering payloads to high altitude landing sites on Mars.

  13. AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS’ SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Andrea C. Burrows

    2016-04-01

    Full Text Available Twenty-three pre-collegiate educators of elementary students (ages 5-10 years and secondary students (ages 11-18 years attended a two-week science, technology, engineering, and mathematics (STEM astronomy focused professional development in the summer of 2015 with activities focused on authentic science experiences, inquiry, and partnership building. ‘Authentic’ in this research refers to scientific skills and are defined. The study explores the authentic science education experience of the pre-collegiate educators, detailing the components of authentic science as seen through a social constructionism lens. Using qualitative and quantitative methods, the researchers analyzed the successes and challenges of pre-collegiate science and mathematics educators when immersed in STEM and astronomy authentic science practices, the educators’ perceptions before and after the authentic science practices, and the educators’ performance on pre to post content tests during the authentic science practices. Findings show that the educators were initially engaged, then disengaged, and then finally re-engaged with the authentic experience. Qualitative responses are shared, as are the significant results of the quantitative pre to post content learning scores of the educators. Conclusions include the necessity for PD team delivery of detailed explanations to the participants - before, during, and after – for the entire authentic science experience and partnership building processes. Furthermore, expert structure and support is vital for participant research question generation, data collection, and data analysis (successes, failures, and reattempts. Overall, in order to include authentic science in pre-collegiate classrooms, elementary and secondary educators need experience, instruction, scaffolding, and continued support with the STEM processes.

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Author Affiliations. L Ramajo1 R Parra1 M Reboredo1 M Castro1. Institute of Research in Materials Science and Technology (INTEMA), (CONICET - University of Mar del Plata), Juan B Justo 4302 (B7608FDQ), Mar del Plata, Argentina ...

  15. TMBM: Tethered Micro-Balloons on Mars

    Science.gov (United States)

    Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.

    2000-01-01

    The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.

  16. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars

    Science.gov (United States)

    Maurice, Sylvestre; Clegg, Samuel M.; Wiens, Roger C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, Agnes; Sautter, V.; Mangold, Nicolas; Le Deit, L.; Nachon, Marion; Anderson, Ryan; Lanza, Nina; Fabre, Cecile; Payre, Valerie; Lasue, Jeremie; Meslin, Pierre-Yves; LeVeille, Richard A.; Barraclough, Bruce; Beck, Pierre; Bender, Steven C.; Berger, Gilles; Bridges, John C.; Bridges, Nathan; Dromert, Gilles; Dyar, M. Darby; Francis, Raymond; Frydenvang, Jens; Gondet, B.; Ehlmann, Bethany L.; Herkenhoff, Kenneth E.; Johnson, Jeffrey R.; Langevin, Yves; Madsen Morten B.,; Melikechi, N.; Lacour, J.-L.; Le Mouelic, Stephane; Lewin, Eric; Newsom, Horton E.; Ollila, Ann M.; Pinet, Patrick; Schroder, S.; Sirven, Jean-Baptiste; Tokar, Robert L.; Toplis, M.J.; d'Uston, Claude; Vaniman, David; Vasavada, Ashwin R.

    2016-01-01

    At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic

  17. Large wind ripples on Mars: A record of atmospheric evolution

    OpenAIRE

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Daybell, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them ...

  18. The Mars Science Laboratory APXS calibration target: Comparison of Martian measurements with the terrestrial calibration

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); King, P.L. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Burkemper, L. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Berger, J.A. [Institute of Meteoritics, University of New Mexico, NM 87131 (United States); Department of Earth Sciences, Western University, London, Ontario N6A3K7 (Canada); Gellert, R.; Boyd, N.I.; Perrett, G.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Ontario N1G2W1 (Canada); Thompson, L. [Planetary and Space Science Centre, University of New Brunswick, Fredericton, NB E3B5A3 (Canada); Edgett, K.S. [Malin Space Science Systems, San Diego, CA 92191-0148 (United States); Yingst, R.A. [Planetary Science Institute, Tucson, AZ 85719-2395 (United States)

    2014-03-15

    The Mars Science Laboratory Curiosity rover carries a basalt calibration target for monitoring the performance of the alpha particle X-ray spectrometer. The spectrum acquired on Sol 34 shows increased contributions from Mg, S, Cl and Fe relative to laboratory spectra recorded before launch. Mars Hand Lens Imager images confirm changes in the appearance of the surface. Spectra taken on Sols 179 and 411 indicate some loss of the deposited material. The observations suggest deposition of a surface film likely consisting of dust mobilized by impingement of the sky crane’s terminal descent engine plumes with surface fines during Curiosity’s landing. New APXS software has been used to model the thin film that coated the calibration target on landing. The results suggest that a film of about 100 nm thickness, and containing predominantly MgO, Fe{sub 2}O{sub 3}, SO{sub 3}, Cl and Na{sub 2}O could give rise to the observed spectral changes. If this film is also present on the alpha particle sources within the APXS, then its effect is negligible and the terrestrial calibration remains appropriate.

  19. The MarsOrganiX experiment: Understanding the influence of the secondary X-Rays on the organic matter at Mars' near-surface.

    Science.gov (United States)

    Buch, A.; Szopa, C.; Freissinet, C.; Stalport, F.; Coscia, D.; Pavlov, A.; Gilbert, P.; Bonnet, J. Y.; Guerrini, V.; Navarro-Gonzalez, R.

    2017-12-01

    Mars may have harbored a prebiotic chemistry that could have led to the emergence of life. If such, traces of these could be preserved in the oldest (3.5 billion years and more) rocks at the surface of the planet. Because of the thin atmosphere of Mars and the absence of an active magnetic field, the harsh radiative environment at the near-surface consists of UV and X-ray radiation, galactic and solar cosmic rays (GCRs and SCRs), as well as secondary particles produced by the interaction of GCRs and SCRs with the atmosphere and soil (secondary X-rays). The majority of the X-rays at the martian surface are generated in the rocks by the penetrating GCR and SCR particles. The GCRs' secondary X-rays' absorbed dose, at the top centimeters of the surface of Mars, has been estimated at about 0.05 Gy per year. All these radiation (direct and indirect) are prone to induce extended degradation or transformation of organic matter that would be present at Mars' near-surface, down to the 3 m depth of the GCRs/SCRs penetration. The SAM experiment onboard Curiosity rover led to the first in situ detection of organic molecules in martian rocks and soils. Chlorobenzene was detected in Cumberland at a concentration of up to 300 parts per billion in weight. However, chlorobenzene was thought to be formed in the SAM oven, during the pyrolysis of the sample. Nevertheless, Cumberland sample has been exposed to GCRs and SCRs for about 80 million years, and thus, the undergone X-rays radiation may have processed the organic matter and chlorinated the organic molecules in presence of perchlorate. Therefore, this study aims at evaluating the possible precursor(s), that would lead to the formation of chlorobenzene (detected with SAM) when irradiated in presence of perchlorate. Using the PSICHE beam line at SOLEIL, a synchrotron facility in France, we studied the extend of degradation and transformation of two organic molecules of interest, a carboxylic acid (benzoic acid) and an amino acid

  20. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are

  1. Mars Science Laboratory (MSL) - First Results of Relative Humidity Observations

    Science.gov (United States)

    Genzer, Maria; Harri, Ari-Matti; Kemppinen, Osku; Gómez-Elvira, Javier; Renno, Nilton; Savijärvi, Hannu; Schmidt, Walter; Polkko, Jouni; Rodríquez-Manfredi, Jose Antonio; de la Torre Juárez, Manuel; Mischna, Michael; Martín-Torres, Javier; Haukka, Harri; Paz Zorzano-Mier, Maria; Rafkin, Scott; Paton, Mark; MSL Science Team

    2013-04-01

    The Mars Science laboratory (MSL) called Curiosity made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity, and UV measurements. The REMS instrument suite is described at length in [1]. We concentrate on describing the first results from the REMS relative humidity observations and comparison of the measurements with modeling results. The REMS humidity device is provided by the Finnish Meteorological Institute. It is based on polymeric capacitive humidity sensors developed by Vaisala Inc. The humidity device makes use of one transducer electronics section placed in the vicinity of the three (3) humidity sensor heads. The humidity device is mounted on the REMS boom 2 providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The absolute accuracy of the humidity device is temperature dependent, and is of the order of 2% at the temperature range of -30 to -10 °C, and of the order of 10% at the temperature range of -80 to -60 °C. This enables the investigations of atmospheric humidity variations of both diurnal and seasonal scale. The humidity device measurements will have a lag, when a step-wise change in humidity is taking place. This lag effect is increasing with decreasing temperature, and it is of the order of a few hours at the temperature of -75 °C. To compensate for the lag effect we used an algorithm developed by Mäkinen [2]. The humidity observations were validated after tedious efforts. This was needed to compensate for the artifacts of the transducer electronics. The compensation process includes an assumption that the relative humidity at Mars in the temperature range of 0 to -30 °C is about zero. The

  2. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    Science.gov (United States)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  3. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Ferrone, Kristine; Shiro, Brian; Palaia, Joseph E., IV

    2009-01-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already taking advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priotity for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a 6-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS). The Mars Society built the mock Mars habitat in 2000-01 to help develop key knowledge and inspire the public for human Mars exploration. It is located on Devon island about 1600 km from the North Pole within the Arctic Circle. The structure is situated on the rim of Haughton Crater in an environment geologically and biologically analogous to Mars. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with "Earth,"the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted daily blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of thier field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Earth.

  4. Semi-automated operation of Mars Climate Simulation chamber - MCSC modelled for biological experiments

    Science.gov (United States)

    Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. D.; Dalakishvili, O.

    2017-10-01

    The Mars Climate Simulation Chamber (MCSC) (GEO PAT 12 522/01) is designed for the investigation of the possible past and present habitability of Mars, as well as for the solution of practical tasks necessary for the colonization and Terraformation of the Planet. There are specific tasks such as the experimental investigation of the biological parameters that allow many terrestrial organisms to adapt to the imitated Martian conditions: chemistry of the ground, atmosphere, temperature, radiation, etc. MCSC is set for the simulation of the conduction of various biological experiments, as well as the selection of extremophile microorganisms for the possible Settlement, Ecopoesis and/or Terraformation purposes and investigation of their physiological functions. For long-term purposes, it is possible to cultivate genetically modified organisms (e.g., plants) adapted to the Martian conditions for future Martian agriculture to sustain human Mars missions and permanent settlements. The size of the chamber allows preliminary testing of the functionality of space-station mini-models and personal protection devices such as space-suits, covering and building materials and other structures. The reliability of the experimental biotechnological materials can also be tested over a period of years. Complex and thorough research has been performed to acquire the most appropriate technical tools for the accurate engineering of the MCSC and precious programmed simulation of Martian environmental conditions. This paper describes the construction and technical details of the equipment of the MCSC, which allows its semi-automated, long-term operation.

  5. MetBaro - Pressure Device for Mars MetNet Lander

    Science.gov (United States)

    Haukka, Harri; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Genzer, Maria; Mäkinen, Teemu

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure sensor of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitive type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 4 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  6. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  7. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa

  8. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  9. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques: One year on with a focus on auto-DTM, auto-coregistration and citizen science.

    Science.gov (United States)

    Muller, Jan-Peter; Sidiropoulos, Panagiotis; Yershov, Vladimir; Gwinner, Klaus; van Gasselt, Stephan; Walter, Sebastian; Ivanov, Anton; Morley, Jeremy; Sprinks, James; Houghton, Robert; Bamford, Stephen; Kim, Jung-Rack

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 8 years, especially in 3D imaging of surface shape (down to resolutions of 10cm) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as impact craters, RSLs, CO2 geysers, gullies, boulder movements and a host of ice-related phenomena). Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004 the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25m nadir images) with 98% coverage with images ≤100m and more than 70% useful for stereo mapping (e.g. atmosphere sufficiently clear). It has been demonstrated [Gwinner et al., 2010] that HRSC has the highest possible planimetric accuracy of ≤25m and is well co-registered with MOLA, which represents the global 3D reference frame. HRSC 3D and terrain-corrected image products therefore represent the best available 3D reference data for Mars. Recently [Gwinner et al., 2015] have shown the ability to generate mosaiced DTM and BRDF-corrected surface reflectance maps. NASA began imaging the surface of Mars, initially from flybys in the 1960s with the first orbiter with images ≤100m in the late 1970s from Viking Orbiter. The most recent orbiter to begin imaging in November 2006 is the NASA MRO which has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈25cm) and ≈5% from CTX (≈6m) in stereo. Unfortunately, for most of these NASA images, especially MGS, MO, VO and HiRISE their accuracy of georeferencing is often worse than the quality of Mars reference data from HRSC. This reduces their value for analysing changes in time

  10. Accretion and primary differentiation of Mars

    International Nuclear Information System (INIS)

    Drake, M.J.

    1988-01-01

    In collecting samples from Mars to address questions such as whether Mars accreted homogeneously or heterogeneously, how Mars segregated into a metallic core and silicate mantle, and whether Mars outgassed catastrophically coincident with accretion or more serenely on a longer timescale, we must be guided by our experience in addressing these questions for the Earth, Moon, and igneous meteorite parent bodies. A key measurement to be made on any sample returned from Mars is its oxygen isotopic composition. A single measurement will suffice to bind the SNC meteorites to Mars or demonstrate that they cannot be samples of that planet. A positive identification of Mars as the SNC parent planet will permit all that has been learned from the SNC meteorites to be applied to Mars with confidence. A negative result will perhaps be more exciting in forcing us to look for another object that has been geologically active in the recent past. If the oxygen isotopic composition of Earth and Mars are established to be distinct, accretion theory must provide for different compositions for two planets now separated by only 0.5 AU

  11. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  12. Enumeration of Mars years and seasons since the beginning of telescopic exploration

    Science.gov (United States)

    Piqueux, Sylvain; Byrne, Shane; Titus, Timothy N.; Hansen, Candice J.; Kieffer, Hugh H.

    2015-01-01

    A clarification for the enumeration of Mars Years prior to 1955 is presented, along with a table providing the Julian dates associated with Ls = 0° for Mars Years -183 (beginning of the telescopic study of Mars) to 100. A practical algorithm for computing Ls as a function of the Julian Date is provided. No new science results are presented

  13. A Rover Mobility Platform with Autonomous Capability to Enable Mars Sample Return

    Science.gov (United States)

    Fulford, P.; Langley, C.; Shaw, A.

    2018-04-01

    The next step in understanding Mars is sample return. In Fall 2016, the CSA conducted an analogue deployment using the Mars Exploration Science Rover. An objective was to demonstrate the maturity of the rover's guidance, navigation, and control.

  14. Robotics and automation in Mars exploration

    Science.gov (United States)

    Bourke, Roger D.; Sturms, Francis M., Jr.; Golombek, Matthew P.; Gamber, R. T.

    1992-01-01

    A new approach to the exploration of Mars is examined which relies on the use of smaller and simpler vehicles. The new strategy involves the following principles: limiting science objectives to retrieval of rock samples from several different but geologically homogeneous areas; making use of emerging microspacecraft technologies to significantly reduce the mass of hardware elements; simplifying missions to the absolutely essential elements; and managing risk through the employment of many identical independent pieces some of which may fail. The emerging technologies and their applications to robotic Mars missions are discussed.

  15. Relay Telecommunications for the Coming Decade of Mars Exploration

    Science.gov (United States)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  16. Mars 2020 Entry, Descent and Landing Instrumentation (MEDLI2)

    Science.gov (United States)

    Bose, Deepak; Wright, Henry; White, Todd; Schoenenberger, Mark; Santos, Jose; Karlgaard, Chris; Kuhl, Chris; Oishi, TOmo; Trombetta, Dominic

    2016-01-01

    This paper will introduce Mars Entry Descent and Landing Instrumentation (MEDLI2) on NASA's Mars2020 mission. Mars2020 is a flagship NASA mission with science and technology objectives to help answer questions about possibility of life on Mars as well as to demonstrate technologies for future human expedition. Mars2020 is scheduled for launch in 2020. MEDLI2 is a suite of instruments embedded in the heatshield and backshell thermal protection systems of Mars2020 entry vehicle. The objectives of MEDLI2 are to gather critical aerodynamics, aerothermodynamics and TPS performance data during EDL phase of the mission. MEDLI2 builds up the success of MEDLI flight instrumentation on Mars Science Laboratory mission in 2012. MEDLI instrumentation suite measured surface pressure and TPS temperature on the heatshield during MSL entry into Mars. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has highlighted extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. MEDLI2 expands the scope of instrumentation by focusing on quantities of interest not addressed in MEDLI suite. The type the sensors are expanded and their layout on the TPS modified to meet these new objectives. The paper will provide key motivation and governing requirements that drive the choice and the implementation of the new sensor suite. The implementation considerations of sensor selection, qualification, and demonstration of minimal risk to the host mission will be described. The additional challenges associated with mechanical accommodation, electrical impact, data storage and retrieval for MEDLI2 system, which extends sensors to backshell will also be described.

  17. Enabling Tethered Exploration on Mars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Strong science motivations exist for exploring hard to reach terrain on Mars and the leading systems proposed to do so require tethers. While tethers are used...

  18. Telecommunications for Mars Rovers and Robotic Mission

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in-situ science activity on, or just above, the Martian surface.

  19. Telecommunications for Mars Rovers and Robotic Missions

    Science.gov (United States)

    Horne, W. D.; Hastrup, R.; Cesarone, R.

    1997-01-01

    The Mars exploration program of NASA and the international community will evolve from an early emphasis on orbital remote sensing toward in situ science activity on, or just above, the Martian surface.

  20. Onboard autonomous mineral detectors for Mars rovers

    Science.gov (United States)

    Gilmore, M. S.; Bornstein, B.; Castano, R.; Merrill, M.; Greenwood, J.

    2005-12-01

    Mars rovers and orbiters currently collect far more data than can be downlinked to Earth, which reduces mission science return; this problem will be exacerbated by future rovers of enhanced capabilities and lifetimes. We are developing onboard intelligence sufficient to extract geologically meaningful data from spectrometer measurements of soil and rock samples, and thus to guide the selection, measurement and return of these data from significant targets at Mars. Here we report on techniques to construct mineral detectors capable of running on current and future rover and orbital hardware. We focus on carbonate and sulfate minerals which are of particular geologic importance because they can signal the presence of water and possibly life. Sulfates have also been discovered at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover (MER) Opportunity and at other regions on Mars by the OMEGA instrument aboard Mars Express. We have developed highly accurate artificial neural network (ANN) and Support Vector Machine (SVM) based detectors capable of identifying calcite (CaCO3) and jarosite (KFe3(SO4)2(OH)6) in the visible/NIR (350-2500 nm) spectra of both laboratory specimens and rocks in Mars analogue field environments. To train the detectors, we used a generative model to create 1000s of linear mixtures of library end-member spectra in geologically realistic percentages. We have also augmented the model to include nonlinear mixing based on Hapke's models of bidirectional reflectance spectroscopy. Both detectors perform well on the spectra of real rocks that contain intimate mixtures of minerals, rocks in natural field environments, calcite covered by Mars analogue dust, and AVIRIS hyperspectral cubes. We will discuss the comparison of ANN and SVM classifiers for this task, technical challenges (weathering rinds, atmospheric compositions, and computational complexity), and plans for integration of these detectors into both the Coupled Layer

  1. Mars Science Laboratory relative humidity observations: Initial results.

    Science.gov (United States)

    Harri, A-M; Genzer, M; Kemppinen, O; Gomez-Elvira, J; Haberle, R; Polkko, J; Savijärvi, H; Rennó, N; Rodriguez-Manfredi, J A; Schmidt, W; Richardson, M; Siili, T; Paton, M; Torre-Juarez, M De La; Mäkinen, T; Newman, C; Rafkin, S; Mischna, M; Merikallio, S; Haukka, H; Martin-Torres, J; Komu, M; Zorzano, M-P; Peinado, V; Vazquez, L; Urqui, R

    2014-09-01

    The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppmMSL relative humidity observation provides good dataHighest detected relative humidity reading during first MSL 100 sols is RH75.

  2. Visit by representatives from the Ministry of Science and Technology, Spain

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Jean-Luc Baldy, leader of CERN's civil engineering group (right), accompanies the visitors on a tour of excavation work in the large ATLAS cavern at Point 1: (left to right) Montserrat Capellas from the CERN Press Office, María José Jerez et María Requejo from the Spanish Ministry of Science and Technology, and Julio Oropesa from ETT division. Photo 02: (left to right) Montserrat Capellas, CERN guide Joao Bento, María José Jerez, María Requejo, and Julio Oropesa visit CERN's Antiproton Decelerator (AD) facility. Photo 03: (left to right) Montserrat Capella, María Requejo, Julio Oropesa, María José Jerez, and Joao Bento get a bird's eye view of the ATHENA experiment for the production of antihydrogen at the AD. Photo 04: Jean-Luc Baldy (right) explains surface civil engineering work at Point 1 to the visitors: (left to right) Julio Oropesa, María Requejo, María José Jerez, Joao Bento, and Montserrat Capella.

  3. Putting Science FIRST: Memories of Family Science Experiences.

    Science.gov (United States)

    Science and Children, 1996

    1996-01-01

    Presents anecdotes from prominent citizens including Bill Clinton, Alan Alda, Carl Sagan, Gerald Wheeler, JoAnne Vasquez, and Lynn Margulis in which they reminisce about interesting science experiences with their families. (JRH)

  4. 100 New Impact Crater Sites Found on Mars

    Science.gov (United States)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  5. Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul R.

    2012-01-01

    The measurement goals of the Sample Analysis at Mars (SAM) instrument suite on the "Curiosity" Rover of the Mars Science Laboratory (MSL) include chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples [1,2]. SAM directly supports the ambitious goals of the MSL mission to provide a quantitative assessment of habitability and preservation in Gale crater by means of a range of chemical and geological measurements [3]. The SAM FM combined calibration and environmental testing took place primarily in 2010 with a limited set of tests implemented after integration into the rover in January 2011. The scope of SAM FM testing was limited both to preserve SAM consumables such as life time of its electromechanical elements and to minimize the level of terrestrial contamination in the SAM instrument. A more comprehensive calibration of a SAM-like suite of instruments will be implemented in 2012 with calibration runs planned for the SAM testbed. The SAM Testbed is nearly identical to the SAM FM and operates in a ambient pressure chamber. The SAM Instrument Suite: SAM's instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). Gas Chromatography Mass Spectrometry is designed for identification of even trace organic compounds. The TLS [5] secures the C, H, and O isotopic composition in carbon dioxide, water, and methane. Sieved materials are delivered from the MSL sample acquisition and processing system to one of68 cups of the Sample Manipulation System (SMS). 59 of these cups are fabricated from inert quartz. After sample delivery, a cup is inserted into one of 2 ovens for evolved gas analysis (EGA ambient to >9500C) by the QMS and TLS. A portion of the gas released can be trapped and subsequently analyzed by GCMS. Nine sealed cups contain liquid solvents and chemical derivatization or thermochemolysis agents to extract and transform polar molecules

  6. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars

    OpenAIRE

    Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.

    2017-01-01

    The Mars Science Laboratory rover, Curiosity, is using a comprehensive scientific payload to explore rocks and soils in Gale crater, Mars. Recent investigations of the Bagnold Dune Field provided the first in situ assessment of an active dune on Mars. The Chemistry and Mineralogy (CheMin) X-ray diffraction instrument on Curiosity performed quantitative mineralogical analyses of the

  7. Volatile and Isotopic Imprints of Ancient Mars

    Science.gov (United States)

    Mahaffy, Paul R.; Conrad, Pamela G.

    2015-01-01

    The science investigations enabled by Curiosity rover's instruments focus on identifying and exploring the habitability of the Martian environment. Measurements of noble gases, organic and inorganic compounds, and the isotopes of light elements permit the study of the physical and chemical processes that have transformed Mars throughout its history. Samples of the atmosphere, volatiles released from soils, and rocks from the floor of Gale Crater have provided a wealth of new data and a window into conditions on ancient Mars.

  8. Community Decadal Panel for Terrestrial Analogs to Mars

    Science.gov (United States)

    Barlow, N. G.; Farr, T.; Baker, V. R.; Bridges, N.; Carsey, F.; Duxbury, N.; Gilmore, M. S.; Green, J. R.; Grin, E.; Hansen, V.; Keszthelyi, L.; Lanagan, P.; Lentz, R.; Marinangeli, L.; Morris, P. A.; Ori, G. G.; Paillou, P.; Robinson, C.; Thomson, B.

    2001-11-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites for Mars, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel is considering the following two key questions: (1) How do terrestrial analog studies tie in to the MEPAG science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel is considering the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  9. How Can We Look for Fossils on Mars?

    Science.gov (United States)

    McMahon, S.; Bosak, T.; Grotzinger, J. P.; Briggs, D. E. G.; Hurowitz, J.; Tosca, N.; Petroff, A.; Summons, R. E.; Weiss, B. P.

    2018-04-01

    Mars 2020 should target fine-grained sediments, which on Earth preserve biosignatures more reliably and consistently than other settings identified on Mars. Taphonomic experiments will show how oxychlorine compounds may affect preservation.

  10. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  11. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  12. (abstract) Tropospheric Calibration for the Mars Observer Gravity Wave Experiment

    Science.gov (United States)

    Walter, Steven J.; Armstrong, John

    1994-01-01

    In spring 1993, microwave radiometer-based tropospheric calibration was provided for the Mars Observer gravitational wave search. The Doppler shifted X-band radio signals propagating between Earth and the Mars Observer satellite were precisely measured to determine path length variations that might signal passage of gravitational waves. Experimental sensitivity was restricted by competing sources of variability in signal transit time. Principally, fluctuations in the solar wind and ionospheric plasma density combined with fluctions in tropospheric refractivity determined the detection limit. Troposphere-induced path delay fluctions are dominated by refractive changes caused by water vapor inhomogeneities blowing through the signal path. Since passive microwave remote sensing techniques are able to determine atmospheric propagation delays, radiometer-based tropospheric calibration was provided at the Deep Space Network Uranus tracking site (DSS-15). Two microwave water vapor radiometers (WVRs), a microwave temperature profiler (MTP), and a ground based meterological station were deployed to determine line-of-sight vapor content and vertical temperature profile concurrently with Mars Observer tracking measurements. This calibration system provided the capability to correct Mars Observer Doppler data for troposphere-induced path variations. We present preliminary analysis of the Doppler and WVR data sets illustrating the utility of WVRs to calibrate Doppler data. This takes an important step toward realizing the ambitious system required to support future Ka-band Cassini satellite gravity wave tropospheric calibration system.

  13. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  14. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  15. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  16. Learning to live on a Mars day: fatigue countermeasures during the Phoenix Mars Lander mission.

    Science.gov (United States)

    Barger, Laura K; Sullivan, Jason P; Vincent, Andrea S; Fiedler, Edna R; McKenna, Laurence M; Flynn-Evans, Erin E; Gilliland, Kirby; Sipes, Walter E; Smith, Peter H; Brainard, George C; Lockley, Steven W

    2012-10-01

    To interact with the robotic Phoenix Mars Lander (PML) spacecraft, mission personnel were required to work on a Mars day (24.65 h) for 78 days. This alien schedule presents a challenge to Earth-bound circadian physiology and a potential risk to workplace performance and safety. We evaluated the acceptability, feasibility, and effectiveness of a fatigue management program to facilitate synchronization with the Mars day and alleviate circadian misalignment, sleep loss, and fatigue. Operational field study. PML Science Operations Center. Scientific and technical personnel supporting PML mission. Sleep and fatigue education was offered to all support personnel. A subset (n = 19) were offered a short-wavelength (blue) light panel to aid alertness and mitigate/reduce circadian desynchrony. They were assessed using a daily sleep/work diary, continuous wrist actigraphy, and regular performance tests. Subjects also completed 48-h urine collections biweekly for assessment of the circadian 6-sulphatoxymelatonin rhythm. Most participants (87%) exhibited a circadian period consistent with adaptation to a Mars day. When synchronized, main sleep duration was 5.98 ± 0.94 h, but fell to 4.91 ± 1.22 h when misaligned (P Mars day suggests that future missions should utilize a similar circadian rhythm and fatigue management program to reduce the risk of sleepiness-related errors that jeopardize personnel safety and health during critical missions.

  17. AN INVESTIGATION OF THE HYPOTHESES FOR FORMATION OF THE PLATY-RIDGED-POLYGONIZED TERRAIN IN ELYSIUM PLANITIA, MARS

    Directory of Open Access Journals (Sweden)

    Z. Yue

    2017-07-01

    Full Text Available The origin of the platy-ridged-polygonized (PRP terrains on Martian surface has long been debated. The terrain has generally been classified as water, pack ice, or basalt lava related flow. The crater counting results of the PRP terrains suggest they are geologically very young; therefore, they are significant in understanding the recent evolution of Mars. This work evaluated the current hypotheses through detailed analysis of the distribution and microtopographies with the High Resolution Imaging Science Experiment (HiRISE images for the PRP terrains in Elysium Planitia, Mars. Quantitative measurements and statistics of the typical features of the PRP terrains were also made. In addition, we also found an analog site in Tarim Basin in Xinjiang, China. Our results suggest that mud flow is responsible for the formation of the PRP terrains on the Mars surface, although the hypothesis of low-viscosity basalt lava floods cannot be completely excluded. This finding implies that a regional environment suitable for liquid water may have existed in recent geologic time, which has great importance for future Mars scientific exploration.

  18. An experience of science theatre: Earth Science for children

    Science.gov (United States)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  19. Soil and crop management experiments in the Laboratory Biosphere: An analogue system for the Mars on Earth ® facility

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J. P.

    During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m 2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth ® facility (Silverstone et al., Development and research program for a soil

  20. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  1. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    Science.gov (United States)

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  2. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  3. PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars

    Science.gov (United States)

    Lee, Pascal; Benna, Mehdi; Britt, Daniel; Colaprete, Anthony; Davis, Warren; Delory, Greg; Elphic, Richard; Fulsang, Ejner; Genova, Anthony; Glavin, Daniel; hide

    2015-01-01

    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies.

  4. Vehicle Staging Analysis of the Transition to Supersonic Retropropulsion During Mars Entry, Descent, and Landing

    Data.gov (United States)

    National Aeronautics and Space Administration — The landing of the Mars Science Laboratory represents the upper limit of current Entry, Descent, and Landing (EDL) capabilities for Mars exploration. The succession...

  5. Mars atmosphere. Mars methane detection and variability at Gale crater.

    Science.gov (United States)

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Mischna, Michael A; Meslin, Pierre-Yves; Farley, Kenneth A; Conrad, Pamela G; Christensen, Lance E; Pavlov, Alexander A; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H; Owen, Tobias; Eigenbrode, Jennifer L; Glavin, Daniel P; Steele, Andrew; Malespin, Charles A; Archer, P Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P; Moores, John E; Schwenzer, Susanne P; Bridges, John C; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T

    2015-01-23

    Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. Copyright © 2015, American Association for the Advancement of Science.

  6. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  7. Humans to Mars: The Greatest Adventure in Human History

    Science.gov (United States)

    Levine, Joel S.; Schild,Rudy

    2011-01-01

    The reasons for a human mission to Mars are many and include (1) World technological leadership, (2) Enhanced national security, (3) Enhanced economic vitality, (4) The human urge to explore new and distant frontiers, (5) Scientific discovery (how did Mars evolve from an early Earth-like, hospitable planet to its present inhospitable state? Is there life on Mars?) (6) Inspiring the American public and the next generation of scientists and engineers (following the launch of Sputnik I by the USSR on October 4, 1957, the U. S. and the rest of the world witnessed a significant increase in the number of students going into science and engineering), (7) Develop new technologies for potential non-space spin-off applications, and, (8) Enhanced national prestige, etc. Other reasons for colonizing the Red Planet are more catastrophic in nature, including Mars as a safe haven for the survival of the human species in the event of an impact with a large asteroid (remember the demise of the dinosaurs 65-million years as a result of an asteroid impact!). Some have also suggested that the colonization of Mars may be a solution to the global exponential population explosion on our planet! A human mission to and the colonization of the Red Planet requires multi-disciplined expertise in many areas including engineering, technology, science, human health and medicine and the human psychological and behavior. To capture the relevant areas of needed expertise, we have invited a group of more than 70 U. S. and foreign experts in these areas, including astronauts, scientists, engineers, technologists, medical doctors, psychologists and economists to share their views and thoughts on a human mission to Mars.

  8. The Electrostatic Environments of Mars: Atmospheric Discharges

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  9. Austere Human Missions to Mars

    Science.gov (United States)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  10. Mars Technologies Spawn Durable Wind Turbines

    Science.gov (United States)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  11. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    Science.gov (United States)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  12. The Athena Science Payload for the 2003 Mars Exploration Rovers

    Science.gov (United States)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2001-01-01

    The Athena Mars rover payload is a suite of scientific instruments and tools for geologic exploration of the martian surface. It is designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials, including soils, rock surfaces, and rock interiors. (3) Determine the fine-scale textural properties of these materials. Two identical copies of the Athena payload will be flown in 2003 on the two Mars Exploration Rovers. The payload is at a high state of maturity, and first copies of several of the instruments have already been built and tested for flight.

  13. Mapping the entangled ontology of science teachers’ lived experience

    DEFF Research Database (Denmark)

    Daugbjerg, Peer Schrøder; de Freitas, E.; Valero, Paola

    2015-01-01

    , the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw...... the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish primary science teachers—Erik, Jane and Tina—, we look for how their self-reported lived experiences become entangled with their content knowledge......In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers’ ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely...

  14. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    with the addition of resource recovery from asteroids at industrial operations in cislunar space. Preliminary conclusions indicate that by doing more that the cost and risk of individual operations lessens. The cost and risk of the Journey to Mars will be significantly less if a parallel effort is underway with Moon Village. Moon Village is aimed at lunar exploration with a view towards enabling lunar ISRU. Success with lunar ISRU creates sources of fuel, water, and other materials required for missions to Mars. This creates a supplier- customer relationship. This economic aspect is further enhanced with space-based solar power first piloted for lunar applications then applied to terrestrial needs starting with disaster relief. The benefits of shared infrastructure are further augmented through development of industrial operations in cislunar space for asteroid and or lunar materials processing expanding the range of materials that become available for processing into products that do not have to be lifted out of the Earth's gravity well creating the basis for a space economy. The idea of an International Lunar Decade serving as a framework for coordination of international collaboration across multiple missions and fields is explored. [1] http://arstechnica.com/science/2016/02/space-experts-warn-congress-that-nasas-journey-to-mars-is-illusory/ [2] http://www.nap.edu/catalog/18801/pathways-to-exploration-rationales-and-approaches-for-a-us-program [3] http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/NexGen_ELA_Report_FINAL.pdf [4] http://strategic.mit.edu/JSR_Final_Manuscript_Ishimatsu.pdf [5] Lunar COTS: An Economical and Sustainable Approach to Reaching Mars, http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/AIAA2015-4408ZunigaLunarCOTS.pdf

  15. A Study of Soil and Duricrust Models for Mars

    Science.gov (United States)

    Bishop, Janice L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This project includes analysis of the Mars Pathfinder soil data (spectral, chemical and magnetic) together with analog materials and the products of laboratory alteration experiments in order to describe possible mechanisms for the formation of soil, duricrust and rock coatings on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments for changes in binding and spectroscopic properties that are related to what could be expected for duricrusts on Mars. The smectite-based mixture exhibited significantly greater changes (1) in its binding properties throughout the wet/dry cycling experiments than did the palagonite-based mixture, and (2) in its spectral properties following grinding and resieving of the hardened material than did the palagonite-based mixture.

  16. The Present Habitability Potential of Gale Crater: What We Have Learned So Far From Mars Science Laboratory

    Science.gov (United States)

    Conrad, P. G.; Archer, P. D.; Domagal-Goldman, S.; Eigenbrode, J.; Fisk, M.; Gupta, S.; Hamilton, V.; Kah, L.; Kahanpaa, Henrik; Martin-Torres, J.; hide

    2014-01-01

    The Mars Science Laboratory mission has comprehensively interrogated the surface environment of Mars as it explores Gale Crater. Both chemical and physical attributes of the present environment have been measured over the course of the mission, enabling us to compare the present state of the martian surface with the environmental requirements of prokaryotic microbes. While this approach does not exclude the possibility of martian life that may have evolved to adapt to the present conditions, it is advantageous in that it allows us to evaluate environmental requirements of known life and also provide insight into the likelihood of forward contamination by Earth organisms with the comparison of their environmental requirements with the measured attributes of the environment at Gale Crater. We have already modeled a paleoenvironment with high habitability potential (HP) based upon chemistry, mineralogy and other geological evidence such as sedimentary structures and larger scale geomorphology [1]. In this report, we turn our attention to the present HP of the Yellowknife Bay area, including the importance of the physical environmental metrics such as atmospheric pressure, air and ground temperature, ionizing radiation, wind speed and direction, slope, etc.

  17. Meteorological Predictions in Support of the Mars Science Laboratory Entry, Descent and Landing

    Science.gov (United States)

    Rothchild, A.; Rafkin, S. C.; Pielke, R. A., Sr.

    2010-12-01

    The Mars Science Laboratory (MSL) entry, descent, and landing (EDL) system employs a standard parachute strategy followed by a new sky crane concept where the rover is lowered to the ground via a tether from a hovering entry vehicle. As with previous missions, EDL system performance is sensitive to atmospheric conditions. While some observations characterizing the mean, large-scale atmospheric temperature and density data are available, there is effectively no information on the atmospheric conditions and variability at the scale that directly affects the spacecraft. In order to evaluate EDL system performance and to assess landing hazards and risk, it is necessary to simulate the atmosphere with a model that provides data at the appropriate spatial and temporal scales. Models also permit the study of the impact of the highly variable atmospheric dust loading on temperature, density and winds. There are four potential MSL landing sites: Mawrth Valle (22.3 N, 16.5W) , Gale Crater (5.4S, 137.7E), Holden Crater (26.1S, 34W), and Eberswalde Crater (24S, 33W). The final selection of the landing site will balance potential science return against landing and operational risk. Atmospheric modeling studies conducted with the Mars Regional Atmospheric Modeling System (MRAMS) is an integral part of the selection process. At each of the landing sites, a variety of simulations are conducted. The first type of simulations provide baseline predictions under nominal atmospheric dust loading conditions within the landing site window of ~Ls 150-170. The second type of simulation explores situations with moderate and high global atmospheric dust loading. The final type of simulation investigates the impact of local dust disturbances at the landing site. Mean and perturbation fields from each type of simulation at each of the potential landing sites are presented in comparison with the engineering performance limitations for the MSL EDL system. Within the lowest scale height, winds

  18. A Study of Soil and Duricrust Models for Mars

    Science.gov (United States)

    Bishop, J. L.

    2001-03-01

    Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).

  19. Life on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Venkatavaradan, V S [Tata Inst. of Fundamental Research, Bombay (India)

    1976-10-01

    The miniature biological laboratory of the Viking-1 lander had three experiments to determine, whether the micro-organisms of the Martian soil has: (1) photo-synthetic activity (2) metabolic process activity (utilisation of nutrients) and (3) respiration. The Martian soil was warmed in an incubator and exposed to carbon dioxide (containing C/sup 14/) in presence of xenon arc lamp to simulate the Sun. If the Martian organisms of the expected type are present in the soil, the gas released during the heating would be radio-active which can be detected by a radiation counter. The three experiments had given positive signals denoting the presence of micro-organisms on the surface of Mars. The presence of superoxide in the soil would be poisonous to life but it is likely that organisms may survive deeper below the soil, where the chemicals would not be formed. The Viking-2 results also offered similar results. However, the basic question whether there is life on Mars still remains unanswered.

  20. Life on Mars

    International Nuclear Information System (INIS)

    Venkatavaradan, V.S.

    1976-01-01

    The miniature biological laboratory of the Viking-1 lander had three experiments to determine, whether the micro-organisms of the Martian soil has: (1) photo-synthetic activity (2) metabolic process activity (utilisation of nutrients) and (3) respiration. The Martian soil was warmed in an incubator and exposed to carbon dioxide (containing C 14 ) in presence of xenon arc lamp to simulate the Sun. If the Martian organisms of the expected type are present in the soil, the gas released during the heating would be radio-active which can be detected by a radiation counter. The three experiments had given positive signals denoting the presence of micro-organisms on the surface of Mars. The presence of superoxide in the soil would be poisonous to life but it is likely that organisms may survive deeper below the soil, where the chemicals would not be formed. The Viking-2 results also offered similar results. However, the basic question whether there is life on Mars still remains unanswered. (K.M.)

  1. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    Science.gov (United States)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  2. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  3. Low-latency Science Exploration of Planetary Bodies: a Demonstration Using ISS in Support of Mars Human Exploration

    Science.gov (United States)

    Thronson, Harley A.; Valinia, Azita; Bleacher, Jacob; Eigenbrode, Jennifer; Garvin, Jim; Petro, Noah

    2014-01-01

    We summarize a proposed experiment to use the International Space Station to formally examine the application and validation of low-latency telepresence for surface exploration from space as an alternative, precursor, or potentially as an adjunct to astronaut "boots on the ground." The approach is to develop and propose controlled experiments, which build upon previous field studies and which will assess the effects of different latencies (0 to 500 msec), task complexity, and alternate forms of feedback to the operator. These experiments serve as an example of a pathfinder for NASA's roadmap of missions to Mars with low-latency telerobotic exploration as a precursor to astronaut's landing on the surface to conduct geological tasks.

  4. Updates from the MSL-RAD Experiment on the Mars Curiosity Rover

    Science.gov (United States)

    Zeitlin, Cary

    2015-01-01

    The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.

  5. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  6. Mars - robust automatic backbone assignment of proteins

    International Nuclear Information System (INIS)

    Jung, Young-Sang; Zweckstetter, Markus

    2004-01-01

    MARS a program for robust automatic backbone assignment of 13 C/ 15 N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only 13 C α / 13 C β connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment

  7. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    OpenAIRE

    J. Dong; Z. Sun; W. Rao; Y. Jia; L. Meng; C. Wang; B. Chen

    2017-01-01

    An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achiev...

  8. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  9. The iMars WebGIS - A Central Hub for Displaying and Distributing Co-Registered Data of Mars

    Science.gov (United States)

    van Gasselt, S.; Morley, J.; Houghton, R.; Bamford, S.; Ivanov, A.; Muller, J.-P.; Yershov, V.; Sidiripoulos, P.; Gwinner, K.; Waehlisch, M.; Kim, J. R.

    2014-04-01

    The iMars-project [1] is an EU funded R&D project which has started in 2014 and which is aimed at developing an automated processing system for generating image stacks of high-precision, co-registered, terrain-corrected and multi-temporal data of Mars obtained since 1977. It is anticipated that the entire NASA and ESA record of orbital image data will be co-registered and terrain-corrected in 2015 [1] so that time-series data can be generated for subsequent analyses. Such analyses will be conducted automatically using change-detection algorithms or interactively and visually using the citizen-science concept implemented at Zooniverse [2]. For more detailed information see [1] and visit the project's website at http://www.i-Mars.eu. Close user interaction plays a paramount role within iMars which requires sophisticated concepts for data handling and communication allowing users to integrate, analyse and visualise data from a central location. This interactive data hub will be realised through open-source webGIS implementations and by providing webGIS services to the user community using established OGC-protocols (see Fig. 1, [3, 4, 5]).

  10. The Nitrate/Perchlorate Ratio on Mars as an Indicator for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalex, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Niles, P. B.; hide

    2015-01-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed N, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars.

  11. A balloon-borne experiment to investigate the Martian magnetic field

    Science.gov (United States)

    Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.

    1996-03-01

    The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.

  12. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  13. Sci-Fi Science.

    Science.gov (United States)

    Freudenrich, Craig C.

    2000-01-01

    Recommends using science fiction television episodes, novels, and films for teaching science and motivating students. Studies Newton's Law of Motion, principles of relativity, journey to Mars, interplanetary trajectories, artificial gravity, and Martian geology. Discusses science fiction's ability to capture student interest and the advantages of…

  14. Science Experiences among Female Athletes: Race Makes a Difference

    Science.gov (United States)

    Kraus, Rebecca S.; Hanson, Sandra L.

    Sport participation is increasingly seen as a resource with considerable physical, social, and academic benefits. As a new millennium begins with girls more visible in sport, an important question is whether all girls reap these benefits. Although general academic benefits of sport have been shown, the authors' earlier work showed that experience in the male sport domain benefits young women in the elite (often male) science curriculum. Competition, self-esteem, and other individual resources gained through sport are potential sources of success in the similarly competitive male realm of science. In this research, the authors used critical feminist theory to guide their examination of racial and ethnic variations in the relation between sport participation and science experiences for young women. Data from the nationally representative National Education Longitudinal Study were used to explore the impact of sport participation in the 8th and 10th grades on 10th grade science achievement (measured by science grades and standardized test scores) and course taking for African American, Hispanic, and White women. The findings revealed that sport participation has some positive consequences for the science experiences of each of the groups of women. It also has some negative consequences, although the positive consequences outnumber the negative consequences for Hispanic and White, but not African American, women. Sport in 10th grade, especially competitive varsity sport, is most likely to have positive consequences. The findings revealed that each of the groups experiences different routes to success in science, and sport participation is present at some level in each of these routes. A consideration of multiple areas of science experience is important for understanding the connections between race and ethnicity, sport, and science for young women. Unique sociocultural contexts are used to attempt to understand these findings, and implications are discussed.

  15. Mars Orbiter Camera Views the 'Face on Mars' - Comparison with Viking

    Science.gov (United States)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.In this comparison, the best Viking image has been enlarged to 3.3 times its original resolution, and the MOC image has been decreased by a similar 3.3 times, creating images of roughly the same size. In addition, the MOC images have been geometrically transformed to a more overhead projection (different from the mercator map projection of PIA01440 & 1441) for ease of comparison with the Viking image. The left image is a portion of Viking Orbiter 1 frame 070A13, the middle image is a portion of MOC frame shown normally, and the right image is the same MOC frame but with the brightness inverted to simulate the approximate lighting conditions of the Viking image.Processing Image processing has been applied to the images in order to improve the visibility of features. This processing included the following steps: The image was

  16. Officine Galileo for Mars Exploration

    Science.gov (United States)

    Battistelli, E.; Tacconi, M.

    1999-09-01

    The interest for Mars's exploration is continuously increasing. Officine Galileo is engaged in this endeavor with several programmes. The exobiology is, of course, a stimulating field; presently Officine Galileo is leading a team with Dasa and Tecnospazio, under ESA contract, for the definition of a facility for the search of extinct life on Mars through the detection of indicators of life. The system, to be embarked on a Mars lander, is based on a drill to take rock samples underneath the oxidised soil layer, on a sample preparation and distribution system devoted to condition and bring the sample to a set of analytical instruments to carry out in-situ chemical and mineralogical investigations. The facility benefits of the presence of optical microscope, gas chromatograph, several spectrometers (Raman, Mass, Mossbauer, APX-Ray), and further instruments. In the frame of planetology, Officine Galileo is collaborating with several Principal Investigators to the definition of a set of instruments to be integrated on the Mars 2003 Lander (a NASA-ASI cooperation). A drill (by Tecnospazio), with the main task to collect Mars soil samples for the subsequent storage and return to Earth, will have the capability to perform several soil analyses, e.g. temperature and near infrared reflectivity spectra down to 50 cm depth, surface thermal and electrical conductivity, sounding of electromagnetic properties down to a few hundreds meter, radioactivity. Moreover a kit of instruments for in-situ soil samples analyses if foreseen; it is based on a dust analyser, an IR spectrometer, a thermofluorescence sensor, and a radioactivity analyser. The attention to the Red Planet is growing, in parallel with the findings of present and planned missions. In the following years the technology of Officine Galileo will carry a strong contribution to the science of Mars.

  17. Preservation of Reduced Carbon on Mars: Implications for Understanding Habitability

    Science.gov (United States)

    Conrad, Pamela; Fogel, Marilyn; Steele, Andrew; Summons, Roger E.

    2007-01-01

    Upcoming Mars missions (e.g., Mars Science Laboratory, ExoMars, Astrobiology Field Laboratory, and Mars Sample Return) will search for evidence of extant and fossil microbial habitats and the potential for future habitation. Understanding the distribution and composition of reduced carbon (or organic carbon) is critical for unraveling the Martian carbon cycle, potential for life, and possible biosignature record. Reduced carbon may be produced from biological, geochemical, or interstellar processes; however, evidence for reduced carbon on Mars is lacking with the exception of parts per billion of atmospheric methane. In contrast, abundant atmospheric carbon dioxide may reflect surface oxidation of reduced carbon and accumulation over geological timescales. This suggests that there is an undetected or lost pool of reduced carbon - a pool that may host molecular biosignatures, a characteristic of extant or extinct habitability. In this presentation, we will evaluate factors influencing the preservation potential for organic molecules in rocks on Earth and Martian. We,draw examples from organic molecules in sulfates, basalts, and ancient shales from Mars-analog settings to show how the distribution of organics and their structural patterns will aid Mars habitability studies.

  18. Midlatitude Ice-Rich Ground on Mars: An Important Target for Science and In Situ Resource Utilization on Human Missions

    Science.gov (United States)

    Stoker, Carol; Heldmann, Jennifer

    2015-01-01

    The region of ROI is characterized by proven presence of near surface ground ice and numerous periglacial features. Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars, the impact that changes in insolation produced by variations in Mars’ orbital parameters has on the regions climate, and could provide human exploration with a reliable and plentiful in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. Heldmann et al. (2014) studied locations on Mars in the Amazonis Planitia region where near surface ground ice was exposed by new impact craters (Byrne et al. 2009). The study examined whether sites in this region were suitable for human exploration including reviewing the evidence for midlatitude ground ice, discussing the possible explanations for its occurrence, assessing its potential habitability for modern life, and evaluating the resource potential. They systematically analyzed remote-sensing data sets to identify a viable landing site. Five sites where ground ice was exposed were examined with HiRise imaging and were classified according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. A suitable landing site was found having ground ice at only 0.15m depth, and no landing site hazards within a 25 km landing ellipse. This paper presents results of that study and examines the relevance of this ROI to the workshop goals.

  19. Wet Mars, Dry Mars

    Science.gov (United States)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2012-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This poster highlights the third in a series of presentations that target school-age audiences with the overall goal of helping the audience visualize planetary magnetic field and understand how they can impact the climatic evolution of a planet. Our first presentation, "Goldilocks and the Three Planets," targeted to elementary school age audiences, focuses on the differences in the atmospheres of Venus, Earth, and Mars and the causes of the differences. The second presentation, "Lost on Mars (and Venus)," geared toward a middle school age audience, highlights the differences in the magnetic fields of these planets and what we can learn from these differences. Finally, in the third presentation, "Wet Mars, Dry Mars," targeted to high school age audiences and the focus of this poster, the emphasis is on the long term climatic affects of the presence or absence of a magnetic field using the contrasts between Earth and Mars. These presentations are given using visually engaging spherical displays in conjunction with hands-on activities and scientifically accurate 3D models of planetary magnetic fields. We will summarize the content of our presentations, discuss our lessons learned from evaluations, and show (pictures of) our hands-on activities and 3D models.

  20. Winds Measured by the Rover Environmental Monitoring Station (REMS) During the Mars Science Laboratory (MSL) Rover's Bagnold Dunes Campaign and Comparison with Numerical Modeling Using MarsWRF

    Science.gov (United States)

    Newman, Claire E.; Gomez-Elvira, Javier; Marin, Mercedes; Navarro, Sara; Torres, Josefina; Richardson, Mark I.; Battalio, J. Michael; Guzewich, Scott D.; Sullivan, Robert; de la Torre, Manuel; hide

    2016-01-01

    A high density of REMS wind measurements were collected in three science investigations during MSL's Bagnold Dunes Campaign, which took place over approx. 80 sols around southern winter solstice (Ls approx. 90deg) and constituted the first in situ analysis of the environmental conditions, morphology, structure, and composition of an active dune field on Mars. The Wind Characterization Investigation was designed to fully characterize the near-surface wind field just outside the dunes and confirmed the primarily upslope/downslope flow expected from theory and modeling of the circulation on the slopes of Aeolis Mons in this season. The basic pattern of winds is 'upslope' (from the northwest, heading up Aeolis Mons) during the daytime (approx. 09:00-17:00 or 18:00) and 'downslope' (from the southeast, heading down Aeolis Mons) at night (approx. 20:00 to some time before 08:00). Between these times the wind rotates largely clockwise, giving generally westerly winds mid-morning and easterly winds in the early evening. The timings of these direction changes are relatively consistent from sol to sol; however, the wind direction and speed at any given time shows considerable intersol variability. This pattern and timing is similar to predictions from the MarsWRF numerical model, run at a resolution of approx. 490 m in this region, although the model predicts the upslope winds to have a stronger component from the E than the W, misses a wind speed peak at approx. 09:00, and under-predicts the strength of daytime wind speeds by approx. 2-4 m/s. The Namib Dune Lee Investigation reveals 'blocking' of northerly winds by the dune, leaving primarily a westerly component to the daytime winds, and also shows a broadening of the 1 Hz wind speed distribution likely associated with lee turbulence. The Namib Dune Side Investigation measured primarily daytime winds at the side of the same dune, in support of aeolian change detection experiments designed to put limits on the saltation

  1. The case for a modern multiwavelength, polarization-sensitive LIDAR in orbit around Mars

    International Nuclear Information System (INIS)

    Brown, Adrian J.; Michaels, Timothy I.; Byrne, Shane; Sun, Wenbo; Titus, Timothy N.; Colaprete, Anthony; Wolff, Michael J.; Videen, Gorden; Grund, Christian J.

    2015-01-01

    We present the scientific case to build a multiple-wavelength, active, near-infrared (NIR) instrument to measure the reflected intensity and polarization characteristics of backscattered radiation from planetary surfaces and atmospheres. We focus on the ability of such an instrument to enhance, potentially revolutionize, our understanding of climate, volatiles and astrobiological potential of modern-day Mars. Such an instrument will address the following three major science themes, which we address in this paper: Science Theme 1. Surface. This would include global, night and day mapping of H 2 O and CO 2 surface ice properties. Science Theme 2. Ice Clouds. This would including unambiguous discrimination and seasonal mapping of CO 2 and H 2 O ice clouds. Science Theme 3. Dust Aerosols. This theme would include multiwavelength polarization measurements to infer dust grain shapes and size distributions. - Highlights: • We present the scientific rationale for a multi-wavelength, polarization sensitive lidar to be placed in orbit around Mars. • Scientific questions focus on the Martian climate and modern-day interactions between surface, ice clouds and dust aerosols. • What we would learn about volatile transport and deposition has implications for past, present and future life on Mars

  2. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  3. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    Science.gov (United States)

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Mars-Microscopic imager-Multispectral imaging-Spectroscopy-Habitability-Arm instrument.

  4. Curiosity and the Four Seasons: In Situ Measurements of the Atmospheric Composition over Three Mars Years

    Science.gov (United States)

    Trainer, M. G.; Franz, H. B.; Mahaffy, P. R.; Malespin, C.; Wong, M. H.; Atreya, S. K.; Becker, R. H.; Conrad, P. G.; Lefèvre, F.; Manning, H. L. K.; Martin-Torres, F. J.; McConnochie, T.; McKay, C.; Navarro-Gonzalez, R.; Pepin, R. O.; Webster, C. R.; Zorzano, M. P.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument onboard the Mars Science Laboratory Curiosity rover measures the chemical composition of major atmospheric species in the vicinity of the rover through a dedicated atmospheric inlet. We report here on measurements of atmospheric volume mixing ratios in Gale Crater using the SAM quadrupole mass spectrometer (QMS), over a period of nearly three Mars years (5 Earth years) from landing. The observation period spans the southern winter of MY 31, solar longitude (Ls) of 175° through southern fall of MY 34, Ls = 12°. The initial mixing ratios measured by the SAM QMS were reported for the first 105 sols of the mission [1], and were updated to account for newly developed calibration factors [2]. The SAM QMS atmospheric measurements were continued, periodically interspersed between solid sample measurements and other rover activities, with a cumulative coverage of 4 or 5 experiments per season. The three major volatiles - CO2, N2, and 40Ar - are compatible with the annual pressure cycle but with a repeatable lag that indicates incomplete mixing and the influences of seasonal circulation patterns. The mixing ratios for the two inert, non-condensable species are qualitatively consistent with what is predicted from annual cycle of CO2 deposition and sublimation at the poles, which is manifested in a large enhancement of Ar mixing ratio at the winter poles (and assumed for N2) [3]. The mixing ratio for the minor species O2 appears to follow a distinct seasonal trend and may be indicative of possible deviations from known atmospheric chemistry or a surface flux of oxygen from an unknown source, or both. This unprecedented seasonal coverage and precision in mixing ratio determination provides valuable data for understanding the seasonal chemical and dynamics cycles. Further, this measurement campaign supplies useful ground-truth data for global climate model simulations, which can study atmospheric effects for other locations on Mars

  5. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  6. Size-Selective Modes of Aeolian Transport on Earth and Mars

    Science.gov (United States)

    Swann, C.; Ewing, R. C.; Sherman, D. J.; McLean, C. J.

    2016-12-01

    Aeolian sand transport is a dominant driver of surface change and dust emission on Mars. Estimates of aeolian sand transport on Earth and Mars rely on terrestrial transport models that do not differentiate between transport modes (e.g., creep vs. saltation), which limits estimates of the critical threshold for transport and the total sand flux during a transport event. A gap remains in understanding how the different modes contribute to the total sand flux. Experiments conducted at the MARtian Surface WInd Tunnel separated modes of transport for uniform and mixed grain size surfaces at Earth and Martian atmospheric pressures. Crushed walnut shells with a density of 1.0 gm/cm3 were used. Experiments resolved grain size distributions for creeping and saltating grains over 3 uniform surfaces, U1, U2, and U3, with median grain sizes of 308 µm, 721 µm, and 1294 µm, and a mixed grain size surface, M1, with median grain sizes of 519 µm. A mesh trap located 5 cm above the test bed and a surface creep trap were deployed to capture particles moving as saltation and creep. Grains that entered the creep trap at angles ≥ 75° were categorized as moving in creep mode only. Only U1 and M1 surfaces captured enough surface creep at both Earth and Mars pressure for statistically significant grain size analysis. Our experiments show that size selective transport differs between Earth and Mars conditions. The median grain size of particles moving in creep for both uniform and mixed surfaces are larger under Earth conditions. (U1Earth = 385 µm vs. U1Mars = 355 µm; M1Earth = 762 vs. M1Mars = 697 µm ). However, particles moving in saltation were larger under Mars conditions (U1Earth = 282 µm; U1Mars = 309 µm; M1Earth = 347 µm; M1Mars = 454 µm ). Similar to terrestrial experiments, the median size of surface creep is larger than the median grain size of saltation. Median sizes of U1, U2, U3 at Mars conditions for creep was 355 µm, 774 µm and 1574 µm. Saltation at Mars

  7. Mars Sample Return: The Critical Need for Planning a Meaningful and Participatory Public Engagement Program

    Science.gov (United States)

    Klug Boonstra, S.

    2018-04-01

    The Mars Sample Return campaign offers the prospect of an historical leap forward in the understanding of the science of Mars, and an unprecedented opportunity to engage our citizenry in one of the enduring questions of humanity, "Are we alone?".

  8. Monitoring the airborne dust and water vapor in the low atmosphere of Mars: the MEDUSA experiment for the ESA ExoMars mission

    Science.gov (United States)

    Esposito, Francesca; Colangeli, Luigi; Palumbo, Pasquale; Della Corte, Vincenzo; Molfese, Cesare; Merrison, Jonathan; Nornberg, Per; Lopez-Moreno, J. J.; Rodriguez Gomez, Julio

    Dust and water vapour are fundamental components of Martian atmosphere. Dust amount varies with seasons and with the presence of local and global dust storms, but never drops entirely to zero. Aerosol dust has always played a fundamental role on the Martian climate. Dust interaction with solar and thermal radiation and the related condensation and evaporation processes influence the thermal structure and balance, and the dynamics (in terms of circulation) of the atmosphere. Water vapour is a minor constituent of the Martian atmosphere but it plays a fundamental role and it is important as indicator of seasonal climate changes. Moreover, the interest about the water cycle on local and global scales is linked to the fundamental function that water could have played in relation to the existence of living organisms on Mars. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution, on which dust and water vapour have (and have had) strong influence. Moreover, nowadays, dust is a relevant agent that affects environmental conditions in the lower Martian atmosphere and, thus, may interact / interfere with any instrumentation delivered to Mars surface for in situ analyses. So, information on dust properties and deposition rate is also of great interest for future mission design. Knowledge of how much dust settles on solar arrays and the size and shape of particles will be crucial elements for designing missions that will operate by solar power for periods of several years and will have moving parts which will experience degradation by dust. This information is essential also for proper planning of future manned missions in relation to characterisation of environmental hazardous conditions. Little is known about dust structure and dynamics, so far. Size distribution is known only roughly and the mechanism of settling and rising into the atmosphere, the

  9. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  10. International cooperation for Mars exploration and sample return

    Science.gov (United States)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  11. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques: A Final Report on the very variable surface of Mars

    Science.gov (United States)

    Muller, Jan-Peter; Sidiropoulos, Panagiotis; Tao, Yu; Putri, Kiky; Campbell, Jacqueline; Xiong, Si-Ting; Gwinner, Klaus; Willner, Konrad; Fanara, Lida; Waehlisch, Marita; Walter, Sebastian; Schreiner, Bjoern; Steikert, Ralf; Ivanov, Anton; Cantini, Federico; Wardlaw, Jessica; Sprinks, James; Houghton, Robert; Kim, Jung-Rack

    2017-04-01

    change features and eventually for verification of change [7]. Scientific applications include change mapping over MC11E/W, the SPRC [8], mass movements near the North Pole [9]; dark streaks [10] CRISM mapping of mineralogy of dust in the SPRC "Swiss cheese" layers [11] and mapping of dune movement [12]. Examples of some of these will be shown. [1] Tao, Y. & J.-P. Muller LPSC16-2074; [2] Gwinner, K. et al. EPSC15-672; [3] Walter, S. et al. LPSC17-508; [4] Ivanov, A. & Cantini, F. EPSC16; [5] Sidiropoulos, P. & J.-P. Muller EPSC16; [6] Sprinks et al. EPSC16; [7] Wardlaw et al. EPSC16; [8] Putri et al., EPSC16;[9] Fanara, L. et al. LPSC16-2710; [10] Schreiner, B. et al., EPSC16; [11] Campbell, J.et al., EPSC16;[12] Kim, J-R., et al., EPSC16; Acknowledgements This research has received funding from the EU's FP7 Programme under iMars 607379. Partial support is also provided from the STFC Grant ST/K000977/1. iMars thanks the HRSC Experiment team at DLR, Institute of Planetary Research, Berlin, and at Freie Universität Berlin, the HRSC Science Team, as well as the Mars Express Project teams at ESTEC, ESOC, and ESAC for their successful planning, acquisition, and release of image data to the community.

  12. NASA Mars Conference

    International Nuclear Information System (INIS)

    Reiber, D.B.

    1988-01-01

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space

  13. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  14. An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.

    Science.gov (United States)

    Gonzales, Andrew A; Stoker, Carol R

    2016-06-01

    Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return

  15. Mars Sample Return Landed with Red Dragon

    Science.gov (United States)

    Stoker, Carol R.; Lemke, Lawrence G.

    2013-01-01

    A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged

  16. X-Ray Computed Tomography: The First Step in Mars Sample Return Processing

    Science.gov (United States)

    Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.

    2017-01-01

    The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and

  17. What makes a good experiment ? reasons and roles in science

    CERN Document Server

    Franklin, Allan

    2016-01-01

    What makes a good experiment? Although experimental evidence plays an essential role in science, as Franklin argues, there is no algorithm or simple set of criteria for ranking or evaluating good experiments, and therefore no definitive answer to the question. Experiments can, in fact, be good in any number of ways: conceptually good, methodologically good, technically good, and pedagogically important. And perfection is not a requirement: even experiments with incorrect results can be good, though they must, he argues, be methodologically good, providing good reasons for belief in their results. Franklin revisits the same important question he posed in his 1981 article in the British Journal for the Philosophy of Science, when it was generally believed that the only significant role of experiment in science was to test theories. But experiments can actually play a lot of different roles in science—they can, for example, investigate a subject for which a theory does not exist, help to articulate an existing ...

  18. Scientists are from Mars, educators are from Venus: Relationships in the ecosystem of science teacher preparation

    Science.gov (United States)

    Duggan-Haas, Don Andrew

    2000-10-01

    Great problems exist in science teaching from kindergarten through the college level (NRC, 1996; NSF, 1996). The problem may be attributed to the failure of teachers to integrate their own understanding of science content with appropriate pedagogy (Shulman, 1986, 1987). All teachers were trained by college faculty and therefore some of the blame for these problems rests on those faculty. This dissertation presents three models for describing secondary science teacher preparation. Two Programs, Two Cultures adapts C. P. Snow's classic work (1959) to describe the work of a science teacher candidate as that of an individual who navigates between two discrete programs: one in college science and the second in teacher education. The second model, Scientists Are from Mars, Educators Are from Venus adapts the popular work of John Gray to describe the system of science teacher education as hobbled by the dysfunctional relationships among the major players and describes the teacher as progeny from this relationship. The third model, The Ecosystem of Science Teacher Preparation reveals some of the deeper complexities of science teacher education and posits that the traditional college science approach treats students as a monoculture when great diversity in fact exists. The three models are described in the context of a large Midwestern university's teacher education program as that program is construed for future biology teachers. Four undergraduate courses typically taken by future biology teachers were observed and described: an introductory biology course; an introductory teacher education course; an upper division course in biochemistry and a senior level science teaching methods course. Seven second semester seniors who were biological Science majors were interviewed. All seven students had taken all of the courses observed. An organization of scientists and educators working together to improve science teaching from kindergarten through graduate school is also

  19. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  20. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M G; Ewing, R C; Lamb, M P; Fischer, W W; Grotzinger, J P; Rubin, D M; Lewis, K W; Ballard, M; Day, Mitch D.; Gupta, S.; Banham, S G; Bridges, N T; Des Marais, D J; Fraeman, A A; Grant, J A; Herkenhoff, Kenneth E.; Ming, D W; Mischna, M A; Rice, M S; Sumner, D A; Vasavada, A R; Yingst, R A

    2016-01-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  1. Large wind ripples on Mars: A record of atmospheric evolution

    Science.gov (United States)

    Lapotre, M. G. A.; Ewing, R. C.; Lamb, M. P.; Fischer, W. W.; Grotzinger, J. P.; Rubin, D. M.; Lewis, K. W.; Ballard, M. J.; Day, M.; Gupta, S.; Banham, S. G.; Bridges, N. T.; Des Marais, D. J.; Fraeman, A. A.; Grant, J. A.; Herkenhoff, K. E.; Ming, D. W.; Mischna, M. A.; Rice, M. S.; Sumner, D. A.; Vasavada, A. R.; Yingst, R. A.

    2016-07-01

    Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter- to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.

  2. 727.pdf | mar102006 | currsci | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; currsci; mar102006; 727.pdf. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube · Twitter · Facebook · Blog. Academy News. IAS Logo. Ethical Guidelines and Procedures document. Posted on 17 January 2017. A revised version of the ...

  3. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  4. Surface-based 3D measurements of small aeolian bedforms on Mars and implications for estimating ExoMars rover traversability hazards

    Science.gov (United States)

    Balme, Matt; Robson, Ellen; Barnes, Rob; Butcher, Frances; Fawdon, Peter; Huber, Ben; Ortner, Thomas; Paar, Gerhard; Traxler, Christoph; Bridges, John; Gupta, Sanjeev; Vago, Jorge L.

    2018-04-01

    Recent aeolian bedforms comprising loose sand are common on the martian surface and provide a mobility hazard to Mars rovers. The ExoMars rover will launch in 2020 to one of two candidate sites: Mawrth Vallis or Oxia Planum. Both sites contain numerous aeolian bedforms with simple ripple-like morphologies. The larger examples are 'Transverse Aeolian Ridges' (TARs), which stereo imaging analyses have shown to be a few metres high and up to a few tens of metres across. Where they occur, TARs therefore present a serious, but recognized and avoidable, rover mobility hazard. There also exists a population of smaller bedforms of similar morphology, but it is unknown whether these bedforms will be traversable by the ExoMars rover. We informally refer to these bedforms as "mini-TARs", as they are about an order of magnitude smaller than most TARs observed to date. They are more abundant than TARs in the Oxia Planum site, and can be pervasive in areas. The aim of this paper is to estimate the heights of these features, which are too small to measured using High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Models (DEMs), from orbital data alone. Thereby, we aim to increase our knowledge of the hazards in the proposed ExoMars landing sites. We propose a methodology to infer the height of these mini-TARs based on comparisons with similar features observed by previous Mars rovers. We use rover-based stereo imaging from the NASA Mars Exploration Rover (MER) Opportunity and PRo3D software, a 3D visualisation and analysis tool, to measure the size and height of mini-TARs in the Meridiani Planum region of Mars. These are good analogues for the smaller bedforms at the ExoMars rover candidate landing sites. We show that bedform height scales linearly with length (as measured across the bedform, perpendicular to the crest ridge) with a ratio of about 1:15. We also measured the lengths of many of the smaller aeolian bedforms in the ExoMars rover Oxia Planum

  5. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  6. Family Experiences, the Motivation for Science Learning and Science Achievement of Different Learner Groups

    Science.gov (United States)

    Schulze, Salomé; Lemmer, Eleanor

    2017-01-01

    Science education is particularly important for both developed and developing countries to promote technological development, global economic competition and economic growth. This study explored the relationship between family experiences, the motivation for science learning, and the science achievement of a group of Grade Nine learners in South…

  7. The Dimensions and Impact of Informal Science Learning Experiences on Middle Schoolers' Attitudes and Abilities in Science

    Science.gov (United States)

    Lin, Pei-Yi; Schunn, Christian D.

    2016-01-01

    Learners encounter science in a wide variety of contexts beyond the science classroom which collectively could be quite influential on student attitudes and abilities. But relatively little is known about the relative influence of different forms of informal science experiences, especially for the kinds of experiences that students typically…

  8. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  9. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  10. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  11. Architecting Learning Continuities for Families Across Informal Science Experiences

    Science.gov (United States)

    Perin, Suzanne Marie

    By first recognizing the valuable social and scientific practices taking place within families as they learn science together across multiple, everyday settings, this dissertation addresses questions of how to design and scaffold activities that build and expand on those practices to foster a deep understanding of science, and how the aesthetic experience of learning science builds connections across educational settings. Families were invited to visit a natural history museum, an aquarium, and a place or activity of the family's choice that they associated with science learning. Some families were asked to use a set of activities during their study visits based on the practices of science (National Research Council, 2012), which were delivered via smartphone app or on paper cards. I use design-based research, video data analysis and interaction analysis to examine how families build connections between informal science learning settings. Chapter 2 outlines the research-based design process of creating activities for families that fostered connections across multiple learning settings, regardless of the topical content of those settings. Implications of this study point to means for linking everyday family social practices such as questioning, observing, and disagreeing to the practices of science through activities that are not site-specific. The next paper delves into aesthetic experience of science learning, and I use video interaction analysis and linguistic analysis to show how notions of beauty and pleasure (and their opposites) are perfused throughout learning activity. Designing for aesthetic experience overtly -- building on the sensations of enjoyment and pleasure in the learning experience -- can motivate those who might feel alienated by the common conception of science as merely a dispassionate assembly of facts, discrete procedures or inaccessible theory. The third paper, a case study of a family who learns about salmon in each of the sites they visit

  12. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  13. Identification and visualisation of possible ancient ocean shoreline on Mars using submeter-resolution Digital Terrain Models

    Science.gov (United States)

    Świąder, Andrzej

    2014-12-01

    Digital Terrain Models (DTMs) produced from stereoscopic, submeter-resolution High Resolution Imaging Science Experiment (HiRISE) imagery provide a solid basis for all morphometric analyses of the surface of Mars. In view of the fact that a more effective use of DTMs is hindered by complicated and time-consuming manual handling, the automated process provided by specialists of the Ames Intelligent Robotics Group (NASA), Ames Stereo Pipeline, constitutes a good alternative. Four DTMs, covering the global dichotomy boundary between the southern highlands and northern lowlands along the line of the presumable Arabia shoreline, were produced and analysed. One of them included forms that are likely to be indicative of an oceanic basin that extended across the lowland northern hemisphere of Mars in the geological past. The high resolution DTMs obtained were used in the process of landscape visualisation.

  14. Exploration of Mars with the ChemCam LIBS Instrument and the Curiosity Rover

    Science.gov (United States)

    Newsom, Horton E.

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity rover landed on Mars in August 2012, and has been exploring the planet ever since. Dr. Horton E. Newsom will discuss the MSL's design and main goal, which is to characterize past environments that may have been conducive to the evolution and sustainability of life. He will also discuss Curiosity's science payload, and remote sensing, analytical capabilities, and direct discoveries of the Chemistry & Camera (ChemCam) instrument, which is the first Laser Induced Breakdown Spectrometer (LIBS) to operate on another planetary surface and determine the chemistry of the rocks and soils.

  15. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    Science.gov (United States)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  16. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  17. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    OpenAIRE

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-01-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that ...

  18. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences. Proceedings – Mathematical Sciences. Volumes & Issues. Volume 128. Issue 1. Mar 2018; Issue 2. Apr 2018. Volume 127. Issue 1. Feb 2017; Issue 2. Apr 2017; Issue 3. Jun 2017; Issue 4. Sep 2017; Issue 5. Nov 2017. Volume 126. Issue 1. Feb 2016; Issue 2

  19. MARS GLOBAL SURVEYOR RAW DATA SET - CRUISE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Global Surveyor (MGS) Radio Science (RS) Raw Data Archive (RDA) is a time-ordered collection of raw and partially processed data collected during the MGS...

  20. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  1. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  2. Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars

    Science.gov (United States)

    Chojnacki, Matthew; McEwen, Alfred; Dundas, Colin M.; Ojha, Lujendra; Urso, Anna; Sutton, Sarah

    2016-01-01

    One of the major Mars discoveries of recent years is the existence of recurring slope lineae (RSL), which suggests that liquid water occurs on or near the surface of Mars today. These dark and narrow features emerge from steep, rocky exposures and incrementally grow, fade, and reform on a seasonal basis and are detected in images from the High Resolution Imaging Science Experiment camera. RSL are known to occur at scattered midlatitude and equatorial sites with little spatial connection to one another. One major exception is the steep, low-albedo slopes of Melas and Coprates Chasmata, in Valles Marineris where RSL are detected among diverse geologic surfaces (e.g., bedrock and talus) and landforms (e.g., inselbergs and landslides). New images show topographic changes including sediment deposition on active RSL slopes. Midwall locations in Coprates and Melas appear to have more areally extensively abundant RSL and related fans as compared with other RSL sites found on Mars. Water budget estimates for regional RSL are on the order of 105 to 106 m3 of fluid, for depths of 10 to 100mm, and suggest that a significant amount of near-surface watermight be present. Many RSL are concentrated near local topographic highs, such as ridge crests or peaks, which is challenging to explain via groundwater or ice without a recharge mechanism. Collectively, results provide additional support for the notion that significant amounts of near-surface water can be found on Mars today and suggest that a widespread mechanism, possibly related to the atmosphere, is recharging RSL sources.

  3. CO2 Insulation for Thermal Control of the Mars Science Laboratory

    Science.gov (United States)

    Bhandari, Pradeep; Karlmann, Paul; Anderson, Kevin; Novak, Keith

    2011-01-01

    The National Aeronautics and Space Administration (NASA) is sending a large (>850 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars in 2011. The rover's primary power source is a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) that generates roughly 2000 W of heat, which is converted to approximately 110 W of electrical power for use by the rover electronics, science instruments, and mechanism-actuators. The large rover size and extreme thermal environments (cold and hot) for which the rover is designed for led to a sophisticated thermal control system to keep it within allowable temperature limits. The pre-existing Martian atmosphere of low thermal conductivity CO2 gas (8 Torr) is used to thermally protect the rover and its components from the extremely cold Martian environment (temperatures as low as -130 deg C). Conventional vacuum based insulation like Multi Layer Insulation (MLI) is not effective in a gaseous atmosphere, so engineered gaps between the warm rover internal components and the cold rover external structure were employed to implement this thermal isolation. Large gaps would lead to more thermal isolation, but would also require more of the precious volume available within the rover. Therefore, a balance of the degree of thermal isolation achieved vs. the volume of rover utilized is required to reach an acceptable design. The temperature differences between the controlled components and the rover structure vary from location to location so each gap has to be evaluated on a case-by-case basis to arrive at an optimal thickness. For every configuration and temperature difference, there is a critical thickness below which the heat transfer mechanism is dominated by simple gaseous thermal conduction. For larger gaps, the mechanism is dominated by natural convection. In general, convection leads to a poorer level of thermal isolation as compared to conduction. All these considerations play important roles in the

  4. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    Science.gov (United States)

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  5. To touch the science through the experiment!

    Science.gov (United States)

    Słowik, Grzegorz

    2016-04-01

    To touch the science through the experiment! Grzegorz P. Slowik, Gymnasium No. 2 in Zielona Gora, Poland Our School - Gymnasium No. 2 in Zielona Gora - where pupils' age is 13 -16, has for many years organized a lot of exciting events popularizing science among Zielona Gora children and young people, in particular experimental physics and astronomy. The best known in our town is the regular event on physics, - called the physical Festival of Zielona Gora, of which I am the main initiator and organizer. The Festival is directed to students of the last classes of Zielona Góra primary schools. During the Festivities their shows have also physicists and astronomers, from cooperating with us in popularization of science Zielona Gora University. At the festival the students from our Experimental School Group "Archimedes". Presented their own prepared themselves physical experience. With considerable help of students of Gymnasium No. 2 interested in astronomy, we organize the cyclical event, named "Cosmic Santa Claus," where I share with the students the knowledge gained through my active annual participation in the Space Workshop organized by the Science Centre in Warsaw. We all have fun and learn in a great way and with a smile, we touch real science that reveals its secrets!

  6. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Shiro, B.; Palaia, J.; Ferrone, K.

    2009-12-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already starting to take advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priority for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a six-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS) on Devon Island in the Canadian Arctic. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with “Earth,” the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted regular blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of their field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Maps or Google Earth. Although the crew observed a strict 20-minute communication delay with “Earth” to simulate a real Mars mission, they broke this rule to conduct four very successful live webcasts with student groups using Skype since education and public outreach were important objectives of the endeavor. This presentation will highlight the use of Web 2.0 technologies for public outreach during the simulated Mars expedition and the implications for other remote scientific journeys. The author embarks on a "rover" to carry out an EVA near the FMARS Habitat. The satellite dish to the right of the structure was used for all communications with the remote

  7. Mars Ascent Vehicle-Propellant Aging

    Science.gov (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  8. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    Science.gov (United States)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  9. Science Festivals: Grand Experiments in Public Outreach

    Science.gov (United States)

    Hari, K.

    2015-12-01

    Since the Cambridge Science Festival launched in 2007, communities across the United States have experimented with the science festival format, working out what it means to celebrate science and technology. What have we learned, and where might we go from here? The Science Festival Alliance has supported and tracked developments among U.S. festivals, and this presentation will present key findings from three years of independent evaluation. While science festivals have coalesced into a distinct category of outreach activity, the diversity of science festival initiatives reflects the unique character of the regions in which the festivals are organized. This symposium will consider how festivals generate innovative public programming by adapting to local conditions and spur further innovation by sharing insights into such adaptations with other festivals. With over 55 annual large scale science festivals in the US alone, we will discuss the implications of a dramatic increase in future festival activity.

  10. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences. José M Sigarreta. Articles written in Proceedings – Mathematical Sciences. Volume 120 Issue 5 November 2010 pp 593-609. Gromov Hyperbolicity in Cartesian Product Graphs · Junior Michel José M Rodríguez José M Sigarreta María Villeta · More Details Abstract ...

  11. The ISS as a platform for a fully simulated mars voyage

    Science.gov (United States)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  12. Fossil life on Mars

    Science.gov (United States)

    Walter, M. R.

    1989-01-01

    Three major problems beset paleontologists searching for morphological evidence of life on early Earth: selecting a prospective site; finding biogenic structures; and distinguishing biogenic from abiogenic structures. The same problems arise on Mars. Terrestrial experience suggests that, with the techniques that can be employed remotely, ancient springs, including hot springs, are more prospective than lake deposits. If, on the other hand, the search is for chemical evidence, the strategy can be very different, and lake deposits are attractive targets. Lakes and springs frequenly occur in close proximity, and therefore a strategy that combines the two would seem to maximize the chance of success. The strategy for a search for stromatolite on Mars is discussed.

  13. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  14. The Mars 2020 Rover Mission: EISD Participation in Mission Science and Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A. S.; Ross, A.

    2014-01-01

    The Mars 2020 Rover mission will search for potential biosignatures on the martian surface, use new techniques to search for and identify tracelevel organics, and prepare a cache of samples for potential return to Earth. Identifying trace organic compounds is an important tenet of searching for potential biosignatures. Previous landed missions have experienced difficulty identifying unambiguously martian, unaltered organic compounds, possibly because any organic species have been destroyed on heating in the presence of martian perchlorates and/or other oxidants. The SHERLOC instrument on Mars 2020 will use ultraviolet (UV) fluorescence and Raman spectroscopy to identify trace organic compounds without heating the samples.

  15. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong [Hanyang Univ., Seoul (Korea, Republic of)

    2014-05-15

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  16. Preliminary Numerical Analysis of Convective Heat Transfer Loop Using MARS Code

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Gwang Hyeok; Jeun, Gyoodong; Kim, Sung Joong

    2014-01-01

    The MARS has been developed adopting two major modules: RELAP5/MOD3 (USA) for one-dimensional (1D) two-fluid model for two-phase flows and COBRA-TF code for a three-dimensional (3D), two-fluid, and three-field model. In addition to the MARS code, TRACE (USA) is a modernized thermal-hydraulics code designed to consolidate and extend the capabilities of NRC's 3 legacy safety code: TRAC-P, TRAC-B and RELAP. CATHARE (French) is also thermal-hydraulic system analysis code for Pressurized Water Reactor (PWR) safety. There are several researches on comparing experimental data with simulation results by the MARS code. Kang et al. conducted natural convection heat transfer experiments of liquid gallium loop, and the experimental data were compared to MARS simulations. Bang et al. examined the capability of the MARS code to predict condensation heat transfer experiments with a vertical tube containing a non-condensable gas. Moreover, Lee et al. adopted MELCOR, which is one of the severe accident analysis codes, to evaluate several strategies for the severe accident mitigation. The objective of this study is to conduct the preliminary numerical analysis for the experimental loop at HYU using the MARS code, especially in order to provide relevant information on upcoming experiments for the undergraduate students. In this study, the preliminary numerical analysis for the convective heat transfer loop was carried out using the MARS Code. The major findings from the numerical simulations can be summarized as follows. In the calculations of the outlet and surface temperatures, the several limitations were suggested for the upcoming single-phase flow experiments. The comparison work for the HTCs shows validity for the prepared input model. This input could give useful information on the experiments. Furthermore, the undergraduate students in department of nuclear engineering, who are going to be taken part in the experiments, could prepare the program with the input, and will

  17. Reconstructing Iconic Experiments in Electrochemistry: Experiences from a History of Science Course

    Science.gov (United States)

    Eggen, Per-Odd; Kvittingen, Lise; Lykknes, Annette; Wittje, Roland

    2012-01-01

    The decomposition of water by electricity, and the voltaic pile as a means of generating electricity, have both held an iconic status in the history of science as well as in the history of science teaching. These experiments featured in chemistry and physics textbooks, as well as in classroom teaching, throughout the nineteenth and twentieth…

  18. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    Science.gov (United States)

    Anderson, Ryan B.; Bell, James F.

    2013-03-01

    the relationship between SWIR multispectral imaging data and APXS- and Mössbauer-derived composition/mineralogy is often weak, a perhaps not entirely unexpected result given the different surface sampling depths of SWIR imaging (uppermost few microns) vs. APXS (tens of μm) and MB measurements (hundreds of μm). Results from the upcoming Mars Science Laboratory (MSL) rover’s ChemCam Laser Induced Breakdown Spectroscopy (LIBS) instrument may show a closer relationship to Mastcam SWIR multispectral observations, however, because the initial laser shots onto a target will analyze only the upper few micrometers of the surface. The clustering and classification methods used in this study can be applied to any data set to formalize the definition of classes and identify targets that do not fit in previously defined classes.

  19. IDENTIFYING SURFACE CHANGES ON HRSC IMAGES OF THE MARS SOUTH POLAR RESIDUAL CAP (SPRC

    Directory of Open Access Journals (Sweden)

    A. R. D. Putri

    2016-06-01

    Full Text Available The surface of Mars has been an object of interest for planetary research since the launch of Mariner 4 in 1964. Since then different cameras such as the Viking Visual Imaging Subsystem (VIS, Mars Global Surveyor (MGS Mars Orbiter Camera (MOC, and Mars Reconnaissance Orbiter (MRO Context Camera (CTX and High Resolution Imaging Science Experiment (HiRISE have been imaging its surface at ever higher resolution. The High Resolution Stereo Camera (HRSC on board of the European Space Agency (ESA Mars Express, has been imaging the Martian surface, since 25th December 2003 until the present-day. HRSC has covered 100 % of the surface of Mars, about 70 % of the surface with panchromatic images at 10-20 m/pixel, and about 98 % at better than 100 m/pixel (Neukum et. al., 2004, including the polar regions of Mars. The Mars polar regions have been studied intensively recently by analysing images taken by the Mars Express and MRO missions (Plaut et al., 2007. The South Polar Residual Cap (SPRC does not change very much in volume overall but there are numerous examples of dynamic phenomena associated with seasonal changes in the atmosphere. In particular, we can examine the time variation of layers of solid carbon dioxide and water ice with dust deposition (Bibring, 2004, spider-like channels (Piqueux et al., 2003 and so-called Swiss Cheese Terrain (Titus et al., 2004. Because of seasonal changes each Martian year, due to the sublimation and deposition of water and CO2 ice on the Martian south polar region, clearly identifiable surface changes occur in otherwise permanently icy region. In this research, good quality HRSC images of the Mars South Polar region are processed based on previous identification as the optimal coverage of clear surfaces (Campbell et al., 2015. HRSC images of the Martian South Pole are categorized in terms of quality, time, and location to find overlapping areas, processed into high quality Digital Terrain Models (DTMs and

  20. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    Science.gov (United States)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  1. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    Science.gov (United States)

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.

  2. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  3. Mars SubsurfAce Sounding by Time-Domain Electromagnetic MeasuRements

    Science.gov (United States)

    Tacconi, G.; Minna, L.; Pagnan, S.; Tacconi, M.

    1999-09-01

    MASTER (Mars subsurfAce Sounding by Time-domain Electromagnetic measuRements) is an experimental project proposed to fly aboard the Italian Drill (DEEDRI) payload for the Mars Surveyor Program 2003. MASTER will offer the scientific community the first opportunity to scan Mars subsurface structure by means of the technique employing time-domain electromagnetic measurements TDEM. Up today proposed experiments for scanning the Martian subsurface have focused on exploring the crust of the planet Mars up to few meters, while MASTER will explore electrical structures and related soil characteristics and processes at depths up to hundreds meters at least. TDEM represents an active remote sensing system and will be used likely a ULF/ELF/VLF ``radar." If a certain volumetric zone has different electrical conductivity, the current in the sample will vary generating a secondary scattered electromagnetic field containing the information about the explored volume. The volumetric mean value of the conductivity will be estimated according to the implicit near field e.m. propagation conditions, considering the skin depth (d) and the apparent resistivity (ra) as the most representative and critical parameters. As any active remotely sensed measurements the TDEM system behaves like a ``bistatic" communication channel and is mandatory to investigate the characteristics of the background noise at the receiver site. The MASTER system, can operate also as a passive listening device of the possible electromagnetic background noise on the Mars surface at ULF/ELF/VLF bands. Present paper will describe in details the application of the TDEM method as well as the approaches to the detection and estimation of the e.m. BGN on Mars surface, in terms of man made, natural BGN and intrinsic noise of the sensors and electronic systems. The electromagnetic background noise detection/estimation represents by itself a no cost experiment and the first experiment of this type on Mars.

  4. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    Science.gov (United States)

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  5. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars

    Science.gov (United States)

    Nunez, Jorge; Farmer, Jack; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars.

  6. More Life-Science Experiments For Spacelab

    Science.gov (United States)

    Savage, P. D., Jr.; Dalton, B.; Hogan, R.; Leon, H.

    1991-01-01

    Report describes experiments done as part of Spacelab Life Sciences 2 mission (SLS-2). Research planned on cardiovascular, vestibular, metabolic, and thermal responses of animals in weightlessness. Expected to shed light on effects of prolonged weightlessness on humans.

  7. MetBaro - Pressure Instrument for Mars MetNet Lander

    Science.gov (United States)

    Polkko, J.; Haukka, H.; Harri, A.-M.; Schmidt, W.; Leinonen, J.; Mäkinen, T.

    2009-04-01

    THE METNET MISSION FOCUSED ON THE Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetBaro is the pressure instrument of MetNet Lander designed to work on Martian surface. It is based on Barocap® technology developed by Vaisala, Inc. MetBaro is a capacitic type of sensing device where capasitor plates are moved by ambient pressure. MetBaro device consists of two pressure transducers including a total of 6 Barocap® sensor heads of high-stability and high-resolution types. The long-term stability of MetBaro is in order of 20…50 µBar and resolution a few µBar. MetBaro is small, lightweighed and has low power consumption. It weighs about 50g without wires and controlling FPGA, and consumes 15 mW of power. A similar device has successfully flown in Phoenix mission, where it performed months of measurements on Martian ground. Another device is also part of the Mars Science Laboratory REMS instrument (to be launched in 2011).

  8. Changes in Urban Youths' Attitude Towards Science and Perception of a Mobile Science Lab Experience

    Science.gov (United States)

    Fox, Jared

    This dissertation examined changes in urban youth's attitude towards science as well as their perception of the informal science education setting and third space opportunity provided by the BioBus, a mobile science lab. Science education researchers have often suggested that informal science education settings provide one possible way to positively influence student attitude towards science and engage marginalized urban youth within the traditional science classroom (Banks et al., 2007; Hofstein & Rosenfeld, 1996; National Research Council, 2009; Schwarz & Stolow, 2006; Stocklmayer, Rennie, & Gilbert, 2010). However, until now, this possibility has not been explored within the setting of a mobile science lab nor examined using a theoretical framework intent on analyzing how affective outcomes may occur. The merits of this analytical stance were evaluated via observation, attitudinal survey, open-response questionnaire, and interview data collected before and after a mobile science lab experience from a combination of 239 students in Grades 6, 8, 9, 11, and 12 from four different schools within a major Northeastern metropolitan area. Findings from this study suggested that urban youth's attitude towards science changed both positively and negatively in statistically significant ways after a BioBus visit and that the experience itself was highly enjoyable. Furthermore, implications for how to construct a third space within the urban science classroom and the merits of utilizing the theoretical framework developed to analyze cultural tensions between urban youth and school science are discussed. Key Words: Attitude towards science, third space, mobile science lab, urban science education.

  9. Evaporation Rates of Brine on Mars

    Science.gov (United States)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  10. Reflectance and Thermal Infrared Spectroscopy of Mars: Relationship Between ISM and TES for Compositional Determinations

    Science.gov (United States)

    Boyce, Joseph (Technical Monitor); Mustard, John

    2004-01-01

    Reflectance spectroscopy has demonstrated that high albedo surfaces on Mars contain heavily altered materials with some component of hematite, poorly crystalline ferric oxides, and an undefined silicate matrix. The spectral properties of many low albedo regions indicate crystalline basalts containing both low and high calcium pyroxene, a mineralogy consistent with the basaltic SNC meteorites. The Thermal Emission Spectrometer (TES) experiment on the Mars Geochemical Surveyor has acquired critical new data relevant to surface composition and mineralogy, but in a wavelength region that is complementary to reflectance spectroscopy. The essence of the completed research was to analyze TES data in the context of reflectance data obtained by the French ISM imaging spectrometer experiment in 1989. This approach increased our understanding of the complementary nature of these wavelength regions for mineralogic determinations using actual observations of the martian surface. The research effort focused on three regions of scientific importance: Syrtis Major-Isidis Basin, Oxia Palus-Arabia, and Valles Marineris. In each region distinct spatial variations related to reflectance, and in derived mineralogic information and interpreted compositional units were analyzed. In addition, specific science questions related to the composition of volcanics and crustal evolution, soil compositions and pedogenic processes, and the relationship between pristine lithologies and weathering provided an overall science-driven framework for the work. The detailed work plan involved colocation of TES and ISM data, extraction of reflectance and emissivity spectra from areas of known reflectance variability, and quantitative analysis using factor analysis and statistical techniques to determine the degree of correspondence between these different wavelength regions. Identified coherent variations in TES spectroscopy were assessed against known atmospheric effects to validate that the variations

  11. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    Science.gov (United States)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  12. Deformed barchans under alternating flows: Flume experiments and comparison with barchan dunes within Proctor Crater, Mars

    Science.gov (United States)

    Taniguchi, Keisuke; Endo, Noritaka

    2007-10-01

    It is generally considered that barchans, isolated crescentic-shaped dunes, develop where wind is unidirectional and the available sand is insufficient to cover the entire dune field; however, Bishop [Bishop, M.A., 2001. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki Simpson desert, Australia. Earth Surface Process and Landforms 26, 783 791.] observed barchans that developed in areas where winds blow seasonally in opposite directions and described a peculiar deformation feature, the “rear slipface,” that is not found in ordinary barchans. Barchans under such bidirectional flows are poorly understood, and it is necessary to study barchans that formed under many different flow conditions. We conducted flume experiments to investigate the deformation of barchans under alternating water flow, and observed new deformation features in addition to rear slipfaces. We conclude that the deformation of barchans can be categorized into four types, one of which shows morphologies similar to barchans within Proctor Crater, Mars. The deformation type depends on the strength of the reverse flow relative to the forward flow and the absolute velocity of the forward flow. Comparison of our results with barchan dunes within Proctor Crater enable us to qualitatively estimate the wind strength and direction related to dune formation on Mars. These results are in agreement with those of Fenton et al. [Fenton, L.K., Toigo, A.D., Richardson, M.I., 2005. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research 110 (E6), E06005.].

  13. A New Generation of Telecommunications for Mars: The Reconfigurable Software Radio

    Science.gov (United States)

    Adams, J.; Horne, W.

    2000-01-01

    Telecommunications is a critical component for any mission at Mars as it is an enabling function that provides connectivity back to Earth and provides a means for conducting science. New developments in telecommunications, specifically in software - configurable radios, expand the possible approaches for science missions at Mars. These radios provide a flexible and re-configurable platform that can evolve with the mission and that provide an integrated approach to communications and science data processing. Deep space telecommunication faces challenges not normally faced by terrestrial and near-earth communications. Radiation, thermal, highly constrained mass, volume, packaging and reliability all are significant issues. Additionally, once the spacecraft leaves earth, there is no way to go out and upgrade or replace radio components. The reconfigurable software radio is an effort to provide not only a product that is immediately usable in the harsh space environment but also to develop a radio that will stay current as the years pass and technologies evolve.

  14. Smectite Formation in Acid Sulfate Environments on Mars

    Science.gov (United States)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  15. Motivation and career outcomes of a precollege life science experience for underrepresented minorities

    Science.gov (United States)

    Ortega, Robbie Ray

    Minorities continue to be underrepresented in professional science careers. In order to make Science, Technology, Engineering, and Mathematics (STEM) careers more accessible for underrepresented minorities, informal science programs must be utilized to assist in developing interest in STEM for minority youth. In addition to developing interest in science, informal programs must help develop interpersonal skills and leadership skills of youth, which allow youth to develop discrete social behaviors while creating positive and supportive communities thus making science more practical in their lives. This study was based on the premise that introducing underrepresented youth to the agricultural and life sciences through an integrated precollege experience of leadership development with university faculty, scientist, and staff would help increase youths' interest in science, while also increasing their interest to pursue a STEM-related career. Utilizing a precollege life science experience for underrepresented minorities, known as the Ag Discovery Camp, 33 middle school aged youth were brought to the Purdue University campus to participate in an experience that integrated a leadership development program with an informal science education program in the context of agriculture. The week-long program introduced youth to fields of agriculture in engineering, plant sciences, food sciences, and entomology. The purpose of the study was to describe short-term and intermediate student outcomes in regards to participants' interests in career activities, science self-efficacy, and career intentions. Youth were not interested in agricultural activities immediately following the precollege experience. However, one year after the precollege experience, youth expressed they were more aware of agriculture and would consider agricultural careers if their first career choice did not work out for them. Results also showed that the youth who participated in the precollege experience were

  16. Suited versus unsuited analog astronaut performance using the Aouda.X space suit simulator: the DELTA experiment of MARS2013.

    Science.gov (United States)

    Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta

    2015-04-01

    Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.

  17. Geographies of Mars seeing and knowing the red planet

    CERN Document Server

    Lane, K Maria D

    2010-01-01

    One of the first maps of Mars, published by an Italian astronomer in 1877, with its pattern of canals, fueled belief in intelligent life forms on the distant red planet-a hope that continued into the 1960s. Although the Martian canals have long since been dismissed as a famous error in the history of science, K. Maria D. Lane argues that there was nothing accidental about these early interpretations. Indeed, she argues, the construction of Mars as an incomprehensibly complex and engineered world both reflected and challenged dominant geopolitical themes during a time of majo

  18. Implementation of R134a Thermophysical Properties for MARS Application

    Energy Technology Data Exchange (ETDEWEB)

    Son, Gyu Min; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    MARS requires 3 files for analysis: executable MARS file, input, and thermodynamic property file (tpf) for target fluids like light water or heavy water. Most experiments and scenarios were interested in behavior of water so original tpfs were sufficient enough for analysis. As MARS application became wider, needs for other fluid properties rose since MARS do not have extra function to interpret foreign materials that does not have tpf. One way of solving this problem is to generate external tpf file and if successfully implemented, this methodology could widen the application of MARS to other fields of engineering. Thus, this study aims for tpf generation of R134a. The reasons for its selection is because R134a is currently used in refrigerator and frequently used in flow boiling experiment related with heat transfer coefficient and CHF measurement. Generation methods of tpf were discussed. Conventional tpfh2o utilized Gibbs function to calculate the properties. However, since that method could not be applied to other fluids, fitting equation with temperature and pressure variables were applied from R134a property database. Direct implementation of theses equations simplified the structure of main program.

  19. Taking our own medicine: on an experiment in science communication.

    Science.gov (United States)

    Horst, Maja

    2011-12-01

    In 2007 a social scientist and a designer created a spatial installation to communicate social science research about the regulation of emerging science and technology. The rationale behind the experiment was to improve scientific knowledge production by making the researcher sensitive to new forms of reactions and objections. Based on an account of the conceptual background to the installation and the way it was designed, the paper discusses the nature of the engagement enacted through the experiment. It is argued that experimentation is a crucial way of making social science about science communication and engagement more robust.

  20. The Sample Analysis at Mars Investigation and Instrument Suite

    Science.gov (United States)

    Mahaffy, Paul; Webster, Christopher R.; Conrad, Pamela G.; Arvey, Robert; Bleacher, Lora; Brinckerhoff, William B.; Eigenbrode, Jennifer L.; Chalmers, Robert A.; Dworkin, Jason P.; Errigo, Therese; hide

    2012-01-01

    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory (MSL) addresses the chemical and isotopic composition of the atmosphere and volatiles extracted from solid samples. The SAM investigation is designed to contribute substantially to the mission goal of quantitatively assessing the habitability of Mars as an essential step in the search for past or present life on Mars. SAM is a 40 kg instrument suite located in the interior of MSL's Curiosity rover. The SAM instruments are a quadrupole mass spectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupled through solid and gas processing systems to provide complementary information on the same samples. The SAM suite is able to measure a suite of light isotopes and to analyze volatiles directly from the atmosphere or thermally released from solid samples. In addition to measurements of simple inorganic compounds and noble gases SAM will conduct a sensitive search for organic compounds with either thermal or chemical extraction from sieved samples delivered by the sample processing system on the Curiosity rover's robotic arm,

  1. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  2. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  3. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  4. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  5. Astrobiology in the Field: Studying Mars by Analogue Expeditions on Earth

    Science.gov (United States)

    Conrad, Pamela G.

    2011-01-01

    We will present a strategy for how one prepares to engage in fieldwork on another planets by practicing in analogous environments on the Earth, including at Mono Lake. As an example, we will address the problem of how to study the habitability of an environment when you have no idea what kind of life might be there to exploit it. This will all be related to the upcoming launch of the Mars Science Laboratory to Mars in late November this year.

  6. Earth at Rest. Aesthetic Experience and Students' Grounding in Science Education

    Science.gov (United States)

    Østergaard, Edvin

    2017-07-01

    Focus of this article is the current situation characterized by students' de-rootedness and possible measures to improve the situation within the frame of education for sustainable development. My main line of argument is that science teachers can practice teaching in such a way that students are brought in deeper contact to the environment. I discuss efforts to promote aesthetic experience in science class and in science teacher education. Within a wide range of definitions, my main understanding of aesthetic experience is that of pre-conceptual experience, relational to the environment and incorporated in students' embodied knowledge. I ground the idea of Earth at rest in Husserl's phenomenological philosophy and Heidegger's notion of science' deprivation of the world. A critique of the ontological reversal leads to an ontological re-reversal that implies giving lifeworld experience back its value and rooting scientific concepts in students' everyday lives. Six aspects of facilitating grounding in sustainability-oriented science teaching and teacher education are highlighted and discussed: students' everyday knowledge and experience, aesthetic experience and grounding, fostering aesthetic sensibility, cross-curricular integration with art, ontological and epistemological aspects, and belongingness and (re-)connection to Earth. I conclude that both science students and student-teachers need to practice their sense of caring and belonging, as well as refining their sensibility towards the world. With an intension of educating for a sustainable development, there is an urgent need for a critical discussion in science education when it comes to engaging learners for a sustainable future.

  7. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  8. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    Science.gov (United States)

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  9. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  10. MetHumi - Humidity Device for Mars MetNet Lander

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Harri, Ari-Matti; Schmidt, Walter; Leinonen, Jussi; Mäkinen, Teemu; Haukka, Harri

    2010-05-01

    MetNet Mars Mission focused for Martian atmospheric science is based on a new semihard landing vehicle called the MetNet Lander (MNL). The MNL will have a versatile science payload focused on the atmospheric science of Mars. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. MetHumi is the humidity sensor of MetNet Lander designed to work on Martian surface. It is based on Humicap® technology developed by Vaisala, Inc. MetHumi is a capacitive type of sensing device where an active polymer film changes capacitance as function of relative humidity. One MetHumi device package consists of one humidity transducer including three Humicap® sensor heads, an accurate temperature sensor head (Thermocap® by Vaisala, Inc.) and constant reference channels. MetHumi is very small, lightweighed and has low power consumption. It weighs only about 15 g without wires, and consumes 15 mW of power. MetHumi can make meaningful relative humidity measurements in range of 0 - 100%RH down to -70°C ambient temperature, but it survives even -135°C ambient temperature.

  11. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  12. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  13. The human story of Crew 173- capturing a Mars analog mission

    Science.gov (United States)

    Shaw, Niamh; Musilova, Michaela; Pons Lorente, Arnau; Sisaid, Idriss; Naor, Roy; Blake, Richard

    2017-04-01

    An international crew of six scientists, engineers, artists and entrepreneurs with different space specialisations were selected by the Mars Society to take part in a Martian simulation in January 2017. An ambitious outreach and media strategy was developed, aimed at communicating the benefits of missions to Mars to the public and to capture the public's interest by telling the human story of the crew's mission. Entitled Crew 173 Team PRIMA, they entered the Mars Desert Research Station in the Utah Desert and conducted research in 3D printing, hydroponics, geology and astronomy. Both the scientific and community experience of this mission was documented through still image, video, audio, diary and daily journalling by the resident artist of the mission, Niamh Shaw. The full experience of the crew was documented (before, during and after the expedition), to capture each individual experience of the crew and the human experience of isolation of future human space missions.

  14. Mars bevares

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hendricks, Elbert

    2009-01-01

    2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen......2009 er femåret for Mission Mars. I den anledning opridser de to kronikører, far og søn, hvorfor man bør lade planer om en bemandet tur til Mars forblive i skrivebordsskuffen...

  15. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  16. The Mars Hand Lens Imager (MAHLI) aboard the Mars rover, Curiosity

    Science.gov (United States)

    Edgett, K. S.; Ravine, M. A.; Caplinger, M. A.; Ghaemi, F. T.; Schaffner, J. A.; Malin, M. C.; Baker, J. M.; Dibiase, D. R.; Laramee, J.; Maki, J. N.; Willson, R. G.; Bell, J. F., III; Cameron, J. F.; Dietrich, W. E.; Edwards, L. J.; Hallet, B.; Herkenhoff, K. E.; Heydari, E.; Kah, L. C.; Lemmon, M. T.; Minitti, M. E.; Olson, T. S.; Parker, T. J.; Rowland, S. K.; Schieber, J.; Sullivan, R. J.; Sumner, D. Y.; Thomas, P. C.; Yingst, R. A.

    2009-08-01

    The Mars Science Laboratory (MSL) rover, Curiosity, is expected to land on Mars in 2012. The Mars Hand Lens Imager (MAHLI) will be used to document martian rocks and regolith with a 2-megapixel RGB color CCD camera with a focusable macro lens mounted on an instrument-bearing turret on the end of Curiosity's robotic arm. The flight MAHLI can focus on targets at working distances of 20.4 mm to infinity. At 20.4 mm, images have a pixel scale of 13.9 μm/pixel. The pixel scale at 66 mm working distance is about the same (31 μm/pixel) as that of the Mars Exploration Rover (MER) Microscopic Imager (MI). MAHLI camera head placement is dependent on the capabilities of the MSL robotic arm, the design for which presently has a placement uncertainty of ~20 mm in 3 dimensions; hence, acquisition of images at the minimum working distance may be challenging. The MAHLI consists of 3 parts: a camera head, a Digital Electronics Assembly (DEA), and a calibration target. The camera head and DEA are connected by a JPL-provided cable which transmits data, commands, and power. JPL is also providing a contact sensor. The camera head will be mounted on the rover's robotic arm turret, the DEA will be inside the rover body, and the calibration target will be mounted on the robotic arm azimuth motor housing. Camera Head. MAHLI uses a Kodak KAI-2020CM interline transfer CCD (1600 x 1200 active 7.4 μm square pixels with RGB filtered microlenses arranged in a Bayer pattern). The optics consist of a group of 6 fixed lens elements, a movable group of 3 elements, and a fixed sapphire window front element. Undesired near-infrared radiation is blocked using a coating deposited on the inside surface of the sapphire window. The lens is protected by a dust cover with a Lexan window through which imaging can be ac-complished if necessary, and targets can be illuminated by sunlight or two banks of two white light LEDs. Two 365 nm UV LEDs are included to search for fluores-cent materials at night. DEA

  17. SOLID2: an antibody array-based life-detector instrument in a Mars Drilling Simulation Experiment (MARTE).

    Science.gov (United States)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A; Moreno-Paz, Mercedes; Rivas, Luis A; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  18. MASS MOVEMENTS' DETECTION IN HIRISE IMAGES OF THE NORTH POLE OF MARS

    Directory of Open Access Journals (Sweden)

    L. Fanara

    2016-06-01

    Full Text Available We are investigating change detection techniques to automatically detect mass movements at the steep north polar scarps of Mars, in order to improve our understanding of these dynamic processes. Here we focus on movements of blocks specifically. The precise detection of such small changes requires an accurate co-registration of the images, which is achieved by ortho-rectifying them using High Resolution Imaging Science Experiment (HiRISE Digital Terrain Models (DTMs. Moreover, we deal with the challenge of deriving the true shape of the moved blocks. In a next step, these results are combined with findings based on HiRISE DTMs from different points in time in order to estimate the volume of mass movements.

  19. Jesús and María in the jungle: an essay on possibility and constraint in the third-shift third space

    Science.gov (United States)

    Richardson Bruna, Katherine

    2009-03-01

    One hundred years ago, Upton Sinclair, in The Jungle, exposed the deplorable working conditions of eastern European immigrants in the meatpacking houses of Chicago. The backdrop of this article is the new Jungle of the 21st century—the hog plants of the rural Midwest. Here I speak to the lives of the Mexican workers they employ, and, more specifically, the science-learning experiences and aspirations of third-shifters, Jesús and María. I use these students' stories as an opportunity to examine the take-up, in education, of the concept of hybridity, and, more particularly, to interrogate what I have come to regard as the "third space fetish." My principle argument is that Bhabha's understanding of liberatory Third Space has been distorted, in education, through teacher-centered and power-neutral multicultural discourse. I call for a more robust approach to hybridity in science education research, guided by the lessons of possibility and constraint contained in Jesús' and María's third-shift third space lives.

  20. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-03-15

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.