WorldWideScience

Sample records for science energy resources

  1. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  2. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  3. U.S. Geological Survey Energy and Minerals science strategy: a resource lifecycle approach

    Science.gov (United States)

    Ferrero, Richard C.; Kolak, Jonathan J.; Bills, Donald J.; Bowen, Zachary H.; Cordier, Daniel J.; Gallegos, Tanya J.; Hein, James R.; Kelley, Karen D.; Nelson, Philip H.; Nuccio, Vito F.; Schmidt, Jeanine M.; Seal, Robert R.

    2013-01-01

    The economy, national security, and standard of living of the United States depend heavily on adequate and reliable supplies of energy and mineral resources. Based on population and consumption trends, the Nation’s use of energy and minerals can be expected to grow, driving the demand for ever broader scientific understanding of resource formation, location, and availability. In addition, the increasing importance of environmental stewardship, human health, and sustainable growth places further emphasis on energy and mineral resources research and understanding. Collectively, these trends in resource demand and the interconnectedness among resources will lead to new challenges and, in turn, require cutting- edge science for the next generation of societal decisions. The long and continuing history of U.S. Geological Survey contributions to energy and mineral resources science provide a solid foundation of core capabilities upon which new research directions can grow. This science strategy provides a framework for the coming decade that capitalizes on the growth of core capabilities and leverages their application toward new or emerging challenges in energy and mineral resources research, as reflected in five interrelated goals.

  4. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  5. Learning About Energy Resources Through Student Created Video Documentaries in the University Science Classroom

    Science.gov (United States)

    Wade, P.; Courtney, A.

    2010-12-01

    Students enrolled in an undergraduate non-science majors’ Energy Perspectives course created 10-15 minute video documentaries on topics related to Energy Resources and the Environment. Video project topics included wave, biodiesel, clean coal, hydro, solar and “off-the-grid” energy technologies. No student had any prior experience with creating video projects. Students had Liberal Arts academic backgrounds that included Anthropology, Theater Arts, International Studies, English and Early Childhood Education. Students were required to: 1) select a topic, 2) conduct research, 3) write a narrative, 4) construct a project storyboard, 5) shoot or acquire video and photos (from legal sources), 6) record the narrative, and 7) construct the video documentary. This study describes the instructional approach of using student created video documentaries as projects in an undergraduate non-science majors’ science course. Two knowledge survey instruments were used for assessment purposes. Each instrument was administered Pre-, Mid- and Post course. One survey focused on the skills necessary to research and produce video documentaries. Results showed students acquired enhanced technology skills especially with regard to research techniques, writing skills and video editing. The second survey assessed students’ content knowledge acquired from each documentary. Results indicated students’ increased their content knowledge of energy resource topics. Students reported very favorable evaluations concerning their experience with creating “Ken Burns” video project documentaries.

  6. NETL's Energy Data Exchange (EDX) - a coordination, collaboration, and data resource discovery platform for energy science

    Science.gov (United States)

    Rose, K.; Rowan, C.; Rager, D.; Dehlin, M.; Baker, D. V.; McIntyre, D.

    2015-12-01

    Multi-organizational research teams working jointly on projects often encounter problems with discovery, access to relevant existing resources, and data sharing due to large file sizes, inappropriate file formats, or other inefficient options that make collaboration difficult. The Energy Data eXchange (EDX) from Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is an evolving online research environment designed to overcome these challenges in support of DOE's fossil energy goals while offering improved access to data driven products of fossil energy R&D such as datasets, tools, and web applications. In 2011, development of NETL's Energy Data eXchange (EDX) was initiated and offers i) a means for better preserving of NETL's research and development products for future access and re-use, ii) efficient, discoverable access to authoritative, relevant, external resources, and iii) an improved approach and tools to support secure, private collaboration and coordination between multi-organizational teams to meet DOE mission and goals. EDX presently supports fossil energy and SubTER Crosscut research activities, with an ever-growing user base. EDX is built on a heavily customized instance of the open source platform, Comprehensive Knowledge Archive Network (CKAN). EDX connects users to externally relevant data and tools through connecting to external data repositories built on different platforms and other CKAN platforms (e.g. Data.gov). EDX does not download and repost data or tools that already have an online presence. This leads to redundancy and even error. If a relevant resource already has an online instance, is hosted by another online entity, EDX will point users to that external host either using web services, inventorying URLs and other methods. EDX offers users the ability to leverage private-secure capabilities custom built into the system. The team is presently working on version 3 of EDX which will incorporate big data analytical

  7. User Facilities of the Office of Basic Energy Sciences: A National Resource for Scientific Research

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well beyond the scope of any non-government institution and open up otherwise inaccessible facets of Nature to scientific inquiry. For approved, peer-reviewed projects, instrument time is available without charge to researchers who intend to publish their results in the open literature. These large-scale user facilities have made significant contributions to various scientific fields, including chemistry, physics, geology, materials science, environmental science, biology, and biomedical science. Over 16,000 scientists and engineers.pdf file (27KB) conduct experiments at BES user facilities annually. Thousands of other researchers collaborate with these users and analyze the data measured at the facilities to publish new scientific findings in peer-reviewed journals.

  8. World energy resources

    Directory of Open Access Journals (Sweden)

    Clerici A.

    2015-01-01

    Full Text Available As energy is the main “fuel” for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  9. World energy resources

    Science.gov (United States)

    Clerici, A.; Alimonti, G.

    2015-08-01

    As energy is the main "fuel" for social and economic development and since energy-related activities have significant environmental impacts, it is important for decision-makers to have access to reliable and accurate data in an user-friendly format. The World Energy Council (WEC) has for decades been a pioneer in the field of energy resources and every three years publishes its flagship report Survey of Energy Resources. A commented analysis in the light of latest data summarized in such a report, World Energy Resources (WER) 2013, is presented together with the evolution of the world energy resources over the last twenty years.

  10. Renewable energy resources

    DEFF Research Database (Denmark)

    Ellabban, Omar S.; Abu-Rub, Haitham A.; Blaabjerg, Frede

    2014-01-01

    Electric energy security is essential, yet the high cost and limited sources of fossil fuels, in addition to the need to reduce greenhouse gasses emission, have made renewable resources attractive in world energy-based economies. The potential for renewable energy resources is enormous because...... they can, in principle, exponentially exceed the world's energy demand; therefore, these types of resources will have a significant share in the future global energy portfolio, much of which is now concentrating on advancing their pool of renewable energy resources. Accordingly, this paper presents how...... renewable energy resources are currently being used, scientific developments to improve their use, their future prospects, and their deployment. Additionally, the paper represents the impact of power electronics and smart grid technologies that can enable the proportionate share of renewable energy...

  11. Resources | Energy Plan

    Science.gov (United States)

    Skip to main content Navigate Up This page location is: Department for Energy Development and Independence Department for Energy Development and Independence Resources Pages EnergyPlan Sign In Ky.gov An Official Website of the Commonwealth of Kentucky Energy and Environment Cabinet Department for Energy

  12. Students' meaning making in science: solving energy resource problems in virtual worlds combined with spreadsheets to develop graphs

    Science.gov (United States)

    Krange, Ingeborg; Arnseth, Hans Christian

    2012-09-01

    The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource consumption. The data were gathered in 1st grade upper-secondary science classes and they constitute the basis for the interaction analysis of students' meaning making with representations. Our analyses demonstrate the difficulties involved in developing students' orientation toward more conceptual orientations to representations of the knowledge domain. Virtual worlds do not in themselves represent a solution to this problem.

  13. Renewable energy resources

    CERN Document Server

    Twidell, John

    2015-01-01

    Renewable Energy Resources is a numerate and quantitative text covering the full range of renewable energy technologies and their implementation worldwide. Energy supplies from renewables (such as from biofuels, solar heat, photovoltaics, wind, hydro, wave, tidal, geothermal, and ocean-thermal) are essential components of every nation's energy strategy, not least because of concerns for the local and global environment, for energy security and for sustainability. Thus in the years between the first and this third edition, most renewable energy technologies have grown from fledgling impact to s

  14. A Project to Develop an Associate of Science Degree Curriculum in Renewable Energy Resources and Applications in Agriculture. Final Report, July 1, 1980-June 30, 1981.

    Science.gov (United States)

    Allen, Keith; Fielding, Marvin R.

    A project was conducted at State Fair Community College (SFCC) in Sedalia, Missouri, to develop an associate of science degree curriculum in renewable energy resources and their application in agriculture. A pilot study, designed to verify and rate the importance of 138 competencies in fuel alcohol production and to ascertain employment…

  15. Energy and other resources

    International Nuclear Information System (INIS)

    Rosenqvist, I.Th.

    It is pointed out that inorganic mineral raw materials, usually called ores, do not form a separate geological class, with a strictly defined limit in quantity. The raw materials are in fact present in continuously variable concentrations and amounts with differing geographical distribution. It is only the richest occurrences which are regarded as resources and exploited. The cone concept of available material is presented, where the amount of material available increases as the work invested is increased, but the profitable ore is represented only by the apex of the cone. In applying this idea to fossil fuels the concept must be modified to a 'pear', since the energy invested in retrieving the fuel must not exceed the energy content of the fuel. Renewable energy sources are also discussed, and it is pointed out that geothermal energy should not be regarded as renewable. It is pointed out, too, that, unless breeder reactors are introduced, the fossil fuel resources will give more energy than uranium, and probably cheaper. (JIW)Ψ

  16. Biomass energy resource enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Grover, P D [Indian Institute of Technology, New Delhi (India)

    1995-12-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO{sub 2}, to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world`s present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  17. Biomass energy resource enhancement

    International Nuclear Information System (INIS)

    Grover, P.D.

    1995-01-01

    The demand for energy in developing countries is expected to increase to at least three times its present level within the next 25 years. If this demand is to be met by fossil fuels, an additional 2 billion tonnes of crude oil or 3 billion tonnes of coal would be needed every year. This consumption pattern, if allowed to proceed, would add 10 billion tonnes of CO 2 , to the global atmosphere each year, with its attendant risk of global warming. Therefore, just for our survival, it is imperative to progressively replace fossil fuels by biomass energy resources and to enhance the efficiency of use of the latter. Biomass is not only environmentally benign but is also abundant. It is being photosynthesised at the rate of 200 billion tonnes of carbon every year, which is equivalent to 10 times the world's present demand for energy. Presently, biomass energy resources are highly under-utilised in developing countries; when they are used it is through combustion, which is inefficient and causes widespread environmental pollution with its associated health hazards. Owing to the low bulk density and high moisture content of biomass, which make it difficult to collect, transport and store, as well as its ash-related thermochemical properties, its biodegradability and seasonal availability, the industrial use of biomass is limited to small and (some) medium-scale industries, most of which are unable to afford efficient but often costly energy conversion systems. Considering these constraints and the need to enhance the use base, biomass energy technologies appropriate to developing countries have been identified. Technologies such as briquetting and densification to upgrade biomass fuels are being adopted as conventional measures in some developing countries. The biomass energy base can be enhanced only once these technologies have been shown to be viable under local conditions and with local raw materials, after which they will multiply on their own, as has been the case

  18. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  19. Elementary Science Resource Guide.

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This guide for elementary teachers provides information on getting ideas into action, designing and implementing the right situation, ways in which to evaluate science process activities with students, and seven sample units. The units cover using the senses, magnets, forces, weather forecasting, classification of living things, and the physical…

  20. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  1. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  2. Unconventional Energy Resources: 2015 Review

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  3. NASA Space Science Resource Catalog

    Science.gov (United States)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  4. Assessment of rural energy resources

    International Nuclear Information System (INIS)

    Rijal, K.; Bansal, N.K.; Grover, P.D.

    1990-01-01

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity

  5. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  6. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  7. 2007 Survey of Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-09-15

    This WEC study is a unique comprehensive compilation of global energy resources. Complementing the BP Statistical Review and the World Energy Outlook, it details 16 key energy resources with the latest data provided by 96 WEC Member Committees worldwide. This highly regarded publication is an essential tool for governments, NGOs, industry, academia and the finance community. This 21st edition is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy.

  8. Western Energy Corridor -- Energy Resource Report

    International Nuclear Information System (INIS)

    Roberts, Leslie; Hagood, Michael

    2011-01-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  9. Western Energy Corridor -- Energy Resource Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  10. Energy Sciences Network (ESnet)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Sciences Network is the Department of Energy’s high-speed network that provides the high-bandwidth, reliable connections that link scientists at national...

  11. Wind energy prospecting: socio-economic value of a new wind resource assessment technique based on a NASA Earth science dataset

    Science.gov (United States)

    Vanvyve, E.; Magontier, P.; Vandenberghe, F. C.; Delle Monache, L.; Dickinson, K.

    2012-12-01

    Wind energy is amongst the fastest growing sources of renewable energy in the U.S. and could supply up to 20 % of the U.S power production by 2030. An accurate and reliable wind resource assessment for prospective wind farm sites is a challenging task, yet is crucial for evaluating the long-term profitability and feasibility of a potential development. We have developed an accurate and computationally efficient wind resource assessment technique for prospective wind farm sites, which incorporates innovative statistical techniques and the new NASA Earth science dataset MERRA. This technique produces a wind resource estimate that is more accurate than that obtained by the wind energy industry's standard technique, while providing a reliable quantification of its uncertainty. The focus now is on evaluating the socio-economic value of this new technique upon using the industry's standard technique. Would it yield lower financing costs? Could it result in lower electricity prices? Are there further down-the-line positive consequences, e.g. job creation, time saved, greenhouse gas decrease? Ultimately, we expect our results will inform efforts to refine and disseminate the new technique to support the development of the U.S. renewable energy infrastructure. In order to address the above questions, we are carrying out a cost-benefit analysis based on the net present worth of the technique. We will describe this approach, including the cash-flow process of wind farm financing, how the wind resource assessment factors in, and will present current results for various hypothetical candidate wind farm sites.

  12. Energy and water resources

    International Nuclear Information System (INIS)

    1981-12-01

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  13. ENERGY RESOURCES CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, Virginia

    1979-11-01

    First I will give a short history of this Center which has had three names and three moves (and one more in the offing) in three years. Then I will tell you about the accomplishments made in the past year. And last, I will discuss what has been learned and what is planned for the future. The Energy and Environment Information Center (EEIC), as it was first known, was organized in August 1975 in San Francisco as a cooperative venture by the Federal Energy Administration (FEA), Energy Research and Development Administration (ERDA) and the Environmental Protection Agency (EPA). These three agencies planned this effort to assist the public in obtaining information about energy and the environmental aspects of energy. The Public Affairs Offices of FEA, ERDA and EPA initiated the idea of the Center. One member from each agency worked at the Center, with assistance from the Lawrence Berkeley Laboratory Information Research Group (LBL IRG) and with on-site help from the EPA Library. The Center was set up in a corner of the EPA Library. FEA and ERDA each contributed one staff member on a rotating basis to cover the daily operation of the Center and money for books and periodicals. EPA contributed space, staff time for ordering, processing and indexing publications, and additional money for acquisitions. The LBL Information Research Group received funds from ERDA on a 189 FY 1976 research project to assist in the development of the Center as a model for future energy centers.

  14. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, Tokai, Ibaraki (Japan)

    2010-12-15

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  15. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    International Nuclear Information System (INIS)

    Sasaki, Yuji; Koyama, Shinichi; Ozawa, Masaki

    2010-12-01

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  16. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E. A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  17. Optimal utilization of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.A.

    1977-10-15

    General principles that should guide the extraction of New Zealand's energy resources are presented. These principles are based on the objective of promoting the general economic and social benefit obtained from the use of the extracted fuel. For a single resource, the central question to be answered is, simply, what quantity of energy should be extracted in each year of the resource's lifetime. For the energy system as a whole the additional question must be answered of what mix of fuels should be used in any year. The analysis of optimal management of a single energy resource is specifically discussed. The general principles for optimal resource extraction are derived, and then applied to the examination of the characteristics of the optimal time paths of energy quantity and price; to the appraisal of the efficiency, in resource management, of various market structures; to the evaluation of various energy pricing policies; and to the examination of circumstances in which market organization is inefficient and the guidelines for corrective government policy in such cases.

  18. Energy Resource Planning. Optimal utilization of energy resources

    International Nuclear Information System (INIS)

    Miclescu, T.; Domschke, W.; Bazacliu, G.; Dumbrava, V.

    1996-01-01

    For a thermal power plants system, the primary energy resources cost constitutes a significant percentage of the total system operational cost. Therefore a small percentage saving in primary energy resource allocation cost for a long term, often turns out to be a significant monetary value. In recent years, with a rapidly changing fuel supply situation, including the impact of energy policies changing, this area has become extremely sensitive. Natural gas availability has been restricted in many areas, coal production and transportation cost have risen while productivity has decreased, oil imports have increased and refinery capacity failed to meet demand. The paper presents a mathematical model and a practical procedure to solve the primary energy resource allocation. The objectives is to minimise the total energy cost over the planning period subject to constraints with regards to primary energy resource, transportation and energy consumption. Various aspects of the proposed approach are discussed, and its application to a power system is illustrated.(author) 2 figs., 1 tab., 3 refs

  19. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  20. World energy resources. International Geohydroscience and Energy Research Institute

    International Nuclear Information System (INIS)

    Brown, C.E.

    2002-01-01

    World Energy Resources is an explanatory energy survey of the countries and major regions of the world, their geographic and economic settings, and significant inter-relationships. This book attempts to combine several interacting energy themes that encompass a historical development, energy issues and forecasts, economic geography, environmental programs, and world energy use. The main thrust of this book -World Energy Resources - is based on principles of energy science, applied geology, geophysics, and other environmental sciences as they relate to the exploration, exploitation, and production of resources in this country and throughout the world. This work is an analysis of the United States (USA) and world oil, gas, coal, and alternative energy resources and their associated issues, forecasts, and related policy. This book could not have been attempted without a broad geological exposure and international geographic awareness. Much information is scattered among federal and state agencies, schools, and other institutions, and this book has attempted to combine some of the vast information base. This attempt can only skim the information surface at best, but its regional and topical coverage is broad in scope. Part I introduces conventional energy resources and their historical developments, and includes chapters 1 to 7. The basic concepts and supporting facts on energy sources are presented here for the general education of energy analysts, policy makers, and scientists that desire a brief review of advanced technologies and history. Part II includes chapters 8 to 14 and provides discussions of the renewable energy sources and the available alternative energy sources and technologies to oil, gas, coal, and nuclear sources. Part III includes chapters 15 to 20 and provides an analysis of United States energy markets and forecasts through the first quarter of the 21st century, while including some world energy data. Widely-used energy forecasting models are

  1. Making ''unconventional'' energy resources conventional

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, D A; Bresee, J C; Cooper, M J; Herwig, L O; Kintner, E E

    1977-01-01

    Three ''unconventional'' energy technologies - geothermal, solar and fusion - looked upon in the United States as possessing significant potential for the large scale production of energy. Both fusion and solar energy promise virtually inexhaustible supplies in the long term while geothermal resources offer a relatively near term prospect for more modest, but still significant, energy contributions. Realizing energy production from any of these technologies will require: (1) a great deal of scientific information and/or engineering development; (2) a significant effort to achieve and insure attractive economics; and (3) the development of adequate industrial capacity and technological infrastructure. Here the status of the United States Energy Research and Development Administration's technology development programs in geothermal, solar and fusion energy systems is reviewed. Recent advances in overcoming significant technological barriers are discussed and future directions are described. Special needs and unique opportunities for contributions to each technology are also set forth.

  2. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  3. Electrochemistry and energy science

    International Nuclear Information System (INIS)

    Vijh, A.K.

    1980-01-01

    The purpose of the paper is to delineate the structure of moder electrochemistry and to elucidate the manner in which electrochemical ideas and techniques contribute to the development of power sources and the the advancement of energy science. One example of such an application is the prevention of corrosion in the coolant circuit of a nuclear power station, or its decontamination; another is the use of electrolysis for final upgrading of heavy water. (N.D.H.)

  4. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  5. Climate and Offshore Energy Resources.

    Science.gov (United States)

    1980-12-30

    SECuRITY CL.ASSIPIcaTIoN OF, TIns PA@elm VaeVa CLMATE ANID OFFSHORE ENERGY RESOUACES A distinguished group of government officials, scientists, engineers...about the mech- anisms of climatic systems, and gaining a better understanding of the impact of climatic change on human resources.* He continued by...atmospheric constit- uents, but he particularly emphasized " changes " in C02. He suggested that the atmospheric conditions may be better now than they were half

  6. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  7. Auctions for coastal energy resources

    Science.gov (United States)

    Griffin, Robert M.

    It is becoming increasingly common to allocate public resources to the private sector for the purpose of developing these resources. One of the earliest uses of auctions in the U.S. for allocating rights to public resources was in the offshore oil and gas industry. The U.S. Federal government, through the Department of Interior (DOI), has used auctions to allocate development rights to offshore oil and gas resources to the private sector since the 1950's. Since then many things have changed. Oil and gas markets have gone through boom and bust cycles, giant technological advances in extraction and assessment have taken place, and alternative energy based in the coastal zone is now in demand in markets as well. There has been an enormous amount of research into the drivers of bidder behavior in auctions and optimal auction design in the last 60 years as well. Throughout all of this, the DOI has continued to use basically the same exact auction design to allocate oil and gas leases. The U.S. offshore oil and gas resources sold by the Department of Interior have accounted for more than $65 billion in revenue since the program started. These offshore resources are an important source of government revenue and national wealth. Additionally, the expansion of the energy sector offshore has enormous potential for electricity generation in the U.S., estimated by the National Renewable Energy Laboratory as approaching 54 gigawatts by 2030 (U.S. Department of Energy, 2008). Taken together, the DOI controls access to a large part of the future of energy in the U.S. The research herein assesses the auction formats used to allocate both fossil fuels and renewable resources on the Outer Continental Shelf (OCS). The first manuscript looks at the current method used by the DOI to allocate oil and gas leases on the OCS, and is primarily interested in how bidders behave in this environment. Using latent class estimation techniques to separate distinct bidding behavior in a laboratory

  8. Renewable Energy Resources in Lebanon

    Science.gov (United States)

    Hamdy, R.

    2010-12-01

    The energy sector in Lebanon plays an important role in the overall development of the country, especially that it suffers from many serious problems. The fact that Lebanon is among the few countries that are not endowed with fossil fuels in the Middle East made this sector cause one third of the national debt in Lebanon. Despite the large government investments in the power sector, demand still exceeds supply and Lebanon frequently goes through black out in peak demand times or has to resort to importing electricity from Syria. The Energy production sector has dramatic environmental and economical impacts in the form of emitted gasses and environment sabotage, accordingly, it is imperative that renewable energy (RE) be looked at as an alternative energy source. Officials at the Ministry of Energy and Water (MEW) and Lebanese Electricity (EDL) have repeatedly expressed their support to renewable energy utilization. So far, only very few renewable energy applications can be observed over the country. Major efforts are still needed to overcome this situation and promote the use of renewable energy. These efforts are the shared responsibility of the government, EDL, NGO's and educational and research centers. Additionally, some efforts are being made by some international organizations such as UNDP, ESCWA, EC and other donor agencies operating in Lebanon. This work reviews the status of Energy in Lebanon, the installed RE projects, and the potential projects. It also reviews the stakeholders in the field of RE in Lebanon Conclusion In considering the best R.E. alternative, it is important to consider all potential R.E. sources, their costs, market availability, suitability for the selected location, significance of the energy produced and return on investment. Several RE resources in Lebanon have been investigated; Tides and waves energy is limited and not suitable two tentative sites for geothermal energy are available but not used. Biomass resources badly affect the

  9. Mankind and energy: Needs - resources - hopes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A study-week, promoted by the Pontifical Academy of Sciences (PAS) and held in the Vatican City on 10-15 November 1980, examined thoroughly the theme: ''Mankind and Energy: Needs - Resources - Hopes''. The study-week was sponsored by the PAS, organized by the French physicist Prof. Andre Blanc-Lapierre, and was presided over by the well-known biophysicist Prof. Carlos Chagas, who is also President of the same Pontifical Academy of Sciences. The volume ''Humanite et Energie: Besoins - Ressources - Espoirs'', with all the proceedings of the study-week, may be obtained on request from the Cancelleria della Pontificia Accademia delle Scienze, Casina Pio IV, Citta del Vaticano. (author)

  10. Energy, information science, and systems science

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  11. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  12. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  13. Resource area environment/energy

    International Nuclear Information System (INIS)

    1994-01-01

    The document comprises a detailed analysis of the business economics of resources related to energy and the environment. Non-domestic and domestic conditions influencing the business economics of this subject area, its infrastructure, problems and future perspectives are dealt with. Tables (amongst other forms of information) indicate the turnover, exports, and numbers of involved employees, workplaces and firms involved in supply, general production, consultancy and production connected with the building sector. The energy sector is the most significant in this respect, giving 30,000 employed (18% in state institutions), a turnover of 63 billion Danish kroner, and with an export of 16 billion Danish kroner. The environmental sector employs 15,000 (29% in the public sector), the total turnover is 20 billion Danish kroner and of this 3 billion Danish kroner is related to export. Many firms are relatively small. A number of firms could compete internationally and this number is growing. (AB) (79 refs.)

  14. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  15. Wind Energy Resource Atlas of the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  16. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards

  17. Proceedings. Future Energy - Resources, Distribution and Use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Leading abstract. The goals of the Norwegian Academy of Technological Sciences (NTVA) are to promote research, education and development within technological and related sciences, for the benefit of the Norwegian society and for the development of Norwegian industry. Future energy policy and Global climate change are major issues in the Norwegian discussion today. The answers given have great influence on our industry and involve huge technological challenges. In the current situation NTVA wishes to contribute to the development of new technology. In 1998 the Norwegian Academy of Technological Sciences organized the seminar ''Do We Understand Global Climate Change''. NTVA have now followed this up with a seminar on the Energy System, one of the major sources of manmade greenhouse gases. The world's demand for energy increases with improvements in our standards of living. The cleaning of emissions from production processes requires more energy. A modem information and communication society requires more energy. A new life style with increased use of all kinds of motorized tools is also leading to growth in energy consumption. Due to the risk in this human contribution to global warming, a major shift in the Energy System towards environmental sustain ability is being discussed. Changing the Energy System will require large investments in know-how and technology development, and it will take a long time to alter the rigid infrastructure of our existing Energy System. The road to the ''Clean Energy Society'' probably cannot be built by prescribing the use of one technology only. It makes a lot more sense to encourage competition between different technologies and then let experience and the market decide the winners. It will also be important to invest in the development of robust knowledge that can be applied within a broad spectrum of possible development scenarios during the next decades. Society's attitudes towards the environment, energy and the use of resources

  18. Science Activities in Energy: Electrical Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Presented is a science activities in energy package which includes 16 activities relating to electrical energy. Activities are simple, concrete experiments for fourth, fifth and sixth grades which illustrate principles and problems relating to energy. Each activity is outlined in a single card which is introduced by a question. A teacher's…

  19. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  20. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  1. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  2. National Center for Mathematics and Science - teacher resources

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | PROGRAM OVERVIEW | RESEARCH AND PROFESSIONAL DEVELOPMENT support and improve student understanding of mathematics and science. The instructional resources listed Resources (CD)Powerful Practices in Mathematics and Science A multimedia product for educators, professional

  3. Energy resources and their utilization in a 40-year perspective up to 2050. A synthesis of the work done by the Energy Committee at the Royal Swedish Academy of Sciences

    International Nuclear Information System (INIS)

    2010-06-01

    Global trends in energy supply and consumption are unsustainable. The major energy carriers, the fossil fuels, besides being depleted, cause severe damage to environment and health. But the energy demand by a growing world population has to be satisfied. The greatest potential for increased supply of non-fossil energy up to 2050 are in the first place to be found in the already established power sources, hydro, nuclear, wind and bioenergy. Among other renewable energy sources it seems very likely that solar energy will also be a major provider of electricity by 2050 when also more should be known about the potential of water waves, now at the demo stage. Other energy alternatives still on the research level include artificial photosynthesis, 4th generation nuclear fission reactors, fusion energy, hydrogen as an energy carrier. In addition, totally unexpected discoveries and solutions may emerge out of research and science. In parallel to a changeover to non-fossil energy, a more efficient use of energy must be achieved. For this, increased use of electricity and more efficient heating and cooling systems are key elements. Bearing in mind that the major portion of a growing global population needs to improve their well-being, it is hard to see how the energy can be reduced before 2050. However, the fossil energy must decrease. According to the Energy Committee's studies, non-fossil energy could increase from current 30 000 to 80 000 TWh. The fossil energy is derived, using forecasts for oil and gas reserves, and the amount of coal production is taken to be consistent with the two degree goal. The result is an increase of energy supply from 140 000 to 170 000 TWh where 90 000 TWh (54%) is fossil energy to be compared with the 2007 figure of 110 000 TWh (80%). In these projections, electricity increases from 20 000 to 45 000 TWh because it is produced by all the renewable. Electricity has a high exergy value and can be used much more efficiently than a corresponding

  4. Science Activities in Energy: Wind Energy.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Included in this science activities energy package are 12 activities related to wind energy for elementary students. Each activity is outlined on a single card and is introduced by a question. Topics include: (1) At what time of day is there enough wind to make electricity where you live?; (2) Where is the windiest spot on your schoolground?; and…

  5. Wind Energy Resource Atlas of Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-07-01

    This wind energy resource atlas identifies the wind characteristics and distribution of the wind resource in the country of Armenia. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation and off-grid wind energy applications. The maps portray the wind resource with high-resolution (1-km2) grids of wind power density at 50-m above ground. The wind maps were created at the National Renewable Energy Laboratory (NREL) using a computerized wind mapping system that uses Geographic Information System (GIS) software.

  6. Distributed Energy Resource (DER) Cybersecurity Standards

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Danish [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnson, Jay [Sandia National Laboratories

    2017-11-08

    This presentation covers the work that Sandia National Laboratories and National Renewable Energy Laboratory are doing for distributed energy resource cybersecurity standards, prepared for NREL's Annual Cybersecurity & Resilience Workshop on October 9-10, 2017.

  7. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  8. Energy Efficiency Resources to Support State Energy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-06-01

    An early step for most energy efficiency planning is to identify and quantify energy savings opportunities, and then to understand how to access this potential. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy offers resources that can help with both of these steps. This fact sheet presents those resources. The resources are also available on the DOE State and Local Solution Center on the "Energy Efficiency: Savings Opportunities and Benefits" page: https://energy.gov/eere/slsc/energy-efficiency-savings-opportunities-and-benefits.

  9. The science of energy

    CERN Document Server

    Newton, Roger G

    2012-01-01

    This book aims to describe the scientific concepts of energy. Accessible to readers with no scientific education beyond high-school chemistry, it starts with the basic notion of energy and the fundamental laws that govern it, such as conservation, and explains the various forms of energy, such as electrical, chemical, and nuclear. It then proceeds to describe ways in which energy is stored for very long times in the various fossil fuels (petroleum, gas, coal) as well as for short times (flywheels, pumped storage, batteries, fuel cells, liquid hydrogen). The book also discusses the modes of transport of energy, especially those of electrical energy via lasers and transmission lines, as well as why the latter uses alternating current at high voltages. The altered view of energy introduced by quantum mechanics is also discussed, as well as how almost all the Earth's energy originates from the Sun. Finally, the history of the forms of energy in the course of development of the universe is described, and how this ...

  10. The renewable energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Lingova, S.; Trifonova, L.

    1996-01-01

    The paper presents the results from the joint study between the National Laboratory of Renewable Energy Resources of USA and the National Institute of Meteorology and Hydrology, Sofia (BG). The geographical distribution of solar and wind energy potential in Bulgaria as well as inventory of biomass is studied. Calculation of total, available and reserve solar and wind resources is performed. Comparative data on all kind of renewable energy resources in Bulgaria are presented. The evaluation of economically accessible resources and feasibility of implementation of specific technologies is given. 7 refs., 1 tab

  11. Wind Energy Resource Atlas of Oaxaca

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Oaxaca Wind Resource Atlas, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group, is the result of an extensive mapping study for the Mexican State of Oaxaca. This atlas identifies the wind characteristics and distribution of the wind resource in Oaxaca. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  12. Basic science budget and SSC. Hearing before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, April 12, 1988

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Numerous witnesses present testimony and documents in the review of the Department of Energy's funding request for the Superconducting Super Collider accelerator and basic sciences. Information is provided by scientific and technical experts, federal and state officials, and academic institutions

  13. Applying Landscape Science to Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Guy M. Robinson

    2013-03-01

    Full Text Available This is the introduction to the Ecology and Society special feature on "Applying Landscape Science to Natural Resource Management". Primarily drawing upon examples from Australia, the nine papers in the feature illustrate how landscape science seeks to integrate information from diverse sources to generate management solutions for implementation by individual land managers, communities, and governments at different levels. This introduction refers to the genesis of the feature, briefly outlines the nature and content of landscape science, and then summarizes key features of the nine papers. These are organized into two sections: one deals with inputs from human agents in the landscape, and one with the development of models enabling different management scenarios and environmental changes to be envisaged, understood, and applied to policy development.

  14. Wind Energy Resource Atlas of Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D; Schwartz, M; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2001-08-27

    The United States Department of Energy (DOE) and the United States Agency for International Development (USAID) sponsored a project to help accelerate the large-scale use of wind energy technologies in Mongolia through the development of a wind energy resource atlas of Mongolia. DOE's National Renewable Energy Laboratory (NREL) administered and conducted this project in collaboration with USAID and Mongolia. The Mongolian organizations participating in this project were the Scientific, Production, and Trade Corporation for Renewable Energy (REC) and the Institute of Meteorology and Hydrology (IMH). The primary goals of the project were to develop detailed wind resource maps for all regions of Mongolia for a comprehensive wind resource atlas, and to establish a wind-monitoring program to identify prospective sites for wind energy projects and help validate some of the wind resource estimates.

  15. Substitute energy resource policy in Japan

    International Nuclear Information System (INIS)

    Umehara, Katsuhiko

    1980-01-01

    Japan depends 88% of energy resources and 99.8% of petroleum on imports. The solution of energy problems is now made internationally. As the means for Japan, there are the substitution of other resources for petroleum and its promotion. However, this involves the considerable funds for the development and utilization, which must be borne by the people in the form of tax. For governmental financing, a special account must be set up for the particular purpose. In the research and development of new energy resources, new institution is required. The following matters are described: petroleum shortage coming even in 1980s, the international need of substitute energy development, the need for establishing measures for substitute energy resources, acquisition of the funds, special-account governmental financing, and an institute of new energy development. (author)

  16. Inventory of Canadian marine renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Cornett, A. [National Research Council of Canada, Ottawa, ON (Canada). Canadian Hydraulics Centre; Tarbotton, M. [Triton Consultants Ltd., Vancouver, BC (Canada)

    2006-07-01

    The future development of marine renewable energy sources was discussed with reference to an inventory of both wave energy and tidal current resources in Canada. Canada is endowed with rich potential in wave energy resources which are spatially and temporally variable. The potential offshore resource is estimated at 37,000 MW in the Pacific and 145,000 MW in the Atlantic. The potential nearshore resource is estimated at 9,600 MW near the Queen Charlotte Islands, 9,400 MW near Vancouver Island, 1,000 MW near Sable Island, and 9,000 MW near southeast Newfoundland. It was noted that only a fraction of the potential wave energy resource is recoverable and further work is needed to delineate important local variations in energy potential close to shore. Canada also has rich potential in the tidal resource which is highly predictable and reliable. The resource is spatially and temporally variable, with 190 sites in Canada with an estimated 42,200 MW; 89 sites in British Columbia with an estimated 4,000 MW; and, 34 sites in Nunavut with an estimated 30,500 MW. It was also noted that only a fraction of the potential tidal resource is recoverable. It was suggested that the effects of energy extraction should be evaluated on a case-by-case basis for both wave and tidal energy. This presentation provided a site-by site inventory as well as an analysis of buoy measurements and results from wind-wave hindcasts and tide models. Future efforts will focus on wave modelling to define nearshore resources; tidal modelling to fill gaps and refine initial estimates; assessing impacts of energy extraction at leading sites; and developing a web-enabled atlas of marine renewable energy resources. The factors not included in this analysis were environmental impacts, technological developments, climate related factors, site location versus power grid demand, hydrogen economy developments and economic factors. tabs., figs.

  17. Asteroids prospective energy and material resources

    CERN Document Server

    2013-01-01

    The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power.   Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth.   Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space.   This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions t...

  18. Text mining resources for the life sciences.

    Science.gov (United States)

    Przybyła, Piotr; Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable-those that have the crucial ability to share information, enabling smooth integration and reusability. © The Author(s) 2016. Published by Oxford University Press.

  19. Text mining resources for the life sciences

    Science.gov (United States)

    Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability. PMID:27888231

  20. Resource Allocation of Agricultural Science and Technology R&D

    OpenAIRE

    Li, Xian-song; Bai, Li; Zhang, Li-ming

    2011-01-01

    The status quo of resource allocation of agricultural science and technology R&D (research and development)both at home and abroad,including the amount and function of agricultural science and technology research funds, human resources in the resources of agricultural science and technology R&D , the efficiency of resource allocation of agricultural science and technology R&D, the management system of agricultural scientific innovation and the operation status of scientific funds, is analyz...

  1. Distributed energy resources scheduling considering real-time resources forecast

    DEFF Research Database (Denmark)

    Silva, M.; Sousa, T.; Ramos, S.

    2014-01-01

    grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper......, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used....

  2. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  3. Energy resources in Arab countries: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Al-Lababidi, M. Mukhtar [Organization of Arab Petroleum Exporting Countries, Technical Affairs Dept., Safat (Kuwait)

    1999-12-01

    The author examines the energy resources of Middle East and North African countries under the headings: oil (proven reserves, undiscovered potential recovery, improved recovery techniques, production capacities), natural gas (reserves, undiscovered potential gas recovery), shale oil and tar sand, coal, uranium, hydro, wind energy, solar energy and biomass. (UK)

  4. Teachers Environmental Resource Unit: Energy and Power.

    Science.gov (United States)

    Bemiss, Clair W.

    Problems associated with energy production and power are studied in this teacher's guide to better understand the impact of man's energy production on the environment, how he consumes energy, and in what quantities. The resource unit is intended to provide the teacher with basic information that will aid classroom review of these problems. Topics…

  5. Asteroids. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Bucharest Polytechnic Univ. (Romania). Candida Oancea Institute

    2013-11-01

    Recent research on Prospective Energy and Material Resources on Asteroids. Carefully edited book dedicated to Asteroids prospective energy and material resources. Written by leading experts in the field. The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation.

  6. Federal Energy Resources Modernization Coordinating Committee

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G. B.

    1992-07-01

    This report summarizes the broad range of activities supported by Federal Energy Management Program (FEMP) and other federal agencies focused on meeting the President's Executive Order on Federal Energy Management promulgated to meet energy savings goals and encourage more efficient management of all federal energy resources. These activities are reported semiannually under the auspices of the FERM Coordinating Committee, and as such include activities undertaken from October 1, 1991, through March 31, 1992. The activities reported are classified into four major categories: (1) technology-base support, which includes development of processes, software, metering and monitoring equipment and strategies, and other tools for the federal energy manager to better understand and characterize their energy resources; (2) federal energy systems testing and monitoring; (3) federal energy systems modernization projects at federal installations in cooperation with the utilities serving the sites; and (4) energy supply, distribution and end-use conservation assessment for federal agencies and/or facilities.

  7. Energy requirement of some energy resources

    International Nuclear Information System (INIS)

    Chapman, P.F.; Hemming, D.F.

    1976-01-01

    The energy requirements for the sources of energy under examination are expressed as the fraction of total energy consumed in the production of a unit of gross output. Clearly there are vast differences between the energy requirements of these sources of fuels. Using energy analysis it is possible to indicate points of futility where no net energy is produced (i.e. Xsub(f) = 1). For North Sea oil fields using current technology, this appears to occur at a field size of 100,000-200,000 tons of recoverable reserves of oil. For oil shales exploited using above-ground retorting, the outer limit is at a grade of about 5 gal/ton. For uranium ores used to fuel a burner reactor, the cut-off grade was found to be of the order of 20 ppm. However, it should be remembered that at Xsub(f) = 1, there is no net output and the price of the fuel would be infinite. Because of payments to labour and capital, the upper limit of economic viability may well occur at values of Xsub(f) from 0.1 to 0.2. Thus uranium ores of a grade of 100 ppm U 3 O 8 or less may not be ecomically viable using current burner reactors and this in turn implies an upper bound for the total thermal reactor capacity. For oil shales exploited using above-ground retorting and room-and-pillar mining 15-20 gal/ton shale may represent the upper limit of economic viability, depending on the efficiency that can be achieved in a commercial-scale retort

  8. Renewable energy resources; Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Volker; Naumann, Karin [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kaltschmitt, Martin; Janczik, Sebastian [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer Umwelttechnik und Energiewirtschaft

    2015-07-01

    Although the need to decarbonise our global economy and thus in particular the supply of energy to limit the global temperature increase is internationally undisputed the German politics in 2014 has significantly contributed less compared to previous years in order to attain this objective. The expansion of renewable energies in the electricity sector has decelerated significantly; and in the heating and mobility area no new impulses were set in relation to renewable energies. In addition, a dramatic fallen oil price makes it difficult to increase the use of renewable energy supply. Based on these deteriorated framework conditions compared to conditions of the previous years, the developments in Germany of 2014 are shown in the electricity, heat and transport sector in the field of renewable energy. For this purpose - in addition to a discussion of the current energy economic framework - for each option to use renewable energies the state and looming trends are analyzed. [German] Obwohl die Notwendigkeit zur Dekarbonisierung unserer globalen Wirtschaft und damit insbesondere der Energiebereitstellung zur Begrenzung des globalen Temperaturanstiegs international unstrittig ist, hat die deutsche Politik im Jahr 2014 im Vergleich zu den Vorjahren deutlich weniger zur Erreichung dieses Zieles beigetragen. Der Ausbau der Stromerzeugung aus erneuerbaren Energien im Stromsektor wurde deutlich verlangsamt; und im Waerme- und Mobilitaetsbereich wurden keine neuen Impulse in Bezug auf regenerative Energien gesetzt. Zusaetzlich erschwert ein drastisch gefallener Rohoelpreis die verstaerkte Nutzung des erneuerbaren Energieangebots. Ausgehend von diesen im Vergleich zu den Vorjahren verschlechterten Rahmenbedingungen werden nachfolgend die Entwicklungen in Deutschland des Jahres 2014 im Strom-, Waerme- und Transportsektor fuer den Bereich der erneuerbaren Energien aufgezeigt. Dazu werden - neben einer Diskussion des derzeitigen energiewirtschaftlichen Rahmens - fuer die

  9. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  10. Progress on alternative energy resources

    Science.gov (United States)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  11. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  12. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  13. USGS research on energy resources, 1986; program and abstracts

    Science.gov (United States)

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal

  14. Energy crisis and uranium energy resources

    International Nuclear Information System (INIS)

    Koryakin, Yu.I.

    1975-01-01

    Problems of ensuring a supply of nuclear power with fuel are reviewed. It is probable that by the year 2000 fuel requirements for nuclear power will be determined by the heat variant of its development since the fraction of fast breeders will then be very insignificant. In connection with the energy process, in western countries there has arisen the economic possibility of using more expensive uranium (more than $22 per kg U 3 O 8 ). Now there is the point of view that, in the new post-crisis conditions, nuclear power plants with light-water reactors will be competitive. It is expected that the energy crisis will give additional impetus to development of nuclear power. In some countries work is being done on extraction of uranium from sea water. In this case, in order for uranium supplies to meet nuclear energy needs for 8, 10, or 12 years, new supplies of uranium must be sought every year. For each kilogram of U 3 O 8 , supplies of uranium will cost $11-17.6 more. Annual inflation will move the recovery costs into the higher cost category. There is good reason to consider that a significant increase in the cost of nuclear power plants and a sharp rise in credit will lead to a more concrete prediction of the total nuclear power in 2000 A.D. of 2700-3200 million kW. With exhaustion of cheap supplies, uranium will be classified by politico-economic considerations. In this case the presentation concerning the competitiveness of nuclear power and conventional energy sources may change

  15. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  16. Western Energy Resources and the Environment: Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    This document on geothermal energy is the first in a series of summary reports prepared by the Office of Energy, Minerals and Industry of the Environmental Protection Agency. The series describes what environmental effects are known or expected from new energy resource development in the western third of the United States. The series indicates some of the research and development activities under way and reviews the non-environmental constraints to resource development. It also serves as a reference for planners and policymakers on the entire range of problems and prospects associated with the development of new energy resources. [DJE-2005

  17. Enhanced distributed energy resource system

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Clark, Nancy H [Corrales, NM; Boyes, John D [Albuquerque, NM; Ranade, Satishkumar J [Las Cruces, NM

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  18. Renewable Energy Resources: Solutions to Nigeria power and energy needs

    International Nuclear Information System (INIS)

    Ladan-Haruna, A.

    2011-01-01

    Power and energy, with particularly electricity remains the pivot of economical and social development of any country. In view of this fact, a research on how renewable energy resources can solve Nigeria power and energy needs was carried out. It has identified main issues such as inconsistence government policies, corruptions and lack of fund hindering the development of renewable and power sectors for sustainable energy supply. The capacity of alternative energy resources and technology [hydropower, wind power, biomass, photovoltaic (solar), and geothermal power] to solve Nigerian energy crisis cannot be over-emphasized as some countries of the world who have no petroleum resources, utilizes other alternatives or options to solves their power and energy requirement. This paper reviews the prospects, challenges and solutions to Nigeria energy needs using renewable sources for development as it boost industrialization and create job opportunities

  19. Renewable energy and integrated resource planning

    International Nuclear Information System (INIS)

    Porter, K.L.

    1992-01-01

    Integrated resource planning, or IRP, is a new means of comparing resource choices for electric and gas utilities. Since its inception in 1986, at least 15 states have implemented IRP, and more are considering adopting IRP or have limited IRP processes in place. Some of the characteristics of IRP, such as increased public participation and an expanded analysis of the costs and benefits of energy resources, can contribute to addressing some of the technical and market barriers that hinder the increased deployment of renewable energy technologies. This paper looks at the status of some of these issues

  20. Hydrogen energy from renewable resources

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    To asses the economic viability of an integrated energy production system, a multi-stage cash flow analysis framework is utilized. This framework relies on standard cash flow models using an electronic spreadsheet program (Lotus 1-2-3) as the modeling environment. The purpose of the program is to evaluate the life-cycle economics of the various component technologies using common assumptions about the economic and financial environment in which these would operate. A schematic diagram of the multi-stage model is shown in the entire integrated production system. The details of the financial model are explained below. In its most complex form, the integrated system consists of three production stages. The first is the production of electricity. At this first stage, the model can and does accommodate any type of production technology, e.g., wind energy conversion systems, solar thermal devices, and geothermal electricity. The second stage of the model is the production of hydrogen using a specific assumed production methodology. In this case, it is a high-temperature electrolysis facility using production and economic characteristics data provided by the Florida Solar Energy Center. The third stage of the model represents the production of methanol assuming a biomass gasifier technology with operating and economic characteristics data based on studied by Fluor and Southern California Edison. At each stage of the model, there are three components: a data input portion that is used to define the techno-economic characteristics of the technology; the cash flow analysis based on financial assumptions; and an output summary section that reports the economic characteristics of the technology

  1. Human resources challenges for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Cottingham, C. [Electricity Sector Council, Ottawa, ON (Canada)

    2006-07-01

    The potential role of the Electricity Sector Council in wind power workforce development was reviewed. Canada is a major exporter of electricity, and production of electricity in the country has grown by 10 per cent in the last 10 years. The electric industry has become increasingly interested in the development of renewable and sustainable energy sources in order to reduce the environmental impacts of electricity production and use, as well to address potential supply shortages. However, total labour force growth in Canada is expected to drop to 0.5 per cent by 2010, and is expected to keep falling. Engineering and science enrolments in post-secondary institutions are declining. Many immigrants to Canada choose to settle in metropolitan areas, and only 4 in 10 immigrants are able to achieve validation of their credentials in the Canadian education system. One-third of Canadian employees are expected to retire in the next 8 years. The wind energy sector is the fastest growing energy source sector in Canada, and there are limited training facilities available. Competency profiles for roles in the industry are not clearly defined. Many provinces have very little development to support or sustain educational services for wind power training. This presentation suggested that the wind energy sector should prepare for the anticipated workforce shortage by planning training programs and building partnerships in workforce development. Investments in wind power research and development should have contract provisions regarding labour and skills development. Retiring electricity workers may provide a source of labour support. Sector councils provide a neutral forum for employers, educators, and employees, with a focus on human resource development for specific industry sectors. The councils represent an estimated 45 to 50 per cent of the labour market, and have significant federal funding. The Electricity Sector Council offers advanced career and workforce training; youth

  2. Polar energy resources potential. Report prepared for the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, Second Session by the Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The study covers both Antarctic and Arctic energy resources including oil, coal, natural gas, hydroelectric power, geothermal energy, oil shale, uranium, solar energy, and wind power. The environment, geology, topography, climate, and weather are also treated. Consideration is given to the international relations involved in energy resource exploitation in both polar regions, and the technologies necessary to develop polar resources are discussed. The potential resources in each area are described. Resource potentials south of 60 degrees in Antartica and north of 60 degrees in the Arctic are summarized. (MCW)

  3. Regional renewable energy and resource planning

    International Nuclear Information System (INIS)

    Lam, Hon Loong; Varbanov, Petar Sabev; Klemes, Jiri Jaromir

    2011-01-01

    The exploitation of the energy potential in biomass in a specific geographical region is frequently constrained by high production costs and the amount of land required per unit of energy generated. In addition, the distributed nature of the biomass resource and its normally low energy density may result in large transportation costs. Biomass also requires large land areas to collect and process the incoming solar radiation before the energy can be harvested. Previously published works on regional energy clustering (REC) and the Regional Resources Management Composite Curve, RRMCC (in this paper shortened to RMC), have been extended in this paper to tackle simultaneously the issues of the biomass supply chain, transportation, and land use. The RMC is a tool for supporting decision making in regional resource management. It provides a complete view of energy and land availability in a region, displaying their trade-offs in a single plot. The extension presented in this work has been developed in two steps. The first step presents the Regional Energy Cascade Analysis, which estimates the energy target within regional supply chains and provides the result for energy exchange flows between zones, the quantity of energy required to be imported/exported, and the locations of the demands. In the second step, the initial results are analysed against potential measures for improving the energy and land use targets by using the RMC and a set of rules for its manipulation. The presented method provides the option to assess the priorities: either to produce and sell the surplus energy on the fuel market or use the land for other purposes such as food production. This extended approach is illustrated with a comprehensive case study demonstrating that with the RMC application it is possible to maximise the land use and to maximise the biofuel production for the requested energy demand.

  4. Peat - The sustainable energy resource in Finland

    International Nuclear Information System (INIS)

    1994-01-01

    In Finland the level of energy consumption for heating, transportation and industry is higher than in many other European countries. This is due to the northern position of the country and also to the fact that Finland is sparsely inhabited. Peat is one of the Finnish domestic energy resources. This brochure provides a compact package of background information on fuel peat. All the data presented concerning the production and use of peat, employment, investments in the peat industry, emission levels resulting from the production and use of peat, new combustion technologies and peatland resources, have been collected from documents and other sources that are accessible to the general public

  5. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  6. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  7. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.

    2012-07-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  8. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  9. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  10. Photon Science for Renewable Energy

    International Nuclear Information System (INIS)

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-01-01

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  11. The route to resource: marine energy support

    International Nuclear Information System (INIS)

    Hay, M.

    2005-01-01

    A case is made for the inclusion of marine-derived energy to be a part of the energy mix which will deliver clean secure energy in the future. But at present, in Europe, only the United Kingdom and Portugal are offering the necessary incentives to realise the marine renewable energy potential. The UK government's views were expressed in May 2005 in a paper called Wave and Tidal Energy Demonstration Scheme. The government's policy is to encourage a large number of small diverse projects rather than a small number of large projects. Details of the financial incentives on offer are given. It is concluded that in the UK at least, policymakers must guarantee a smooth path to resource for first arrays or risk losing what could be their last chance to build an indigenous energy industry for a significant international market

  12. Hawai‘i Distributed Energy Resource Technologies for Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    HNEI has conducted research to address a number of issues important to move Hawai‘i to greater use of intermittent renewable and distributed energy resource (DER) technologies in order to facilitate greater use of Hawai‘i's indigenous renewable energy resources. Efforts have been concentrated on the Islands of Hawai‘i, Maui, and O‘ahu, focusing in three areas of endeavor: 1) Energy Modeling and Scenario Analysis (previously called Energy Road mapping); 2) Research, Development, and Validation of Renewable DER and Microgrid Technologies; and 3) Analysis and Policy. These efforts focused on analysis of the island energy systems and development of specific candidate technologies for future insertion into an integrated energy system, which would lead to a more robust transmission and distribution system in the state of Hawai‘i and eventually elsewhere in the nation.

  13. Handbook of natural resource and energy economics. Volume III

    International Nuclear Information System (INIS)

    Kneese, A.V.; Sweeney, J.L.

    1993-01-01

    The last of a three-volume series of handbooks focuses on the economics of energy, minerals and exhaustible resources, and the forecasting issues. The relationship between energy, the environment and economic growth is also examined. Chapter headings are: economic theory of depletable resources; the optimal use of exhaustible resources; intertemporal consistency issues in depletable resources; buying energy and non-fuel minerals; mineral resource stocks and information; strategies for modelling exhaustible resource supply; natural resources in an age of substitutability; natural resource cartels; the economics of energy security; natural resource use and the environment; and energy, the environment and economic growth

  14. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  15. Energy analysis applied to uranium resource estimation

    International Nuclear Information System (INIS)

    Mortimer, N.D.

    1980-01-01

    It is pointed out that fuel prices and ore costs are interdependent, and that in estimating ore costs (involving the cost of fuels used to mine and process the uranium) it is necessary to take into account the total use of energy by the entire fuel system, through the technique of energy analysis. The subject is discussed, and illustrated with diagrams, under the following heads: estimate of how total workable resources would depend on production costs; sensitivity of nuclear electricity prices to ore costs; variation of net energy requirement with ore grade for a typical PWR reactor design; variation of average fundamental cost of nuclear electricity with ore grade; variation of cumulative uranium resources with current maximum ore costs. (U.K.)

  16. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  17. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  18. Biomass energy - Definitions, resources and transformation processes

    International Nuclear Information System (INIS)

    Damien, Alain

    2013-01-01

    Biomass energy is today considered as a new renewable energy source, and thus, has entered a regulatory framework aiming at encouraging its development for CO 2 pollution abatement. This book addresses the constraints, both natural and technological, of the exploitation of the biomass resource, and then the economical and regulatory aspects of this industry. This second edition provides a complement about the plants used and the new R and D progresses made in this domain. Content: 1 - Definitions and general considerations: natural organic products, regulatory and standardized definitions, energy aspects of biomass fuels; 2 - Resources: energy production dedicated crops, biomass by-products, biomass from wastes; 3 - Biomass to energy transformation processes: combustion, gasification, pyrolysis, torrefaction, methanation, alcoholic fermentation, landfill biogas, Fischer-Tropsch synthesis, methanol synthesis, trans-esterification, synthetic natural gas production, bio-hydrogen production; 4 - Biofuels: solid fuels, solid automotive biofuels, gaseous biofuels, liquid biofuels, comparative efficiency; 5 - Situation of biomass energy: regulations, impact on non-energy purpose biomass, advantages and drawbacks

  19. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    Directory of Open Access Journals (Sweden)

    Shahin Abdollahy

    2014-01-01

    Full Text Available A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building. Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.

  20. Atomic energy and science disclosure in Cordoba

    International Nuclear Information System (INIS)

    Martin, Hugo R.

    2011-01-01

    In September 2009, considering the existing interest in public communication of scientific activities that are developed locally, a group of researchers and communicators from Córdoba, decided to form the Network of Outreach of Córdoba. Its stated objectives of the Constitutive Act are presented in this paper along with the main activities undertaken to date and plans for the future. Since that time, the Management of Institutional Relations of the CNEA in Córdoba became involved in public circulation of scientific knowledge, in what has proven to be a framework that ensures an adequate level of debate to present nuclear national activities. This will involve collaborative efforts with professional institutions involved in research, teaching and communicating science. The main objective was to encourage the transfer of knowledge to optimize available resources, improving the methodological approaches and generating creative products tailored to regional needs, in order to promote the democratization of science and nuclear technology. This paper consists of two parts. On the one hand describes the activities of the Network during the year 2011 shows results with particular emphasis on topics related to atomic energy, and secondly, shows the desirability of promoting such activities in the CNEA. Among the main actions considered, highlighting the institutional participation in the official Ministry of Science and Technology Fair participation in Science and Technology Provincial Cordoba 2011, issue of the radio program 'Green Light: Science and technology everyday life' by National Technological University Radio and a network of forty provincial stations, and active participation in the Course of Specialization in Public Communication of Science and Scientific Journalism, organized by the School of Information Sciences and the Faculty of Mathematics, Physics and Astronomy, National University of Cordoba, among others. (author) [es

  1. Science-based natural resource management decisions: what are they?

    Science.gov (United States)

    T.J. Mills; T.M. Quigley; F.J. Everest

    2001-01-01

    While many people interested in natural resources management propose science-based decisions, it is not clear what “science-based” means. Science-based decisions are those that result from the full and complete consideration of the relevant science information. We offer five guidelines to focus the scientist’s contributions to science-based decisionmaking and use the...

  2. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  3. Biomass a fast growing energy resource

    International Nuclear Information System (INIS)

    Hansen, Ulf

    2003-01-01

    Biomass as an energy resource is as versatile as the biodiversity suggests. The global net primary production, NPP, describes the annual growth of biomass on land and in the seas. This paper focuses on biomass grown on land. A recent estimate for the NPP on land is 120 billion tons of dry matter. How much of this biomass are available for energy purposes? The potential contribution of wood fuel and energy plants from sustainable production is limited to some 5% of NPP, i.e. 6 Bt. One third of the potential is energy forests and energy plantations which at present are not economic. One third is used in rural areas as traditional fuel. The remaining third would be available for modern biomass energy conversion. Biomass is assigned an expanding role as a new resource in the world's energy balance. The EU has set a target of doubling the share of renewable energy sources by 2010. For biomass the target is even more ambitious. The challenge for biomass utilization lies in improving the technology for traditional usage and expanding the role into other areas like power production and transportation fuel. Various technologies for biomass utilization are available among those are combustion, gasification, and liquefaction. Researchers have a grand vision in which the chemical elements in the hydrocarbon molecules of biomass are separated and reformed to yield new tailored fuels and form the basis for a new world economy. The vision of a new energy system based on fresh and fossilized biomass to be engineered into an environmentally friendly and sustainable fuel is a conceivable technical reality. One reason for replacing exhaustible fossil fuels with biomass is to reduce carbon emissions. The most efficient carbon dioxide emission reduction comes from replacing brown coal in a steam-electric unit, due to the efficiency of the thermal cycle and the high carbon intensity of the coal. The smallest emission reduction comes from substituting natural gas. (BA)

  4. Human resources training in coastal science

    Digital Repository Service at National Institute of Oceanography (India)

    Vijayaraghavan, S.

    The paper stresses the importance of training and education to the development and application of knowledge on the coastal marine environment and its resources. Present status of human resources training in India is discussed and changes...

  5. America's Changing Energy Landscape - USGS National Coal Resources Data System Changes to National Energy Resources Data System.

    Science.gov (United States)

    East, J. A., II

    2016-12-01

    The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.

  6. Bulgarian geothermal energy resources - state and perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gramatikov, P S [Faculty of Natural Sciences and Mathematics, Dept. of Physical Engineering, South West Univ. ` Neofit Rilsky` , Blagoevgrad (Bulgaria)

    1997-12-01

    As special attention is paid to geothermal energy because the geothermal sources are distributed all over the territory of Bulgaria. Governmental incentives for initiating national action programs for energy efficiency, new renewable sources and the environment as well as educational activities are particularly important. The energy sector, as any other sector of the national economy, is currently undergoing considerable changes on its way to market relations, primarily connected to determining the role of the state as well as the form of ownership. The state energy policy is based on a long - term energy strategy complying with the natural conditions of the country, the expected macro - economic development, the geopolitical situation and regional development of energy cooperation with neighboring and closely situated countries. Limited reserves of fossil fuels, increased local and global environmental risks and recent technological achievements have straightened the global importance of renewable sources of thermal and electric energy. This is even more relevant for Bulgaria with small fossil fuel reserves (lignite) to be nearly exhausted and the environment notably polluted. Concerning local renewable sources of thermal energy and electricity, it is necessary to re-estimate their strategic role, to complete the input data for the resources, also to establish national programs supported by research and educational activities and international cooperation. (orig./AKF)

  7. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P.; Tullus, H.; Uri, V. [Estonian Agricultural University, Tartu (Estonia)

    1996-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  8. Utilisation of Estonian energy wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Muiste, P; Tullus, H; Uri, V [Estonian Agricultural University, Tartu (Estonia)

    1997-12-31

    In the end of the Soviet period in the 1980s, a long-term energy programme for Estonia was worked out. The energy system was planned to be based on nuclear power and the share of domestic alternative sources of energy was low. The situation has greatly changed after the re-establishment of the Estonian independence, and now wood and peat fuels play an important role in the energy system. Energy consumption in Estonia decreased during the period 1970-1993, but this process has less influenced the consumption of domestic renewable fuels - peat and wood. It means that the share of these fuels has grown. The investment on substitution of imported fossil fuels and on conversion of boiler plants from fossil fuels to domestic fuels has reached the level of USD 100 million. The perspectives of the wood energy depend mainly on two factors; the resources and the price of wood energy compared with other fuels. The situation in wood market influences both the possible quantities and the price. It is typical that the quickly growing cost of labour power in Estonia is greatly affecting the price of energy wood. Though the price level of fuel peat and wood chips is lower than the world market price today, the conditions for using biofuels could be more favourable, if higher environmental fees were introduced. In conjunction with increasing utilisation of biofuels it is important to evaluate possible emissions or removal of greenhouse gases from Estonian forests 3 refs.

  9. The National Climate Assessment as a Resource for Science Communication

    Science.gov (United States)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  10. World Energy Resources and New Technologies

    Science.gov (United States)

    Szmyd, Janusz S.

    2016-01-01

    The development of civilisation is linked inextricably with growing demand for electricity. Thus, the still-rapid increase in the level of utilisation of natural resources, including fossil fuels, leaves it more and more urgent that conventional energy technologies and the potential of the renewable energy sources be made subject to re-evaluation. It is estimated that last 200 years have seen use made of more than 50% of the available natural resources. Equally, if economic forecasts prove accurate, for at least several more decades, oil, natural gas and coal will go on being the basic primary energy sources. The alternative solution represented by nuclear energy remains a cause of considerable public concern, while the potential for use to be made of renewable energy sources is seen to be very much dependent on local environmental conditions. For this reason, it is necessary to emphasise the impact of research that focuses on the further sharpening-up of energy efficiency, as well as actions aimed at increasing society's awareness of the relevant issues. The history of recent centuries has shown that rapid economic and social transformation followed on from the industrial and technological revolutions, which is to say revolutions made possible by the development of power-supply technologies. While the 19th century was "the age of steam" or of coal, and the 20th century the era of oil and gas, the question now concerns the name that will at some point come to be associated with the 21st century. In this paper, the subjects of discussion are primary energy consumption and energy resources, though three international projects on the global scale are also presented, i.e. ITER, Hydrates and DESERTEC. These projects demonstrate new scientific and technical possibilities, though it is unlikely that commercialisation would prove feasible before 2050. Research should thus be focused on raising energy efficiency. The development of high-efficiency technologies that

  11. Energy - Resources, technologies and power issues

    International Nuclear Information System (INIS)

    Mazzucchi, Nicolas

    2017-01-01

    For a better understanding of complex relationships between States, enterprises and international bodies, the author proposes a detailed analysis of power issues which structure the energy sector at the world level. He first considers the energy policy of a country as a result of an arbitration between three main concerns (access to energy, energy security, and struggle against climate change) which are differently addressed depending on consumption and production profiles of the country, and on its geographic and political characteristics. The author then proposes a synthetic overview of this landscape by analysing the history of exploitation of different energy sources (oil, coal, gas, uranium) and by proposing a regional analysis of resources. In the next part, he addresses various aspects of energy transports (bottlenecks of sea transport, trans-national grids, geopolitical restructuring of pipelines in front of the development of new LNG terminals). Then, for different regions, he describes the various modes of energy consumption, and challenges related to the transformation of this consumption due to the emergence of renewable energies. He analyses and discusses international mechanisms which underlie energy markets, and power issues which govern them. He shows that nuclear and renewable energies in fact strengthen the dependence on strategic materials and on technological companies. A chapter proposes an analysis of relationships between three prevailing actors in the elaboration of energy policies (enterprises, State and civil society) with their reciprocal influences, moments of collaboration, and information exchange or withholding. The last chapter addresses the study of power rivalries in the elaboration of policies for the struggle against climate change, and proposes a critical review of international organisations which square them

  12. Energy resources and their utilization in a 40-year perspective up to 2050. A synthesis of the work done by the Energy Committee at the Royal Swedish Academy of Sciences

    Energy Technology Data Exchange (ETDEWEB)

    2010-06-15

    Global trends in energy supply and consumption are unsustainable. The major energy carriers, the fossil fuels, besides being depleted, cause severe damage to environment and health. But the energy demand by a growing world population has to be satisfied. The greatest potential for increased supply of non-fossil energy up to 2050 are in the first place to be found in the already established power sources, hydro, nuclear, wind and bioenergy. Among other renewable energy sources it seems very likely that solar energy will also be a major provider of electricity by 2050 when also more should be known about the potential of water waves, now at the demo stage. Other energy alternatives still on the research level include artificial photosynthesis, 4th generation nuclear fission reactors, fusion energy, hydrogen as an energy carrier. In addition, totally unexpected discoveries and solutions may emerge out of research and science. In parallel to a changeover to non-fossil energy, a more efficient use of energy must be achieved. For this, increased use of electricity and more efficient heating and cooling systems are key elements. Bearing in mind that the major portion of a growing global population needs to improve their well-being, it is hard to see how the energy can be reduced before 2050. However, the fossil energy must decrease. According to the Energy Committee's studies, non-fossil energy could increase from current 30 000 to 80 000 TWh. The fossil energy is derived, using forecasts for oil and gas reserves, and the amount of coal production is taken to be consistent with the two degree goal. The result is an increase of energy supply from 140 000 to 170 000 TWh where 90 000 TWh (54%) is fossil energy to be compared with the 2007 figure of 110 000 TWh (80%). In these projections, electricity increases from 20 000 to 45 000 TWh because it is produced by all the renewable. Electricity has a high exergy value and can be used much more efficiently than a

  13. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  14. Debunking Astronomical Fiction Science: A Resource Guide

    Science.gov (United States)

    Fraknoi, A.

    2010-08-01

    This resource guide is for educators who receive questions about controversial topics and want readings or websites to brush up on the facts or to recommend to students or the public. This is by no means a complete list, but a short guide of some of the key resources that may be of help. A version of this was distributed at the meeting during the oral session. Longer version of this list can be found online at education/resources/pseudobib.html'>http://www.astrosociety.org/education/resources/pseudobib.html.

  15. Energy Policy Case Study - California: Renewables and Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Homer, Juliet S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bender, Sadie R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weimar, Mark R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-19

    The purpose of this document is to present a case study of energy policies in California related to power system transformation and renewable and distributed energy resources (DERs). Distributed energy resources represent a broad range of technologies that can significantly impact how much, and when, electricity is demanded from the grid. Key policies and proceedings related to power system transformation and DERs are grouped into the following categories: 1.Policies that support achieving environmental and climate goals 2.Policies that promote deployment of DERs 3.Policies that support reliability and integration of DERs 4.Policies that promote market animation and support customer choice. Major challenges going forward are forecasting and modeling DERs, regulatory and utility business model issues, reliability, valuation and pricing, and data management and sharing.

  16. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  17. Distribution System Pricing with Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hledik, Ryan [The Brattle Group, Cambridge, MA (United States); Lazar, Jim [The Regulatory Assistance Project, Montpelier, VT (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-16

    Technological changes in the electric utility industry bring tremendous opportunities and significant challenges. Customers are installing clean sources of on-site generation such as rooftop solar photovoltaic (PV) systems. At the same time, smart appliances and control systems that can communicate with the grid are entering the retail market. Among the opportunities these changes create are a cleaner and more diverse power system, the ability to improve system reliability and system resilience, and the potential for lower total costs. Challenges include integrating these new resources in a way that maintains system reliability, provides an equitable sharing of system costs, and avoids unbalanced impacts on different groups of customers, including those who install distributed energy resources (DERs) and low-income households who may be the least able to afford the transition.

  18. Sustainable resource planning in energy markets

    International Nuclear Information System (INIS)

    Kamalinia, Saeed; Shahidehpour, Mohammad; Wu, Lei

    2014-01-01

    Highlights: • Sustainable resource planning with the consideration of expected transmission network expansion. • Incomplete information non-cooperative game-theoretic method for GEP. • Maximizing utility value whiling considering merits of having various generation portfolios. • Minimizing risk of investment using renewable generation options. • Application of the stochastic approach for evaluating the unpredictability of opponent payoffs and commodity values. - Abstract: This study investigates the role of sustainable energy volatility in a market participant’s competitive expansion planning problem. The incomplete information non-cooperative game-theoretic method is utilized in which each generation company (GENCO) perceives strategies of other market participants in order to make a decision on its strategic generation capacity expansion. Sustainable generation incentives, carbon emission penalties, and fuel price forecast errors are considered in the strategic decisions. The market clearing process for energy and reserves is simulated by each GENCO for deriving generation expansion decisions. A merit criterion (i.e., the utility value) is proposed for a more realistic calculation of the expected payoff of a GENCO with sustainable energy resources. Finally, the impact of transmission constraints is investigated on the GENCO’s expansion planning decision. The case studies illustrate the effectiveness of the proposed method

  19. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  20. Challenge theme 5: Current and future needs of energy and mineral resources in the Borderlands and the effects of their development: Chapter 7 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    Science.gov (United States)

    Updike, Randall G.; Ellis, Eugene G.; Page, William R.; Parker, Melanie J.; Hestbeck, Jay B.; Horak, William F.

    2013-01-01

    Exploration and extraction activities related to energy and mineral resources in the Borderlands—such as coal-fired power plants, offshore drilling, and mining—can create issues that have potentially major economic and environmental implications. Resource assessments and development projects, environmental studies, and other related evaluations help to understand some of these issues, such as power plant emissions and the erosion/denudation of abandoned mine lands. Information from predictive modeling, monitoring, and environmental assessments are necessary to understand the full effects of energy and mineral exploration, development, and utilization. The exploitation of these resources can negatively affect human health and the environment, its natural resources, and its ecological services (air, water, soil, recreation, wildlife, etc.). This chapter describes the major energy and mineral issues of the Borderlands and how geologic frameworks, integrated interdisciplinary (geobiologic) investigations, and other related studies can address the anticipated increases in demands on natural resources in the region.

  1. Chaos synchronization of the energy resource system

    International Nuclear Information System (INIS)

    Li Xiuchun; Xu Wei; Li Ruihong

    2009-01-01

    This paper presents the chaos synchronization problem for new dynamical system (that is, energy resource demand-supply system), where the controller is designed using two different control methods. Firstly, based on stability criterion of linear system, chaotic synchronization is achieved with the help of the active theory, and accordingly, the simulation results are given for verifying the feasibility of the method. Secondly, based on Lyapunov stability theory, on the assumption that all the parameters of the system are unknown, adaptive control approach is proposed to make the states of two chaotic systems asymptotic synchronization. In the end, numerical simulations are used to show the effectiveness of the proposed control method.

  2. Future petroleum energy resources of the world

    Science.gov (United States)

    Ahlbrandt, T.S.

    2002-01-01

    and gas endowment estimates. Whereas petroleum resources in the world appear to be significant, certain countries such as the United States may run into import deficits, particularly oil imports from Mexico and natural gas from both Canada and Mexico. The new assessment has been used as the reference supply case in energy supply models by the International Energy Agency and the Energy Information Agency of the Department of Energy. Climate energy modeling groups such as those at Stanford University, Massachusetts Institute of Technology, and others have also used USGS estimates in global climate models. Many of these models using the USGS estimates converge on potential oil shortfalls in 2036-2040. However, recent articles using the USGS (2000) estimates suggest peaking of oil in 2020-2035 and peaking of non-OPEC (Organization of Petroleum-Exporting Countries) oil in 2015-2020. Such a short time framework places greater emphasis on a transition to increased use of natural gas; i.e., a methane economy. Natural gas in turn may experience similar supply concerns in the 2050-2060 time frame according to some authors. Coal resources are considerable and provide significant petroleum potential either by extracting natural gas from them, by directly converting them into petroleum products, or by utilizing them to generate electricity, thereby reducing natural gas and oil requirements by fuel substitution. Non-conventional oil and gas are quite common in petroleum provinces of the world and represent a significant resources yet to be fully studied and developed. Seventeen non-conventional AU including coal-bed methane, basin-center gas, continuous oil, and gas hydrate occurrences have been preliminarily identified for future assessment. Initial efforts to assess heavy oil deposits and other non-conventional oil and gas deposits also are under way.

  3. Smart Operations in Distributed Energy Resources System

    Science.gov (United States)

    Wei, Li; Jie, Shu; Zhang-XianYong; Qing, Zhou

    Smart grid capabilities are being proposed to help solve the challenges concerning system operations due to that the trade-offs between energy and environmental needs will be constantly negotiated while a reliable supply of electricity needs even greater assurance in case of that threats of disruption have risen. This paper mainly explores models for distributed energy resources system (DG, storage, and load),and also reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be solved as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  4. Electricity End Uses, Energy Efficiency, and Distributed Energy Resources Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morrow, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deason, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leventis, Greg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leow, Woei Ling [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Zhou, Yan [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2017-01-01

    This report was developed by a team of analysts at Lawrence Berkeley National Laboratory, with Argonne National Laboratory contributing the transportation section, and is a DOE EPSA product and part of a series of “baseline” reports intended to inform the second installment of the Quadrennial Energy Review (QER 1.2). QER 1.2 provides a comprehensive review of the nation’s electricity system and cover the current state and key trends related to the electricity system, including generation, transmission, distribution, grid operations and planning, and end use. The baseline reports provide an overview of elements of the electricity system. This report focuses on end uses, electricity consumption, electric energy efficiency, distributed energy resources (DERs) (such as demand response, distributed generation, and distributed storage), and evaluation, measurement, and verification (EM&V) methods for energy efficiency and DERs.

  5. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  6. Wind Energy Resource Atlas of Sri Lanka and the Maldives

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.; Heimiller, D.; George, R.

    2003-08-01

    The Wind Energy Resource Atlas of Sri Lanka and the Maldives, produced by the National Renewable Energy Laboratory's (NREL's) wind resource group identifies the wind characteristics and distribution of the wind resource in Sri Lanka and the Maldives. The detailed wind resource maps and other information contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies, both for utility-scale power generation and off-grid wind energy applications.

  7. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  8. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  9. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  10. Energy management in a microgrid with distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Gari, Nicolae; Hmurcik, Lawrence V.

    2014-01-01

    Highlights: • A performance metric is proposed with the consideration of price, environment effect, and service quality. • Models of a microgrid and a microgrid network are designed with distribute energy resources and storage. • Different cases in MG operation are discussed. - Abstract: A smart grid power system with renewable energy resources and distributed energy storage shows significant improvement in the power system’s emission reduction, reliability, efficiency, and security. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. Multi microgrids form a network with energy management and operational planning through two-way power flow and communication. To comprehensively evaluate the performance of a microgrid, a performance metric is proposed with consideration of the electricity price, emission, and service quality, each of them is given a weighting factor. Thus, the performance metric is flexible according to the consumers’ preference. With the weighting factors set in this paper, this performance metric is further applied on microgrids operated as stand-alone, grid-tied, and networked. Each microgrid consists of a solar panel, a hydrogen fuel cell stack, an electrolyzer, a hydrogen storage tank, and a load. For a stand-alone system, the load prediction lowers down the daily electricity consumption about 5.7%, the quantity of H 2 stored fluctuates in a wide range, and overall performance indexes increase with the solar panel size. In a grid-tied MG, the load prediction has a significant effect on the daily consumed electricity which drops 25% in 4 days, some day-time loads are shifted to the night time, and the capacity of hydrogen tank is lower than that in a stand-alone MG. In a network with multiple MGs, the control of the power distribution strongly affects the MG’s performance. However, the overall performance index instead of any specific index increases with the MG’s power generated from renewable energy

  11. 2016 Offshore Wind Energy Resource Assessment for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    This report, the 2016 Offshore Wind Energy Resource Assessment for the United States, was developed by the National Renewable Energy Laboratory, and updates a previous national resource assessment study, and refines and reaffirms that the available wind resource is sufficient for offshore wind to be a large-scale contributor to the nation's electric energy supply.

  12. Hydrokinetic energy resource estimates of River ERO at Lafiagi ...

    African Journals Online (AJOL)

    Hydrokinetic energy resource estimates of River ERO at Lafiagi, Kwara State, ... cost-effective renewable energy solution without requiring the construction of a ... Keywords: Hydrokinetic Power, Energy Resource, River Ero, Water Resources ... (14); Eritrea (1); Ethiopia (30); Ghana (27); Kenya (29); Lesotho (1); Libya (2) ...

  13. Turkish Science Teachers' Use of Educational Research and Resources

    Science.gov (United States)

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  14. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  15. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  16. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  17. Energy reserves and energy resources: situation in 1980

    International Nuclear Information System (INIS)

    Bauer, L.

    1981-01-01

    Following an explanation of the main relevant technical terms and units, the author discusses the world energy consumption over the last few years and its structural development. This is supplemented by an analysis of energy consumption in Austria. Based on this, the author gives a forecast of the further growth of the world energy consumption figures to the year 2020 and compares these with the world's reserves of raw materials for energy production. A similar comparison is made for Austria. Outlining the irregularity in the distribution of the reserves over the earth and a short explanation of the dependence on the respective technology of the utilisation of nuclear fuels, the author discusses the possibilities of developing the energy resources all over the world as well as in Austria. The quantitative assessment is based on IIASA studies and on corresponding investigations carried out in Austria. By way of summary, he presents an outlook on the possibilities of upgrading solid fuels as a temporary remedy against future difficulties in the supply of crude oil or natural gas and underlines the importance of nuclear energy for the future. (Auth.)

  18. Wind energy resource atlas. Volume 9. The Southwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  19. System Integration of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Nyeng, Preben

    units, including the ICT solutions that can facilitate the integration. Specifically, the international standard "IEC 61850-7-420 Communications systems for Distributed Energy Resources" is considered as a possible brick in the solution. This standard has undergone continuous development....... It is therefore investigated in this project how ancillary services can be provided by alternatives to central power stations, and to what extent these can be integrated in the system by means of market-based methods. Particular emphasis is put on automatic solutions, which is particularly relevant for small......, and this project has actively contributed to its further development and improvements. Different types of integration methods are investigated in the project. Some are based on local measurement and control, e.g. by measuring the grid frequency, whereas others are based on direct remote control or market...

  20. JPRS Report, Science & Technology, China: Energy.

    Science.gov (United States)

    1988-02-10

    bedrock growth anticlines, buried hill fault blocks, rolling anticlines, compression anticlines, draped anticlines, volcanic diapers and others. The...development and utilization of solar , wind, geothermal and other energy resources, the energy conservation capacity and newly-added energy resources were...equivalent to 20 million tons of standard coal. The firewood-saving capacity in wood and coal-saving stoves, biogas pits and solar cookers alone was

  1. Financial Resources Allocation of Tabriz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Esmaeil Afiyan

    2015-08-01

    Full Text Available ​ Background and Objectives : According to complexity of resource allocation, issue about how to allocate health care resources in an accurate and fair manner has become the subject of discussions and decisions of related groups. Therefore, in this research we aim to study the methods of financial resource allocation of Tabriz University of Medical Sciences in order to identify its strengths and weaknesses for its promotion. Material and Methods : This study is a descriptive, qualitative sectional research and all comments have been collected by focus group discussions with experts and managers involved in the allocation of financial resources of Tabriz University of Medical Sciences. All factors affecting the process of allocation have been reviewd carefully. Results : Results suggested that except the health sector, none of the other sectors use the formulated  and scientific methods for allocating financial resources and despite the emphasize in the 4th development plan for operating funding, the final cost of the services, has no role in allocating financial resources. Conclusion : Regarding to judgmental and subjective method of financial resources allocation of Tabriz University of Medical Sciences and lack of documented and formulated methods, there is an essential need for developing an appropriate and formulated model for scientific allocation of financial resources in order to improve the efficiency and fairness of the allocation.

  2. 76 FR 49757 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Services Administration, notice is hereby given that the Fusion Energy Sciences Advisory Committee will be... science, fusion science, and fusion technology related to the Fusion Energy Sciences program. Additionally...

  3. Integrated assessment of dispersed energy resources deployment

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  4. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  5. Thorium resources and energy utilization (14)

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    2014-01-01

    After the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Company, thorium reactor has been attracting attention from the viewpoint of safety. Regarding thorium as the resources for nuclear energy, this paper explains its estimated reserves in the whole world and each country, its features such as the situation of utilization, and the reason why it attracts attention now. The following three items are taken up here as the typical issues among the latest topics on thorium: (1) utilization of thorium as a tension easing measure against environmental effects involved in nuclear energy utilization, (2) thorium-based reactor as the next generation type reactor with improved safety, and (3) thorium utilization as the improvement policy of nuclear proliferation resistance. The outline, validity, and problems of these items are explained. Thorium reactor has been adopted as a research theme since the 1950s up to now mainly in the U.S. However, it is not enough in the aspect of technological development and also insufficient in the verification of reliability based on technological demonstration, compared with uranium-fueled light-water reactor. This paper explains these situations, and discusses the points for thorium utilization and future prospects. (A.O.)

  6. Solar energy sciences and engineering applications

    CERN Document Server

    Enteria, Napoleon

    2013-01-01

    Solar energy is available all over the world in different intensities. Theoretically, the solar energy available on the surface of the earth is enough to support the energy requirements of the entire planet. However, in reality, progress and development of solar science and technology depends to a large extent on human desires and needs. This is due to the various barriers to overcome and to deal with the economics of practical utilization of solar energy.This book will introduce the rapid development and progress in the field of solar energy applications for science and technology: the advanc

  7. Gender Stereotypes in Science Education Resources: A Visual Content Analysis.

    Science.gov (United States)

    Kerkhoven, Anne H; Russo, Pedro; Land-Zandstra, Anne M; Saxena, Aayush; Rodenburg, Frans J

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people's social lives, such stereotypes can also occur in education. Ways in which stereotypes are visible in education include the use of gender-biased visuals, language, teaching methods, and teachers' attitudes. The goal of this study was to determine whether science education resources for primary school contained gender-biased visuals. Specifically, the total number of men and women depicted, and the profession and activity of each person in the visuals were noted. The analysis showed that there were more men than women depicted with a science profession and that more women than men were depicted as teachers. This study shows that there is a stereotypical representation of men and women in online science education resources, highlighting the changes needed to create a balanced representation of men and women. Even if the stereotypical representation of men and women in science is a true reflection of the gender distribution in science, we should aim for a more balanced representation. Such a balance is an essential first step towards showing children that both men and women can do science, which will contribute to more gender-balanced science and technology fields.

  8. NASA Astrophysics EPO Resources For Engaging Girls in Science

    Science.gov (United States)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.

  9. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  10. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    Science.gov (United States)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  11. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  12. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  13. Integrating science and policy in natural resource management: lessons and opportunities from North America.

    Science.gov (United States)

    Roger N. Clark; Errol E. Meidinger

    1998-01-01

    Relations between science and policy concerning many issues (e.g., health, energy, natural resources) have been changing worldwide. Public pressure to resolve such complex and often controversial issues has resulted in policymakers and policy implementers seeking better knowledge on which to base their decisions. As a result, scientists have become more actively...

  14. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  15. Fusion Energy Sciences Program at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Ramon J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-15

    This presentation provides a strategic plan and description of investment areas; LANL vision for existing programs; FES portfolio and other specifics related to the Fusion Energy Sciences program at LANL.

  16. Quantitative Assessment of Distributed Energy Resource Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, S.W.

    2003-05-22

    Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

  17. Spatiotemporal variability of marine renewable energy resources in Norway

    NARCIS (Netherlands)

    Varlas, George; Christakos, Konstantinos; Cheliotis, Ioannis; Papadopoulos, A.; Steeneveld, G.J.

    2017-01-01

    Marine Renewable Energy (MRE) resources such as wind and wave energy depend on the complex behaviour of weather and climatic conditions which determine the development of MRE technologies, energy grid, supply and prices. This study investigates the spatiotemporal variability of MRE resources along

  18. Laser fusion and high energy density science

    International Nuclear Information System (INIS)

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  19. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  20. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  1. The U.S.Geological Survey Energy Resources Program

    Science.gov (United States)

    ,

    2010-01-01

    Energy resources are an essential component of modern society. Adequate, reliable, and affordable energy supplies obtained using environmentally sustainable practices underpin economic prosperity, environmental quality and human health, and political stability. National and global demands for all forms of energy are forecast to increase significantly over the next several decades. Throughout its history, our Nation has faced important, often controversial, decisions regarding the competing uses of public lands, the supply of energy to sustain development and enable growth, and environmental stewardship. The U.S. Geological Survey (USGS) Energy Resources Program (ERP) provides information to address these challenges by supporting scientific investigations of energy resources, such as research on the geology, geochemistry, and geophysics of oil, gas, coal, heavy oil and natural bitumen, oil shale, uranium, and geothermal resources, emerging resources such as gas hydrates, and research on the effects associated with energy resource occurrence, production, and (or) utilization. The results from these investigations provide impartial, robust scientific information about energy resources and support the U.S. Department of the Interior's (DOI's) mission of protecting and responsibly managing the Nation's natural resources. Primary consumers of ERP information and products include the DOI land- and resource-management Bureaus; other Federal, State, and local agencies; the U.S. Congress and the Administration; nongovernmental organizations; the energy industry; academia; international organizations; and the general public.

  2. On teaching the nature of science: perspectives and resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  3. Completing the cycle : Energy and Resource Recovery Centres

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, D. [Pearl Earth Sciences, Corp., Ajax, Ontario (Canada)]. E-mail: ddickson@pearlearth.com

    2006-07-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline.

  4. Completing the cycle : Energy and Resource Recovery Centres

    International Nuclear Information System (INIS)

    Dickson, D.

    2006-01-01

    Pearl Earth Sciences, Corp.'s Energy and Resource Recovery Centres support technologies that will provide long-term environmental and economical benefits to industry and society at large. Using a closed-loop production process with zero emissions we offer producers of waste a solution for their end of life products. Our prime goals are to have the flexibility to respond to individual waste market challenges using innovative ultra-high-temperature plasma conversion technology and to focus on the production of value-added industrial products such as a clean synthesis gas (ProGaz), Hydrogen, metals and other recovered materials. The syn-gas with its high hydrogen content can be used in the emerging 'distributed power generation' markets, to power automotive, stationary and portable fuel cells, as well as Internal Combustion Engine (ICE) vehicles; chemical processing or direct feed to a pipeline

  5. Human/Nature Discourse in Environmental Science Education Resources

    Science.gov (United States)

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  6. Automatic energy expenditure measurement for health science

    NARCIS (Netherlands)

    Catal, Cagatay; Akbulut, Akhan

    2018-01-01

    Background and objective: It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The

  7. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  8. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  9. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  10. 78 FR 2259 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-10

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770... Energy Sciences; U.S. Department of Energy; 1000 Independence Avenue SW.; Washington, DC 20585-1290...

  11. Distributed energy resources in grid interactive AC microgrids

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Guerrero, Josep; Chen, Zhe

    2010-01-01

    Increased penetration of distributed energy resources (DER) and large-scale deployment of renewable energy sources are challenging the entire architecture of traditional power system. Microgrid, featuring higher flexibility and reliability, becomes an attractive candidate for the configuration...

  12. Wind Power: An Emerging Energy Resource

    Science.gov (United States)

    Deal, Walter F.

    2010-01-01

    One may ask the question, What is energy? Typically the first answers that come to mind are oil, coal, and natural gas or nuclear energy. Most human activities require some form of energy consumption. This may be the energy produced by the food that one eats or the gasoline that is used in cars, trucks, buses, and other vehicles. One cannot ignore…

  13. Energy Storage. Teachers Guide. Science Activities in Energy.

    Science.gov (United States)

    Jacobs, Mary Lynn, Ed.

    Included in this science activities energy package for students in grades 4-10 are 12 activities related to energy storage. Each activity is outlined on the front and back of a single sheet and is introduced by a key question. Most of the activities can be completed in the classroom with materials readily available in any community. Among the…

  14. Criteria for evaluating alternative uses of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, R. J.

    1977-10-15

    Criteria that should be considered in evaluating the alternative use of energy resources are examined, e.g., energy policies must be compatible with overall national objectives; the demands of the energy sector must be sustainable; energy supplies must be reliable; resource depletion rates must be minimized; community interests must be protected; and economic costs must be minimized. Case studies using electricity and natural gas for the application of these criteria are presented.

  15. Unused Energy Resources of the Republic of Croatia

    International Nuclear Information System (INIS)

    Potocnik, V.

    2008-01-01

    Croatia has very modest fossil fuels resources and relatively large unused potentials of increasing energy efficiency and renewable energy sources. Energy import dependency is close to 60 percent and constantly rising, thus increasing already considerable Croatian foreign debt. By using potential of these resources until the year 2020 Croatia could almost totally eliminate fossil fuels import, reduce foreign debt as well as energy systems' harmful influences on environment, climate and health, and increase domestic employment.(author)

  16. Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers and the public

    Science.gov (United States)

    Carr, N.B.; Babel, N.; Diffendorfer, J.; Ignizio, D.; Hawkins, S.; Latysh, N.; Leib, K.; Linard, J.; Matherne, A.

    2012-01-01

    Throughout the western United States, increased demand for energy is driving the rapid development of oil, gas (including shale gas and coal-bed methane), and uranium, as well as renewable energy resources such as geothermal, solar, and wind. Much of the development in the West is occurring on public lands, including those under Federal and State jurisdictions. In Colorado and New Mexico, these public lands make up about 40 percent of the land area. Both states benefit from the revenue generated by energy production, but resource managers and other decisionmakers must balance the benefits of energy development with the potential consequences for ecosystems, recreation, and other resources. Although a substantial amount of geospatial data on existing energy development and energy potential is available, much of this information is not readily accessible to natural resource decisionmakers, policymakers, or the public. Furthermore, the data often exist in varied formats, requiring considerable processing before these datasets can be used to evaluate tradeoffs among resources, compare development alternatives, or quantify cumulative impacts. To allow for a comprehensive evaluation among different energy types, an interdisciplinary team of U.S. Geological Survey (USGS) scientists has developed an online Interactive Energy Atlas for Colorado and New Mexico. The Energy and Environment in the Rocky Mountain Area (EERMA) interdisciplinary team includes investigators from several USGS science centers1. The purpose of the EERMA Interactive Energy Atlas is to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The Atlas is designed to meet the needs of various users, including GIS analysts, resource managers, policymakers, and the public, who seek information about energy in the western United States. Currently, the Atlas has two primary capabilities, a GIS data viewer and an

  17. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  18. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  19. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  20. Energy resources and the environment. [6 essays

    Energy Technology Data Exchange (ETDEWEB)

    Lenihan, J; Fletcher, W W [eds.

    1975-01-01

    Exploitation of energy has some impact on the environment. Six essays are presented to examine the variety of problems: (1) Sir Samuel Curran, in Energy and the Needs of Man, concludes that techniques to produce new energy sources will be found, bur conservation and the population explosion must be seriously examined; (2) Dr. Earl Cook, in Flow of Energy Through Technological Society, shows where energy comes from, how it is used and how it returns to the environment; he emphasizes the inefficiency of many energy conversion processes in consequence of the Second law of Thermodynamics; (3) Dr. Andrew Parteous, in Economical Use of Energy and Materials, explains energy not only used in heating, lighting, and transport, but in industry; his accounting of energy shows waste, and he stresses recycling and recovering the energy in domestic waste; (4) Sir Frank McFadzean, in Energy--the International Scene, examines the interplay of economics, technology, and politics in the oil industry; he suggests that more mature international leadership is needed to overcome the current difficulties facing producers and consumers; (5) J. D. Dunster, in The Atom and the Environment, examines the environmental impact of nuclear energy where the safety standards are more strenuous, but are feared more; he is a proponent of nuclear energy, but says an overall energy policy, balancing environmental factors against economic and political considerations, is needed; Dr. B. J. Brinkworth, in Direct Use of Solar Energy, reminds us that the Sun is the ultimate source of energy, and says solar energy can be exploited globally without damaging the environment. (MCW)

  1. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  2. Caspian energy: Oil and gas resources and the global market

    NARCIS (Netherlands)

    Amineh, M.P.; Houweling, H.

    2003-01-01

    his article develops several concepts of critical geopolitics and relates them to the energy resources of the Caspian Region. Energy resources beyond borders may be accessed by trade, respectively by conquest, domination and changing property rights. These are the survival strategies of human groups

  3. The Final Report: 1975 Energy Resource Alternatives Competition.

    Science.gov (United States)

    Radtke, Mark L.; And Others

    This publication describes the projects entered in the Energy Resource Alternatives competition in 1975. Teams of engineering students were given a year to develop non-conventional or alternative energy systems that produced useful energy outputs. Besides an overview of energy sources and uses and discussions of the competitions development, the…

  4. Alternative energy resources for MoDOT

    Science.gov (United States)

    2011-02-01

    This research investigates environmentally friendly alternative energy sources that could be used by MoDOT in various areas, and develops applicable and sustainable strategies to implement those energy sources.

  5. Energy challenge and nano-sciences

    International Nuclear Information System (INIS)

    Romulus, Anne-Marie; Chamelot, Pierre; Chaudret, Bruno; Comtat, Maurice; Fajerwerg, Katia; Philippot, Karine; Geoffron, Patrice; Lacroix, Jean-Christophe; Abanades, Stephane; Flamant, Gilles; HUERTA-ORTEGA, Benjamin; Cezac, Pierre; Lincot, Daniel; Roncali, Jean; Artero, Vincent; GuiLLET, Nicolas; Fauvarque, Jean-Francois; Simon, Patrice; Taberna, Pierre-Louis

    2013-01-01

    This book first describes the role of energy in the development of nano-sciences, discusses energy needs, the perception of nano-sciences by societies as far as the energy challenge is concerned, describes the contribution of nano-catalyzers to energy and how these catalyzers are prepared. A second part addresses the new perspectives regarding carbon: production of biofuels from biomass, process involved in CO 2 geological storage, improvement of solar fuel production with the use of nano-powders. The third part describes the new orientations of solar energy: contribution of the thin-layer inorganic sector to photovoltaic conversion, perspectives for organic photovoltaic cells, operation of new dye-sensitized nanocrystalline solar cells. The fourth part addresses the hydrogen sector: credibility, contribution of biomass in hydrogen production, production of hydrogen by electrochemistry, new catalyzers for electrolyzers and fuel cells. The last part address improved electrochemical reactors

  6. Technoeconomic aspects of nonrenewable energy resources

    International Nuclear Information System (INIS)

    Khan, A.M.

    1989-01-01

    Taking into account an increasing energy demand in the developing countries and aiming to facilitate integrated national energy planning, the author performs assessment of the potential energy supply sources with due consideration of their entire fuel chain and evaluates the related technologies with respect to their investment requirements, operational costs, environmental impacts, etc. 23 refs, 8 tabs

  7. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  8. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  9. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-07-19

    ... Basic Energy Sciences Computational Materials Science and Chemistry for Innovation Workshop Final Report... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic...

  10. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  11. 2010 survey of energy resources. 22nd edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    This, the 22nd edition of the World Energy Council's Survey of Energy Resources (SER), is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy. The Survey is a flagship publication of the World Energy Council (WEC), prepared triennially and timed for release at each World Energy Congress. It is a unique document in that no entity other than the WEC compiles such wideranging information on a regular and consistent basis. This highly regarded publication is an essential tool for governments, industry, investors, NGOs and academia.

  12. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  13. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  14. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    International Nuclear Information System (INIS)

    2001-01-01

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source

  15. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  16. Renewable marine energies, resources for the future

    International Nuclear Information System (INIS)

    Le Lidec, Frederic

    2012-01-01

    The need for alternative sources of energy has never been more urgent than it is today. At the very time International Energy Agency estimates that demand will increase 30% by 2030, fossil fuels (oil, gas and coal) are beginning to dwindle, as the need to counter global warming imposes limits on CO 2 emissions. In this context, DCNS has entered a new field of innovation and development: ocean energy. Having included marine renewable energy as an intrinsic part of its strategic growth plan, DCNS is the only industrial company in the world to invest in all four key technologies in this sector: - the tidal energy generated using underwater turbines known as 'tidal turbines',' which convert the energy of marine tidal streams into electricity; - the ocean thermal energy conversion (OTEC) technology that exploits the difference of temperature between the warm surface water of tropical oceans and the cold water found in the ocean depths to generate electrical power 24 hours a day, 35 days a year; - the offshore wind energy generated by offshore floating wind turbines; - the wave energy technology which operates on the principle of recovering energy from the ocean swell. With 400 years of expertise in shipbuilding and its in-depth understanding of the marine environment, DCNS is committed to playing a major role in the development of this new ocean industry. (author)

  17. Climate warming and perception of energy resources

    International Nuclear Information System (INIS)

    Boy, Daniel

    2014-06-01

    Drawing from a set of surveys, the aim of the present paper is to identify elements concerning the representations of climate change, the relation of which with daily energy use is not always clear. More precisely, in the field of energy consumption, several surveys allow a more precise vision of the interest for renewable energies and of the relationship between nuclear energy and society. The annual surveys carried out for more than ten years by ADEME (environment and energy mastering agency) allow a diachronic view of the evolution of climate change perception and of political events which have influenced it. The interpretation of the results points out the sensitivity of climate change perception to events, and particularly to political hazards. The renewable energies mirage has tended to fade with the numerous current debates. The adhesion of French public opinion to nuclear energy remains significant as, even after the Fukushima accident, a majority of individuals investigated are in favor of this still contested source of energy, including by people with high scientific literacy. Nevertheless, the energy issue, and particularly when it comes to nuclear energy, has become strongly politicized. (author)

  18. Nuclear energy prospects and uranium resources in Latin America

    International Nuclear Information System (INIS)

    Polliart, A.J.; Barretto, P.M.C.

    1976-01-01

    Nuclear power and other major technological applications of nuclear energy will become of interest to a growing number of Latin American countries as their demand for electricity rises because of the expansion of industry. Nevertheless, for many years to come, the chief benefits that atomic energy can bring to Latin America will take the form of applying nuclear science techniques in medicine, water resources development and agricultural research. The medical applications are widely known and the water resources applications are highly specialized. The agricultural applications are many, but generally less well known, and this is one reason why the Agency is devoting a special meeting of the Conference to a review of the use of nuclear science techniques in agricultural research, food production and food preservation. Latin America is the only region of the world in which substantial progress has been made towards what is now known as a nuclear-weapon-free zone - in other words, a zone in which no country possesses or seeks to possess the capacity to make nuclear weapons or other nuclear explosive devices, or permits such weapons on its territory. This has been achieved partly by the operation of Treaties and partly by the policy of individual Governments. The nuclear-weapon-free status is partly reflected in safeguards agreements with the Agency. In this way, the countries of the region are avoiding the vast waste of scarce resources that a nuclear weapons programme entails and, particularly, of scarce scientific manpower and technological skill, which they urgently need for their own peaceful development. The Agency safeguards thus provide international assurance that the nuclear programmes of the countries concerned will not be diverted to nuclear weapons or other nuclear explosives. In this way the Agency's safeguards contribute to security and peace in the region. It is obviously of interest to all countries in the region that this de facto nuclear

  19. Energy Resources Consumption Minimization in Housing Construction

    Directory of Open Access Journals (Sweden)

    Balastov Alexey

    2017-01-01

    Full Text Available The article deals with the energy savings analysis during operation of buildings, provides the heat balance of residential premises, considers options for energy-efficient solutions for hot water supply systems in buildings. As technical facilities that allow the use of secondary heat sources and solar energy, there are also considered the systems with heat recovery of “gray” wastewater, heat pumps, solar collectors and photoelectric converters.

  20. Environment, energy, and world food resources. New challenges to research and technology policy

    Energy Technology Data Exchange (ETDEWEB)

    Stever, H G [National Science Foundation, Washington, D.C. (USA)

    1976-07-01

    If one tried to decide upon one single urgent task, a challenge for the natural sciences and technology alike, one probably would have to name the following: promotion of sound and appropriate economic growth by means of more effective and efficient utilization of resources; i.e., energy and natural resources of all kinds (whether these may be renewable or not), the process to be carried out by means that show as much concern for the environment as possible.

  1. Distributed energy resources for a zero-energy neighbhourhood

    NARCIS (Netherlands)

    Morales Gonzalez, R.M.D.G.; Asare-Bediako, B.; Cobben, J.F.G.; Kling, W.L.; Scharrenberg, G.R.; Dijkstra, D.

    2012-01-01

    Zero energy buildings are on the increasing trend. They are perceived as appropriate technology to reducing CO2 emissions, improving energy efficiency and alleviating energy poverty. The main goal is that a grid-connected building produces enough energy on site to equal or exceed its annual energy

  2. Science and society test VI: Energy economics

    Science.gov (United States)

    Hafemeister, David W.

    1982-01-01

    Simple numerical estimates are developed in order to quantify a variety of energy economics issues. The Verhulst equation, which considers the effect of finite resources on petroleum production, is modified to take into account supply and demand economics. Numerical and analytical solutions to these differential equations are presented in terms of supply and demand elasticity functions, various finite resources, and the rate of increase in fuel costs. The indirect cost per barrel of imported oil from OPEC is shown to be about the same as the direct cost. These effects, as well as those of discounted benefits and deregulation, are used in a calculation of payback periods for various energy conserving devices. A phenomenological model for market penetration is developed along with the factors for future energy growth rates. A brief analysis of the economic returns of the ''house doctor'' program to reprofit houses for energy conservation is presented.

  3. Wind Energy Workforce Development: Engineering, Science, & Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  4. The state of energy resources and role of nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.; )

    1999-01-01

    The present and future global energy demand has been assessed. The nuclear energy contribution in world energy balance has been discussed taking into account economical, social and environmental circumstances

  5. Package of online Teacher Resources for Generate, the EPA Energy Game

    Science.gov (United States)

    These materials will enable teachers to make and utilize their own copy of the energy board game, called Generate, that has been developed in ORD and used in local EPA-RTP STEM outreach. The teacher resource package includes: (1) Webinar presentation for National Science Teach...

  6. Distribution of decentralized renewable energy resources

    International Nuclear Information System (INIS)

    Bal, J.L.; Benque, J.P.

    1996-01-01

    The existence of a great number of inhabitants without electricity, living in areas of low population density, with modest energy requirements and low income provides a major potential market for decentralized renewable energy sources. Ademe and EDF in 1993 made two agreements concerning the development of Renewable Energy Sources. The first aims at promoting their decentralized use in France in pertinent cases. The second agreement concerns other countries and has two ambitions: facilitate short-term developments and produce in the longer term a standardised proposal for decentralized energy production using Renewable Energy Sources to a considerable extent. These ideas are explained, and the principles behind the implementation of both Ademe-EDF agreements as well as their future prospects are described. (R.P.)

  7. Illuminating the Darkness: Exploiting untapped data and information resources in Earth Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We contend that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or...

  8. Energy-efficient cloud computing : autonomic resource provisioning for datacenters

    OpenAIRE

    Tesfatsion, Selome Kostentinos

    2018-01-01

    Energy efficiency has become an increasingly important concern in data centers because of issues associated with energy consumption, such as capital costs, operating expenses, and environmental impact. While energy loss due to suboptimal use of facilities and non-IT equipment has largely been reduced through the use of best-practice technologies, addressing energy wastage in IT equipment still requires the design and implementation of energy-aware resource management systems. This thesis focu...

  9. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  10. Renewable energy resources: Opportunities and constraints 1990-2020

    International Nuclear Information System (INIS)

    1993-09-01

    This study examined the prospects for new renewable energy resources, from a global perspective, over the next three decades and beyond. The study is intended to support the work of the World Energy Council (WEC) Commission on Energy for Tomorrow's World. The new renewable resources investigated were: Solar; wind; geothermal; modern biomass; ocean; small hydro. Each of these areas was thoroughly researched and was the subject of a separate section of the report. Recent information on large-scale hydroelectric and traditional biomass is included for added perspective on total use of renewable energy, but both fall outside the definition of new renewable energy used in this report

  11. A decision model for energy resource selection in China

    International Nuclear Information System (INIS)

    Wang Bing; Kocaoglu, Dundar F.; Daim, Tugrul U.; Yang Jiting

    2010-01-01

    This paper evaluates coal, petroleum, natural gas, nuclear energy and renewable energy resources as energy alternatives for China through use of a hierarchical decision model. The results indicate that although coal is still the major preferred energy alternative, it is followed closely by renewable energy. The sensitivity analysis indicates that the most critical criterion for energy selection is the current energy infrastructure. A hierarchical decision model is used, and expert judgments are quantified, to evaluate the alternatives. Criteria used for the evaluations are availability, current energy infrastructure, price, safety, environmental impacts and social impacts.

  12. Integrated sustainable development and energy resource planning

    OpenAIRE

    Virgiliu NICULA

    2011-01-01

    Integrated sustainable development of a country cannot be conceived and begun without considering in an intricate tandem environmental protection and economic development. No one can exist without a natural material support of the life he or she enjoys. All economic development plans must include environmental and human civilization’s protection implicitly. Integrated resource planning must be done in an absolutely judicious manner, so we can all leave as a legacy for future generations both ...

  13. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  14. sustainable development of national energy resources

    African Journals Online (AJOL)

    RAYAN_

    293, noting its coverage of investment in energy projects, particularly in oil ..... Exportation of Various Raw Materials – Appellate Body Report (30 January 2012) ..... 61 Investigation Report: Ghana: West African Gas Pipeline Project, World Bank.

  15. Renewable energy resources in the law

    International Nuclear Information System (INIS)

    Tarnizhevskij, B.V.; Mal'tseva, A.V.; Muzalev, E.Yu.; Makarova, E.S.

    1998-01-01

    Results of analysis of about 30 sources (USA, Germany, Greece, Denmark, Israel, EEC) were used to distinguish some characteristic features of foreign legislation, concerning use of renewable energy sources [ru

  16. National Renewable Energy Laboratory 2001 Information Resources Catalog

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    The National Renewable Energy Laboratory's (NREL) eighth annual Information Resources Catalog can help keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. The catalog includes five main sections with entries grouped according to subject area.

  17. Energy Resources of Iran and Their Environmental Impacts

    Directory of Open Access Journals (Sweden)

    V. P. Bubnov

    2013-01-01

    Full Text Available The paper presents an analysis of main sources of energy resource production and their sale  in the domestic and export markets. The authors have analyzed type of domestic energy consumers and estimated their environmental impacts. The paper shows that the shift to alternative energy sources will reduce an ecological impact on the environment.

  18. European resource assessment for geothermal energy and CO2 storage

    NARCIS (Netherlands)

    Wees, J.D. van; Neele, F.

    2013-01-01

    Geothermal Energy and CO2 Capture and Storage (CCS) are both considered major contributors to the global energy transition. Their success critically depends on subsurface resource quality, which in turn depends on specific subsurface parameters. For CCS and Geothermal Energy these in some respect

  19. Offshore wind resource estimation for wind energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Mouche, A.

    2010-01-01

    Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite observati......Satellite remote sensing from active and passive microwave instruments is used to estimate the offshore wind resource in the Northern European Seas in the EU-Norsewind project. The satellite data include 8 years of Envisat ASAR, 10 years of QuikSCAT, and 23 years of SSM/I. The satellite...... observations are compared to selected offshore meteorological masts in the Baltic Sea and North Sea. The overall aim of the Norsewind project is a state-of-the-art wind atlas at 100 m height. The satellite winds are all valid at 10 m above sea level. Extrapolation to higher heights is a challenge. Mesoscale...... modeling of the winds at hub height will be compared to data from wind lidars observing at 100 m above sea level. Plans are also to compare mesoscale model results and satellite-based estimates of the offshore wind resource....

  20. Terminology Guideline for Classifying Offshore Wind Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Beiter, Philipp [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The purpose of this guideline is to establish a clear and consistent vocabulary for conveying offshore wind resource potential and to interpret this vocabulary in terms that are familiar to the oil and gas (O&G) industry. This involves clarifying and refining existing definitions of offshore wind energy resource classes. The terminology developed in this guideline represents one of several possible sets of vocabulary that may differ with respect to their purpose, data availability, and comprehensiveness. It was customized to correspond with established offshore wind practices and existing renewable energy industry terminology (e.g. DOE 2013, Brown et al. 2015) while conforming to established fossil resource classification as best as possible. The developers of the guideline recognize the fundamental differences that exist between fossil and renewable energy resources with respect to availability, accessibility, lifetime, and quality. Any quantitative comparison between fossil and renewable energy resources, including offshore wind, is therefore limited. For instance, O&G resources are finite and there may be significant uncertainty associated with the amount of the resource. In contrast, aboveground renewable resources, such as offshore wind, do not generally deplete over time but can vary significantly subhourly, daily, seasonally, and annually. The intent of this guideline is to make these differences transparent and develop an offshore wind resource classification that conforms to established fossil resource classifications where possible. This guideline also provides methods to quantitatively compare certain offshore wind energy resources to O&G resource classes for specific applications. Finally, this guideline identifies areas where analogies to established O&G terminology may be inappropriate or subject to misinterpretation.

  1. The food-energy-water nexus: Transforming science for society

    Science.gov (United States)

    Scanlon, Bridget R.; Ruddell, Ben L.; Reed, Patrick M.; Hook, Ruth I.; Zheng, Chunmiao; Tidwell, Vince C.; Siebert, Stefan

    2017-05-01

    Emerging interdisciplinary science efforts are providing new understanding of the interdependence of food, energy, and water (FEW) systems. These science advances, in turn, provide critical information for coordinated management to improve the affordability, reliability, and environmental sustainability of FEW systems. Here we describe the current state of the FEW nexus and approaches to managing resource conflicts through reducing demand and increasing supplies, storage, and transport. Despite significant advances within the past decade, there are still many challenges for the scientific community. Key challenges are the need for interdisciplinary science related to the FEW nexus; ground-based monitoring and modeling at local-to-regional scales; incorporating human and institutional behavior in models; partnerships among universities, industry, and government to develop policy relevant data; and systems modeling to evaluate trade-offs associated with FEW decisions.

  2. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  3. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the...

  4. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  5. Profit-based conventional resource scheduling with renewable energy penetration

    Science.gov (United States)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  6. Utilization of secondary energy resources of metallurgical ...

    African Journals Online (AJOL)

    ... with a heat output of 4200 kW, a working agent R 600, a source of low-potential heat-circulating water: a 460 kW gas engine. The proposed scheme showed high efficiency of power supply of the town in comparison with the gas boiler. Keywords: heat pump; internal combustion engine metallurgical plant; energy efficiency ...

  7. Electric power from renewable energy: resources and stakes for France

    International Nuclear Information System (INIS)

    2001-01-01

    This paper presents the essential of the last thematic letter published by the IFEN (French institute of the environment), devoted to the resources and stakes of the electric power produced by the renewable energies in France. (A.L.B.)

  8. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  9. Exploring resource efficiency for energy, land and phosphorus use

    NARCIS (Netherlands)

    Berg, van den Maurits; Hermans, Kathleen; Vuuren, van Detlef P.; Bouwman, A.F.; Kram, Tom; Bakkes, Jan

    2016-01-01

    In this paper, we present four model-based scenarios exploring the potential for resource efficiency for energy, land and phosphorus use, and implications for resource depletion, climate change and biodiversity. The scenarios explored include technological improvements as well as structural

  10. Meta-analysis of non-renewable energy resource estimates

    International Nuclear Information System (INIS)

    Dale, Michael

    2012-01-01

    This paper offers a review of estimates of ultimately recoverable resources (URR) of non-renewable energy sources: coal, conventional and unconventional oil, conventional and unconventional gas, and uranium for nuclear fission. There is a large range in the estimates of many of the energy sources, even those that have been utilized for a long time and, as such, should be well understood. If it is assumed that the estimates for each resource are normally distributed, then the total value of ultimately recoverable fossil and fissile energy resources is 70,592 EJ. If, on the other hand, the best fitting distribution from each of the resource estimate populations is used, a the total value is 50,702 EJ, a factor of around 30% smaller. - Highlights: ► Brief introduction to categorization of resources. ► Collated over 380 estimates of ultimately recoverable global resources for all non-renewable energy sources. ► Extensive statistical analysis and distribution fitting conducted. ► Cross-energy source comparison of resource magnitudes.

  11. Prediction of Wind Energy Resources (PoWER) Users Guide

    Science.gov (United States)

    2016-01-01

    ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER

  12. Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

  13. Energy efficient processing of natural resources; Energieeffiziente Verarbeitung natuerlicher Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Univ. Bremen (Germany). Projekt FU2; Hans, Carl [Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Abt. Intelligente Informations- und Kommunikationsumgebungen fuer die kooperative Produktion im Forschungsbereich Informations- und Kommunikationstechnische Anwendungen; Thoben, Klaus-Dieter [Univ. Bremen (Germany). Inst. fuer integrierte Produktentwicklung; Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Forschungsbereich Informations- und kommunikationstechnische Anwendungen; Austing, Bernhard [Fa. Austing, Damme (Germany)

    2012-10-15

    Energy efficiency is gaining high importance in production processes. High energy consumption is directly related to high costs. The processing of natural resources is resulting in additional energy input because of defined output quality demands. This paper discussed approaches and IT-solutions for the automatically adjustment of production processes to cope with varying input qualities. The intention is to achieve the lowest energy input into the process without quality restraints.

  14. Energy resource allocation using multi-objective goal programming: the case of Lebanon

    International Nuclear Information System (INIS)

    Mezher, T.; Chedid, R.; Zahabi, W.

    1998-01-01

    The traditional energy-resources allocation problem is concerned with the allocation of limited resources among the end-uses such that the overall return is maximized. In the past, several techniques have been used to deal with such a problem. In this paper, the energy allocation process is looked at from two points of view: economy and environment. The economic objectives include costs, efficiency, energy conservation, and employment generation. The environmental objectives consider environmental friendliness factors. The objective functions are first quantified and then transformed into mathematical language to obtain a multi-objective allocation model based upon pre-emptive goal programming techniques. The proposed method allows decision-makers to encourage or discourage specific energy resources for the various household end-uses. The case of Lebanon is examined to illustrate the usefulness of the proposed technique. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Leveraging HPC resources for High Energy Physics

    International Nuclear Information System (INIS)

    O'Brien, B; Washbrook, A; Walker, R

    2014-01-01

    High Performance Computing (HPC) supercomputers provide unprecedented computing power for a diverse range of scientific applications. The most powerful supercomputers now deliver petaflop peak performance with the expectation of 'exascale' technologies available in the next five years. More recent HPC facilities use x86-based architectures managed by Linux-based operating systems which could potentially allow unmodified HEP software to be run on supercomputers. There is now a renewed interest from both the LHC experiments and the HPC community to accommodate data analysis and event simulation production on HPC facilities. This study provides an outline of the challenges faced when incorporating HPC resources for HEP software by using the HECToR supercomputer as a demonstrator.

  16. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  17. 78 FR 15937 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act requires that public notice of...

  18. 75 FR 8685 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-25

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  19. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  20. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  1. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  2. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  3. 76 FR 40714 - Fusion Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF ENERGY Fusion Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...

  4. The selfish brain: competition for energy resources.

    Science.gov (United States)

    Fehm, H L; Kern, W; Peters, A

    2006-01-01

    Although the brain constitutes only 2% of the body mass, its metabolism accounts for 50% of total body glucose utilization. This delicate situation is aggravated by the fact that the brain depends on glucose as energy substrate. Thus, the contour of a major problem becomes evident: how can the brain maintain constant fluxes of large amounts of glucose to itself in the presence of powerful competitors as fat and muscle tissue. Activity of cortical neurons generates an "energy on demand" signal which eventually mediates the uptake of glucose from brain capillaries. Because energy stores in the circulation (equivalent to ca. 5 g glucose) are also limited, a second signal is required termed "energy on request"; this signal is responsible for the activation of allocation processes. The term "allocation" refers to the activation of the "behavior control column" by an input from the hippocampus-amygdala system. As far as eating behavior is concerned the behavior control column consists of the ventral medial hypothalamus (VMH) and periventricular nucleus (PVN). The PVN represents the central nucleus of the brain's stress systems, the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Activation of the sympatico-adrenal system inhibits glucose uptake by peripheral tissues by inhibiting insulin release and inducing insulin resistance and increases hepatic glucose production. With an inadequate "energy on request" signal neuroglucopenia would be the consequence. A decrease in brain glucose can activate glucose-sensitive neurons in the lateral hypothalamus (LH) with the release of orexigenic peptides which stimulate food intake. If the energy supply of the brain depends on activation of the LH rather than on increased allocation to the brain, an increase in body weight is evitable. An increase in fat mass will generate feedback signals as leptin and insulin, which activate the arcuate nucleus. Activation of arcuate nucleus in turn will

  5. Kalimantan energy resource management to support energy independence and industry growth

    International Nuclear Information System (INIS)

    Rizki Firmansyah Setya Budi; Wiku Lulus Widodo; Djati Hoesen Salimy

    2014-01-01

    There are a large number of energy resource in Kalimantan such as coal, oil, CBM, gas and nuclear. While the electricity consumption still low. That condition caused by the bad energy planning. The aim of the study are to know the number and the ability of energy resource to supply the energy demand that support the growth of Kalimantan industry. The methodology are collecting and processing data through calculation using MESSAGE Program. The result is energy resource in Kalimantan can support Kalimantan energy independence and industry growth in Kalimantan. The coal resource is 34,814 million ton consumption 835 million ton, gas resource is 31,814 BSCF consumption 3,281 BSCF, Oil resource is 920 MMSTB consumption 4406 MMSTB, CBM resource is 210 TCF consumption 2.1 TCF, U 3 O 8 resource is 12,409 ton consumption zero. Whereas for hydro and biomass, the resource are 256 and 138 MWyr, the maximum consumption 185 and 126 MWyr every year. Oil consumption will exceed the resource so need import from other island or replaced by others energy that have large resource such as gas, CBM, or coal. Potency to make cleaner environment can be done by used nuclear energy. (author)

  6. Management of moderate wind energy coastal resources

    International Nuclear Information System (INIS)

    Karamanis, D.

    2011-01-01

    Research highlights: → Life cycle analysis reveals the viability of moderate wind fields utilization. → Wind turbine is the greenest electricity generator at a touristic site. → Wind parks should be collective applications of small hotel-apartments owners. -- Abstract: The feasibility of wind energy utilization at moderate wind fields was investigated for a typical touristic coastal site in Western Greece. Initially, the wind speed and direction as well as its availability, duration and diurnal variation were assessed. For an analysis period of eight years, the mean wind speed at ten meters was determined as 3.8 m s -1 with a small variation in monthly average wind speeds between 3.0 (January) and 4.4 m s -1 (October). The mean wind power density was less than 200 W m -2 at 10 m indicating the limiting suitability of the site for the usual renewable energy applications. However, life cycle analysis for wind turbine generators with lower cut-in, cut-out, and rated speeds revealed that the energy yield ratio can reach a value of six for a service life of 20 years while the energy pay-back period can be 3 years with 33 kt CO 2 -e of avoided greenhouse emissions. Therefore, the recent technological turbine improvements make wind power viable even at moderate wind fields. Moreover, the study of electricity supply of typical small hotel-apartments in the region of Western Greece indicated that the installation of 300 wind turbine generators in these moderate wind fields would cover the total consumption during the open touristic period with profits during the rest of the year. According to these results, wind turbine generators are the 'greenest' way of generating electricity in touristic coastal sites, even of moderate wind speeds.

  7. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  8. Wave energy resource assessment and review of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wan Nik, W.B.: Sulaiman, O.O. [Maritime Technology Department, Universiti Malaysia Terengganu, 21030, Kuala Terengganu (Malaysia); Rosliza, R. [TATI University College, Teluk Kalong, 24000 Kemaman, Terengganu, (Malaysia); Prawoto, Y. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Muzathik, A.M. [Institute of Technology, University of Moratuwa (Sri Lanka)

    2011-07-01

    Increase in human population has increased the demand for more energy. Technical improvement in transport and electrical appliances gives a lot of facilities to our life nowadays. Still we need to generate or convert this energy. Energy generation based on conventional technologies is always accompanied by environmental pollution. It gives overheating and greenhouse effects that later result in biosphere degradation. Nowadays sea wave energy is being increasingly regarded in many countries as a major and promising resource. It is renewable and environmentally friendly. In this paper wave parameters related to wave energy is analyzed. Then the paper describes the development of many different types of wave-energy converters. Several topics are addressed; the characterization of the wave energy resource, range of devices and how such devices can be organized into classes.

  9. A Resource Guide for Debunking Astronomical Pseudo-Science

    Science.gov (United States)

    Fraknoi, A.

    2008-11-01

    Many of us who do public programs for the International Year of Astronomy are likely to meet people who have questions or want to challenge us about pseudo-scientific topics related to astronomy. Perhaps they have heard about the claim that the moon landings were a hoax, or have seen a light in the sky which puzzled them. Even those of us who have extensive training in astronomy often are not prepared for tackling such questions. To deal with such situations, here is a concise guide to printed and web resources that offer rational examination of some of these ``fiction science'' claims. This is not a complete list, but a ``first defense'' for beginners. A fuller version can be found at: http://www.astrosociety.org/education/resources/pseudobib.html

  10. TCIA: An information resource to enable open science.

    Science.gov (United States)

    Prior, Fred W; Clark, Ken; Commean, Paul; Freymann, John; Jaffe, Carl; Kirby, Justin; Moore, Stephen; Smith, Kirk; Tarbox, Lawrence; Vendt, Bruce; Marquez, Guillermo

    2013-01-01

    Reusable, publicly available data is a pillar of open science. The Cancer Imaging Archive (TCIA) is an open image archive service supporting cancer research. TCIA collects, de-identifies, curates and manages rich collections of oncology image data. Image data sets have been contributed by 28 institutions and additional image collections are underway. Since June of 2011, more than 2,000 users have registered to search and access data from this freely available resource. TCIA encourages and supports cancer-related open science communities by hosting and managing the image archive, providing project wiki space and searchable metadata repositories. The success of TCIA is measured by the number of active research projects it enables (>40) and the number of scientific publications and presentations that are produced using data from TCIA collections (39).

  11. Energy Science and Technology Software Center

    Energy Technology Data Exchange (ETDEWEB)

    Kidd, E.M.

    1995-03-01

    The Energy Science and Technology Software Center (ESTSC), is the U.S. Department of Energy`s (DOE) centralized software management facility. It is operated under contract for the DOE Office of Scientific and Technical Information (OSTI) and is located in Oak Ridge, Tennessee. The ESTSC is authorized by DOE and the U.S. Nuclear Regulatory Commission (NRC) to license and distribute DOE-and NRC-sponsored software developed by national laboratories and other facilities and by contractors of DOE and NRC. ESTSC also has selected software from the Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) through a software exchange agreement that DOE has with the agency.

  12. Renewable energy resources barriers in Africa

    International Nuclear Information System (INIS)

    Umoh, U.T.; Ekpoh, I.J.

    2008-01-01

    Africa's hydroelectric power plants are not able to perform at greater than 30 per cent of their installed capacity, despite the fact that Africa has abundant hydroelectric resources. Droughts and floods attributed to climate change are presenting challenges to the effective management and distribution of hydroelectric power supplies. This paper identified climate change-related barriers against hydroelectric power development in Africa. Case studies of 3 hydroelectric power projects in Nigeria were considered. Rainfall intensity data for a 25-year period were analyzed. The study showed that while the hydroelectric power plants are capable of supplying more power, most dams in Africa are prone to erosion and flash flooding. The sedimentation of reservoirs and natural lakes are also posing significant water management problems. Redesigns are needed in order to reduce risk. The new hydroelectric projects should be designed to ensure that environmental impacts are minimized. A river basin management approach was recommended in order to improve industrial water supplies, power generation, and recreational aspects of waterways. 11 refs., 2 tabs.

  13. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  14. CERN as a Non-School Resource for Science Education

    CERN Document Server

    Ellis, Jonathan Richard

    2000-01-01

    As a large international research laboratory, CERN feels it has a special responsibility for outreach, and has many activities directed towards schools, including organized visits, an on-site museum, hands-on experiments, a Summer intern programme for high-school teachers, lecture series and webcasts. Ongoing activities and future plans are reviewed, and some ideas stimulated by this workshop are offered concerning the relevance of CERN's experience to Asia, and the particular contribution that CERN can make as a non-school resource for science education.

  15. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  16. BUILDING TRIBAL CAPABILITIES IN ENERGY RESOURCE TRIBES

    Energy Technology Data Exchange (ETDEWEB)

    Mary Lopez

    2003-04-01

    The CERT Tribal Internship Program is part of the education and training opportunities provided by CERT to accelerate the development of American Indian technical professionals available to serve Tribes and expand the pool of these professionals. Tribes are severely impacted by the inadequate number of Indian professionals available to serve and facilitate Tribal participation and support of the energy future of Tribes,and subsequently the energy future of the nation. By providing interns with hands-on work experience in their field of study two goals are accomplished: (1) the intern is provided opportunities for professional enhancement; and (2) The pool of Indian professionals available to meet the needs of Tribal government and Tribal communities in general is increased. As of January 17, 2003, Lance M Wyatt successfully completed his internship with the Interagency Working Group on Environmental Justice on the Task Force that specifically focuses their work on Tribal nations. While working as an intern with the National Transportation Program, Albuquerque operations, Jacqueline Agnew received an offer to work for the Alaska Native Health Board in Anchorage, Alaska. This was an opportunity that Ms. Agnew did not feel she could afford to forego and she left her internship position in February 2003. At present, CERT is in the process of finding another qualified individual to replace the internship position vacated by Ms. Agnew. Mr. Wyatt's and Ms. Agnew's final comments are given.

  17. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub

  18. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  19. Toward a Regional Geography of Renewable Electrical Energy Resources.

    Science.gov (United States)

    Pryde, Philip R.

    It is postulated that many types of renewable energy resources, like fossil fuels, are amenable to regional availability analysis. Among these are hydropower, geothermal, ocean temperature gradient, wind, and direct solar energy. A review of the spatial attributes of each of these types reveals areas of the United States that contain comparative…

  20. National Renewable Energy Laboratory Information Resources Catalog 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-01-01

    NREL's ninth annual Information Resources Catalog can keep you up-to-date on the research, development, opportunities, and available technologies in energy efficiency and renewable energy. It includes five main sections with entries grouped according to subject area.

  1. Energy Survival: entertainment as a resource for local energy actions

    Energy Technology Data Exchange (ETDEWEB)

    Elburg, Henk van; Moosdijk, Catelijne van de [SenterNovem (Netherlands)

    2007-07-01

    In 2005, SenterNovem, the Dutch Broadcasting Corporation, a publishing company and a consortium of local authorities launched 'Energy Survival'; a renewing energy marketing strategy for children to create a demand for local energy actions. New elements are powerful branding and the use of cross media techniques through national TV, internet, local events and primary education. Through entertainment, Energy Survival influences children's attitude towards energy consumption and its convincing relation with the environment. It aims at qualifying children to become 'energy ambassadors' in their own local environment: family, school and neighbourhood. Energy Survival has become a well tested energy game-concept for children in whom public and private partners cooperate under one brand name and with a clear division of roles and interests. However, the backbone of the concept is the local approach: local actions in municipalities and in primary schools, supported by television and internet where children learn to deal with the upcoming energy challenges of the planet they will inherit. By providing an internet-based teaching method, especially primary schools will be an effective multiplier to reach children. Broadcasting the energy game on national TV on the one hand, and local events and preliminaries on the other hand, ensure opportunities for widespread 'duplication' of the concept, adapted to local policy priorities regarding sustainable energy because each municipality is permitted to choose its own themes. Despite the fact that the project is still young and that the partners consider it as a 'long term-investment', the first independent monitoring results indicate that Energy Survival so far is quite successful. Ratings of the first TV-series show a national market share of 20 % in the age group 6-12 years and significantly more interaction between children and their parents on energy related issues. The website

  2. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  3. Reducing LTE Uplink Transmission Energy by Allocating Resources

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2011-01-01

    The effect of physical resource block (PRB) allocation on an LTE modem's transmit power and total modem energy consumption is examined. In this paper the uplink resource blocks are scheduled in either a Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) manner......, to determine if low transmission power & long transmission time or high transmission power & short transmission time is most energy efficient. It is important to minimize the LTE modem's energy consumption caused by uplink transmission because it affects phone battery time, and because researchers rarely focus...

  4. 2010 survey of energy resources. 22nd edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    This, the 22nd edition of the World Energy Council's Survey of Energy Resources (SER), is the latest in a long series of reviews of the status of the world's major energy resources. It covers not only the fossil fuels but also the major types of traditional and novel sources of energy. The Survey is a flagship publication of the World Energy Council (WEC), prepared triennially and timed for release at each World Energy Congress. It is a unique document in that no entity other than the WEC compiles such wideranging information on a regular and consistent basis. This highly regarded publication is an essential tool for governments, industry, investors, NGOs and academia.

  5. Energy-efficient dynamic resource allocation with energy harvesting nodes

    OpenAIRE

    Rubio López, Javier

    2012-01-01

    The allocation of radio resources where nodes are battery constrained. [ANGLÈS] In wireless communications, there is a trend to deploy shorter-distance networks to cope with the high demanding necessities of bit-rate that current applications require. In such networks, the power needed for transmission is considerably low, due to proximity between base station and mobile terminals. As a consequence, complex baseband algorithms for signal processing and radio frequency circuitry require an ...

  6. Energy Resources Performance Report, FY 1991 and FY 1992.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-07-01

    Once the Federal Columbia River Power System provided all the power our customers needed and surplus energy, which we sold to others. However, we planned for the time when the surplus would disappear. With our customers, we developed centralized, region-wide conservation programs to conserve energy and build the knowledge and ability to save more energy when needed. We began to look at conservation as a resource, comparing it with supply-side alternatives. Much was accomplished. In Bonneville`s service area in the 1980s, our customers acquired 300 average megawatts (aMW) of conservation savings. How? By weatherizing about 240,000 homes, by making aluminum plants, other industrial plants and commercial buildings more efficient, and also by encouraging states to adopt energy-efficient building codes. Now, our energy surplus is gone. Our customers need energy, and in a hurry. While we plan how much energy will be needed, when and by which customers, we must concurrently accelerate our efforts to acquire resources. Our 1990 Resource Program launched a strategy to do just that, starting in 1991 and 1992, with continuing activities in 1993--1995. The goals and plans of the 1990 Resource Program are still being implemented.

  7. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  8. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  9. Total, accessible and reserve wind energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    1996-01-01

    The article is a part of the international project 'Bulgaria Country Study to Address Climate Change Inventory of the Greenhouse Gases Emission and Sinks Alternative Energy Balance and Technology Programs' sponsored by the Department of Energy, US. The 'total' average annual wind resources in Bulgaria determined on the basis wind velocity density for more than 100 meteorological stations are estimated on 125 000 TWh. For the whole territory the theoretical wind power potential is about 14200 GW. The 'accessible' wind resources are estimated on about 62000 TWh. The 'reserve' (or usable) wind resources are determined using 8 velocity intervals for WECS (Wind Energy Conversion Systems) operation, number and disposition of turbines, and the usable (3%) part of the territory. The annual reserve resources are estimated at about 21 - 33 TWh. The 'economically beneficial' wind resources (EBWR) are those part of the reserve resources which could be included in the country energy balance using specific technologies in specific time period. It is foreseen that at year 2010 the EBWR could reach 0.028 TWh. 7 refs., 2 tabs., 1 fig

  10. Energy education resources: Kindergarten through 12th grade

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Energy Education Resources: Kindergarten Through 12th Grade is published by the National Energy Information Center (NEIC) a service of the Energy Information Administration (EIA), to provide students, educators, and other information users, a list of generally available free or low-cost energy-related educational materials. Each entry includes the address, telephone number, and description of the organization and the energy-related materials available. Most of the entries also include Internet (Web) and electronic mail (E-Mail) addresses. Each entry is followed by a number, which is referenced in the subject index in the back of this book.

  11. The largest renewable, easily exploitable, and economically sustainable energy resource

    Science.gov (United States)

    Abbate, Giancarlo; Saraceno, Eugenio

    2018-02-01

    Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.

  12. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  13. Assessment of the Fusion Energy Sciences Program. Final Report

    International Nuclear Information System (INIS)

    2001-01-01

    An assessment of the Office of Fusion Energy Sciences (OFES) program with guidance for future program strategy. The overall objective of this study is to prepare an independent assessment of the scientific quality of the Office of Fusion Energy Sciences program at the Department of Energy. The Fusion Science Assessment Committee (FuSAC) has been appointed to conduct this study

  14. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  15. Science in the service of energy

    CERN Multimedia

    2013-01-01

    Meetings on the subject of energy have marked the past two weeks at CERN. The first was on how we use energy, the second on how we might generate it in the future. Both are important, not just for CERN, but for society as a whole.   Let’s take a look at the first of those gatherings. It was the second in a series of workshops on energy for sustainable science, organised by CERN in collaboration with the European Spallation Source (ESS), which hosted the first, and ERF, the European association of national research facilities. The way we use energy is increasingly important, and constitutes a substantial fraction of CERN's operating budget. We consume 1.2 TeraWatt-hours (TWh) of energy per year. To put that in to context, the canton of Geneva consumes 3TWh per year. It is therefore incumbent on a laboratory like CERN to ensure that we use energy in the most efficient, responsible and sustainable way possible. Since the first workshop in 2011, much progress has been made in te...

  16. Children and youth's biopsychosocial wellbeing in the context of energy resource activities.

    Science.gov (United States)

    Cox, Robin S; Irwin, Pamela; Scannell, Leila; Ungar, Michael; Bennett, Trevor Dixon

    2017-10-01

    Children and youth emerge as key populations that are impacted by energy resource activities, in part because of their developmental vulnerabilities, as well as the compounding effects of energy systems on their families, communities, and physical environments. While there is a larger literature focused on fossil fuel emissions and children, the impacts of many aspects of energy systems on children and youth remain under examined and scattered throughout the health, social science, and environmental science literatures. This systematic interdisciplinary review examines the biological, psychosocial, and economic impacts of energy systems identified through social science research - specifically focused on household and industrial extraction and emissions - on children and youth functioning. A critical interpretive search of interdisciplinary and international social sciences literature was conducted using an adaptive protocol focusing on the biopsychosocial and economic impacts of energy systems on children and youth. The initial results were complemented with a purposeful search to extend the breadth and depth of the final collection of articles. Although relatively few studies have specifically focused on children and youth in this context, the majority of this research uncovers a range of negative health impacts that are directly and indirectly related to the development and ongoing operations of natural resource production, particularly oil and gas, coal, and nuclear energy. Psychosocial and cultural effects, however, remain largely unexamined and provide a rich avenue for further research. This synthesis identifies an array of adverse biopsychosocial health outcomes on children and youth of energy resource extraction and emissions, and identifies gaps that will drive future research in this area. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  18. From energy efficiency towards resource efficiency within the Ecodesign Directive

    DEFF Research Database (Denmark)

    Bundgaard, Anja Marie; Mosgaard, Mette; Remmen, Arne

    2017-01-01

    on the most significant environmental impact has often resulted in a focus on energy efficiency in the use phase. Therefore, the Ecodesign Directive should continue to target resource efficiency aspects but also consider environ- mental aspects with a large improvement potential in addition to the most...... significant environmental impact. For the introduction of resource efficiency requirements into the Ecodesign Directive, these requirements have to be included in the preparatory study. It is therefore recommended to broaden the scope of the Methodology for the Ecodesign of Energy-related products and the Eco......The article examines the integration of resource efficiency into the European Ecodesign Directive. The purpose is to analyse the processes and stakeholder interactions, which formed the basis for integrating resource efficiency requirements into the implementing measure for vacuum cleaners...

  19. Depletion of energy or depletion of knowledge alternative use of energy resources

    International Nuclear Information System (INIS)

    Arslan, M.

    2011-01-01

    This research paper is about the depletion of Energy resources being a huge problem facing the world at this time. As available energy sources are coming to a shortage and measures are be taken in order to conserve the irreplaceable energy resources that leads to sustainability and fair use of energy sources for future generations. Alternative energy sources are being sought; however no other energy source is able to provide even a fraction of energy as that of fossil fuels. Use of the alternative energy resources like wind corridors (Sindh and Baluchistan), fair use of Hydro energy (past monsoon flooding can produce enough energy that may available for next century). Uranium Resources which are enough for centuries energy production in Pakistan (Dhok Pathan Formation) lying in Siwalick series from Pliocene to Pleistocene. Among all of these, my focus is about energy from mineral fuels like Uranium from Sandstone hosted deposits in Pakistan (Siwalik Series in Pakistan). A number of uranium bearing mineralized horizons are present in the upper part of the Dhok Pathan Formation. These horizons have secondary uranium mineral carnotite and other ores. Uranium mineralization is widely distributed throughout the Siwaliks The purpose of this paper was to introduce the use of alternative energy sources in Pakistan which are present in enough amounts by nature. Pakistan is blessed with wealth of natural resources. Unfortunately, Pakistan is totally depending on non renewable energy resource. There are three main types of fossil fuels: coal, oil and natural gas. After food, fossil fuel is humanity's most important source of energy. Pakistan is among the most gas dependent economies of the world. Use of fossil fuel for energy will not only increase the demand of more fossils but it has also extreme effects on climate as well as direct and indirect effects to humans. These entire remedial thinking can only be possible if you try to use alternative energy resources rather than

  20. The Texas Energy-Only Resource Adequacy Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Eric S.; Hurlbut, David; Adib, Parviz; Oren, Shmuel

    2006-12-15

    On Sept. 13, 2006, the Public Utility Commission of Texas put into effect a new Resource Adequacy and Market Power Rule which establishes an Energy-Only resource adequacy mechanism in the ERCOT electricity market, relaxes the $1,000 per MWh offer cap, and replaced existing market mitigation procedures with more market transparency and prompt information disclosure. The authors describe the motivation and rationale underlying the new rule, its development process, and its implementation details. (author)

  1. The Texas Energy-Only Resource Adequacy Mechanism

    International Nuclear Information System (INIS)

    Schubert, Eric S.; Hurlbut, David; Adib, Parviz; Oren, Shmuel

    2006-01-01

    On Sept. 13, 2006, the Public Utility Commission of Texas put into effect a new Resource Adequacy and Market Power Rule which establishes an Energy-Only resource adequacy mechanism in the ERCOT electricity market, relaxes the $1,000 per MWh offer cap, and replaced existing market mitigation procedures with more market transparency and prompt information disclosure. The authors describe the motivation and rationale underlying the new rule, its development process, and its implementation details. (author)

  2. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  3. Using Science Skills to Understand Ecophysiology and Manage Resources

    Science.gov (United States)

    Bubenheim, David

    2015-01-01

    Presentation will be for a general audience and focus on plant science and ecosystem science in NASA. Examples from the projects involving the presenter will be used to illustrate. Specifically, the California Sacramento-San Joaquin River Delta project. This collaboration supports the goals of the Delta Plan in developing science-based, adaptive-management strategies. The mission is to improve reliability of water supply and restore a healthy Delta ecosystem while enhancing agriculture and recreation. NASA can contribute gap-filling science understanding of overall functions in the Delta ecosystem and assess and help develop management plans for specific issues. Airborne and satellite remote-sensing, ecosystem modeling, and biological studies provide underlying data needed by Delta stakeholders to assess and address water, ecosystem restoration, and environmental and economic impacts of potential actions in the Delta. The California Sacramento-San Joaquin River Delta, the hub for California's water supply, supports important ecosystem services for fisheries, supplies drinking water for millions, and distributes water from Northern California to agriculture and urban communities to the south; millions of people and businesses depend on Delta water. Decades of competing demands for Delta resources and year-to-year variability in precipitation has resulted in diminished overall health of the Delta. Declines in fish populations, threatened ecosystems, endangered species, invasive plants and animals, cuts in agricultural exports, and increased water conservation is the result. NASA and the USDA, building on previous collaborations, aide local Delta stakeholders in assessing and developing an invasive weed management approach. Aquatic, terrestrial, and riparian invasive weeds threaten aquatic and terrestrial ecosystem restoration efforts. Aquatic weeds are currently detrimental economically, environmentally, and sociologically in the Delta. They negatively impact the

  4. Eleventh symposium on energy engineering sciences: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases

  5. World nonrenewable conventional energy resources as of December 31, 1982

    International Nuclear Information System (INIS)

    Parent, J.D.

    1984-01-01

    Energy analysts present year-end 1982 estimates for world proved reserves, remaining recoverable resources, annual production rates, and cumulative production of the non-renewable convectional energy resources: coal, natural gas, crude oil, natural gas liquids, bitumens, shale oil, and uranium oxide. Life indices for world fossil fuels are also given for several annual growth rates. The world's proved and currently recoverable natural gas reserves amount to 2649-3250 trillion CF; the estimated total remaining recoverable is 6693-7462 TCF. In 1982, 54 TCF of gas was produced for a cumulative production of 1320 TCF (not counting vented or flared gas)

  6. Chunk-Based Energy Efficient Resource Allocation in OFDMA Systems

    Directory of Open Access Journals (Sweden)

    Yong Li

    2013-01-01

    Full Text Available Energy efficiency (EE capacity analysis of the chunk-based resource allocation is presented by considering the minimum spectrum efficiency (SE constraint in downlink multiuser orthogonal frequency division multiplexing (OFDM systems. Considering the minimum SE requirement, an optimization problem to maximize EE with limited transmit power is formulated over frequency selective channels. Based on this model, a low-complexity energy efficient resource allocation is proposed. The effects of system parameters, such as the average channel gain-to-noise ratio (CNR and the number of subcarriers per chunk, are evaluated. Numerical results demonstrate the effectiveness of the proposed scheme for balancing the EE and SE.

  7. Integrated assessment, water resources, and science-policy communication

    International Nuclear Information System (INIS)

    Davies, E.G.R.; Akhtar, M.K.; McBean, G.A.; Simonovic, S.P.

    2009-01-01

    Traditional climate change modeling neglects the role of feedbacks between different components of society-biosphere-climate system. Yet, such interconnections are critical. This paper describes an alternative, Integrated Assessment (IA) model that focuses on feedbacks not only within individual elements of the society-biosphere-climate system, but also on their interconnections. The model replicates the relevant dynamics of nine components of the society-biosphere- climate system at the sectoral, or single-component, level: climate, carbon cycle, hydrological cycle, water demand, water quality, population, land use, energy and economy. The paper discusses the role of the model in science-policy dialogue. (author)

  8. Renewable resources and renewable energy a global challenge

    CERN Document Server

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  9. 78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science

    Science.gov (United States)

    2013-08-16

    ... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...

  10. 78 FR 79478 - Advisory Committee on Climate Change and Natural Resource Science

    Science.gov (United States)

    2013-12-30

    ... Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting notice... announce that the Advisory Committee on Climate Change and Natural Resource Science will hold a meeting..., National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive...

  11. 77 FR 60717 - Establishment of the Advisory Committee on Climate Change and Natural Resource Science

    Science.gov (United States)

    2012-10-04

    ... engagement of key partners at the regional Climate Science Center level. Advise on the nature and... Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of... seeking nominations for the Advisory Committee on Climate Change and Natural Resource Science (Committee...

  12. Big Biomedical data as the key resource for discovery science

    Energy Technology Data Exchange (ETDEWEB)

    Toga, Arthur W.; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Dinov, Ivo D.; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-07-21

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson’s and Alzheimer’s.

  13. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1980-01-01

    The paper is aimed at making a theoretical analysis on optimal shift from finite energy resources like presently used oil toward advanced energy sources like nuclear and solar. First, the value of conventional energy as a finite resource is derived based on the variational principle. Second, a simplified model on macroeconomy is used to obtain and optimal relationship between energy production and consumption and thereby the optimality on energy price is provided. Third, the meaning of research and development of advanced energy is shown by taking into account resource constraints and technological progress. Finally, an optimal timing of the shift from conventional to advanced energies is determined by making use of the maximum principle. The methematical model employed there is much simplified but can be used to conclude that in order to make an optimal shift some policy-oriented decision must be made prior to when an economically competitive condition comes and that, even with that decision made, some recession of energy demand is inevitable during the transitional phase. (author)

  14. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  15. Hyphenated hydrology: Multidisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, K. 4553; Jawitz, J. W.

    2016-12-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-20th century. While hydrology may have evolved from the singular viewpoint of a more rigid physical or engineering science, modern water resource related questions have forced adaptation toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution have been foreseen by prominent expert hydrologists, though their narrative descriptions were not substantially quantified. This study addresses that gap by directly measuring and inspecting the words that hydrologists use to define and describe their research endeavors. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerges. Word frequency and term concurrence reveal the dynamic timing of the lateral movement of hydrology across multiple disciplines and a deepening of scientific discourse with respect to traditional hydrologic questions. This study concludes that formerly exotic disciplines are increasingly modifying hydrology, prompting new insights as well as inspiring unconventional perspectives on old questions.

  16. Energy resources, CO2 production and energy conservation

    International Nuclear Information System (INIS)

    O'Callaghan, P.W.

    1993-01-01

    World fossil fuel reserves, historical and current rates of consumption are reviewed and estimates of indigeneous lives in geographical regions are made. Rates of production and accumulations of carbon dioxide and other greenhouse gases in the atmosphere are calculated and correlations made with measured global mean temperatures and concomitant sea-level rises. It is concluded that, if present rates of global fossil-fuel consumptions continue unabated, the world's fossil-fuel store will be depleted by the year 2050. This would be accompanied by a substantial rise in global mean temperature. The effects of various protocols for the reductions of emissions are examined. It is concluded that there is no alternative than to cease the production and release into the atmosphere of the more damaging man-made greenhouse gases as soon as is practicably possible and to seek a sustained reduction in the rates of combustion of fossil fuels world-wide via energy management and conservation. (author)

  17. Enhancing Science Teacher Training Using Water Resources and GLOBE

    Science.gov (United States)

    Falco, James W.

    2002-01-01

    Heritage College, located on the Yakama Indian Reservation in south central Washington state, serves a multicultural, underserved, rural population and trains teachers to staff the disadvantaged school districts on and surrounding the reservation. In-service teachers and pre-service teachers in the area show strength in biology but have weak backgrounds in chemistry and mathematics. We are addressing this problem by providing a 2-year core of courses for 3 groups of 25 students (15 pre-service and 10 in-service teachers) using GLOBE to teach integrated physical science and mathematics. At the conclusion of the program, the students will qualify for science certification by Washington State. Water resources are the focal point of the curriculum because it is central to life in our desert area. The lack or excess of water, its uses, quality and distribution is being studied by using GIS, remote sensing and historical records. Students are learning the methodology to incorporate scientific protocols and data into all aspects of their future teaching curriculum. In addition, in each of the three years of the project, pre-service teachers attended a seminar series during the fall semester with presentations by collaborators from industry, agriculture, education and government agencies. Students used NASA educational materials in the presentations that they gave at the conclusion of the seminar series. All pre- and in-service teachers continue to have support via a local web site for Heritage College GLOBE participants.

  18. Automatic energy expenditure measurement for health science.

    Science.gov (United States)

    Catal, Cagatay; Akbulut, Akhan

    2018-04-01

    It is crucial to predict the human energy expenditure in any sports activity and health science application accurately to investigate the impact of the activity. However, measurement of the real energy expenditure is not a trivial task and involves complex steps. The objective of this work is to improve the performance of existing estimation models of energy expenditure by using machine learning algorithms and several data from different sensors and provide this estimation service in a cloud-based platform. In this study, we used input data such as breathe rate, and hearth rate from three sensors. Inputs are received from a web form and sent to the web service which applies a regression model on Azure cloud platform. During the experiments, we assessed several machine learning models based on regression methods. Our experimental results showed that our novel model which applies Boosted Decision Tree Regression in conjunction with the median aggregation technique provides the best result among other five regression algorithms. This cloud-based energy expenditure system which uses a web service showed that cloud computing technology is a great opportunity to develop estimation systems and the new model which applies Boosted Decision Tree Regression with the median aggregation provides remarkable results. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Effective management of combined renewable energy resources in Tajikistan.

    Science.gov (United States)

    Karimov, Khasan S; Akhmedov, Khakim M; Abid, Muhammad; Petrov, Georgiy N

    2013-09-01

    Water is needed mostly in summer time for irrigation and in winter time for generation of electric power. This results in conflicts between downstream countries that utilize water mostly for irrigation and those upstream countries, which use water for generation of electric power. At present Uzbekistan is blocking railway connection that is going to Tajikistan to interfere to transportation of the equipment and materials for construction of Rogun hydropower plant. In order to avoid conflicts between Tajikistan and Uzbekistan a number of measures for the utilization of water resources of the trans-boundary Rivers Amu-Darya and Sir-Darya are discussed. In addition, utilization of water with the supplement of wind and solar energy projects for proper and efficient management of water resources in Central Asia; export-import exchanges of electric energy in summer and winter time between neighboring countries; development of small hydropower project, modern irrigation system in main water consuming countries and large water reservoir hydropower projects for control of water resources for hydropower and irrigation are also discussed. It is also concluded that an effective management of water resources can be achieved by signing Water treaty between upstream and downstream countries, first of all between Tajikistan and Uzbekistan. In this paper management of water as renewable energy resource in Tajikistan and Central Asian Republics are presented. Copyright © 2013. Published by Elsevier B.V.

  20. Final Technical Report: Renewable Energy Feasibility Study and Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Mariah [BEC Environmental, Inc., Las Vegas, NV (United States)

    2016-02-28

    In March 2011, the U.S. Department of Energy (DOE) awarded White Pine County, Nevada, a grant to assess the feasibility of renewable resource-related economic development activities in the area. The grant project included a public outreach and training component and was to include a demonstration project; however, the demonstration project was not completed due to lack of identification of an entity willing to locate a project in White Pine County. White Pine County completed the assessment of renewable resources and a feasibility study on the potential for a renewable energy-focused economic sector within the County. The feasibility study concluded "all resources studied were present and in sufficient quantity and quality to warrant consideration for development" and there were varying degrees of potential economic impact based on the resource type and project size. The feasibility study and its components were to be used as tools to attract potential developers and other business ventures to the local market. White Pine County also marketed the County’s resources to the renewable energy business community in an effort to develop contracts for demonstration projects. The County also worked to develop partnerships with local educational institutions, including the White Pine County School District, conducted outreach and training for the local community.

  1. An Aggregation Model for Energy Resources Management and Market Negotiations

    Directory of Open Access Journals (Sweden)

    Omid Abrishambaf

    2018-03-01

    Full Text Available Currently the use of distributed energy resources, especially renewable generation, and demand response programs are widely discussed in scientific contexts, since they are a reality in nowadays electricity markets and distribution networks. In order to benefit from these concepts, an efficient energy management system is needed to prevent energy wasting and increase profits. In this paper, an optimization based aggregation model is presented for distributed energy resources and demand response program management. This aggregation model allows different types of customers to participate in electricity market through several tariffs based demand response programs. The optimization algorithm is a mixed-integer linear problem, which focuses on minimizing operational costs of the aggregator. Moreover, the aggregation process has been done via K-Means clustering algorithm, which obtains the aggregated costs and energy of resources for remuneration. By this way, the aggregator is aware of energy available and minimum selling price in order to participate in the market with profit. A realistic low voltage distribution network has been proposed as a case study in order to test and validate the proposed methodology. This distribution network consists of 25 distributed generation units, including photovoltaic, wind and biomass generation, and 20 consumers, including residential, commercial, and industrial buildings.

  2. Energy needs, uses, and resources in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, P.F.; Nathans, R.; Beardsworth, E.; Hale, S. Jr.

    1978-03-01

    The report identifies the energy needs, uses, and resources in the developing countries of the world and examines the energy options available to them for their continued social and economic growth. If traditional patterns of development are to continue, oil consumption in the non-OPEC LDCs will grow steadily to become comparable with current U.S. consumption between 2000 and 2020. Attempts to exploit indigenous hydrocarbon resources even in those LDCs with untapped reserves will be limited by shortages of capital and technical manpower. In the absence of major actions to replace noncommercial fuels or to increase the effectiveness with which they are used, a large fraction of the 3 to 4 billion LDC rural population in the year 2000 will not be able to raise their energy usage above subsistence levels. There is a wide variety of solutions to these problems, many of them emerging directly from the changed economics of energy. For example, most LDCs have not adequately explored and developed their own indigenous resources; in virtually all energy conversion and utilization processes there are opportunities for improvements in efficiency and substitution of renewable energy forms. In virtually all these areas there are opportunities for effective assistance activities.

  3. National Renewable Energy Laboratory information resources catalogue. A collection of energy efficiency and renewable energy information resources

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    NREL`s first annual Information Resources Catalogue is intended to inform anyone interested in energy efficiency and renewable energy technologies of NREL`s outreach activities, including publications and services. For ease of use, all entries are categorized by subject. The catalogue is separated into six main sections. The first section lists and describes services that are available through NREL and how they may be assessed. The second section contains a list of documents that are published by NREL on a regular or periodic basis. The third section highlights NREL`s series publications written for specific audiences and presenting a wide range of subjects. NREL`s General Interest Publications constitute the fourth section of the catalogue and are written for nontechnical audiences. Descriptions are provided for these publications. The fifth section contains Technical Reports that detail research and development projects. The section on Conference Papers/Journal Articles/Book Chapters makes up the sixth and final section of the catalogue.

  4. 77 FR 41481 - Integration of Variable Energy Resources

    Science.gov (United States)

    2012-07-13

    ... point to the importance of the Proposed Rule in removing market barriers to VER integration. NextEra... Commission's initiative to remove market and operational barriers to VERs integration and eliminate undue... Commission 18 CFR Part 35 Integration of Variable Energy Resources; Final Rule #0;#0;Federal Register / Vol...

  5. Territorial autonomy, energy resources administration and regalia regime in Colombia

    International Nuclear Information System (INIS)

    Henao Rodriguez, Alberto

    2000-01-01

    The paper includes topics like the territorial organization in Colombia, the energy administration, the organization of the Colombian system of regalia, options of the not-renewable natural resources administration, reorganization of the Colombian system of regalia, articulation to the territorial organization of the country and an administration proposal is made

  6. Geothermal Energy: Resource and Utilization. A Teaching Module.

    Science.gov (United States)

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  7. Natural resources and energy systems: a strategic perspective

    International Nuclear Information System (INIS)

    Lee, T.H.; Schmidt, E.; Anderer, J.

    1986-06-01

    Oil prices falls to below ten dollar a barrel. US synfuel program cancelled after billions of dollars are invested. Tennessee Valley Authority tries to sell unfinished nuclear plants to China. Completed nuclear plant stands idle in Austria. Canadians seek uses for excess power from Candu plants. A glut of cheap oil, a general excess of operating nuclear capacity, an ever growing number of mothballed or not quite completed non-operating nuclear plants. Today the formidable challenge is to use abundant energy sources in ways that support social and economic development and protect the environment. In this paper we seek to provide a strategic perspective on how to meet this challenge. Toward this end, we explore the misconceptions of the past that led to costly errors in energy planning. The issue here is to dispel the myth of resource depletion as the driving force for the shift from one energy source to another. To gain insight into the actual basis for energy substitution, we turn our attention to energy patterns, viewing these in retrospect and prospect. This review of energy development provides an opportunity to consider some of the environmental implications of the expanded use of energy resources. These findings are then drawn together in an attempt to highlight certain R and D options that we believe offer a sound basis for strategic energy management. (Author, shortened by G.Q.)

  8. Energy efficiency resource modeling in generation expansion planning

    International Nuclear Information System (INIS)

    Ghaderi, A.; Parsa Moghaddam, M.; Sheikh-El-Eslami, M.K.

    2014-01-01

    Energy efficiency plays an important role in mitigating energy security risks and emission problems. In this paper, energy efficiency resources are modeled as efficiency power plants (EPP) to evaluate their impacts on generation expansion planning (GEP). The supply curve of EPP is proposed using the production function of electricity consumption. A decision making framework is also presented to include EPP in GEP problem from an investor's point of view. The revenue of EPP investor is obtained from energy cost reduction of consumers and does not earn any income from electricity market. In each stage of GEP, a bi-level model for operation problem is suggested: the upper-level represents profit maximization of EPP investor and the lower-level corresponds to maximize the social welfare. To solve the bi-level problem, a fixed-point iteration algorithm is used known as diagonalization method. Energy efficiency feed-in tariff is investigated as a regulatory support scheme to encourage the investor. Results pertaining to a case study are simulated and discussed. - Highlights: • An economic model for energy efficiency programs is presented. • A framework is provided to model energy efficiency resources in GEP problem. • FIT is investigated as a regulatory support scheme to encourage the EPP investor. • The capacity expansion is delayed and reduced with considering EPP in GEP. • FIT-II can more effectively increase the energy saving compared to FIT-I

  9. Exploring the challenges of energy and resources network governance

    International Nuclear Information System (INIS)

    Poocharoen, Ora-orn; Sovacool, Benjamin K.

    2012-01-01

    While a growing amount of literature has recently emerged describing network governance, less attention has been paid to evaluating the actual performance of networks. Our paper looks at the challenges facing network governance for natural resources (primarily logging and forestry) and energy (primarily renewable energy and energy efficiency) in Asia. The paper investigates what network governance is, and what types of challenges networks have to tackle. It then develops a qualitative analytical framework to evaluate the effectiveness of networks consisting of five criteria: (1) clarity of roles and objectives among members, (2) having strong, independent, continual sources of funding, (3) institutional formality (having a permanent secretariat, budget, full time staff, etc.), (4) efficacy (ability to accomplish its mission and goals at the least possible cost); and (5) level of interdependency among members. Finally, we apply this framework to four case studies: the Association of Southeast Asian Nations (ASEAN) Centre for Energy, Renewable Energy and Energy Efficiency Partnership (REEEP), ASEAN Regional Knowledge Network on Forests and Climate Change (FCC), and ASEAN Regional Knowledge Network on Forest Law Enforcement and Governance (FLEG). These cases illustrate effective (or ineffective) environmental and energy networks and the factors that are associated with network governance. - Highlights: ► This article evaluates four cases of energy and resources network governance. ► We assess these cases according to five criteria. ► We illustrate the effectiveness (and ineffectiveness) of these networks.

  10. A composite efficiency metrics for evaluation of resource and energy utilization

    International Nuclear Information System (INIS)

    Yang, Siyu; Yang, Qingchun; Qian, Yu

    2013-01-01

    Polygeneration systems are commonly found in chemical and energy industry. These systems often involve chemical conversions and energy conversions. Studies of these systems are interdisciplinary, mainly involving fields of chemical engineering, energy engineering, environmental science, and economics. Each of these fields has developed an isolated index system different from the others. Analyses of polygeneration systems are therefore very likely to provide bias results with only the indexes from one field. This paper is motivated from this problem to develop a new composite efficiency metrics for polygeneration systems. This new metrics is based on the second law of thermodynamics, exergy theory. We introduce exergy cost for waste treatment as the energy penalty into conventional exergy efficiency. Using this new metrics could avoid the situation of spending too much energy for increasing production or paying production capacity for saving energy consumption. The composite metrics is studied on a simplified co-production process, syngas to methanol and electricity. The advantage of the new efficiency metrics is manifested by comparison with carbon element efficiency, energy efficiency, and exergy efficiency. Results show that the new metrics could give more rational analysis than the other indexes. - Highlights: • The composite efficiency metric gives the balanced evaluation of resource utilization and energy utilization. • This efficiency uses the exergy for waste treatment as the energy penalty. • This efficiency is applied on a simplified co-production process. • Results show that the composite metrics is better than energy efficiencies and resource efficiencies

  11. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  12. Sensor Buoy System for Monitoring Renewable Marine Energy Resources.

    Science.gov (United States)

    García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco

    2018-03-22

    In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.

  13. Resource and energy recovery options for fermentation industry residuals

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S C [Santa Clara Univ., CA (USA); Manning, Jr, J F [Alabama Univ., Birmingham, AL (USA)

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recover significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. (author).

  14. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  15. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  16. Optimum selection of an energy resource using fuzzy logic

    International Nuclear Information System (INIS)

    Abouelnaga, Ayah E.; Metwally, Abdelmohsen; Nagy, Mohammad E.; Agamy, Saeed

    2009-01-01

    Optimum selection of an energy resource is a vital issue in developed countries. Considering energy resources as alternatives (nuclear, hydroelectric, gas/oil, and solar) and factors upon which the proper decision will be taken as attributes (economics, availability, environmental impact, and proliferation), one can use the multi-attribute utility theory (MAUT) to optimize the selection process. Recently, fuzzy logic is extensively applied to the MAUT as it expresses the linguistic appraisal for all attributes in wide and reliable manners. The rise in oil prices and the increased concern about environmental protection from CO 2 emissions have promoted the attention to the use of nuclear power as a viable energy source for power generation. For Egypt, as a case study, the nuclear option is found to be an appropriate choice. Following the introduction of innovative designs of nuclear power plants, improvements in the proliferation resistance, environmental impacts, and economics will enhance the selection of the nuclear option.

  17. Enabling science and technology for marine renewable energy

    International Nuclear Information System (INIS)

    Mueller, Markus; Wallace, Robin

    2008-01-01

    This paper describes some of the key challenges to be met in the development of marine renewable energy technology, from its present prototype form to being a widely deployed contributor to future energy supply. Since 2000, a number of large-scale wave and tidal current prototypes have been demonstrated around the world, but marine renewable energy technology is still 10-15 years behind that of wind energy. UK-based developers are leading the way, with Pelamis from Pelamis Wave Power demonstrated in the open sea, generating electricity into the UK network and securing orders from Portugal. However, having started later, the developing technology can make use of more advanced science and engineering, and it is therefore reasonable to expect rapid progress. Although progress is underway through deployment and testing, there are still key scientific challenges to be addressed in areas including resource assessment and predictability, engineering design and manufacturability, installation, operation and maintenance, survivability, reliability and cost reduction. The research priorities required to meet these challenges are suggested in this paper and have been drawn from current roadmaps and vision documents, including more recent consultations within the community by the UK Energy Research Centre Marine Research Network. Many scientific advances are required to meet these challenges, and their likelihood is explored based on current and future capabilities

  18. Women and energy resources management. A UNIFEM perspective

    International Nuclear Information System (INIS)

    Marks, I.

    1996-01-01

    Women need access to energy resources in order to meet their basic needs for food, shelter, clean water, health care and employment and to improve their family's living conditions. Due to population growth and economic development the demand for the main energy sources in low-income rural areas, biomass, is far greater than the supply, and women have no choice but to overexploit the increasingly scarce resources just to survive. Improvements in energy efficiency and an increased use of renewable energy sources could help women to balance their immediate livelihood needs and the long-term ecological needs. However, women generally lack access to these improved energy technologies. This article explores the causes of women's limited access to improved energy technologies and why energy polices and programmes often fail to address women's specific needs and concerns. Strategies of the United Nations Development Fund for Women (UNIFEM) are outlined as examples of approaches aiming at improving women's access to information and sustainable technologies and promoting women's full participation in environmental decision and policy making. (author). 23 refs

  19. Science requirements for free-flying imaging radar (FIREX) experiment for sea ice, renewable resources, nonrenewable resources and oceanography

    Science.gov (United States)

    Carsey, F.

    1982-01-01

    A future bilateral SAR program was studied. The requirements supporting a SAR mission posed by science and operations in sea-ice-covered waters, oceanography, renewable resources, and nonrenewable resources are addressed. The instrument, mission, and program parameters were discussed. Research investigations supporting a SAR flight and the subsequent overall mission requirements and tradeoffs are summarized.

  20. Why Reinvent the Wheel when Earth Science Resources Are Already Available? The GEOTREX and STEGO Resource Banks

    Science.gov (United States)

    Williams, Maggie

    2012-01-01

    The "issue" of there being only limited time available to teachers for the development of teaching and learning resources has been with us a long time. This article outlines the rationale behind the development of online teaching resources that are freely available on the Earth Science Teachers' Association (ESTA) website and introduces readers to…

  1. Environmental impacts of biomass energy resource production and utilization

    International Nuclear Information System (INIS)

    Easterly, J.L.; Dunn, S.M.

    1995-01-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO 2 , and reduced emissions of SO 2 , the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO 2 and SO 2 , other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO 2 , with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general, the key elements for

  2. Development of synthetic analysis program concerning on the safety of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. H.; Choi, S. S.; Cheong, Y. H.; Ahn, S. H.; Chang, W. J. [Atomic Creative Technology, Daejeon (Korea, Republic of)

    2007-03-15

    Methodology development of synthetic analysis of energy resources: build system methodology of synthetic analysis of energy resources. Development of web-based enquete program, develop web-based enquete program to support synthetic analysis of energy resources. Aggregation Software development, develop AHP algorithm and aggregation software for the synthetic analysis of energy resources.

  3. An enviro-economic function for assessing energy resources for district energy systems

    International Nuclear Information System (INIS)

    Rezaie, Behnaz; Reddy, Bale V.; Rosen, Marc A.

    2014-01-01

    District energy (DE) systems provide an important means of mitigating greenhouse gas emissions and the significant related concerns associated with global climate change. DE systems can use fossil fuels, renewable energy and waste heat as energy sources, and facilitate intelligent integration of energy systems. In this study, an enviro-economic function is developed for assessing various energy sources for a district energy system. The DE system is assessed for the considered energy resources by considering two main factors: CO 2 emissions and economics. Using renewable energy resources and associated technologies as the energy suppliers for a DE system yields environmental benefits which can lead to financial advantages through such instruments as tax breaks; while fossil fuels are increasingly penalized by a carbon tax. Considering these factors as well as the financial value of the technology, an analysis approach is developed for energy suppliers of the DE system. In addition, the proposed approach is modified for the case when thermal energy storage is integrated into a DE system. - Highlights: • Developed a function to assess various energy sources for a district energy system. • Considered CO 2 emissions and economics as two main factors. • Applied renewable energy resources technologies as the suppliers for a DE system. • Yields environmental benefits can lead to financial benefits by tax breaks. • Modified enviro-economic function for the TES integrated into a DE system

  4. Estimating the energy independence of a municipal wastewater treatment plant incorporating green energy resources

    International Nuclear Information System (INIS)

    Chae, Kyu-Jung; Kang, Jihoon

    2013-01-01

    Highlights: • We estimated green energy production in a municipal wastewater treatment plant. • Engineered approaches in mining multiple green energy resources were presented. • The estimated green energy production accounted for 6.5% of energy independence in the plant. • We presented practical information regarding green energy projects in water infrastructures. - Abstract: Increasing energy prices and concerns about global climate change highlight the need to improve energy independence in municipal wastewater treatment plants (WWTPs). This paper presents methodologies for estimating the energy independence of a municipal WWTP with a design capacity of 30,000 m 3 /d incorporating various green energy resources into the existing facilities, including different types of 100 kW photovoltaics, 10 kW small hydropower, and an effluent heat recovery system with a 25 refrigeration ton heat pump. It also provides guidance for the selection of appropriate renewable technologies or their combinations for specific WWTP applications to reach energy self-sufficiency goals. The results showed that annual energy production equal to 107 tons of oil equivalent could be expected when the proposed green energy resources are implemented in the WWTP. The energy independence, which was defined as the percent ratio of green energy production to energy consumption, was estimated to be a maximum of 6.5% and to vary with on-site energy consumption in the WWTP. Implementing green energy resources tailored to specific site conditions is necessary to improve the energy independence in WWTPs. Most of the applied technologies were economically viable primarily because of the financial support under the mandatory renewable portfolio standard in Korea

  5. Stochastic Resource Allocation for Energy-Constrained Systems

    Directory of Open Access Journals (Sweden)

    Sachs DanielGrobe

    2009-01-01

    Full Text Available Battery-powered wireless systems running media applications have tight constraints on energy, CPU, and network capacity, and therefore require the careful allocation of these limited resources to maximize the system's performance while avoiding resource overruns. Usually, resource-allocation problems are solved using standard knapsack-solving techniques. However, when allocating conservable resources like energy (which unlike CPU and network remain available for later use if they are not used immediately knapsack solutions suffer from excessive computational complexity, leading to the use of suboptimal heuristics. We show that use of Lagrangian optimization provides a fast, elegant, and, for convex problems, optimal solution to the allocation of energy across applications as they enter and leave the system, even if the exact sequence and timing of their entrances and exits is not known. This permits significant increases in achieved utility compared to heuristics in common use. As our framework requires only a stochastic description of future workloads, and not a full schedule, we also significantly expand the scope of systems that can be optimized.

  6. Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy

    International Nuclear Information System (INIS)

    Davidsson, Simon; Grandell, Leena; Wachtmeister, Henrik; Höök, Mikael

    2014-01-01

    Several recent studies have proposed fast transitions to energy systems based on renewable energy technology. Many of them dismiss potential physical constraints and issues with natural resource supply, and do not consider the growth rates of the individual technologies needed or how the energy systems are to be sustained over longer time frames. A case study is presented modelling potential growth rates of the wind energy required to reach installed capacities proposed in other studies, taking into account the expected service life of wind turbines. A sustained commissioning model is proposed as a theoretical foundation for analysing reasonable growth patterns for technologies that can be sustained in the future. The annual installation and related resource requirements to reach proposed wind capacity are quantified and it is concluded that these factors should be considered when assessing the feasibility, and even the sustainability, of fast energy transitions. Even a sustained commissioning scenario would require significant resource flows, for the transition as well as for sustaining the system, indefinitely. Recent studies that claim there are no potential natural resource barriers or other physical constraints to fast transitions to renewable energy appear inadequate in ruling out these concerns. - Highlights: • Growth rates and service life is important when evaluating energy transitions. • A sustained commissioning model is suggested for analysing renewable energy. • Natural resource requirements for renewable energy are connected to growth rates. • Arguments by recent studies ruling out physical constraints appear inadequate

  7. Argonne Chemical Sciences & Engineering - Center for Electrical Energy

    Science.gov (United States)

    Laboratory Chemical Sciences & Engineering DOE Logo CSE Home About CSE Research Facilities People Publications Awards News & Highlights Events Search Argonne ... Search Argonne Home > Chemical Sciences & Engineering > Fundamental Interactions Catalysis & Energy Conversion Electrochemical

  8. What criteria should now be applied in energy resource planning

    International Nuclear Information System (INIS)

    Puechl, K.H.

    1976-01-01

    Twenty years ago decisions on nuclear power were made on purely economic grounds. Little attention was given to public acceptability, broad-scope cost/benefit analysis, environmental impacts, or conservation of resources. In the light of the significantly different situation that exists today, were the proper decisions made, and what should now be the basis for proper comparable analysis. Acknowledging that energy resource planning is extremely complex, a logical approach is suggested that provides a more meaningful basis for public choice and decision-making. (author)

  9. Ecological footprint accounting for energy and resource in China

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.; Yang, Z.F.; Jiang, M.M.

    2007-01-01

    Resource consumption of the Chinese society from 1981 to 2001 is represented by ecological footprint (EF) as an aggregate indicator. The debate, advances and implications of EF are investigated in detail. EF intensity is also provided to depict the resource consumption level corresponding to unit economic output. The results show that the EF per capita always exceeded the biocapacity and the EF intensity increased steadily over the study period. In addition, sectoral analysis for each EF component is also conducted. The appropriation in the global ecological sense of Chinese society with the second largest energy consumption in the world is therefore quantified and evaluated

  10. Energy accounting as a policy analysis tool. Prepared for the Committee on Science and Technology, U. S. House of Representatives, Ninety-Fourth Congress, second session by the Environment and Natural Resources Division, Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E.

    1976-01-01

    Energy accounting or energy analysis is often cited as a basis for support of or objection to policy alternatives when legislation is being considered. This project describes the essential elements of energy accounting, traces its development over the past several years as an analytical technique, and measures its potential utility in policy analysis against its utility as demonstrated to date. Energy accounting is developing on three broad fronts--methodology, energy flow data, and contemporary analyses. It is concluded that energy accounting is worth following, but at present it appears to be of very limited value for current use. Forty articles are presented in appendices in six sections--Spreading Awareness; Critics Begin to Surface; Analytical Methodology; The Nuclear Power Debate; Net Energy Yield of New Energy Supply Systems; and Applications of Energy Analysis to National Economies and to Economic Sectors. (MCW)

  11. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  12. Multi-objective optimal dispatch of distributed energy resources

    Science.gov (United States)

    Longe, Ayomide

    This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.

  13. Distributed energy resources at naval base ventura county building 1512

    International Nuclear Information System (INIS)

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    This paper reports the findings of a preliminary assessment of the cost effectiveness of distributed energy resources at Naval Base Ventura County (NBVC) Building 1512. This study was conducted in response to the base's request for design assistance to the Federal Energy Management Program. Given the current tariff structure there are two main decisions facing NBVC: whether to install distributed energy resources (DER), or whether to continue the direct access energy supply contract. At the current effective rate, given assumptions about the performance and structure of building energy loads and available generating technology characteristics, the results of this study indicate that if the building installed a 600 kW DER system with absorption cooling and heat capabilities chosen by cost minimization, the energy cost savings would be about 14 percent, or $55,000 per year. However, under current conditions, this study also suggests that significant savings could be obtained if Building 1 512 changed from the direct access contract to a SCE TOU-8 (Southern California Edison time of use tariff number 8) rate without installing a DER system. At current SCE TOU-8 tariffs, the potential savings from installation of a DER system would be about 4 percent, or $15,000 per year

  14. Renewable energy resources and technologies practice in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Rofiqul Islam, M.; Rafiqul Alam Beg, M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Rabiul Islam, M. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh)

    2008-02-15

    Bangladesh has very limited nonrenewable energy resources of its own. She is facing energy crisis and serious desertification problem in rural areas. These issues could be removed if renewable energy is used as a primary source of energy in rural areas. It is essential for scientists and researchers to find out the renewable energy resources and effective technologies. Bangladesh is endowed with vast renewable energy resources such as biomass and solar insolation. Besides, hydro and wind power can be considered as potential renewable energy resources. Harnessing these resources appears to be a promising solution for improving the quality of life of rural villagers. The government and many non-governmental organizations (NGOs) have tried to comprehend and have strived to address the problem of energy. This paper reviews the renewable energy resources and renewable energy technologies (RETs) practicing in Bangladesh in terms of its implementation, research and development activities. The development and trial of systems are mostly funded so far by donor agencies in collaboration with government and NGOs. Biomass energy sources are traditionally used for domestic cooking and in small rural industries. Approximately 60% of total energy demand of the country is supplied by indigenous biomass based fuels. Activities on the development and promotion of biomass technologies have been going on for one decade. Some national and international funds have been available for biogas technology, improved biomass cookers and production of biomass briquettes. At the time, around 25,000 biogas plants exist all over the country in rural areas and educational institutes, etc. More than 0.20 million improve stoves have been installed to save biomass fuel. Over 900 briquetting machines have been operating in the country on commercial basis. The annual solar radiation availability in Bangladesh is as high as 1700 kWh/m{sup 2}. Research and demonstration activities carried out for one

  15. Science, Technology and Natural Resources Policy: Overcoming Congressional Gridlock

    Science.gov (United States)

    McCurdy, K. M.

    2015-12-01

    The current status of Science, Technology and Natural Resources (STNR) policy in the United States provides an ideal context to examine the influence of committee seniority within the public policy process. Exemplars of the Policy Entrepreneur have been individuals in leadership positions, whether executive or legislative. The role of junior committee members in shaping policy innovation is less well understood, and is frequently masked either in cross-sectional research designs or in case studies. The House Natural Resources committee seniority patterns are compared to the House of Representatives Chamber data from 1975 to 2015. This expanse of congressional time captures both the policy innovation of the Class of 1974 who helped transform the public lands by pursuing a preservation agenda, along with the contemporaneous gridlock caused by disagreements about reducing the size of the federal government, a policy agenda championed and sustained by the Class of 1994. Several types of political actors have served as policy entrepreneurs, President Kennedy and Secretary of Interior Udall shepherding the Wilderness Act of 1964 from the Executive branch, or in the 111th Congress Committee chairmen Senator Christopher Dodd and Representative Barney Frank, having announced their retirements, spent their final Congress shaping the consensus that produced the Wall Street Reform and Consumer Protection Act of 2010. A less studied policy phenomenon relies on "packing the committee" to outvote the leadership. This tactic can be used by the party leadership to overcome recalcitrant senior committee members, as was the case for Democrats in the House Interior and Insular Affairs Committee shift to preservation in the 1970s, or the tactic can be employed from the grassroots, as may be happening in the case of the House Natural Resources Committee in the 114th Congress. A policy making process analog to rivers is more appropriate than a mechanistic model. As there are multiple

  16. Decentralized Energy Management with Profile Steering : Resource Allocation Problems in Energy Management

    NARCIS (Netherlands)

    van der Klauw, Thijs

    2017-01-01

    Our energy supply chain is changing rapidly, driven by a societal push towards clean and renewable resources. However, these resources are often uncontrollable (e.g., wind and sun) and are increasingly being exploited on smaller scales (e.g., rooftop photovoltaic). This poses a reliability challenge

  17. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  18. Investing in citizen science can improve natural resource management and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abraham J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia K.; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2015-01-01

    Citizen science has made substantive contributions to science for hundreds of years. More recently, it has contributed to many articles in peer-reviewed scientific journals and has influenced natural resource management and environmental protection decisions and policies across the nation. Over the last 10 years, citizen science—participation by the public in a scientific project—has seen explosive growth in the United States, particularly in ecology, the environmental sciences, and related fields of inquiry. In this report, we explore the current use of citizen science in natural resource and environmental science and decision making in the United States and describe the investments organizations might make to benefit from citizen science.

  19. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Full text: Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focused on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non-destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  1. Human resource development progress to sustain nuclear science and technology applications in Cameroon

    International Nuclear Information System (INIS)

    Simo, A.; Nyobe, J.B.

    2004-01-01

    Cameroon as a Member of the International Atomic Energy Agency (IAEA) has made full use of the Agency's Technical Co-operation Programme in his effort to promote peaceful applications of nuclear science and technology at national level. This paper presents the progress made in the development of reliable human resources. Results obtained have been achieved through national and regional technical co-operation projects. Over the past twenty years, the development of human resources in nuclear science and technology has focussed on the training of national scientists and engineers in various fields such as crop and animal production, human and animal nutrition, human health applications, medical physics, non destructive testing in industry, groundwater management, maintenance of medical and scientific equipment, radiation protection and radioactive waste management. Efforts made also involve the development of graduate teaching in nuclear sciences at the national universities. However, the lack of adequate training facilities remains a major concern. The development of new training/learning methods is being considered at national level through network linking of national training centres with existing international training institutions, and the use of Information Communication Technologies (ICT) which offer great flexibility with regard to the number of trainees and the actual needs. (author)

  2. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  3. Utilization of bio-resources by low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2003-01-01

    Utilization of bio-resources by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan and sodium alginate were easily degraded by irradiation and induced various kinds of biological activities, i.g. anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. It was demonstrated that the liquid sample irradiation system using low energy EB was effective for the preparation of degraded polysaccharides. Methylcellulose (MC) can be crosslinked under certain radiation condition as same as carboxymethylcellulose (CMC) and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  4. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  5. Uranium resources, scenarios, nuclear and energy dynamics - 5200

    International Nuclear Information System (INIS)

    Bidaud, A.; Mima, S.; Criqui, P.; Gabriel, S.; Monnet, A.; Mathonniere, G.; Cuney, M.; Bruneton, P.

    2015-01-01

    In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. A dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Only two nuclear reactor types are modeled in POLES. Globally one has the characteristics of a Thermal Neutron Reactor (TR) and the other one has the ones of Fast Breeder Reactors (FBR). The results show that If both generations of nuclear reactors can be competitive with other sources, we see that in many countries their development would probably be limited by the availability of natural and recycled materials. Depending on the locally available alternative (hydro, coal) and local regulatory framework (safety and waste management for nuclear reactors but also environmental constraints such as CO 2 targets), both nuclear technologies could be developed. The advantage of the new model is that it avoids the difficult question of defining 'ultimate resources'. The drawback is that it needs a description of the volume of uranium resources but also of the link between the cost and the potential production capacities of these resources

  6. Energy taxes, resource taxes and quantity rationing for climate protection

    Energy Technology Data Exchange (ETDEWEB)

    Eisenack, Klaus [Oldenburg Univ. (Germany). Dept. of Economics; Edenhofer, Ottmar; Kalkuhl, Matthias [Potsdam-Institut fuer Klimafolgenforschung e.V., Potsdam (Germany)

    2010-11-15

    Economic sectors react strategically to climate policy, aiming at a re-distribution of rents. Established analysis suggests a Pigouvian emission tax as efficient instrument, but also recommends factor input or output taxes under specific conditions. However, existing studies leave it open whether output taxes, input taxes or input rationing perform better, and at best only touch their distributional consequences. When emissions correspond to extracted ressources, it is questionable whether taxes are effective at all. We determine the effectiveness, efficiency and functional income distribution for these instruments in the energy and resource sector, based on a game theoretic growth model with explicit factor markets and policy instruments. Market equilibrium depends on a government that acts as a Stackelberg leader with a climate protection goal. We find that resource taxes and cumulative resource quantity rationing achieve this objective efficiently. Energy taxation is only second best. Mitigation generates a substantial ''climate rent'' in the resource sector that can be converted to transfer incomes by taxes. (orig.)

  7. Energy conservation attitudes, knowledge, and behaviors in science laboratories

    International Nuclear Information System (INIS)

    Kaplowitz, Michael D.; Thorp, Laurie; Coleman, Kayla; Kwame Yeboah, Felix

    2012-01-01

    Energy use per square foot from science research labs is disproportionately higher than that of other rooms in buildings on campuses across the nation. This is partly due to labs’ use of energy intensive equipment. However, laboratory management and personnel behavior may be significant contributing factors to energy consumption. Despite an apparent increasing need for energy conservation in science labs, a systematic investigation of avenues promoting energy conservation behavior in such labs appears absent in scholarly literature. This paper reports the findings of a recent study into the energy conservation knowledge, attitude and behavior of principle investigators, laboratory managers, and student lab workers at a tier 1 research university. The study investigates potential barriers as well as promising avenues to reducing energy consumption in science laboratories. The findings revealed: (1) an apparent lack of information about options for energy conservation in science labs, (2) existing operational barriers, (3) economic issues as barriers/motivators of energy conservation and (4) a widespread notion that cutting edge science may be compromised by energy conservation initiatives. - Highlights: ► Effective energy conservation and efficiency depend on social systems and human behaviors. ► Science laboratories use more energy per square foot than any other academic and research spaces. ► Time, money, quality control, and convenience overshadow personnel’s desire to save energy. ► Ignorance of conservation practices is a barrier to energy conservation in labs.

  8. Assessment of Kinetic Tidal Energy Resources Using SELFE

    OpenAIRE

    Manasa Ranjan Behera; Pavel Tkalich

    2014-01-01

    An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE) model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s) and suitable fo...

  9. A review on distributed energy resources and MicroGrid

    Energy Technology Data Exchange (ETDEWEB)

    Jiayi, Huang; Chuanwen, Jiang; Rong, Xu [Department of Electrical Engineering, Shanghai Jiaotong University, Huashan Road 1954, Shanghai 200030 (China)

    2008-12-15

    The distributed energy resources (DER) comprise several technologies, such as diesel engines, micro turbines, fuel cells, photovoltaic, small wind turbines, etc. The coordinated operation and control of DER together with controllable loads and storage devices, such as flywheels, energy capacitors and batteries are central to the concept of MicroGrid (MG). MG can operate interconnected to the main distribution grid, or in an islanded mode. This paper reviews the researches and studies on MG technology. The operation of MG and the MG in the market environment are also described in the paper. (author)

  10. Resource file: practical publications for energy management, edition III

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The Resource File is an in-depth bibliography of 166 practical and action-oriented energy conservation publications and materials. It is a reference tool, designed for Federal, state, and local energy managers or people who are asked to recommend how-to conservation guides to the public. Each listing describes a publication's intended audience and provides a summary of its contents. Included are operations and maintenance manuals, life-cycle costing handbooks, home insulation manuals, films on fuel-saving driving techniques, and courses devoted exclusively to home weatherization. 166 items.

  11. Survey of energy resources: focus on shale gas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    The energy sector around the world is undergoing major changes resulting from increasing competitive pressures and concerns about costs, security of supply and the environment. At the same time, 1.6 billion people, almost a quarter of the world population, do not have access to commercial energy and the need for energy infrastructure investment is huge. The energy challenges are not the same in all regions. While rapidly burgeoning economies in the developing world are focusing on expanding energy access to support their economic growth and provide basic energy services to their citizens, industrialised countries are focusing on securing energy supplies in a competitive environment and in a publicly and environmentally acceptable way. In recent years, shale gas has been making headlines as a potential solution for many of the energy-related challenges, in particular in the United States. A number of studies on shale gas have been conducted, the majority focusing on the assessment of the resource base and the role of emerging technologies, which can significantly increase the current reserve estimates.

  12. Measuring the energy security implications of fossil fuel resource concentration

    International Nuclear Information System (INIS)

    Lefevre, Nicolas

    2010-01-01

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies-France and the United Kingdom-looking at the evolution of both indexes to 2030.

  13. Measuring the energy security implications of fossil fuel resource concentration

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Nicolas [Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey (United States)

    2010-04-15

    Economic assessments of the welfare effects of energy insecurity are typically uncertain and fail to provide clear guidance to policy makers. As a result, governments have had little analytical support to complement expert judgment in the assessment of energy security. This is likely to be inadequate when considering multiple policy goals, and in particular the intersections between energy security and climate change mitigation policies. This paper presents an alternative approach which focuses on gauging the causes of energy insecurity as a way to assist policy making. The paper focuses on the energy security implications of fossil fuel resource concentration and distinguishes between the price and physical availability components of energy insecurity. It defines two separate indexes: the energy security price index (ESPI), based on the measure of market concentration in competitive fossil fuel markets, and the energy security physical availability index (ESPAI), based on the measure of supply flexibility in regulated markets. The paper illustrates the application of ESPI and ESPAI with two case studies - France and the United Kingdom - looking at the evolution of both indexes to 2030. (author)

  14. Assessment of Kinetic Tidal Energy Resources Using SELFE

    Directory of Open Access Journals (Sweden)

    Manasa Ranjan Behera

    2014-09-01

    Full Text Available An investigation is carried out to study the theoretical tidal stream energy resource in the Singapore Strait to support the search for renewable energy in the effort to reduce the carbon footprints in the Southeast Asia. The tidal hydrodynamics in the Singapore Strait has been simulated using a Semi-implicit Eulerian-Lagrangian Finite-Element (SELFE model solving the 3D shallow water equations with Boussinesq approximations. Potential sites, with high tidal current (2.5 m/s and suitable for Tidal Energy Converter (TEC array installation to generate sustainable energy, have been identified. Further, various operational factors for installation of Tidal Energy Converters are considered before computing the theoretical power output for a typical TEC array. An approximate estimation of the possible theoretical power extraction from a TEC array shows an energy potential of up to 4.36% of the total energy demand of Singapore in 2011. Thus, the study suggests a detailed investigation of potential sites to quantify the total tidal stream energy potential in the Singapore Strait.

  15. Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.

    2003-09-01

    This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.

  16. Distributed optimal coordination for distributed energy resources in power systems

    DEFF Research Database (Denmark)

    Wu, Di; Yang, Tao; Stoorvogel, A.

    2017-01-01

    Driven by smart grid technologies, distributed energy resources (DERs) have been rapidly developing in recent years for improving reliability and efficiency of distribution systems. Emerging DERs require effective and efficient coordination in order to reap their potential benefits. In this paper......, we consider an optimal DER coordination problem over multiple time periods subject to constraints at both system and device levels. Fully distributed algorithms are proposed to dynamically and automatically coordinate distributed generators with multiple/single storages. With the proposed algorithms...

  17. Integrated Management of Residential Energy Resources: Models, Algorithms and Application

    OpenAIRE

    Soares, Ana Raquel Gonçalves

    2016-01-01

    Tese de doutoramento em Sistemas Sustentáveis de Energia, apresentada ao Departamento de Engenharia Mecânica da Faculdade de Ciências e Tecnologia da Universidade de Coimbra The gradual development of electricity networks into smart(er) grids is expected to provide the technological infrastructure allowing the deployment of new tariff structures and creating the enabling environment for the integrated management of energy resources. The suitable stimuli, for example induced by dynamic tari...

  18. Four Essays on the Economics of Energy and Resource Markets

    OpenAIRE

    Hecking, Harald

    2015-01-01

    The thesis at hand seeks to improve the understanding of resource and energy markets, their specific characteristics and their interaction with each other. Therefore, the thesis includes four research papers on the markets for natural gas, coking coal, iron ore, electricity and heat. Each paper, representing one chapter of this thesis, addresses one or more of the specific characteristics outlined above. Chapter 2 assesses the effects of a supply shock on the world market for natural gas....

  19. Projected wood energy impact on US forest wood resources

    Energy Technology Data Exchange (ETDEWEB)

    Skog, K.E. [USDA Forest Service, Madison, WI (United States)

    1993-12-31

    The USDA Forest Service has developed long-term projections of wood energy use as part of a 1993 assessment of demand for and supply of resources from forest and range lands in the United States. To assess the impact of wood energy demand on timber resources, a market equilibrium model based on linear programming was developed to project residential, industrial, commercial, and utility wood energy use from various wood energy sources: roundwood from various land sources, primary wood products mill residue, other wood residue, and black liquor. Baseline projections are driven by projected price of fossil fuels compared to price of wood fuels and the projected increase in total energy use in various end uses. Wood energy use is projected to increase from 2.67 quad in 1986 to 3.5 quad in 2030 and 3.7 quad in 2040. This is less than the DOE National Energy Strategy projection of 5.5 quad in 2030. Wood energy from forest sources (roundwood) is projected to increase from 3.1 billion (10{sup 9}) ft{sup 3} in 1986 to 4.4. billion ft{sup 3} in 2030 and 4.8 billion ft{sup 3} in 2040 (88, 124 and 136 million m{sup 3}, respectively). This rate of increase of roundwood use for fuel -- 0.8 percent per year -- is virtually the same as the projected increase rate for roundwood for pulpwood. Pulpwood roundwood is projected to increase from 4.2 billion ft{sup 3} in 1986 to 6.0 billion ft{sup 3} in 2030 and 6.4 billion ft{sup 3} in 2040 (119, 170 and 183 million m{sup 3}, respectively).

  20. Multi-objective generation scheduling with hybrid energy resources

    Science.gov (United States)

    Trivedi, Manas

    In economic dispatch (ED) of electric power generation, the committed generating units are scheduled to meet the load demand at minimum operating cost with satisfying all unit and system equality and inequality constraints. Generation of electricity from the fossil fuel releases several contaminants into the atmosphere. So the economic dispatch objective can no longer be considered alone due to the environmental concerns that arise from the emissions produced by fossil fueled electric power plants. This research is proposing the concept of environmental/economic generation scheduling with traditional and renewable energy sources. Environmental/economic dispatch (EED) is a multi-objective problem with conflicting objectives since emission minimization is conflicting with fuel cost minimization. Production and consumption of fossil fuel and nuclear energy are closely related to environmental degradation. This causes negative effects to human health and the quality of life. Depletion of the fossil fuel resources will also be challenging for the presently employed energy systems to cope with future energy requirements. On the other hand, renewable energy sources such as hydro and wind are abundant, inexhaustible and widely available. These sources use native resources and have the capacity to meet the present and the future energy demands of the world with almost nil emissions of air pollutants and greenhouse gases. The costs of fossil fuel and renewable energy are also heading in opposite directions. The economic policies needed to support the widespread and sustainable markets for renewable energy sources are rapidly evolving. The contribution of this research centers on solving the economic dispatch problem of a system with hybrid energy resources under environmental restrictions. It suggests an effective solution of renewable energy to the existing fossil fueled and nuclear electric utilities for the cheaper and cleaner production of electricity with hourly

  1. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  2. Survey of Public Understanding on Energy Resources including Nuclear Energy (I)

    International Nuclear Information System (INIS)

    Park, Se-Moon; Song, Sun-Ja

    2007-01-01

    Women in Nuclear-Korea (WINK) surveyed the public understanding on various energy resources in early September 2006 to offer the result for establishment of the nuclear communication policy. The reason why this survey includes other energy resources is because the previous works are only limited on nuclear energy, and also aimed to know the public's opinion on the present communication skill of nuclear energy for the public understanding. The present study is purposed of having data how public understands nuclear energy compared to other energies, such as fossil fuels, hydro power, and other sustainable energies. The data obtained from this survey have shown different results according to the responded group; age, gender, residential area, etc. Responded numbers are more than 2,000 of general public and university students. The survey result shows that nuclear understanding is more negative in women than in men, and is more negative in young than older age

  3. Getting Alice through the door: social science research and natural resource management

    Science.gov (United States)

    Alan W. Ewert

    1995-01-01

    A number of trends are altering the role of science in natural resource management. These trends include the growing political power of science, the recognition that most natural resource problems are extremely complex and not prone to uni-dimensional solutions, and the increasing need to integrate an understanding of the human component into the planning and decision-...

  4. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  5. Optimal allocation of international atomic energy agency inspection resources

    International Nuclear Information System (INIS)

    Markin, J.T.

    1987-01-01

    Each year the Department of Safeguards of the International Atomic Energy Agency (IAEA) conducts inspections to confirm that nuclear materials and facilities are employed for peaceful purposes. Because of limited inspection resources, however, the IAEA cannot fully attain its safeguards goals either quantitatively as measured by the inspection effort negotiated in the facility attachments or qualitatively as measured by the IAEA criteria for evaluating attainment of safeguards goals. Under current IAEA procedures the allocation of inspection resources assigns essentially equal inspection effort to facilities of the same type. An alternative approach would incorporate consideration of all material categories and facilities to be assigned inspection resources when allocating effort to a particular facility. One such method for allocating inspection resources is based on the IAEA criteria. The criteria provide a framework for allocating inspection effort that includes a ranking of material types according to their safeguards importance, an implicit definition of inspection activities for each material and facility type, and criteria for judging the attainment of safeguards goals in terms of the quality and frequency of these inspection activities. This framework is applicable to resource allocation for an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA

  6. The research and training of human resources to produce renewable resources of energy

    Directory of Open Access Journals (Sweden)

    José Ernesto Rangel Delgado

    2008-10-01

    Full Text Available The prospective technique approach used as a context, this paper emphasizes the importance of a long term vision on the human resources development for renewable energies production. In the same sense it outlines the connection between the professions associated with the generation of renewable energy and the labor market. Results are presented on the research intellectual capacity of Mexico, highlighting, the public universities, specialized research centers, researchers, and the associated academic programs to renewable energies. Finally, it is presented the conclusions, and suggestions oriented to increase strategically, the renewable energies research for the technology development. Also it might incorporate our country towards the international market for renewable technologies, in the long term.

  7. The state of solar energy resource assessment in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Alberto; Escobar, Rodrigo [Mechanical and Metallurgical Engineering Department, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago (Chile); Colle, Sergio [Laboratorios de Engenharia de Processos de Conversao e Tecnologia de Energia - LEPTEN, Mechanical Engineering Department, Universidade Federal de Santa Catarina, Florianopolis (Brazil); de Abreu, Samuel Luna [IFSC - Instituto Federal de Santa Catarina, Campus Sao Jose, Sao Jose - SC (Brazil)

    2010-11-15

    The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 20-40 years old, with measurements taken by pyranographs and Campbell-Stokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning activities - although not yet for proper power plant design and dimensioning. (author)

  8. EVOLUTION OF THE DEMAND AND SUPPLY IN ENERGY RESOURCES

    Directory of Open Access Journals (Sweden)

    Silvestru MAXIMILIAN

    2013-06-01

    Full Text Available Economic, social and political development of human society in recent decades put to the fore the issue of natural resources available to the earth; scientists are asking ever more seriously the question to what extent these resources can support the economic development in the future, can provide food and survival of a growing population and will be able to contribute to the eradication of underdevelopment. The emphasis of major events – the population explosion, the trend of depletion of natural resources, environmental deterioration, underdevelopment etc. – was and it is still discussed with increasing responsibility by specialists, being drafted a large number of forecasts for a variable duration perspective. The trend of depletion of natural resources is another phenomenon of the contemporary world and that will become, certainly, even more pronounced in the near future. Harnessing the increasing exhaustible natural resources with low reserves and a slow recovery of renewable resources raises acutely the issue regarding the conservation of these resources. In recent decades, there is a tendency to waste energy and raw materials in the society. There are produced goods without an absolute utility, being imposed artificially by advertising or fashion swings and many products are designed in such a way that it takes little to compel the buyer to replace them. The "consumption" civilization is characterized as a "society that throws" the population of developed countries (18% of world population dispelling waste form 20 to 25% of the material production of the world. Excessive consumption of raw materials and fuel was favoured by their relatively low prices, maintained under the pressure of interests of transnational companies, prices that disfavoured, however, the developing countries. Consequently, consumption of raw materials and fuel turned to the easily accessible resources that have been heavily exploited, partially abandoning some

  9. Energy resources for mankind considered from the earth evolution

    International Nuclear Information System (INIS)

    Ohno, Shin-ich; Shimizu, Saburo

    2005-01-01

    The amount of energy resources contained in Earth and that we mankind can use in future can be estimated on the basis of the information given by astrophysical and geochemical considerations. The kind of resources includes geothermal, nuclear, solar, and fossil energy. We believe that the results of these considerations, especially the method of thinking, may be taken into curriculum in high schools or introductory courses of university education. In school education relating to energy and environmental problems we think that it is more important for the students to learn how to think or estimate and how to solve the problems than to be given any established knowledge itself from the teachers and reference books or journals. Students are easily discouraged by teachers who are talking that petroleum will be exhausted in 40 years or that uranium-235 will be also exhausted unless we develop the nuclear fuel system utilizing uranium-238 breading. They seem afraid of insufficient left when they grow old. In this report we call the readers attention that the amount of energy resources contained in Earth is such that the mankind can never exhaust them and that they are waiting to be exploited or for the time to come when the technology for their utilization is developed. We also pay attention that too much consumption of energy surely affect the earth environment (heat pollution) - the limit will be the consumption rate of about 0.1 W/m 2 of the earth surface which equals to the heat emission rate from the earth surface toward the space. (author)

  10. State and Local Initiatives: Your Bridge to Renewable Energy and Energy Efficiency Resources (Brochure)

    International Nuclear Information System (INIS)

    Epstein, K.

    2001-01-01

    A brochure for local and state policymakers, informing them about the State and Local Initiatives team at the National Renewable Energy Laboratory. The brochure outlines the benefits of using renewables and energy efficiency, the benefits of using the State and Local Initiatives team as a liaison to the wealth of information at NREL, and some of the services and resources available

  11. Renewable energy and resource curse on the possible consequences of solar energy in North Africa

    NARCIS (Netherlands)

    Bae, Yuh Jin

    2013-01-01

    The main aim of this thesis is to project whether the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisa) have the potentials to suffer from a solar energy curse. Under the assumption that a solar energy curse will be similar to the current resource curse, the combination of

  12. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  13. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  14. Wave Energy Resource along the Coast of Santa Catarina (Brazil

    Directory of Open Access Journals (Sweden)

    Pasquale Contestabile

    2015-12-01

    Full Text Available Brazil has one of the largest electricity markets in South America, which needs to add 6000 MW of capacity every year in order to satisfy growing the demand from an increasing and more prosperous population. Apart from biomass, no other renewable energy sources, besides hydroelectricity, play a relevant role in the energy mix. The potential for wind and wave energy is very large. Brazil's Santa Catarina state government is starting a clean energy program in the state, which is expected to bring more than 1 GW of capacity. Assessment of wave energy resources is needed along the coastline. This work studied the potential wave energy along the north-central coasts of Santa Catarina, in Southern Brazil, by analysis of the hindcast data from the European Centre for Medium-Range Weather Forecasts (ECMWF. The annual offshore wave power was found to be equal to 15.25 kW/m, the bulk of which is provided by southeastern waves. The nearshore energetic patterns were studied by means of a numerical coastal propagation model (Mike21 SW. The mean wave power of 20 m isobaths is 11.43 kW/m. Supplementary considerations are drawn on realistic perspectives for wave energy converters installations.

  15. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  16. Energy resources technical training and development programs for American Indians

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R E; White, W S

    1978-08-01

    Because of the energy resources located on Native American owned lands, it is pertinent that the tribes on these reservations receive information, training, and technical assistance concerning energy and the environment and the decisions that must be made about energy-resource development. In the past, attempts to enlist Indians in technical-assistance programs met with little success because teaching methods seldom incorporated program planning by both tribal leaders and the technical training staff. Several technical-assistance programs given on reservations in the central and western parts of the country were conducted by Argonne National Lab.--programs that stressed practical, on-the-job experience through lecture, laboratory, and field studies. Each program was designed by ANL and tribal leaders to fit the needs and concerns of a particular tribe for its environment. The individual programs met with an impressive degree of success; they also prompted several Indians to pursue this type of education further at ANL and local Indian community colleges and to obtain funds for energy projects. Despite the positive feedback, several difficulties were encountered. Among them are the necessity to continually modify the programs to fit diverse tribal needs, to diminish politically motivated interference, and to increase portions of the funding to involve more Native Americans.

  17. Renewable energy resources and management appliances-use of smart technologies in the energy

    International Nuclear Information System (INIS)

    Kultan, J.

    2012-01-01

    The contribution is aimed at analyzing the impact of renewable energy resources to power system steady modes and the possibility of using smart technology to reduce the impact of inequalities and the variance of the energies and the quality of energy supplied. The use of smart technologies in the form of active dynamic appliances in response to network conditions to reduce effects of stochastic renewable resources dynamic impacts / wind blasts, quickly changing sunlight emissions on solar panels, increasing the amount of water in flow-based water power plants /or a change in network status. Active response appliances, depending on network conditions, improves parameters of economic power generation, transmission, distribution and consumption. (Authors)

  18. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  19. Environmental impacts of biomass energy resource production and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Easterly, J L; Dunn, S M [DynCorp, Alexandria, VA (United States)

    1995-12-01

    The purpose of this paper is to provide a broad overview of the environmental impacts associated with the production, conversion and utilization of biomass energy resources and compare them with the impacts of conventional fuels. The use of sustainable biomass resources can play an important role in helping developing nations meet their rapidly growing energy needs, while providing significant environmental advantages over the use of fossil fuels. Two of the most important environmental benefits biomass energy offers are reduced net emissions of greenhouse gases, particularly CO{sub 2}, and reduced emissions of SO{sub 2}, the primary contributor to acid rain. The paper also addresses the environmental impacts of supplying a range of specific biomass resources, including forest-based resources, numerous types of biomass residues and energy crops. Some of the benefits offered by the various biomass supplies include support for improved forest management, improved waste management, reduced air emissions (by eliminating the need for open-field burning of residues) and reduced soil erosion (for example, where perennial energy crops are planted on degraded or deforested land). The environmental impacts of a range of biomass conversion technologies are also addressed, including those from the thermochemical processing of biomass (including direct combustion in residential wood stoves and industrial-scale boilers, gasification and pyrolysis); biochemical processing (anaerobic digestion and fermentation); and chemical processing (extraction of organic oils). In addition to reducing CO{sub 2} and SO{sub 2}, other environmental benefits of biomass conversion technologies include the distinctly lower toxicity of the ash compared to coal ash, reduced odours and pathogens from manure, reduced vehicle emissions of CO{sub 2}, with the use of ethanol fuel blends, and reduced particulate and hydrocarbon emissions where biodiesel is used as a substitute for diesel fuel. In general

  20. Explaining Earths Energy Budget: CERES-Based NASA Resources for K-12 Education and Public Outreach

    Science.gov (United States)

    Chambers, L. H.; Bethea, K.; Marvel, M. T.; Ruhlman, K.; LaPan, J.; Lewis, P.; Madigan, J.; Oostra, D.; Taylor, J.

    2014-01-01

    Among atmospheric scientists, the importance of the Earth radiation budget concept is well understood. Papers have addressed the topic for over 100 years, and the large Clouds and the Earth's Radiant Energy System (CERES) science team (among others), with its multiple on-orbit instruments, is working hard to quantify the details of its various parts. In education, Earth's energy budget is a concept that generally appears in middle school and Earth science curricula, but its treatment in textbooks leaves much to be desired. Students and the public hold many misconceptions, and very few people have an appreciation for the importance of this energy balance to the conditions on Earth. More importantly, few have a correct mental model that allows them to make predictions and understand the effect of changes such as increasing greenhouse gas concentrations. As an outreach element of the core CERES team at NASA Langley, a multi-disciplinary group of scientists, educators, graphic artists, writers, and web developers has been developing and refining graphics and resources to explain the Earth's Energy budget over the last few decades. Resources have developed through an iterative process involving ongoing use in front of a variety of audiences, including students and teachers from 3rd to 12th grade as well as public audiences.

  1. Wave energy resource assessment for the Indian shelf seas

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Anoop, T.R.

    of the southeastern USA. Renewable Energy 2009; 34: 2197-205. [21] Lenee-Bluhm P, Paasch R, Özkan-Haller HT. Characterizing the wave energy resource of the US Pacific Northwest, Renewable Energy 2011; 36; 2106–2119. [22] Gunn K, Stock-Williams C. Quantifying... 17 18 19 0 1 2 3 4 M on th ly v ar ia bi lit y in de x (a) (b) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Location 2 3 4 5 R at io o f m ax im um to m ea n w av e he ig ht Figure 7. Variation of (a) monthly variability index and (b...

  2. Audit Report on "The Office of Science's Management of Information Technology Resources"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-11-01

    The Department of Energy's Office of Science (Science) and its facility contractors are aggressive users of information technology (IT) to support fundamental research in areas such as energy, environmental remediation and computational sciences. Of its $4 billion Fiscal Year 2008 budget, Science spent about $287 million to manage its IT program. This included cyber security activities, acquisition of hardware and software, and support service costs used to maintain the operating environments necessary to support the missions of the program. Prior Office of Inspector General reports have identified various issues with Science's management of its IT programs and resources. For instance, our report on Facility Contractor Acquisition and Management of Information Technology Hardware (DOE/IG-0768, June 2007) noted that the Science sites reviewed spent more than necessary when acquiring IT hardware. In another example, our review of The Department's Efforts to Implement Common Information Technology Services at Headquarters (DOE/IG-0763, March 2007) disclosed that Science's reluctance to adopt the Department of Energy Common Operating Environment (DOE-COE) at Headquarters contributed to the Department's inability to fully realize potential cost savings through consolidation and economies of scale. In light of the magnitude of the Office of Science IT program and previously identified program weaknesses, we initiated this audit to determine whether Science adequately managed its IT resources. Science had taken a number of actions to improve its cyber security posture and align its program to Federal requirements. Yet, our review disclosed that it had not taken some basic steps to enhance security and reduce costs. In particular, we found that: (1) For their non-scientific computing environments, all seven of the field sites reviewed (two Federal, five contractor) had implemented security configurations that were less stringent than those included

  3. Evaluating the best available social science for natural resource management decision-making

    Science.gov (United States)

    Susan Charnley; Courtney Carothers; Terre Satterfield; Arielle Levine; Melissa R. Poe; Karma Norman; Jamie Donatuto; Sara Jo Breslow; Michael B. Mascia; Phillip S. Levin; Xavier Basurto; Christina C. Hicks; Carlos García-Quijano; Kevin St. Martin

    2017-01-01

    Increasing recognition of the human dimensions of natural resource management issues, and of social and ecological sustainability and resilience as being inter-related, highlights the importance of applying social science to natural resource management decision-making. Moreover, a number of laws and regulations require natural resource management agencies to consider...

  4. Paradigms and problems: The practice of social science in natural resource management

    Science.gov (United States)

    Michael E. Patterson; Daniel R. Williams

    1998-01-01

    Increasingly, natural resource management is seeing calls for new paradigms. These calls pose challenges that have implications not only for planning and management, but also for the practice of science. As a consequence, the profession needs to deepen its understanding of the nature of science by exploring recent advances in the philosophy of science....

  5. Evaluation of Students' Energy Conception in Environmental Science

    Science.gov (United States)

    Park, Mihwa; Johnson, Joseph A.

    2016-01-01

    While significant research has been conducted on students' conceptions of energy, alternative conceptions of energy have not been actively explored in the area of environmental science. The purpose of this study is to examine students' alternative conceptions in the environmental science discipline through the analysis of responses of first year…

  6. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  7. Residual biomass resources for energy production. Extended abstract

    International Nuclear Information System (INIS)

    Prevot, G.

    2010-06-01

    This report covers the whole problematic of energy production from biomass residues in France except the production of biofuels. It is made of two parts. The first one gives an overview of the availability of residual biomass resources, The concept of residue (or waste) is placed in its economic and regulatory context (the major part of the resource cannot be considered as waste without any further potential use). The conditions of availability of the resource for each market segment are identified. The second part describes the conditions for the use of 5 different conversion options of these residues into energy. The logistics constraints for the procurement of the fuel and the intermediate operations to prepare it are briefly summarised. The objective was the identification of key issues in all relevant aspects, without giving too much emphasis to one of them at the expense of another one in order to avoid duplicating the frequent cases of facilities that do not meet environmental and economic targets because the designers of the system have not paid enough attention to a parameter of the system. (author)

  8. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    Science.gov (United States)

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring. © 2016 Society for Conservation Biology.

  9. Modeling of customer adoption of distributed energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a

  10. Modeling of customer adoption of distributed energy resources; TOPICAL

    International Nuclear Information System (INIS)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-01-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ((mu)Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a(mu)Grid can operate independent of the macrogrid (the utility power network), the(mu)Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into(mu)Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular(mu)Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a(mu)Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible example

  11. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    CERN Multimedia

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  12. Human Resources Development for Jordan’s Nuclear Energy Programme

    International Nuclear Information System (INIS)

    Malkawi, Salaheddin; Amawi, Dala’

    2014-01-01

    Jordan's HRD strategy: • Utilize Jordan’s academic infrastructure: – 25 Universities (10 public & 15 private); – 35 Community Colleges (15 public & 20 private). • Build on existing programmes and establish new ones to support Nuclear Energy Programme. • Nuclear Education in Jordan: – B. Sc. Nuclear Engineering at Jordan University of Science & Technology (JUST); – M. Sc. Nuclear Physics at University of Jordan, Yarmouk University and Al-Balqa Applied University. • Scholarships for M. Sc. and Ph. D in Nuclear Engineering and Nuclear Science from Universities outside Jordan: – United States, Russia, France, Japan, China, Korea. Utilization of JSA and JRTR; • Vendor supplied training; • Support through Nuclear Cooperation Agreements; • IAEA Technical Cooperation; • Development of a Jordan-Specific Qualification and Certification Programmes; • Specialized Training in International Codes & Standards: – Transition to JNRC Developed/Adopted Standards, Codes, Regulations

  13. Determining discourses: Constraints and resources influencing early career science teachers

    Science.gov (United States)

    Grindstaff, Kelly E.

    This study explores the thinking and practices of five early-career teachers of grades eight to ten science, in relation to their histories, schools, students, and larger cultural and political forces. All the teachers are young women, two in their fourth year of teaching, who teach together in an affluent suburb, along with one first-year teacher. The other two are first-year teachers who teach in an urban setting. All of these teachers most closely associated good science teaching with forming relationships with students. They filtered science content through a lens of relevance (mostly to everyday life) and interest for students. Thus they filtered science content through a commitment to serving students, which makes sense since I argue that the primary motivations for teaching had more to do with working with students and helping people than the disciplines of science. Thus, within the discourse of the supremacy of curriculum and the prevalence of testing, these teachers enact hybrid practices which focus on covering content -- to help ensure the success of students -- and on relevance and interest, which has more to do with teaching styles and personality than disciplines of science. Ideas of good teaching are not very focused on science, which contradicts the type of support they seek and utilize around science content. This presents a challenge to pre- and in-service education and support to question what student success means, what concern for students entails and how to connect caring and concern for students with science.

  14. Parallel Harmony Search Based Distributed Energy Resource Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2015-01-01

    This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.

  15. Information Modeling for Direct Control of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    We present an architecture for an unbundled liberalized electricity market system where a virtual power plant (VPP) is able to control a number of distributed energy resources (DERs) directly through a two-way communication link. The aggregator who operates the VPP utilizes the accumulated...... a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...

  16. Capacity of Distribution Feeders for Hosting Distributed Energy Resources

    DEFF Research Database (Denmark)

    Papathanassiou, S.; Hatziargyriou, N.; Anagnostopoulos, P.

    The last two decades have seen an unprecedented development of distributed energy resources (DER) all over the world. Several countries have adopted a variety of support schemes (feed-in tariffs, green certificates, direct subsidies, tax exemptions etc.) so as to promote distributed generation (DG...... standards of the networks. To address this need in a timely and effective manner, simplified methodologies and practical rules of thumbs are often applied to assess the DER hosting capacity of existing distribution networks, avoiding thus detailed and time consuming analytical studies. The scope...

  17. Distributed Energy Resources Interconnection Systems: Technology Review and Research Needs

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, N. R.

    2002-09-01

    Interconnecting distributed energy resources (DER) to the electric utility grid (or Area Electric Power System, Area EPS) involves system engineering, safety, and reliability considerations. This report documents US DOE Distribution and Interconnection R&D (formerly Distributed Power Program) activities, furthering the development and safe and reliable integration of DER interconnected with our nation's electric power systems. The key to that is system integration and technology development of the interconnection devices that perform the functions necessary to maintain the safety, power quality, and reliability of the EPS when DER are connected to it.

  18. Fuel forests: a spreading energy resource in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N J.H.

    1981-09-01

    The fuel potential of forests, particularly in Third World countries, to raise the contribution of fuelwood to global energy resources is receiving positive notice in the incentive programs for forestry projects offered by lending institutions and actions taken by governments to arrest the loss of forest cover. Residential and industrial use of wood must be balanced by rigorous woodland protection and management to increase tree planting. The example of Korea's success in increasing fuelwood supplies illustrates the importance of public understanding and community involvement so that local environmental and cultural factors are considered and local leaders are involved. 56 references, 1 table. (DCK)

  19. Inner solar system prospective energy and material resources

    CERN Document Server

    Zacny, Kris

    2015-01-01

    This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors.   Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.

  20. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi; Yoshida, Tadashi; Takeuchi, Suehiro

    2003-10-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to advancing heavy ion science researches in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking advantage of its prominent performances in providing various heavy ions. This meeting, as well as the previous ones held twice, offered scientists from the fields of heavy ion science, including nuclear physics, solid-state physics and cross-field physics, an opportunity to have active discussions among them, as well as to review their research accomplishments in the last two years. Oral presentations were selected from a wider scope of prospective fields, expecting a new step of advancing in heavy ion science. Main topics of the meeting were the status of the JAERI-KEK joint project of developing a radioactive nuclear beam (RNB) facility and research programs related to the RNB. This meeting was held at Advanced Science Research Center in JAERI-Tokai on January 8th and 9th in 2003, and successfully carried out with as many as 190 participants and a lot of sincere discussions. The proceedings are presented in this report. The 51 of the presented papers are indexed individually. (J.P.N.)

  1. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  2. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States

    International Nuclear Information System (INIS)

    Dornan, Matthew; Shah, Kalim U.

    2016-01-01

    Small Island Developing States (SIDS) have established ambitious renewable energy targets. The promotion of renewable energy has been motivated by several factors: a desire to lessen dependence on fossil fuels, to attract development assistance in the energy sector, and to strengthen the position of SIDS in climate change negotiations. Here we explore the interplay between the role of aid and energy policy in the development of renewable energy resources in SIDS. We find that the importance of development assistance has implications for the sustainability of renewable energy development, given that funding is not always accompanied by necessary energy policy reforms. We also identify energy efficiency and access to modern energy services as having received insufficient attention in the establishment and structure of renewable energy targets in SIDS, and argue that this is problematic due to the strong economic case for such investments. - Highlights: • SIDS have established the world's most ambitious renewable energy targets. • These are motivated by fossil fuel dependence and climate change vulnerability. • Aid dependence has influenced the ambition of renewable energy targets. • Energy efficiency and energy access have received insufficient attention. • Domestic policy reforms necessary for the achievement of targets has been limited.

  3. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  4. Understanding Engagement: Science Demonstrations and Emotional Energy

    Science.gov (United States)

    Milne, Catherine; Otieno, Tracey

    2007-01-01

    Although beloved of some chemists and physicists, science demonstrations have been criticized for stifling inquiry and assisting teachers to maintain a power differential between themselves and students in the classroom. This interpretive study reports the unexpected positive learning outcomes for urban science students in two chemistry classes…

  5. Plant oil renewable resources as green alternatives in polymer science

    NARCIS (Netherlands)

    Meier, M.A.R.; Metzger, J.O.; Schubert, U.S.

    2007-01-01

    The utilization of plant oil renewable resources as raw materials for monomers and polymers is discussed and reviewed. In an age of increasing oil prices, global warming and other environmental problems (e.g. waste) the change from fossil feedstock to renewable resources can considerably contribute

  6. Gender Stereotypes in Science Education Resources : A Visual Content Analysis

    NARCIS (Netherlands)

    Kerkhoven, A.H.; Rodrigues, Dos Santos Russo P.M.; Land, A.M.; Saxena, A.; Rodenburg, F.J.

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people’s social lives, such stereotypes can also occur in education. Ways in which stereotypes are

  7. Science Learning via Multimedia Portal Resources: The Scottish Case

    Science.gov (United States)

    Elliot, Dely; Wilson, Delia; Boyle, Stephen

    2014-01-01

    Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…

  8. Nonregenerative natural resources in a sustainable system of energy supply.

    Science.gov (United States)

    Bradshaw, Alex M; Hamacher, Thomas

    2012-03-12

    Following the lead of the European Union in introducing binding measures to promote the use of regenerative energy forms, it is not unreasonable to assume that the global demand for combustible raw materials for energy generation will be reduced considerably in the second half of this century. This will not only have a favourable effect on the CO(2) concentration in the atmosphere, but will also help preserve fossil fuels-important as raw materials in the chemical industry-for future generations. Nevertheless, associated with the concomitant massive shift to regenerative energy forms, there will be a strong demand for other exhaustible raw materials, in particular metals, some of which are already regarded as scarce. After reviewing the debate on mineral depletion between "cornucopians" and "pessimists", we discuss the meaning of mineral "scarcity", particularly in the geochemical sense, and mineral "exhaustion". The expected drastic increase in demand for mineral resources caused by demographic and societal pressures, that is, due to the increase in in-use stock, is emphasised. Whilst not discussing the issue of "strong" versus "weak" sustainability in detail, we conclude that regenerative energy systems-like nearly all resource-consuming systems in our society-do not necessarily satisfy generally accepted sustainability criteria. In this regard, we discuss some current examples, namely, lithium and cobalt for batteries, rare earth-based permanent magnets for wind turbines, cadmium and tellurium for solar cells and copper for electrical power distribution. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Local electricity market design for the coordination of distributed energy resources at district level

    NARCIS (Netherlands)

    Ampatzis, M.; Nguyen, P.H.; Kling, W.L.

    2014-01-01

    The increasing penetration of distributed energy resources at the distribution grid level creates concerns about their successful integration in the existing electric grid, designed for centralized generation by large power plants. Failure to the proper integration of distributed energy resources

  10. Renewable energy resources and their role in the energy balance of the country

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    2001-01-01

    The role of the renewable energy sources in the energy production sector is discussed. The main features of solar, wind and biomass energy are reviewed. Studies for Bulgaria show a total solar radiation above 1600 kWh/m 2 for the Southern regions. The assessment of the solar resources, made by the DOE gives about 170 000 TWh/y for the whole territory. The economically advantageous resources for passive heating are 10.6 TWh till 2020. For the same period the utilization of 0.92 TWh solar energy is possible. Solar installations with surface about 14 000 m 2 are currently in operation. 54% of them are in the tourism sphere and only 8% are in industry (due to some economical difficulties about 44% of the industrial installations are shut down). On the base of processing of the data from more that 100 meteorological stations on the country territory, a spatial assessment of the resources has been done. For the whole territory the wind potential is estimated to about 15800 GW. Theoretical average annual wind resources at 10 km above the surface are 125 000 TWh. There are several areas with wind velocity 5-6 m/s which are suitable for wind energy production. The energy resources of biomass for the country are large - around 35.5 TWh. Under the programmes 'Country Study Project' and PHARE, different scenarii for the renewable energy source utilization till 2020 are developed. Estimation for the possibilities for wider application of the renewable sources in the market are done

  11. Information resources for US Department of Energy pollution prevention programs

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, K.L.; Snowden-Swan, L.J.; Butner, R.S.

    1994-01-01

    In support of the US Department of Energy`s (DOE`s) pollution prevention efforts being conducted under the aegis of DOE`s Office of Environmental Restoration and Waste Management (EM) program, Pacific Northwest Laboratory was tasked with evaluating pollution prevention information resources. The goal of this activity was to improve the effectiveness of DOE`s pollution prevention activities through improved information flow, both within the complex, and more specifically, between DOE and other organizations that share similar pollution prevention challenges. This report presents our findings with respect to the role of information collection and dissemination within the complex, opportunities for teaming from successes of the private sector, and specific information needs of the DOE pollution prevention community. These findings were derived from a series of interviews with pollution prevention coordinators from across the DOE complex, review of DOE site and facility pollution prevention plans, and workshops with DOE information users as well as an information resources workshop that brought together information specialists from private industry, non-profit organizations, as well as state and regional pollution prevention assistance programs.

  12. Role for Distributed Energy Resources (DER) in the Digital Economy

    Energy Technology Data Exchange (ETDEWEB)

    Key, Thomas S [Electric Power Research Institute (EPRI)

    2007-11-01

    A large, and growing, part of the Nation's economy either serves or depends upon the information technology industry. These high-tech or "digital" enterprises are characterized by a dependence on electronic devices, need for completely reliable power supply, and intolerance to any power quality problems. In some cases these enterprises are densely populated with electronic loads and have very high energy usage per square foot. Serving these enterprises presents both electric power and equipment cooling challenges. Traditional electric utilities are often hard-pressed to deliver power that meets the stringent requirements of digital customers, and the economic and social consequences of a service quality or reliability problem can be large. New energy delivery and control options must be developed to effectively serve a digital economy. This report explores how distributed energy resources, partnerships between utility and customer to share the responsibility for service quality, innovative facility designs, higher energy efficiencies and waste-heat utilization can be coupled to meet the needs of a growing digital economy.

  13. Economic Impact of CDM Implementation through Alternate Energy Resource Substitution

    Directory of Open Access Journals (Sweden)

    K.J. Sreekanth

    2013-02-01

    Full Text Available Since the Kyoto protocol agreement, Clean Development Mechanism (CDM hasgarnered large emphasis in terms of certified emission reductions (CER not only amidst the globalcarbon market but also in India. This paper attempts to assess the impact of CDM towardssustainable development particularly in rural domestic utility sector that mainly includes lightingand cooking applications, with electricity as the source of energy. A detailed survey has undertakenin the state of Kerala, in southern part of India to study the rural domestic energy consumptionpattern. The data collected was analyzed that throws insight into the interrelationships of thevarious parameters that influence domestic utility sector pertaining to energy consumption byusing electricity as the source of energy. The interrelationships between the different parameterswere modeled that optimizes the contribution of electricity on domestic utility sector. The resultswere used to estimate the feasible extent of CO2 emission reduction through use of electricity as theenergy resources, vis-à-vis its economic viability through cost effectiveness. The analysis alsoprovides a platform for implementing CDM projects in the sector and related prospects withrespects to the Indian scenario.

  14. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  15. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  16. CSIR ScienceScope: An Energy-secure South Africa

    CSIR Research Space (South Africa)

    CSIR

    2009-06-01

    Full Text Available issues, especially as buildings use more than 25% of national energy consumption. "An Energy-secure South Africa" the theme of this ScienceScope, features a multidisciplinary projects of the R&D work done on alternative energy solutions, clean and cleaner...

  17. Use of Information Resources in some Selected Health Science ...

    African Journals Online (AJOL)

    Background: Communication and use of medical information is an important factor ... of their research activities and ascertaining the degree of their relevance and ... used and slightly followed by audio-visual resources and reference materials.

  18. Planning for Planetary Science Mission Including Resource Prospecting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  19. Fossil fuel energy resources of Ethiopia: Coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Wolela, Ahmed [Department of Petroleum Operations, Ministry of Mines and Energy, Kotebe Branch Office, P. O. Box-486, Addis Ababa (Ethiopia)

    2007-11-22

    The gravity of Ethiopian energy problem has initiated studies to explore various energy resources in Ethiopia, one among this is the exploration for coal resources. Studies confirmed the presence of coal deposits in the country. The coal-bearing sediments are distributed in the Inter-Trappean and Pre-Trap volcanic geological settings, and deposited in fluvio-lacustrine and paludal environments in grabens and half-grabens formed by a NNE-SSW and NNW-SSE fault systems. Most significant coal deposits are found in the Inter-Trappean geological setting. The coal and coal-bearing sediments reach a maximum thickness of 4 m and 300 m, respectively. The best coal deposits were hosted in sandstone-coal-shale and mudstone-coal-shale facies. The coal formations of Ethiopia are quite unique in that they are neither comparable to the coal measures of the Permo-Carboniferous Karroo Formation nor to the Late Devonian-Carboniferous of North America or Northwestern Europe. Proximate analysis and calorific value data indicated that the Ethiopian coals fall under lignite to high volatile bituminous coal, and genetically are classified under humic, sapropelic and mixed coal. Vitrinite reflectance studies confirmed 0.3-0.64% Ro values for the studied coals. Palynology studies confirmed that the Ethiopian coal-bearing sediments range in age from Eocene to Miocene. A total of about 297 Mt of coal reserve registered in the country. The coal reserve of the country can be considered as an important alternative source of energy. (author)

  20. Energy: can science change the deal?

    International Nuclear Information System (INIS)

    Papon, Pierre

    2012-01-01

    This document briefly presents a book in which the author tries to identify which will be the technological breakthroughs for the emergence of new energy productions or new modes of energy consumption. He notably addresses the issue of future engines and of new fuels, nuclear energy, the photovoltaic sector, electricity storage and electricity distribution by means of adapted grids; and the relationship between tomorrow's energy and tomorrow's society

  1. Managing human resources in the field of nuclear energy

    International Nuclear Information System (INIS)

    2009-01-01

    The nuclear field, comprising industry, government authorities, regulators, R and D organizations and educational institutions, relies heavily on a specialized, highly trained and motivated workforce for its sustainability. An ageing workforce, declining student enrolment and the resultant risk of losing accumulated nuclear knowledge and experience for expanding or newly established nuclear programmes are all serious challenges that influence the management of human resources (HR) in the nuclear field. The management of human resources requires particular attention in the field of nuclear energy, both because of the high standards of performance expected in this field and the considerable time needed to develop such specialists. The peaceful uses of nuclear energy were primarily developed during the second half of the twentieth century. The nuclear field is now at a mature stage of development, with those who were pioneers in the field having retired and their responsibilities handed over to subsequent generations. For those aspects of the nuclear field related to nuclear power, a great deal of effort has been devoted to managing and continuing to improve the safety and operational performance of existing facilities. However, indications are that the next decades may see considerable expansion to meet increasing energy needs, while responding to concerns about the environment, including global warming. Thus, in the nuclear field, those Member States with existing nuclear power programmes may be forced to replace a large part of their current workforce, while also attracting, recruiting and preparing a fresh workforce for the new facilities being planned. At the same time, those who will be initiating nuclear power programmes, or other peaceful applications, will be developing HR for their programmes. In the past, the development of human resources in the nuclear field has depended on considerable support from organizations in the country of origin of the technology

  2. The MMS Science Data Center: Operations, Capabilities, and Resource.

    Science.gov (United States)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  3. Research and utilization of renewable energy resources in Bangladesh

    International Nuclear Information System (INIS)

    Kaiser, M.S.; Aditya, S.K.; Mazumder, R.K.

    2005-01-01

    Bangladesh is an energy deficit and low-economy country with high population density. Per-capita energy consumption is one of the lowest in the world. The only dependable indigenous gas, which is the major primary energy source in the country, is used mainly for the production of electricity and fertilizer. If it is burnt at an annual 10% growth rate of consumption, may not last more than 15-20 years. Around 30% of the people of the country have connections to the national grid line. In the villages, where 80% of the population live, the situation is worse. Even if it is possible to take the electric grid line to all villages of the country, which will be an extremely difficult and expensive work to do, the majority of the village houses will not be able to have electric connections due to poverty. No nuclear power station exists in the country and the possibility of setting up any in the near future is limited due to non-availability of funds. Hydroelectric resources are also low because of the flat terrain of the country. The fuel import bill also occupies a significant portion of the total amount of export earnings. Conventional resources in Bangladesh are utterly inadequate for supplying the energy needs to bring in a significant improvement in our economy. On the other hand when our gas reserves will be exhausted it will be difficult for us even to maintain the energy supply for the development of our country unless we find alternate sources of energy. Solar energy availability in Bangladesh is high around 5KWH/day per meter square or 2.6 10/sup 11/ MWH/year on the total surface area of the country. This is equivalent to the output of about 30GW capacity utility plant for 100 years assuming 10% efficiency of the solar devices. Large-scale production of electricity from new, renewable energy sources is a great challenge. Wind power is difficult to exploit economically in regions with wind speeds bellow 5 m/s yearly average. Solar thermal power plants come

  4. Climate change impacts on wind energy resources in northern Europe

    International Nuclear Information System (INIS)

    Pryor, S.C.; Barthelmie, R.J.; Kjellstroem, E.

    2005-01-01

    Energy is a fundamental human need. Heat, light and transport for individuals combined with the needs of industry have created a demand for energy which for the last 100-200 years has been met largely through consumption of fossil fuels leading to altered atmospheric composition and modification of the global climate. These effects will be realised on local scales affecting not just temperature and precipitation but also wind, radiation and other parameters. Annual mean wind speeds and wind energy density over northern Europe were significantly higher at the end of twentieth century than during the middle portion of that century, with the majority of the change being focused on the winter season. To address questions regarding possible future wind climates we employ dynamical and empirical downscaling techniques that seek to take coarse resolution output from General Circulation Models (GCM), run to provide scenarios of future climate, and develop higher resolution regional wind climates. Analyses of the wind climate during the historical record indicate that both the dynamical approach and the empirical approach are capable of generating accurate, robust and quantitative assessments of the wind climate and energy density in northern Europe, and hence that they may be of great utility to those seeking financing for, or risk management of, wind farms in the face of climate uncertainty. The synthesis of application of these downscaling tools to climate projections for northern Europe is that there is no evidence of major changes in the wind energy resource. However, more research is required to quantify the uncertainties in developing these projections and to reduce those uncertainties. Further work should also be conducted to assess the validity of these downscaling approaches in other geographical locations. (BA)

  5. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  6. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  7. Sparse Beamforming for Real-time Resource Management and Energy Trading in Green C-RAN

    OpenAIRE

    Wan Ariffin, Wan Nur Suryani Firuz; Zhang, Xinruo; Nakhai, Mohammad Reza

    2017-01-01

    This paper considers cloud radio access network with simultaneous wireless information and power transfer and finite capacity fronthaul, where the remote radio heads are equipped with renewable energy resources and can trade energy with the grid. Due to uneven distribution of mobile radio traffic and inherent intermittent nature of renewable energy resources, the remote radio heads may need real-time energy provisioning to meet the users’ demands. Given the amount of available energy resource...

  8. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  9. State Energy Efficiency Resource Standards: Design, Status, and Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, D.; Zinaman, O.

    2014-05-01

    An energy efficiency resource standard (EERS) is a policy that requires utilities or other entities to achieve a specified amount of energy savings through customer energy efficiency programs within a specified timeframe. EERSs may apply to electricity usage, natural gas usage, or both. This paper provides an overview of the key design features of EERSs for electricity, reviews the variation in design of EERSs across states, and provides an estimate of the amount of savings required by currently specified EERSs in each state. As of December, 2013, 23 states have active and binding EERSs for electricity. We estimate that state EERSs will require annual electricity savings of approximately 8-11% of total projected demand by 2020 in states with EERSs, however the level of savings targeted by the policies varies significantly across states. In addition to the variation in targeted savings, the design of EERSs varies significantly across states leading to differences in the suite of incentives created by the policy, the flexibility of compliance with the policy, the balance of benefits and costs of the policy between producers and consumers, and the certainty with which the policy will drive long-term savings.

  10. Ocean thermal energy: concept and resources, history and perspectives

    International Nuclear Information System (INIS)

    Nihous, Gerard

    2015-10-01

    Two articles address the possibility of exploiting a higher than 20 degrees temperature difference between ocean surfaces and 1 km deep waters to produce electricity. The first article describes the operation principle in closed cycle and briefly presents the open cycle approach. The global energetic assessment is discussed. The author analyses available thermal resources in relationship with the main ocean streams. He outlines that the design of an ocean thermal energy project requires the acquisition and knowledge of a lot of data, modelling and simulations. In the second article, the author notices that past experiments highlighted the difficulties of implementation of the concept. He notably evokes works performed by Georges Claude during the 1920's, projects elaborated at the end of the 20. century, the realisation of a mini OTEC (Ocean Thermal Energy Conversion) station in Hawaii, the OTEC-1 project, a Japanese project in Nauru, the test of a suspended cold water duct, the net power producing experiment in the USA. Perspectives and costs are finally briefly discussed, and recent and promising projects briefly evoked (notably that by DCNS and Akuo Energy in Martinique)

  11. Engaging the creative to better build science into water resource solutions

    Science.gov (United States)

    Klos, P. Z.

    2014-12-01

    Psychological thought suggests that social engagement with an environmental problem requires 1) cognitive understanding of the problem, 2) emotional engagement with the problem, and 3) perceived efficacy that there is something we can do to solve the problem. Within the water sciences, we form problem-focused, cross-disciplinary teams to help address complex water resource problems, but often we only seek teammates from other disciplines within the realms of engineering and the natural/social sciences. Here I argue that this science-centric focus fails to fully solve these water resource problems, and often the science goes unheard because it is heavily cognitive and lacks the ability to effectively engage the audience through crucial social-psychological aspects of emotion and efficacy. To solve this, future cross-disciplinary collaborations that seek to include creative actors from the worlds of art, humanities, and design can begin to provide a much stronger overlap of the cognition, emotion, and efficacy needed to communicate the science, engage the audience, and create the solutions needed to solve or world's most complex water resource problems. Disciplines across the arts, sciences, and engineering all bring unique strengths that, through collaboration, allow for uniquely creative modes of art-science overlap that can engage people through additions of emotion and efficacy that compliment the science and go beyond the traditional cognitive approach. I highlight examples of this art-science overlap in action and argue that water resource collaborations like these will be more likely to have their hydrologic science accepted and applied by those who decide on water resource solutions. For this Pop-up Talk session, I aim to share the details of this proposed framework in the context of my own research and the work of others. I hope to incite discussion regarding the utility and relevance of this framework as a future option for other water resource

  12. Resource analysis of the Chinese society 1980-2002 based on energy-Part 5: Resource structure and intensity

    International Nuclear Information System (INIS)

    Chen, G.Q.; Chen, B.

    2007-01-01

    This paper is the continuation of the fourth part on fishery and rangeland. The total resource inflow to the Chinese society from 1980 to 2002 is investigated in four parts published afore. The total resource energy input corresponds to GDP is presented in comparison with the purchasing power parity in this paper. The structure of the resource energy inflow is also outlined. Finally, a novel concept referred to as resource intensity is suggested to serve as a basic indicator to illustrate the real status of the economic development in China

  13. Strategic plan for the restructured US fusion energy sciences program

    International Nuclear Information System (INIS)

    1996-08-01

    This plan reflects a transition to a restructured fusion program, with a change in focus from an energy technology development program to a fusion energy sciences program. Since the energy crisis of the early 1970's, the U.S. fusion program has presented itself as a goal- oriented fusion energy development program, with milestones that required rapidly increasing budgets. The Energy Policy Act of 1992 also called for a goal-oriented development program consistent with the Department's planning. Actual funding levels, however, have forced a premature narrowing of the program to the tokamak approach. By 1995, with no clear, immediate need driving the schedule for developing fusion energy and with enormous pressure to reduce discretionary spending, Congress cut fusion program funding for FY 1996 by one-third and called for a major restructuring of the program. Based on the recommendations of the Fusion Energy Advisory Committee (FEAC), the Department has decided to pursue a program that concentrates on world-class plasma, science, and on maintaining an involvement in fusion energy science through international collaboration. At the same time, the Japanese and Europeans, with energy situations different from ours, are continuing with their goal- oriented fusion programs. Collaboration with them provides a highly leveraged means of continued involvement in fusion energy science and technology, especially through participation in the engineering and design activities of the International Thermonuclear Experimental Reactor program, ITER. This restructured fusion energy sciences program, with its focus on fundamental fusion science and technology, may well provide insights that lead to more attractive fusion power plants, and will make use of the scientific infrastructure that will allow the United States to launch a fusion energy development program at some future date

  14. A Detailed Assessment of the Wave Energy Resource at the Atlantic Marine Energy Test Site

    Directory of Open Access Journals (Sweden)

    Reduan Atan

    2016-11-01

    Full Text Available Wave characteristic assessments of wave energy test sites provide a greater understanding of prevailing wave conditions and are therefore extremely important to both wave energy test site operators and clients as they can inform wave energy converter design, optimisation, deployment, operation and maintenance. This research presents an assessment of the wave resource at the Atlantic Marine Energy Test Site (AMETS on the west coast of Ireland based on 12-years of modelled data from January 2004 to December 2015. The primary aim is to provide an assessment of annual and seasonal wave characteristics and resource variability at the two deployment berths which comprise the site. A nested model has been developed using Simulating WAves Nearshore (SWAN to replicate wave propagations from regional to local scale with a 0.05° resolution model covering the northeast Atlantic and a 0.0027° resolution model covering AMETS. The coarse and fine models have been extensively validated against available measured data within Irish waters. 12-year model outputs from the high resolution model were analysed to determine mean and maximum conditions and operational, high and extreme event conditions for significant wave height, energy period and power. Annual and seasonal analyses are presented. The 12-year annual mean P were 68 kW/m at Berth A (BA and 57 kW/m at Berth B (BB. The resource shows strong seasonal and annual variations and the winter mean power levels were found to be strongly correlated with the North Atlantic Oscillation (NAO.

  15. Future directions for nuclear energy policy according to the changing circumstances surrounding energy resources

    International Nuclear Information System (INIS)

    Lee, Chang Ki

    2007-01-01

    Since the industrial revolution, the consumption of energy resources throughout the world has increased in geometrical progression, depleting the reserves of the fossil fuels including petroleum. It is predicted that the known reserves of the petroleum and the natural gas will be exhausted within 40 and 60 years, respectively. Massive consumption of energy resources has aggravated the quality of air and water, with the result that environmental pollution of the world has reached a critical stage Emission of green house gases such as carbon dioxide has caused global warming and climate change, endangering the sustainability of the life. Mainland China and East Asian countries pursuing rapid economic growth are expected to confront a shortage of energy in the near future, leading them to face difficulties in achieving expected economic growth

  16. White House science council ponders measures to improve energy funding

    CERN Multimedia

    Jones, D

    2003-01-01

    "The business strategy of the Energy Department's Office of Science is largely based on its 20-year plan for constructing or upgrading 28 facilities, most of them at department laboratories, DOE science chief Raymond Orbach told members of a White House advisory panel last week" (1 page).

  17. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  18. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  19. Optimal allocation of International Atomic Energy Agency inspection resources

    International Nuclear Information System (INIS)

    Markin, J.T.

    1987-12-01

    The Safeguards Department of the International Atomic Energy Agency (IAEA) conducts inspections to assure the peaceful use of a state's nuclear materials and facilities. Because of limited resources for conducting inspections, the careful disposition of inspection effort among these facilities is essential if the IAEA is to attain its safeguards goals. This report describes an optimization procedure for assigning an inspection effort to maximize attainment of IAEA goals. The procedure does not require quantitative estimates of safeguards effectiveness, material value, or facility importance. Instead, the optimization is based on qualitative, relative prioritizations of inspection activities and materials to be safeguarded. This allocation framework is applicable to an arbitrary group of facilities such as a state's fuel cycle, the facilities inspected by an operations division, or all of the facilities inspected by the IAEA

  20. US Forest Service experimental forests and ranges: an untapped resource for social science

    Science.gov (United States)

    Susan Charnley; Lee K. Cerveny

    2011-01-01

    For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....

  1. Science and Engineering Alliance: A new resource for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Lawrence Livermore National Laboratory and four major Historically Black Colleges and Universities with strong research and development capabilities in science, engineering and computer technology have formed the Science and Engineering Alliance. Located in California, Alabama, Mississippi, Louisiana and Texas, each brings to the Alliance a tradition of research and development and educational excellence. This unique consortium is now available to perform research development and training to meet the needs of the public and private sectors. The Alliance was formed to help assure an adequate supply of top-quality minority scientists in the next century, while simultaneously meeting the research and development needs of the public and private sectors.

  2. New Science for a Secure and Sustainable Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  3. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  4. Basic Energy Sciences 2014 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-01

    This report describes how BES is organized and operates to accomplish our mission and presents selected accomplishments to illustrate some exciting new scientific advances that resulted from BES-supported research. Also included are references to supplementary resources that provide additional information about BES strategic planning, research, and user facilities.

  5. Basic Energy Sciences 2011 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report describes how BES is organized and operates to accomplish our mission and presents selected accomplishments to illustrate some exciting new scientific advances that resulted from BES-supported research. Also included are references to supplementary resources that provide additional information about BES strategic planning, research, and user facilities.

  6. 78 FR 72878 - Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764...

    Science.gov (United States)

    2013-12-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-11-000] Integration of Variable Energy Resources; Notice Of Filing Procedures for Order No. 764 Electronic Compliance Filings Take... Variable Energy Resources, Order No. 764, FERC Stats. & Regs. ] 31,331, order on reh'g, Order No. 764-A...

  7. Resource Review: Why So Few? Women in Science, Technology, Engineering, and Mathematics

    OpenAIRE

    Patricia A. Dawson

    2014-01-01

    “Why So Few? Women in Science, Technology, Engineering and Mathematics” (Hill, C., Corbett, C., Rose, A., 2010) reports on an extensive study of women’s underrepresentation in science, technology, engineering, and mathematics professions. Funded by the National Science Foundation, the project was conducted by American Association of University Women. The resource includes findings from eight research studies which examined social and environmental factors which contribute to women’s underrepr...

  8. The Investigation of the Patent Resources of Main Provincial Academies of Sciences and Its Management

    OpenAIRE

    Zeng Jing

    2017-01-01

    [Purpose/significance] The provincial academy of sciences is an important part of national-wide scientific academies and regional innovation system. Promoting the transformation of the intellectual property is an important work for provincial academy of sciences. Nobody has ever revealed the status of the intellectual property resources and its management strategy of the provincial academy of sciences. [Method/process] With the methods of bibliometrics and investigations, this paper revealed ...

  9. Computer information resources of inorganic chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-02-28

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  10. Computer information resources of inorganic chemistry and materials science

    International Nuclear Information System (INIS)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S

    2010-01-01

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  11. Tapping Students' Science Beliefs: A Resource for Teaching and Learning.

    Science.gov (United States)

    Doig, Brian; Adams, Ray

    If teachers do not determine children's understandings and beliefs the children cannot be challenged. Five individual units are presented that have the intention of drawing out the underlying beliefs that children hold with respect to various aspects of science. "Skateboard News" is a newsletter which discusses aspects of skateboards and…

  12. Women and Spatial Change: Learning Resources for Social Science Courses.

    Science.gov (United States)

    Rengert, Arlene C., Ed.; Monk, Janice J., Ed.

    Six units focusing on the effects of spatial change on women are designed to supplement college introductory courses in geography and the social sciences. Unit 1, Woman and Agricultural Landscapes, focuses on how women contributed to landscape change in prehistory, women's impact on the environment, and the hypothesis that women developed…

  13. COURSE : a new industry led consortium to focus and accelerate energy resources research at Alberta University

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.J. [Imperial Oil Resources Ltd., Calgary, AB (Canada); Bailey, R. [Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada); Kirk, M. [Calgary Univ., AB (Canada); Luhning, R.W. [Petroleum Recovery Inst., Calgary, AB (Canada); Kratochvil, R. [Alberta Univ., Edmonton, AB (Canada)

    2000-06-01

    This paper described a new initiative entitled COURSE (Coordination of University Research for Synergy and Effectiveness) which has been created through the collaboration of the energy industry, universities and the Alberta government to promote research in the field of energy resources. Calls for research proposals went out in June 1999 and January 2000. The selected projects will be funded by the Alberta Ministry of Innovation and Science through the Alberta Oil Sands Technology and Research Authority (AOSTRA). The major objectives of COURSE are to increase and align fundamental breakthrough university research with the industry needs, and to provide results that exceed what would be achieved by one university alone. An agreement has been reached whereby the universities own the technology and are the exclusive license agents of the research.

  14. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    Energy Technology Data Exchange (ETDEWEB)

    A. David Lester

    2008-10-17

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  15. Sustainable Biomass Resource Development and Use | Energy Analysis | NREL

    Science.gov (United States)

    Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can biomass resource development. They look at whether there is available land to support bioenergy. They also

  16. NGSS aligned Earth science resources and professional development programs from the Exploratorium.

    Science.gov (United States)

    Muller, E.

    2016-12-01

    The Exploratorium is a museum of science, art and human perception located in San Francisco, CA. The Exploratorium has been offering resources and professional development to primary and secondary teachers since 1972. We focus on inquiry based, hands-on learning, with an emphasis on Next Generation Science Standards (NGSS) implementation. This brief, invited presentation will feature the programs and online resources developed by the Exploratorium's "Institute for Inquiry" and "Teacher Institute" that may help formal and informal educators engage, implement and promote three dimensional learning in the Earth Sciences.

  17. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Science.gov (United States)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  18. Adaptive prediction model accuracy in the control of residential energy resources

    NARCIS (Netherlands)

    Negenborn, R.R.; Houwing, M.; De Schutter, B.; Hellendoorn, H.

    2008-01-01

    With the increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which automated energy management systems could control domestic

  19. Least-cost model predictive control of residential energy resources when applying ?mCHP

    NARCIS (Netherlands)

    Houwing, M.; Negenborn, R.R.; Heijnen, P.W.; De Schutter, B.; Hellendoorn, H.

    2007-01-01

    With an increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which households manage their own energy generation and consumption,

  20. JPRS Report, Science & Technology, China: Energy

    Science.gov (United States)

    1988-06-29

    to build a 150-meter dam or a 185-meter dam for the Three Gorges Project. The reason given by the MWREP was: We want to " select a dam water level...34The initial selection of a dam water level does not mean that the Three Gorges Project will be built. The dam water level initially decided on will...25 like inadequate knowledge, inappropriate planning, management systems, and so on. I. Strippable Coal Resources China has proven strippable

  1. Unlocking Resources: Self-Guided Student Explorations of Science Museum and Aquarium Exhibits

    Science.gov (United States)

    Kirkby, K. C.; Phipps, M.; Hamilton, P.

    2010-12-01

    Remarkably few undergraduate programs take full advantage of the rich resources provided by science museums, aquariums and other informal science education institutions. This is not surprising considering the logistical hurdles of class trips, but an even more fundamental barrier is that these institutions’ exhibit text seldom explicitly convey their information at a level suitable for undergraduate curriculum. Traditionally, this left the burden of interpretation on individual instructors, who rarely have the time to undertake it. To overcome these hurdles, the University of Minnesota has partnered with the Science Museum of Minnesota and Underwater Adventures Aquarium to test the efficacy of self-guided student explorations in revealing the rich data encoded in museum and aquarium exhibits. An initial module at the Science Museum of Minnesota focused on interpreting animal designs, specifically exploring how differences in dinosaur skeletal features reflected variations in the animals’ lifestyles. Students learn to interpret diet and lifestyle not only from characteristics of the skull and teeth, but also from variations in vertebrae and rib design or the relative proportion of limb elements. A follow-up module, based on exhibits at Underwater Adventures Aquarium focuses on interpreting energy flow through ecosystems from the behavior of living organisms. Students explore the information on lifestyle and diet that is encoded in a sturgeon’s ceaseless glide or a muskellunge’s poised stillness. These modules proved to be immensely popular with students. In classes with up to 500 students, half to two-thirds of the students volunteered to complete the modules, despite the additional expense and distances of up to 13 miles between the University and partner institutions. More importantly, quantitative assessment with pre-instruction and post-instruction surveys demonstrate that these ungraded, self-guided explorations match or exceed the efficacy of

  2. China could satisfied her energy demand by her domestic resource of renewable and hydrogen energy and with her favorite condition

    International Nuclear Information System (INIS)

    Bao De You

    2006-01-01

    Paper described recent situation and the reason of oils consumed increasing rapidly and the activity for searching oil around the world wide and proposed some suggestion for rapid development and commercialization of hydrogen energy system in China with her domestic resources. China could satisfy the energy demand with her domestic resources of renewable energies and depending on her domestic scientific and technology and personal resources etc. It could Clean up the misunderstanding of other country and worried about the oil price increasing. (author)

  3. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  4. Biomass I. Science Activities in Energy [and] Teacher's Guide.

    Science.gov (United States)

    Oak Ridge Associated Universities, TN.

    Designed for science students in fourth, fifth, and sixth grades, the activities in this unit illustrate principles and problems related to biomass as a form of energy. (The word biomass is used to describe all solid material of animal or vegetable origin from which energy may be extracted.) Twelve student activities using art, economics,…

  5. Radiological and Medical Sciences Research Institute, Ghana Atomic Energy Commission: Annual Report 2014

    International Nuclear Information System (INIS)

    2014-01-01

    The Radiological and Medical Sciences Research Institute was established in 2009, as the forth research institute of the Ghana Atomic Energy Commission. This Annual Report provides an overview of the major activities of the Institutes in the year 2014. Major items covered in the report include: Strategic objectives; Collaborations; Personnel and Organisational Structure; Facilities and Technical Services; Summary of Research and Development Projects; Human Resource Development; Publications and Technical Reports.

  6. Actionable Science in the Gulf of Mexico: Connecting Researchers and Resource Managers

    Science.gov (United States)

    Lartigue, J.; Parker, F.; Allee, R.; Young, C.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) RESTORE Science Program was established in the wake of the Deepwater Horizon oil spill to to carry out research, observation, and monitoring to support the long-term sustainability of the Gulf of Mexico ecosystem, including its fisheries. Administered in partnership with the US Fish and Wildlife Service, the Science Program emphasizes a connection between science and decision-making. This emphasis translated into an engagement process that allowed for resource managers and other users of information about the ecosystem to provide direct input into the science plan for the program. In developing funding opportunities, the Science Program uses structured conversations with resource managers and other decision makers to focus competitions on specific end user needs. When evaluating proposals for funding, the Science Program uses criteria that focus on applicability of a project's findings and products, end user involvement in project planning, and the approach for transferring findings and products to the end user. By including resource managers alongside scientific experts on its review panels, the Science Program ensures that these criteria are assessed from both the researcher and end user perspectives. Once funding decisions are made, the Science Program assigns a technical monitor to each award to assist with identifying and engaging end users. Sharing of best practices among the technical monitors has provided the Science Program insight on how best to bridge the gap between research and resource management and how to build successful scientist-decision maker partnerships. During the presentation, we will share two case studies: 1) design of a cooperative (fisheries scientist, fisheries managers, and fishers), Gulf-wide conservation and monitoring program for fish spawning aggregations and 2) development of habitat-specific ecosystem indicators for use by federal and state resource managers.

  7. Optimal Energy Management for a Smart Grid using Resource-Aware Utility Maximization

    Science.gov (United States)

    Abegaz, Brook W.; Mahajan, Satish M.; Negeri, Ebisa O.

    2016-06-01

    Heterogeneous energy prosumers are aggregated to form a smart grid based energy community managed by a central controller which could maximize their collective energy resource utilization. Using the central controller and distributed energy management systems, various mechanisms that harness the power profile of the energy community are developed for optimal, multi-objective energy management. The proposed mechanisms include resource-aware, multi-variable energy utility maximization objectives, namely: (1) maximizing the net green energy utilization, (2) maximizing the prosumers' level of comfortable, high quality power usage, and (3) maximizing the economic dispatch of energy storage units that minimize the net energy cost of the energy community. Moreover, an optimal energy management solution that combines the three objectives has been implemented by developing novel techniques of optimally flexible (un)certainty projection and appliance based pricing decomposition in an IBM ILOG CPLEX studio. A real-world, per-minute data from an energy community consisting of forty prosumers in Amsterdam, Netherlands is used. Results show that each of the proposed mechanisms yields significant increases in the aggregate energy resource utilization and welfare of prosumers as compared to traditional peak-power reduction methods. Furthermore, the multi-objective, resource-aware utility maximization approach leads to an optimal energy equilibrium and provides a sustainable energy management solution as verified by the Lagrangian method. The proposed resource-aware mechanisms could directly benefit emerging energy communities in the world to attain their energy resource utilization targets.

  8. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  9. The German energy market. 2014 yearbook. Data and facts on conventional and renewable energy resources

    International Nuclear Information System (INIS)

    Schiffer, Hans-Wilhelm; RWTH Aachen Univ.; World Energy Council, London

    2014-01-01

    The present book provides an overview of the energy market of the German Federal Republic. Its main emphasis is on structures of demand and supply in the markets for crude oil, brown coal, hard coal, natural gas and electricity. A special chapter has been dedicated to renewable energy resources. Another focal area are the price formation mechanisms for oil, coal, natural gas and electricity. The development of energy demand is analysed, differentiating between the sectors industry, transport, households and trade/industry/services. The book addresses the international climate protection treaties, the legal framework for climate protection activities at the European level and the implementation of trade in greenhouse gas emission permits in Germany. It presents current forecasts and scenarios, thus pointing out possible perspectives in the German energy market. It also discusses the framework conditions for Germany's energy policy. The energy markets are portrayed through facts and figures compiled in a total of 125 tables and 148 diagrams. Details of ownership of more than 100 utility companies are made transparent. The chapter on energy in the coalition agreement of 27 November 2013 between the Christian Democratic Union, Christian Social Union and the Social Democratic Party is documented verbatim. Rounding off the publication is a detailed glossary that will facilitate the reader's understanding of complex matters in the field of energy economy.

  10. Nuclear energy between science and public

    International Nuclear Information System (INIS)

    Bobnar, B.

    1992-01-01

    The objective of the presented research was to establish the presence and the structure of nuclear energy as a theme in Slovenian mass media and at the same time to answer the question what chances an active Slovenian reader had in the year 1991 to either strengthen or change his opinion on nuclear power. Measurement and analysis of chosen relevant variables in 252 contributions in six Slovenian mass media publications in the year 1991 showed that the most frequent nuclear theme was decommissioning and closing down of a nuclear power plant. Other themes followed in the order of the frequency of appearance: nuclear energy as an economic issue, waste disposal, NPP Krsko operation, influence on health, information about events, seismic questions. The scientific theme - nuclear energy, was intensely represented in chosen Slovenian mass media publications in 1991. Common to all nuclear themes is that they were being presented from the political point of view. (author) [sl

  11. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  12. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  13. Science of Integrated Approaches to Natural Resources Management

    Science.gov (United States)

    Tengberg, Anna; Valencia, Sandra

    2017-04-01

    To meet multiple environmental objectives, integrated programming is becoming increasingly important for the Global Environmental Facility (GEF), the financial mechanism of the multilateral environmental agreements, including the United Nations Convention to Combat Desertification (UNCCD). Integration of multiple environmental, social and economic objectives also contributes to the achievement of the Sustainable Development Goals (SDGs) in a timely and cost-effective way. However, integration is often not well defined. This paper therefore focuses on identifying key aspects of integration and assessing their implementation in natural resources management (NRM) projects. To that end, we draw on systems thinking literature, and carry out an analysis of a random sample of GEF integrated projects and in-depth case studies demonstrating lessons learned and good practices in addressing land degradation and other NRM challenges. We identify numerous challenges and opportunities of integrated approaches that need to be addressed in order to maximise the catalytic impact of the GEF during problem diagnosis, project design, implementation and governance. We highlight the need for projects to identify clearer system boundaries and main feedback mechanisms within those boundaries, in order to effectively address drivers of environmental change. We propose a theory of change for Integrated Natural Resources Management (INRM) projects, where short-term environmental and socio-economic benefits will first accrue at the local level. Implementation of improved INRM technologies and practices at the local level can be extended through spatial planning, strengthening of innovation systems, and financing and incentive mechanisms at the watershed and/or landscape/seascape level to sustain and enhance ecosystem services at larger scales and longer time spans. We conclude that the evolving scientific understanding of factors influencing social, technical and institutional innovations and

  14. Genomics and bioinformatics resources for translational science in Rosaceae.

    Science.gov (United States)

    Jung, Sook; Main, Dorrie

    2014-01-01

    Recent technological advances in biology promise unprecedented opportunities for rapid and sustainable advancement of crop quality. Following this trend, the Rosaceae research community continues to generate large amounts of genomic, genetic and breeding data. These include annotated whole genome sequences, transcriptome and expression data, proteomic and metabolomic data, genotypic and phenotypic data, and genetic and physical maps. Analysis, storage, integration and dissemination of these data using bioinformatics tools and databases are essential to provide utility of the data for basic, translational and applied research. This review discusses the currently available genomics and bioinformatics resources for the Rosaceae family.

  15. History of Science Web Resources at American Institute of Physics

    Science.gov (United States)

    Good, G. A.

    2009-12-01

    The Center for History of Physics and the associated Niels Bohr Library & Archives at the American Institute of Physics were pioneers in web resource development for education and for research in the 1990s. While these units of AIP continue to add significantly to the traditional ways of putting content before the public, they are also experimenting with blogs and Facebook, and are looking at other forms of interactive web presence. This talk explores how an active research center is trying to do both.

  16. The Contribution of Science-Rich Resources to Public Science Interest

    Science.gov (United States)

    Falk, John H.; Pattison, Scott; Meier, David; Bibas, David; Livingston, Kathleen

    2018-01-01

    This preliminary study examined the effect that five major sources of public science education--schools, science centers, broadcast media, print media, and the Internet--had on adults' science interest "values" and "cognitive predispositions." Over 3,000 adults were sampled in three U.S. metropolitan areas: Los Angeles,…

  17. Biomass Energy Systems and Resources in Tropical Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Lugano (KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology (Sweden))

    2010-07-01

    Tanzania has a characteristic developing economy, which is dependent on agricultural productivity. About 90% of the total primary energy consumption of the country is from biomass. Since the biomass is mostly consumed at the household level in form of wood fuel, it is marginally contributing to the commercial energy supply. However, the country has abundant energy resources from hydro, biomass, natural gas, coal, uranium, solar, wind and geothermal. Due to reasons that include the limited technological capacity, most of these resources have not received satisfactory harnessing. For instance: out of the estimated 4.7GW macro hydro potential only 561MW have been developed; and none of the 650MW geothermal potential is being harnessed. Furthermore, besides the huge potential of biomass (12 million tons of oil equivalent), natural gas (45 million cubic metres), coal (1,200 million tones), high solar insolation (4.5 - 6.5 kWh/m2), 1,424km of coastal strip, and availability of good wind regime (> 4 m/s wind speed), they are marginally contributing to the production of commercial energy. Ongoing exploration work also reveals that the country has an active system of petroleum and uranium. On the other hand, after commissioning the 229 km natural gas pipeline from SongoSongo Island to Dar es Salaam, there are efforts to ensure a wider application in electricity generation, households, automotive and industry. Due to existing environmental concerns, biomass resource is an attractive future energy for the world, Tanzania inclusive. This calls for putting in place sustainable energy technologies, like gasification, for their harnessing. The high temperature gasification (HTAG) of biomass is a candidate technology since it has shown to produce improved syngas quality in terms of gas heating value that has less tar. This work was therefore initiated in order to contribute to efforts on realizing a commercial application of biomass in Tanzania. Particularly, the work aimed at

  18. 9th Pacific Basin Nuclear Conference. Nuclear energy, science and technology - Pacific partnership. Proceedings Volume 2

    International Nuclear Information System (INIS)

    1994-04-01

    The theme of the 9th Pacific Basin Nuclear Conference held in Sydney from 1-6 May 1994, embraced the use of atom in energy production and in science and technology. The focus was on selected topics of current and on-going interest to countries around the Pacific Basin. The two-volume proceedings include both invited and contributed papers which have been indexed separately. This document, Volume 2 covers the following topics: education and training in Nuclear Science, public acceptance, nuclear safety and radiation protection, nuclear fuel resources and their utilisation, research reactors, cyclotrons and accelerators. refs., tabs., figs., ills

  19. Studies in Low-Energy Nuclear Science

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Brune; Steven M. Grimes

    2010-01-13

    This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

  20. Science of mineral deposits and economics of energy

    International Nuclear Information System (INIS)

    Mackowsky, M.T.

    1978-01-01

    The availability of fossile energy carriers is investigated with regard to raw material reserves and their know deposits, by means of output and consumption. According to the author's opinion its discussion should have a priority over all discussions concerning energy crisis, energy supply and environmental protection. The author also touches the high measure of political problems beside the geoscientifical and technological problems of raw material supply. He briefly points to the general situation on the energy market with the help of data on stocks and consumption as given by the 10th International Energy Conference 1977 at Istambul and eventually deals with topics on mineral deposits science and uranium production. (HK) [de