WorldWideScience

Sample records for science education resources

  1. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  2. Turkish Science Teachers' Use of Educational Research and Resources

    Science.gov (United States)

    Ilhan, Nail; Sözbilir, Mustafa; Sekerci, Ali Riza; Yildirim, Ali

    2015-01-01

    Research results demonstrate that there is a gap between educational research and practice. Turkey is not an exception in this case. This study aims to examine to what extent and how educational research and resources are being followed,understood and used in classroom practices by science teachers in Turkey. A sample of 968 science teachers…

  3. Gender Stereotypes in Science Education Resources: A Visual Content Analysis.

    Science.gov (United States)

    Kerkhoven, Anne H; Russo, Pedro; Land-Zandstra, Anne M; Saxena, Aayush; Rodenburg, Frans J

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people's social lives, such stereotypes can also occur in education. Ways in which stereotypes are visible in education include the use of gender-biased visuals, language, teaching methods, and teachers' attitudes. The goal of this study was to determine whether science education resources for primary school contained gender-biased visuals. Specifically, the total number of men and women depicted, and the profession and activity of each person in the visuals were noted. The analysis showed that there were more men than women depicted with a science profession and that more women than men were depicted as teachers. This study shows that there is a stereotypical representation of men and women in online science education resources, highlighting the changes needed to create a balanced representation of men and women. Even if the stereotypical representation of men and women in science is a true reflection of the gender distribution in science, we should aim for a more balanced representation. Such a balance is an essential first step towards showing children that both men and women can do science, which will contribute to more gender-balanced science and technology fields.

  4. CERN as a Non-School Resource for Science Education

    CERN Document Server

    Ellis, Jonathan Richard

    2000-01-01

    As a large international research laboratory, CERN feels it has a special responsibility for outreach, and has many activities directed towards schools, including organized visits, an on-site museum, hands-on experiments, a Summer intern programme for high-school teachers, lecture series and webcasts. Ongoing activities and future plans are reviewed, and some ideas stimulated by this workshop are offered concerning the relevance of CERN's experience to Asia, and the particular contribution that CERN can make as a non-school resource for science education.

  5. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  6. Gender Stereotypes in Science Education Resources : A Visual Content Analysis

    NARCIS (Netherlands)

    Kerkhoven, A.H.; Rodrigues, Dos Santos Russo P.M.; Land, A.M.; Saxena, A.; Rodenburg, F.J.

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people’s social lives, such stereotypes can also occur in education. Ways in which stereotypes are

  7. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  8. Human/Nature Discourse in Environmental Science Education Resources

    Science.gov (United States)

    Chambers, Joan M.

    2008-01-01

    It is argued that the view of nature and the relationship between human beings and nature that each of us holds impacts our decisions, actions, and notions of environmental responsibility and consciousness. In this study, I investigate the discursive patterns of selected environmental science classroom resources produced by three disparate…

  9. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  10. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    Science.gov (United States)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this

  11. AGI's Earth Science Week and Education Resources Network: Connecting Teachers to Geoscience Organizations and Classroom Resources that Support NGSS Implementation

    Science.gov (United States)

    Robeck, E.; Camphire, G.; Brendan, S.; Celia, T.

    2016-12-01

    There exists a wide array of high quality resources to support K-12 teaching and motivate student interest in the geosciences. Yet, connecting teachers to those resources can be a challenge. Teachers working to implement the NGSS can benefit from accessing the wide range of existing geoscience resources, and from becoming part of supportive networks of geoscience educators, researchers, and advocates. Engaging teachers in such networks can be facilitated by providing them with information about organizations, resources, and opportunities. The American Geoscience Institute (AGI) has developed two key resources that have great value in supporting NGSS implement in these ways. Those are Earth Science Week, and the Education Resources Network in AGI's Center for Geoscience and Society. For almost twenty years, Earth Science Week, has been AGI's premier annual outreach program designed to celebrate the geosciences. Through its extensive web-based resources, as well as the physical kits of posters, DVDs, calendars and other printed materials, Earth Science Week offers an array of resources and opportunities to connect with the education-focused work of important geoscience organizations such as NASA, the National Park Service, HHMI, esri, and many others. Recently, AGI has initiated a process of tagging these and other resources to NGSS so as to facilitate their use as teachers develop their instruction. Organizing Earth Science Week around themes that are compatible with topics within NGSS contributes to the overall coherence of the diverse array of materials, while also suggesting potential foci for investigations and instructional units. More recently, AGI has launched its Center for Geoscience and Society, which is designed to engage the widest range of audiences in building geoscience awareness. As part of the Center's work, it has launched the Education Resources Network (ERN), which is an extensive searchable database of all manner of resources for geoscience

  12. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  13. Tools for Engaging Scientists in Education and Public Outreach: Resources from NASA's Science Mission Directorate Forums

    Science.gov (United States)

    Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.

    2014-12-01

    The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to

  14. Phenology for science, resource management, decision making, and education

    Science.gov (United States)

    Nolan, V.P.; Weltzin, J.F.

    2011-01-01

    Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.

  15. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  16. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  17. Schools of California Online Resources for Education: History-Social Science One Stop Shopping for California's Social Studies Teachers.

    Science.gov (United States)

    Hill, Margaret; Benoit, Robert

    1998-01-01

    Reviews the resources available for social studies teachers from the Schools of California Online Resources for Education (SCORE): History Social Science World Wide Web site. Includes curriculum-aligned resources and lessons; standards and assessment information; interactive projects and field trips; teacher chat area; professional development…

  18. The Blueprint for Change: A National Strategy to Enhance Access to Earth and Space Science Education Resources

    Science.gov (United States)

    Geary, E. E.; Barstow, D.

    2001-12-01

    Enhancing access to high quality science education resources for teachers, students, and the general public is a high priority for the earth and space science education communities. However, to significantly increase access to these resources and promote their effective use will require a coordinated effort between content developers, publishers, professional developers, policy makers, and users in both formal and informal education settings. Federal agencies, academic institutions, professional societies, informal science centers, the Digital Library for Earth System Education, and other National SMETE Digital Library Projects are anticipated to play key roles in this effort. As a first step to developing a coordinated, national strategy for developing and delivering high quality earth and space science education resources to students, teachers, and the general public, 65 science educators, scientists, teachers, administrators, policy makers, and business leaders met this June in Snowmass, Colorado to create "Earth and Space Science Education 2010: A Blueprint for Change". The Blueprint is a strategy document that will be used to guide Earth and space science education reform efforts in grades K-12 during the next decade. The Blueprint contains specific goals, recommendations, and strategies for coordinating action in the areas of: Teacher Preparation and Professional Development, Curriculum and Materials, Equity and Diversity, Assessment and Evaluation, Public Policy and Systemic Reform, Public and Informal Education, Partnerships and Collaborations, and Technology. If you develop, disseminate, or use exemplary earth and space science education resources, we invite you to review the Blueprint for Change, share it with your colleagues and local science educators, and join as we work to revolutionize earth and space science education in grades K-12.

  19. The Inspiring Science Education project and the resources for HEP analysis by university students

    International Nuclear Information System (INIS)

    Fassouliotis, Dimitris; Kourkoumelis, Christine; Vourakis, Stylianos

    2016-01-01

    The Inspiring Science Education outreach project has been running for more than two years, creating a large number of inquiry based educational resources for high-school teachers and students. Its goal is the promotion of science education in schools though new methods built on the inquiry based education techniques, involving large consortia of European partners and implementation of large-scale pilots in schools. Recent hands-on activities, developing and testing the above mentioned innovative applications are reviewed. In general, there is a lack for educational scenaria and laboratory courses earmarked for more advanced, namely university, students. At the University of Athens for the last four years, the HYPATIA on-line event analysis tool has been used as a lab course for fourth year undergraduate physics students, majoring in HEP. Up to now, the course was limited to visual inspection of a few tens of ATLAS events. Recently the course was enriched with additional analysis exercises, which involve large samples of events. The students through a user friendly interface can analyse the samples and optimize the cut selection in order to search for new physics. The implementation of this analysis is described

  20. Education, Outreach, and Diversity Partnerships and Science Education Resources From the Center for Multi-scale Modeling of Atmospheric Processes

    Science.gov (United States)

    Foster, S. Q.; Randall, D.; Denning, S.; Jones, B.; Russell, R.; Gardiner, L.; Hatheway, B.; Johnson, R. M.; Drossman, H.; Pandya, R.; Swartz, D.; Lanting, J.; Pitot, L.

    2007-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. The new National Science Foundation- funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is a major research program addressing this problem over the next five years through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interactions among the many physical and chemical processes that are active in cloud systems. At the end of its first year, CMMAP has established effective partnerships between scientists, students, and teachers to meet its goals to: (1) provide first-rate graduate education in atmospheric science; (2) recruit diverse undergraduates into graduate education and careers in climate science; and (3) develop, evaluate, and disseminate educational resources designed to inform K-12 students, teachers, and the general public about the nature of the climate system, global climate change, and career opportunities in climate science. This presentation will describe the partners, our challenges and successes, and measures of achievement involved in the integrated suite of programs launched in the first year. They include: (1) a new high school Colorado Climate Conference drawing prestigious climate scientists to speak to students, (2) a summer Weather and Climate Workshop at CSU and the National Center for Atmospheric Research introducing K-12 teachers to Earth system science and a rich toolkit of teaching materials, (3) a program from CSU's Little Shop of Physics reaching 50 schools and 20,000 K-12 students through the new "It's Up In the Air" program, (4) expanded content, imagery, and interactives on clouds, weather, climate, and modeling for students, teachers, and the public on The Windows to the Universe web site at University Corporation for Atmospheric Research

  1. Guidebook to excellence, 1994: A directory of federal resources for mathematics and science education improvement

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The purpose of this Guidebook to Excellence is to assist educators, parents, and students across the country in attaining the National Education Goals, particularly Goal 4: By the year 2000, US students will be first in the world in science and mathematics achievement. The Guidebook will help make the education community aware of the Federal Government`s extensive commitment to mathematics and science education. Sixteen Federal agencies collaborated with the Eisenhower National Clearinghouse to produce this publication. Although the Guidebook contains valuable information for anyone involved in mathematics and science education, its focus is on the elementary and secondary levels.

  2. Exploring Mars and Beyond: Science Fiction a Resource for Environmental Education.

    Science.gov (United States)

    Miller, Ryder W.

    The purpose of this article is to show how traditional science fiction, an empowering literature of social criticism, can be used by environmental educators to reach the traditional goals of environmental education. The sub-genres of science fiction are discussed along with ways in which they can be used to reach certain goals of environmental…

  3. Reconsidering social science theories in natural resource management continuing professional education

    DEFF Research Database (Denmark)

    Stumann, Cathy Brown; Gamborg, Christian

    2014-01-01

    on the impact of these changes for NRM professionals resulted in many studies calling for NRM professionals to learn a host of new social science-related skills and knowledge. Twenty years later, research continues to show that NRM professionals are struggling to develop these ‘new’ skills and calls...... for integrating the social sciences in NRM education and practice endure. This paper discusses the challenge of integrating social science skills and knowledge into NRM public involvement practice and continuing professional education. The paper argues for a reconsideration of how social science theories relate...... to professionals’ practical theories and concludes with some implications and proposals for NRM continuing professional education....

  4. Argumentation in Science Teacher Education: The simulated jury as a resource for teaching and learning

    Science.gov (United States)

    Drumond Vieira, Rodrigo; da Rocha Bernardo, José Roberto; Evagorou, Maria; Florentino de Melo, Viviane

    2015-05-01

    In this article, we focus on the contributions that a simulated jury-based activity might have for pre-service teachers, especially for their active participation and learning in teacher education. We observed a teacher educator using a series of simulated juries as teaching resources to help pre-service teachers develop their pedagogical knowledge and their argumentation abilities in a physics teacher methods course. For the purposes of this article, we have selected one simulated jury-based activity, comprising two opposed groups of pre-service teachers that presented aspects that hinder the teachers' development of professional knowledge (against group) and aspects that allow this development (favor group). After the groups' presentations, a group of judges was formed to evaluate the discussion. We applied a multi-level method for discourse analysis and the results showed that (1) the simulated jury afforded the pre-service teachers to position themselves as active knowledge producers; (2) the teacher acted as 'animator' of the pre-service teachers' actions, showing responsiveness to the emergence of circumstantial teaching and learning opportunities and (3) the simulated jury culminated in the judges' identification of the pattern 'concrete/obstacles-ideological/possibilities' in the groups' responses, which was elaborated by the teacher for the whole class. Implications from this study include using simulated juries for teaching and learning and for the development of the pre-service teachers' argumentative abilities. The potential of simulated juries to improve teaching and learning needs to be further explored in order to inform the uses and reflections of this resource in science education.

  5. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  6. Science education in the service of bridging the Israeli-Palestinian dispute over water resources

    OpenAIRE

    Zuzovsky, Ruth; Levinger-Dressler, Miri; Yakir, Ruth; Wubbles, Theo; Eijkelhof, Harrie

    2003-01-01

    In 1994 an educational program aimed at changing prevailing attitudes to favor peace and coexistence in the region was launched in the Israeli educational system. The program focused on the crucial conflict over water resources between Israel and its neighboring Arab countries – an issue at the heart of the Israeli-Arab conflict. The rationale of the educational program was based on cognitive approaches to attitudinal change and conflict termination, assumption being that pr...

  7. NASA Space Science Resource Catalog

    Science.gov (United States)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  8. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  9. Linking Formal and Informal Science Education: A Successful Model using Libraries, Volunteers and NASA Resources

    Science.gov (United States)

    Race, M. S.; Lafayette Library; Learning Center Foundation (Lllcf)

    2011-12-01

    In these times of budget cuts, tight school schedules, and limited opportunities for student field trips and teacher professional development, it is especially difficult to expose elementary and middle school students to the latest STEM information-particularly in the space sciences. Using our library as a facilitator and catalyst, we built a volunteer-based, multi-faceted, curriculum-linked program for students and teachers in local middle schools (Grade 8) and showcased new astronomical and planetary science information using mainly NASA resources and volunteer effort. The project began with the idea of bringing free NASA photo exhibits (FETTU) to the Lafayette and Antioch Libraries for public display. Subsequently, the effort expanded by adding layers of activities that brought space and science information to teachers, students and the pubic at 5 libraries and schools in the 2 cities, one of which serves a diverse, underserved community. Overall, the effort (supported by a pilot grant from the Bechtel Foundation) included school and library based teacher workshops with resource materials; travelling space museum visits with hands-on activities (Chabot-to-Go); separate powerpoint presentations for students and adults at the library; and concurrent ancillary space-related themes for young children's programs at the library. This pilot project, based largely on the use of free government resources and online materials, demonstrated that volunteer-based, standards-linked STEM efforts can enhance curriculum at the middle school, with libraries serving a special role. Using this model, we subsequently also obtained a small NASA-Space Grant award to bring star parties and hand-on science activities to three libraries this Fall, linking with numerous Grade 5 teachers and students in two additional underserved areas of our county. It's not necessary to reinvent the wheel, you just collect the pieces and build on what you already have.

  10. A Model for the Development of Web-Based, Student-Centered Science Education Resources.

    Science.gov (United States)

    Murfin, Brian; Go, Vanessa

    The purpose of this study was to evaluate The Student Genome Project, an experiment in web-based genetics education. Over a two-year period, a team from New York University worked with a biology teacher and 33 high school students (N=33), and a middle school science teacher and a class of students (N=21) to develop a World Wide Web site intended…

  11. Bridging the Chasm: Challenges, Opportunities, and Resources for Integrating a Dissemination and Implementation Science Curriculum into Medical Education.

    Science.gov (United States)

    Ginossar, Tamar; Heckman, Carolyn J; Cragun, Deborah; Quintiliani, Lisa M; Proctor, Enola K; Chambers, David A; Skolarus, Ted; Brownson, Ross C

    2018-01-01

    Physicians are charged with implementing evidence-based medicine, yet few are trained in the science of Dissemination and Implementation (D&I). In view of the potential of evidence-based training in D&I to help close the gap between research and practice, the goal of this review is to examine the importance of D&I training in medical education, describe challenges to implementing such training, and provide strategies and resources for building D&I capacity. We conducted (1) a systematic review to identify US-based D&I training efforts and (2) a critical review of additional literature to inform our evaluation of the challenges and opportunities of integrating D&I training in medical education. Out of 269 unique articles reviewed, 11 described US-based D&I training. Although vibrant and diverse training opportunities exist, their capacity is limited, and they are not designed to meet physicians' needs. Synthesis of relevant literature using a critical review approach identified challenges inherent to changing medical education, as well as challenges related to D&I science. Finally, selected strategies and resources are available for facilitating incorporation of D&I training into medical education and overcoming existing challenges. Integrating D&I training in the medical education curriculum, and particularly in residency and fellowship training, holds promise for bridging the chasm between scientific discoveries and improved patient care and outcomes. However, unique challenges should be addressed, including the need for greater evidence.

  12. National Center for Mathematics and Science - teacher resources

    Science.gov (United States)

    Mathematics and Science (NCISLA) HOME | PROGRAM OVERVIEW | RESEARCH AND PROFESSIONAL DEVELOPMENT support and improve student understanding of mathematics and science. The instructional resources listed Resources (CD)Powerful Practices in Mathematics and Science A multimedia product for educators, professional

  13. The Local Territory as a Resource for Learning Science: A Proposal for the Design of Teaching-learning Sequences in Science Education

    OpenAIRE

    González-Weil, C.; Merino-Rubilar, C.; Ahumada, G.; Arenas, A.; Salinas, V.; Bravo, P.

    2014-01-01

    The present work arises from the need to reform Science Education, particularly through the contextualization of teaching. It is proposed to achieve this through the use of local territory as a resource for the design of teaching-learning-sequences (TLS). To do this, an interdisciplinary group of researchers and teachers from a Secondary School created a Professional Circle for Reflection on Teaching, which constructed an emerging conceptualization of Territory, analyzed the possibil...

  14. Resources to Transform Undergraduate Geoscience Education: Activities in Support of Earth, Oceans and Atmospheric Sciences Faculty, and Future Plans

    Science.gov (United States)

    Ryan, J. G.; Singer, J.

    2013-12-01

    The NSF offers funding programs that support geoscience education spanning atmospheric, oceans, and Earth sciences, as well as environmental science, climate change and sustainability, and research on learning. The 'Resources to Transform Undergraduate Geoscience Education' (RTUGeoEd) is an NSF Transforming Undergraduate Education in STEM (TUES) Type 2 special project aimed at supporting college-level geoscience faculty at all types of institutions. The project's goals are to carry out activities and create digital resources that encourage the geoscience community to submit proposals that impact their courses and classroom infrastructure through innovative changes in instructional practice, and contribute to making transformative changes that impact student learning outcomes and lead to other educational benefits. In the past year information sessions were held during several national and regional professional meetings, including the GSA Southeastern and South-Central Section meetings. A three-day proposal-writing workshop for faculty planning to apply to the TUES program was held at the University of South Florida - Tampa. During the workshop, faculty learned about the program and key elements of a proposal, including: the need to demonstrate awareness of prior efforts within and outside the geosciences and how the proposed project builds upon this knowledge base; need to fully justify budget and role of members of the project team; project evaluation and what matters in selecting a project evaluator; and effective dissemination practices. Participants also spent time developing their proposal benefitting from advice and feedback from workshop facilitators. Survey data gathered from workshop participants point to a consistent set of challenges in seeking grant support for a desired educational innovation, including poor understanding of the educational literature, of available funding programs, and of learning assessment and project evaluation. Many also noted

  15. From the USDA: Educating the Next Generation: Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education.

    Science.gov (United States)

    Parker, Joyce E; Wagner, David J

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency's educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural education, enhancing agricultural literacy through both formal and nonformal education. Here, we have highlighted funding opportunities within DOCE that enhance agricultural education and literacy by supporting the improvement of students' critical communication, leadership skills, and experiential learning opportunities. Some of these programs include opportunities for which students can apply, while others focus on faculty applications. Opportunities faculty can apply for may support student-recruitment and student-retention techniques, curriculum development, innovative teaching methods, and institutional capacity-building programs. Overall, these programs foster a diverse workforce in agricultural science that matches the increasing diversity of the country. © 2016 J. E. Parker and D. J. Wagner. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. The COMET° Program: Empowering Faculty via Environmental Science Education Resources and Training Opportunities

    Science.gov (United States)

    Abshire, W. E.; Spangler, T. C.; Page, E. M.

    2011-12-01

    For 20+ years, the COMET Program has provided education to a wide spectrum of users in the atmospheric and related sciences, including faculty and students. COMET's training covers many areas including: climate science; tropical meteorology; marine, coastal, aviation and fire weather; satellite and mesoscale meteorology; numerical weather prediction; hydrometeorology; observational systems; and emergency management and societal impacts. The majority of the training is delivered as self-paced web modules. The entry point to 600+ hours of material is COMET's http://meted.ucar.edu website. This site hosts >400 training modules. Included in these courses are ~100 lessons which have been translated into primarily Spanish and French. Simple, free registration is required. As of summer 2011, there were 200,000 registered users of the site from 200 countries who are taking advantage of this free education and training. Over 9000 of the users are faculty and another 38,000+ are college students. Besides using and re-purposing the high quality multimedia training, faculty often choose to use the registration and assessment system that allows users to take quizzes with each lesson to receive a certificate of completion. With the student's permission, then results can also be e-mailed to an instructor. Another relevant initiative is the creation of a free online, peer reviewed Textbook, "Introduction to Tropical Meteorology" (http://www.meted.ucar.edu/tropical/textbook/). This multimedia textbook is intended for undergraduate and early graduate students, forecasters, and others interested in the impacts of tropical weather and climate. Lastly, with funding from the NOAA/NESDIS/GOES-R Program, COMET recently offered a course for faculty entitled, "Integrating Satellite Data and Products into Geoscience Courses with Emphasis on Advances in Geostationary Satellite Systems." Twenty-four faculty from across the US and the Caribbean participated. Via lectures, lab exercises, and

  17. Open Educational Resources

    Science.gov (United States)

    McShane, Michael Q.

    2017-01-01

    While digital products have made significant inroads into the educational resources market, textbooks and other print materials still command about 60 percent of sales. But whether print or digital, all of these commercial offerings now face threats from a burgeoning effort to promote "open" resources for education--that is, materials…

  18. Analysis of Interactivity and Autonomy of Existing Digital Educational Resources: The Case of Life and Earth Sciences in Morocco

    Science.gov (United States)

    Ettazarini, Said

    2017-01-01

    The educational policy in Morocco is aimed at promoting the wide use of Information and Communication Technologies in Education and the adoption of interactive and autonomous digital resources for distance teaching and self-learning. The objective of this research is to evaluate the suitability of the existing digital educational resources for…

  19. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    Science.gov (United States)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  20. Teaching and investigating the use of Concept Maps as educational resource facilitator of meaningful learning for natural sciences in elementary education.

    Directory of Open Access Journals (Sweden)

    Felipa Pacífico Ribeiro de Assis Silveira

    2014-12-01

    Full Text Available The study tried to answer questions pertinent to the use of concept maps (CM as a teaching resource facilitator of meaningful learning of scientific concepts of Natural Sciences, in the classroom of elementary school. To answer the questions and insert the MC in the classroom every day, we adopted the interdependence between the process of learning, teaching and investigation. To ensure a triadic relationship, outline an intervention / investigation with theoretical and methodological support in quantitative and qualitative approach. The teaching and learning were secured from a teaching strategy, able to share and negotiate concepts relevant to the field of education, enabling students move beyond their existing knowledge, ensuring the data of research about the effects of MC in learning of the groups investigated. The MC was defined as a teaching resource potential for this level of education and principles of the Theory of Meaningful Learning that supports it. It was evident the recursive procedural character inherent in meaningful learning as using the MC as a teaching resource in the construction of scientific knowledge of Natural Sciences, the occurrence of learning of the groups using the MC and its validation in the presence of students of final grades of elementary school.

  1. Resources for Popular Education.

    Science.gov (United States)

    Heaney, Tom

    1992-01-01

    Popular education, with its agenda for social change, often lacks access to traditional financial support. Strategies for resource development include volunteers, small proportion of public funding, an umbrella organization to distribute funds, and collaboration with adult educators in mainstream institutions. (SK)

  2. Soil Health Educational Resources

    Science.gov (United States)

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  3. Selecting, Evaluating and Creating Policies for Computer-Based Resources in the Behavioral Sciences and Education.

    Science.gov (United States)

    Richardson, Linda B., Comp.; And Others

    This collection includes four handouts: (1) "Selection Critria Considerations for Computer-Based Resources" (Linda B. Richardson); (2) "Software Collection Policies in Academic Libraries" (a 24-item bibliography, Jane W. Johnson); (3) "Circulation and Security of Software" (a 19-item bibliography, Sara Elizabeth Williams); and (4) "Bibliography of…

  4. Reconsidering Social Science Theories in Natural Resource Management Continuing Professional Education

    Science.gov (United States)

    Stummann, C. B.; Gamborg, C.

    2014-01-01

    Over 25 years ago, the "wicked problems" concept was introduced into forestry to describe the increasingly complex work situations faced by many natural resource management (NRM) professionals and at the same time the demand and frequency of public involvement in NRM issues also grew. Research on the impact of these changes for NRM…

  5. The SingAboutScience.org Database: An Educational Resource for Instructors and Students

    Science.gov (United States)

    Crowther, Gregory J.

    2012-01-01

    Potential benefits of incorporating music into science and math curricula include enhanced recall of information, counteraction of perceptions that the material is dull or impenetrable, and opportunities for active student engagement and creativity. To help instructors and others find songs suited to their needs, I created the "Math And Science…

  6. Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation

    Science.gov (United States)

    Scanlon, Eileen

    2012-01-01

    This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…

  7. Tracking How Science Resources Result in Educator- and Community-Level Outcomes

    Science.gov (United States)

    Dusenbery, P.; Harold, J. B.; Fitzhugh, G.; LaConte, K.; Holland, A.

    2017-12-01

    Learners frequently need to access increasingly complex information to help them understand our changing world. More and more libraries are transforming themselves into places where learners not only access STEM information, but interact with professionals and undertake hands-on learning. Libraries are beginning to position themselves as part of learning ecosystems that contribute to a collective impact on the community. Traveling STEM exhibits are catalyzing these partnerships and engaging students, families, and adults in repeat visits through an accessible venue: their public library. This talk will explore impacts from two STAR Library Network's (STAR_Net) exhibitions (Discover Earth and Discover Tech) on partnerships, the circulation of STEM resources, and the engagement of learners. The STAR_Net project's summative evaluation utilized mixed methods to investigate project implementation and its outcomes. Methods included pre- and post-exhibit surveys administered to staff from each library that hosted the exhibits; interviews with staff from host libraries; patron surveys; exhibit-related circulation records; web metrics regarding the online STAR_Net community of practice; and site visits. The latter provides a more complete view of impacts on the community, including underserved audiences. NASA@ My Library is a new STAR_Net initiative, which provides STEM facilitation kits, training, and other resources to 75 libraries nationwide. Initial results will be presented that show high levels of engagement by librarians and strong response rate from patrons on surveys.

  8. Further Democratizing Latin America: Broadening Access to Higher Education and Promoting Science Policies Focused on the Advanced Training of Human Resources

    Directory of Open Access Journals (Sweden)

    Manuel Heitor

    2014-08-01

    Full Text Available We focus this paper on the conditions to build reliable science, technology and higher education systems in Latin America, based on international comparative studies, fieldwork and interviews conducted over the last three years. The analysis shows that science can have a major role in furthering the democratization of society through public policies that foster opportunities to access knowledge and the advanced training of human resources. Broadening the social basis for higher education promotes the qualification of the labour force and contributes to social and economic development. The need to guarantee higher education diversity, strengthening scientific institutions and investing in a strong science base, is deemed as critical, but goes far beyond policies centred on innovation and industry-science relationships. It requires adequate training and attraction of skilled people, as well as the social promotion of a scientific and technological culture.

  9. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  10. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  11. Elementary Science Resource Guide.

    Science.gov (United States)

    Texas Education Agency, Austin. Div. of Curriculum Development.

    This guide for elementary teachers provides information on getting ideas into action, designing and implementing the right situation, ways in which to evaluate science process activities with students, and seven sample units. The units cover using the senses, magnets, forces, weather forecasting, classification of living things, and the physical…

  12. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  13. From the USDA: Educating the Next Generation--Funding Opportunities in Food, Agricultural, Natural Resources, and Social Sciences Education

    Science.gov (United States)

    Parker, Joyce E.; Wagner, David J.

    2016-01-01

    The National Institute of Food and Agriculture within the U.S. Department of Agriculture provides leadership, capacity, and funds to support the continuing development of a safe and competitive agricultural system. Many of the agency's educational programs are led by the Division of Community and Education (DOCE). These programs span agricultural…

  14. 75 FR 20007 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2010-04-16

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... Foundation's science, technology, engineering, and mathematics (STEM) education and human resources... Science Foundation announces the following meeting: Name: Advisory Committee for Education and Human...

  15. Strategies Which Foster Broad Use and Deployment of Earth and Space Science Informal and Formal Education Resources

    Science.gov (United States)

    Meeson, Blanche W.; Gabrys, Robert; Ireton, M. Frank; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Education projects supported by federal agencies and carried out by a wide range of organizations foster learning about Earth and Space systems science in a wide array of venues. Across these agencies a range of strategies are employed to ensure that effective materials are created for these diverse venues. And that these materials are deployed broadly so that a large spectrum of the American Public, both adults and children alike, can learn and become excited by the Earth and space system science. This session will highlight some of those strategies and will cover representative examples to illustrate the effectiveness of the strategies. Invited speakers from selected formal and informal educational efforts will anchor this session. Speakers with representative examples are encouraged to submit abstracts for the session to showcase the strategies which they use.

  16. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  17. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  18. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  19. 78 FR 21979 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2013-04-12

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of..., technology, engineering, and mathematics (STEM) education and human resources programming. Agenda May 6, 2013... Science Foundation announces the following meeting: Name: Advisory Committee for Education and Human...

  20. Enhancing Undergraduate Education with NASA Resources

    Science.gov (United States)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA

    2015-08-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: https://www.astrosociety.org/education/resources-for-the-higher-education-audience/.The Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http

  1. Open Educational Resources in Denmark

    DEFF Research Database (Denmark)

    Harlung, Asger

    2010-01-01

    The report presents an overview of accessibility, content types,and educational levels of open Educational Resources for public school, high shcool, higher education, and citizen empowerment and enlightenment offered from educational institutions or via other internet sources in Denmark in late...

  2. Geography, Resources, and Environment of Latin America: An Undergraduate Science Course focused on Attracting Hispanic students to Science and on Educating Non-Hispanics about Latin America.

    Science.gov (United States)

    Pujana, I.; Stern, R. J.; Ledbetter, C. E.

    2004-12-01

    With NSF-CCLI funding, we have developed, taught, and evaluated a new lower-division science course for non-majors, entitled "Geography, Resources, and Environment of Hispanic America" (GRELA). This is an adaptation of a similar course, "Geology and Development of Modern Africa" developed by Barbara Tewksbury (Hamilton College), to attract African American students to science by highlighting cultural ties with their ancestral lands. We think that a similar approach focusing on Latin America may attract Hispanic undergraduates, at the same time that it increases awareness among non-Hispanic students about challenges facing our neighbors to the south. GRELA is an interdisciplinary exploration of how the physical and biological environment of Mexico, Central America, and South America have influenced the people who live there. The course consists of 20 lectures and requires the student to present a report partnering with correspondents in Latin American universities. GRELA begins with an overview of Latin American physical and cultural geography and geologic evolution followed by a series of modules that relate the natural resources and environment of Latin America to the history, economy, and culture of the region. This is followed by an exploration of pre-Columbian cultures. The use of metals by pre-Columbian, colonial, and modern cultures is presented next. We then discuss hydrocarbon resources, geothermal energy, and natural hazards of volcanoes and earthquakes. The last half of the course focuses on Earth System Science themes, including El Nino, glaciers, the Amazon river and rainforest, and coral reefs. The final presentation concerns population growth and water resources along the US-Mexico border. Grades are based on two midterms, one final, and a project which requires that groups of students communicate with scientists in Latin America to explore some aspect of geography, natural resources, or the environment of a Latin American region of common interest

  3. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  4. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  5. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  6. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  7. EDUCATIONAl. RESOURCE IDENTIFICATION IN THE ...

    African Journals Online (AJOL)

    RESOURCE IDENTIFICATION. IN THE ... Identification of educational resources in the local environ- ment is of ... The environment to which a person is exposed and in which, or .... this respect on the re-use of resources - each ele- ment or ...

  8. rethinking forestry and natural resources higher Education in Ethiopia:

    African Journals Online (AJOL)

    It is agreed that higher education relating to forestry and natural resources in Ethiopia ...... Forestry education and training for non-traditional target groups; ... in modern spatial information science and survey techniques; (f) contributing to the.

  9. Sharing Resources in Educational Communities

    Directory of Open Access Journals (Sweden)

    Anoush Margarayn

    2010-06-01

    Full Text Available The paper explores the implications of mobility within educational communities for sharing and reuse of educational resources. The study begins by exploring individuals’ existing strategies for sharing and reusing educational resources within localised and distributed communities, with particular emphasis on the impact of geographic location on these strategies. The results indicate that the geographic distribution of communities has little impact on individuals’ strategies for resource management, since many individuals are communicating via technology tools with colleagues within a localised setting. The study points to few major differences in the ways in which individuals within the localised and distributed communities store, share and collaborate around educational resources. Moving beyond the view of individuals being statically involved in one or two communities, mobility across communities, roles and geographic location are formulated and illustrated through eight scenarios. The effects of mobility across these scenarios are outlined and a framework for future research into mobility and resource sharing within communities discussed.

  10. Medical education teaching resources.

    Science.gov (United States)

    Jibson, Michael D; Seyfried, Lisa S; Gay, Tamara L

    2014-02-01

    Numerous monographs on psychiatry education have appeared without a review specifically intended to assist psychiatry faculty and trainees in the selection of appropriate volumes for study and reference. The authors prepared this annotated bibliography to fill that gap. The authors identified titles from web-based searches of the topics "academic psychiatry," "psychiatry education," and "medical education," followed by additional searches of the same topics on the websites of major publishers. Forty-nine titles referring to psychiatry education specifically and medical education generally were identified. The authors selected works that were published within the last 10 years and remain in print and that met at least one of the following criteria: (1) written specifically about psychiatry or for psychiatric educators; (2) of especially high quality in scholarship, writing, topic selection and coverage, and pertinence to academic psychiatry; (3) covering a learning modality deemed by the authors to be of particular interest for psychiatry education. The authors reviewed 19 books pertinent to the processes of medical student and residency education, faculty career development, and education administration. These included 11 books on medical education in general, 4 books that focus more narrowly on the field of psychiatry, and 4 books addressing specific learning modalities of potential utility in the mental health professions. Most of the selected works proved to be outstanding contributions to the medical education literature.

  11. 77 FR 61033 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2012-10-05

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... human resources programming. Agenda November 7, 2012 (Wednesday Morning) Welcoming Remarks Opening... Science Foundation announces the following meeting: Name: Advisory Committee for Education and Human...

  12. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  13. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  14. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  15. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  16. 77 FR 33774 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2012-06-07

    ... and Human Resources Project Monitoring Clearance AGENCY: National Science Foundation. ACTION: Notice...). SUPPLEMENTARY INFORMATION: Title of Collection: Education and Human Resources Project Monitoring Clearance. OMB... States and internationally. The Directorate for Education and Human Resources (EHR), a unit within NSF...

  17. 76 FR 63666 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2011-10-13

    ... Advancement of Women in Academic Science and Engineering Careers Committee discussion of EHR collaborations...'s science, technology, engineering, and mathematics (STEM) education and human resources programming...

  18. Human resources training in coastal science

    Digital Repository Service at National Institute of Oceanography (India)

    Vijayaraghavan, S.

    The paper stresses the importance of training and education to the development and application of knowledge on the coastal marine environment and its resources. Present status of human resources training in India is discussed and changes...

  19. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  20. The World Wide Web Has Arrived--Science Educators Must All Get Aboard It.

    Science.gov (United States)

    Didion, Catherine Jay

    1997-01-01

    Discusses the importance of science educators becoming familiar with electronic resources. Highlights the publication Science Teaching Reconsidered: A Handbook, which is designed to help undergraduate science educators. Addresses gender concerns regarding the use of educational resources. Lists science education and career resources on the web.…

  1. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  2. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  3. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  4. Debunking Astronomical Fiction Science: A Resource Guide

    Science.gov (United States)

    Fraknoi, A.

    2010-08-01

    This resource guide is for educators who receive questions about controversial topics and want readings or websites to brush up on the facts or to recommend to students or the public. This is by no means a complete list, but a short guide of some of the key resources that may be of help. A version of this was distributed at the meeting during the oral session. Longer version of this list can be found online at education/resources/pseudobib.html'>http://www.astrosociety.org/education/resources/pseudobib.html.

  5. Suburban-Urban Educational Resources.

    Science.gov (United States)

    Willis, Benjamin C.

    This speech discusses ways of using school resources more efficiently, premised on the understanding that putting more money into a system does not necessarily make that system better. The author suggests the creation of a search-and-plan group of selected educational, community, and student personnel that would share ideas with other districts,…

  6. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  7. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  8. Wisconsin Earth and Space Science Education

    Science.gov (United States)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  9. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  10. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  11. 78 FR 8192 - Agency Information Collection Activities: Comment Request; Education and Human Resources Project...

    Science.gov (United States)

    2013-02-05

    ... NATIONAL SCIENCE FOUNDATION Agency Information Collection Activities: Comment Request; Education and Human Resources Project Monitoring Clearance AGENCY: National Science Foundation. ACTION: Notice... study will assess the implementation of resources, models, and technologies to determine how and why...

  12. Digital Resource Use and Non‐Use in the Humanities and Social Sciences Academic Settings is Multifaceted. A review of: Harley, Diane. “Why Study Users? An Environmental Scan of Use and Users of Digital Resources in Humanities and Social Sciences Undergraduate Education.” First Monday 12.1 (Jan. 2007. 7 May 2007 .

    Directory of Open Access Journals (Sweden)

    Lotta Haglund

    2007-06-01

    Full Text Available Objective – (1 To map the digital resources available to undergraduate educators in the humanities and the social sciences, (2 to survey faculty about their use of digital resources, and (3 to examine how understanding use and users can benefit the integration of resources into teaching.Design – A mixed‐methods approach, which included a survey, conducting discussion groups, and in‐depth interviews.Setting – Academic institutions in the United States.Subjects – (1 “Various stakeholders”; (2 31 instructors from three institutions, and 4500 full‐time and part‐time faculty and graduate students (at California public research universities, liberal arts colleges and community colleges; and (3 13 digital resource providers and two other stakeholders, and 16 site owners or user researchers.Methods – (1 A literature review, combined with discussions with various stakeholders. (2 Four sessions of discussion groups with 31 instructors from three institutions formed the basis for developing a faculty surveyi nstrument. The survey was distributed both on paper and online. (3 Collection of data on cost and collaborative development strategies, in‐depth interviews with 13 digital resource providers and two other stakeholders, combined with a two day workshop with 16 experts, both on the subject of online educational resources.Main results – (1 Concerning the humanities and social sciences digital resource landscape, the main results of the literature study were the conclusions that the field of online education studies is complicated by a lack of common vocabulary, definitions, and analyses; and that different stakeholder interests and agendas also influence the understanding of how digital resources are used. With the help of discussion groups, an attempt at creating a typology for digital resources available to undergraduates was made, looking at type of resource, origin, and typeo f role of the provider or site owner. From the

  13. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  14. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  15. Safety Education Resources: Childproofing Your Home

    Science.gov (United States)

    ... Kids and Babies En Español Kids and Babies - Safety Alerts Back to Safety Education Resources Air Mattresses ... Home Drowning Deaths in Spanish Kids and Babies - Safety Guides Back to Safety Education Resources Baby Safety ...

  16. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  17. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  18. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  19. Fermilab Education Office: Science Adventures

    Science.gov (United States)

    Search The Education Office: Science Adventures Adventure Catalog Search for Adventures Calendar Class Facebook Group. Contact: Science Adventures Registrar, Education Office Fermilab, MS 777, P.O. Box 500 it again." Opportunities for Instructors The Education Office has openings for instructors who

  20. 75 FR 63209 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2010-10-14

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... Foundation's science, technology, engineering, and mathematics (STEM) education and human resources... and Human Resources Strategic Vision Break-out Groups: Working Lunch Break-out Groups Report to Full...

  1. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  2. Regional Information System for Educators. Information Resources; Installation and Evaluation; Information Services; An Operational Handbook; Proceedings of the American Society for Information Science, Vol. 6, 1969. (five documents)

    Science.gov (United States)

    Grimes, George; And Others

    A series of four pamphlets which describe the Regional Information System (RIS) of the Michigan-Ohio Regional Educational Laboratory (MOREL), a system designed to provide an effective, systematic methodology for linking users with relevant resources, compose the major portion of this information package. Each publication details an aspect of the…

  3. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  4. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  5. On teaching the nature of science: perspectives and resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  6. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  7. From Exam to Education: The Math Exam/Education Resources

    Science.gov (United States)

    Bruni, Carmen; Koch, Christina; Konrad, Bernhard; Lindstrom, Michael; Moyles, Iain; Thompson, Will

    2016-01-01

    The Math Exam/Education Resources (MER) is an open online learning resource hosted at The University of British Columbia (UBC), aimed at providing mathematics education resources for students and instructors at UBC. In this paper, there will be a discussion of the motivation for creating this resource on the MediaWiki platform, key features of the…

  8. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  9. Fermilab Friends for Science Education | Welcome

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Fermilab Friends for Science Education photo Fermilab Friends for Science Education supports innovative science education programs at Fermilab. Its mission is to: Enhance the quality of precollege science education in

  10. 78 FR 78401 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2013-12-26

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of... Directorate for Education and Human Resources ( [email protected] ) at least 24 hours prior to the teleconference... mathematics (STEM) education and human resources programming. Agenda Remarks by the Committee Chair and NSF...

  11. 78 FR 61400 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2013-10-03

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Notice of...) education and human resources programming. Agenda November 6, 2013 Remarks by the Committee Chair and NSF Assistant Director for Education and Human Resources (EHR) Brief updates on EHR and Committee of Visitor...

  12. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  13. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  14. Applying Landscape Science to Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Guy M. Robinson

    2013-03-01

    Full Text Available This is the introduction to the Ecology and Society special feature on "Applying Landscape Science to Natural Resource Management". Primarily drawing upon examples from Australia, the nine papers in the feature illustrate how landscape science seeks to integrate information from diverse sources to generate management solutions for implementation by individual land managers, communities, and governments at different levels. This introduction refers to the genesis of the feature, briefly outlines the nature and content of landscape science, and then summarizes key features of the nine papers. These are organized into two sections: one deals with inputs from human agents in the landscape, and one with the development of models enabling different management scenarios and environmental changes to be envisaged, understood, and applied to policy development.

  15. Retention practices in education human resources management ...

    African Journals Online (AJOL)

    Retention practices in education human resources management. ... education system in South Africa, particularly in public schools, faces serious problems. ... of quality management which aim at continual increase of the accountability in ...

  16. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  17. Ethiopian Journal of Education and Sciences

    African Journals Online (AJOL)

    The Ethiopian Journal of Education and Sciences focuses on publishing articles relating to education and sciences. It publishes ... The objective is to create forum for researchers in education and sciences. ... AJOL African Journals Online.

  18. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  19. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  20. Text mining resources for the life sciences.

    Science.gov (United States)

    Przybyła, Piotr; Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable-those that have the crucial ability to share information, enabling smooth integration and reusability. © The Author(s) 2016. Published by Oxford University Press.

  1. Text mining resources for the life sciences

    Science.gov (United States)

    Shardlow, Matthew; Aubin, Sophie; Bossy, Robert; Eckart de Castilho, Richard; Piperidis, Stelios; McNaught, John; Ananiadou, Sophia

    2016-01-01

    Text mining is a powerful technology for quickly distilling key information from vast quantities of biomedical literature. However, to harness this power the researcher must be well versed in the availability, suitability, adaptability, interoperability and comparative accuracy of current text mining resources. In this survey, we give an overview of the text mining resources that exist in the life sciences to help researchers, especially those employed in biocuration, to engage with text mining in their own work. We categorize the various resources under three sections: Content Discovery looks at where and how to find biomedical publications for text mining; Knowledge Encoding describes the formats used to represent the different levels of information associated with content that enable text mining, including those formats used to carry such information between processes; Tools and Services gives an overview of workflow management systems that can be used to rapidly configure and compare domain- and task-specific processes, via access to a wide range of pre-built tools. We also provide links to relevant repositories in each section to enable the reader to find resources relevant to their own area of interest. Throughout this work we give a special focus to resources that are interoperable—those that have the crucial ability to share information, enabling smooth integration and reusability. PMID:27888231

  2. Resource Allocation of Agricultural Science and Technology R&D

    OpenAIRE

    Li, Xian-song; Bai, Li; Zhang, Li-ming

    2011-01-01

    The status quo of resource allocation of agricultural science and technology R&D (research and development)both at home and abroad,including the amount and function of agricultural science and technology research funds, human resources in the resources of agricultural science and technology R&D , the efficiency of resource allocation of agricultural science and technology R&D, the management system of agricultural scientific innovation and the operation status of scientific funds, is analyz...

  3. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  4. A Bibliometric Mapping of Open Educational Resources

    Directory of Open Access Journals (Sweden)

    Airton Zancanaro

    2015-02-01

    Full Text Available Open educational resources (OER is a topic that has aroused increasing interest by researchers as a powerful contribution to improve the educational system quality and openness, both in face to face and distance education. The goal of this research is to map publications related to OER, dating from 2002 to 2013, and available through the Web of Science and Scopus scientific databases as well as in the OER Knowledge Cloud open repository. Data were used to explore relevant aspects related to the scientific production in OER, such as: (i number of publications per year; (ii most cited publications; (iii authors with higher number of publications; (iv institutions and countries with more publications and (v most referenced bibliography by the authors. The analysis has included 544 papers, written by 843 authors, from 338 institutions, from 61 different countries. Moreover, the analysis has included the publications referenced and the author’s keywords, considering 6,355 different publications and 929 different keywords. Besides presenting a bibliographic mapping of the research on OER, this paper also intends to contribute to consolidate the idea that OER is a promising field for researchers, in line with the spreading of the Open movement.

  5. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  6. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  7. Statistics Online Computational Resource for Education

    Science.gov (United States)

    Dinov, Ivo D.; Christou, Nicolas

    2009-01-01

    The Statistics Online Computational Resource (http://www.SOCR.ucla.edu) provides one of the largest collections of free Internet-based resources for probability and statistics education. SOCR develops, validates and disseminates two core types of materials--instructional resources and computational libraries. (Contains 2 figures.)

  8. Resource Management in the Microgravity Science Division

    Science.gov (United States)

    Casselle, Justine

    2004-01-01

    In the Microgravity Science Division, the primary responsibilities of the Business Management Office are resource management and data collection. Resource management involves working with a budget to do a number of specific projects, while data collection involves collecting information such as the status of projects and workforce hours. This summer in the Business Management Office I assisted Margie Allen with resource planning and the implementation of specific microgravity projects. One of the main duties of a Project Control Specialists, such as my mentor, is to monitor and analyze project manager s financial plans. Project managers work from the bottom up to determine how much money their project will cost. They then set up a twelve month operating plan which shows when money will be spent. I assisted my mentor in checking for variances in her data against those of the project managers. In order to successfully check for those variances, we had to understand: where the project is including plans vs. actual performance, why it is in its present condition, and what the future impact will be based on known budgetary parameters. Our objective was to make sure that the plan, or estimated resources input, are a valid reflection of the actual cost. To help with my understanding of the process, over the course of my tenure I had to obtain skills in Microsoft Excel and Microsoft Access.

  9. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  11. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  12. Problems and Prospects of Science Education in Bangladesh

    Science.gov (United States)

    Choudhury, Shamima K.

    2009-04-01

    Scientific and technological know-how, not the amount of natural resources, determines the development of a country. Bangladesh, with insignificant natural resources and a huge population on a small piece of land, can be developed through scientific and technological means. Whereas it was once the most sought-after subject at secondary and postsecondary levels, science is losing its appeal in an alarming shift of choice. Problems in science education and possible solutions for Bangladesh, which has limited resources for encouraging science education, are presented.

  13. Open Educational Resources in Canada 2015

    Science.gov (United States)

    McGreal, Rory; Anderson, Terry; Conrad, Dianne

    2015-01-01

    Canada's important areas of expertise in open educational resources (OER) are beginning to be built upon or replicated more broadly in all education and training sectors. This paper provides an overview of the state of the art in OER initiatives and open higher education in general in Canada, providing insights into what is happening nationally…

  14. Hip-Hop Education Resources

    Science.gov (United States)

    Hall, Marcella Runell

    2009-01-01

    Hip-hop music and culture are often cited as being public pedagogy, meaning the music itself has intrinsic educational value. Non-profit organizations and individual educators have graciously taken the lead in utilizing hip-hop to educate. As the academy continues to debate its effectiveness, teachers and community organizers are moving forward.…

  15. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  16. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  17. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  18. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  19. SSC education: Science to capture the imagination

    International Nuclear Information System (INIS)

    Gadsden, T.; Kivlighn, S.

    1992-01-01

    To the great majority of Americans, science is merely a collection of facts and theories that should (for unknown reasons) be memorized and perhaps even understood in order for one to function as a responsible citizen. Few see science as a way of thinking and questioning and as an approach to learning the secrets of our world. In addition, most children and many adults have a stereotypical view of scientists as studious men in lab coats who spend all their time working alone in dark and smelly chemical or biological laboratories. The Superconducting Super Collider (SSC) totally contradicts such a perception. This great instrument is being created by thousands of scientists, engineers, business people, technicians, administrators, and others, from dozens of nations, working together to realize a shared vision to seek answers to shared questions. The SSCL also provides an opportunity to change the mistaken impressions about science and scientists that have resulted in fewer students pursuing careers in fields related to science. In addition, it will serve as a catalyst to help people understand the roles that scientific thought and inquiry can play in bettering their lives and the lives of their offspring. Recognizing this problem in our society, the creators of the SSC Laboratory made a commitment to use the SSC to improve science education. Consequently, in addition to building the world's premier high-energy physics laboratory, the SSCL has a second goal: creation of a major national and international educational resource. To achieve the latter goal, the Education Office of the SSCL is charged with using the resources of the Laboratory, both during construction and during operation, to improve education in science and mathematics at all levels (prekindergarten through post-doctorate) and for all components of our society (including the general public), in the United States and around the world

  20. Educations in Ethnic Violence: Identity, Educational Bubbles, and Resource Mobilization

    Science.gov (United States)

    Lange, Matthew

    2011-01-01

    In "Educations in Ethnic Violence", Matthew Lange explores the effects education has on ethnic violence. Lange contradicts the widely-held belief that education promotes peace and tolerance. Rather, Lange finds that education commonly contributes to aggression, especially in environments with ethnic divisions, limited resources, and…

  1. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  2. Science, Ethics and Education

    Science.gov (United States)

    Elgin, Catherine

    2011-01-01

    An overarching epistemological goal of science is to develop a comprehensive, systematic, empirically grounded understanding of nature. Two obstacles stand in the way: (1) Nature is enormously complicated. (2) Findings are fallible: no matter how well established a conclusion is, it still might be wrong. To pursue this goal in light of the…

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Refresher Course on Mountain Hydrology and. Climate Change. Science Academies' Seventy-Fifth Refresher Course in Experimental Physics. Information & Announcements. 106. 105. 108. Classics. Are we Utilizing our. Water Resources. Wisely? B P Radhakrishna. General Editorial on. Publication Ethics. 1. 93. 71.

  4. Natural resources: A curse on education spending?

    International Nuclear Information System (INIS)

    Cockx, Lara; Francken, Nathalie

    2016-01-01

    In line with the rising interest in harnessing natural resource revenues for economic and human development through productive government investments, this paper aims to address an important blind spot in our understanding of the “resource curse” by contributing innovative insights on how natural resource wealth impacts government priorities and expenditure practices. Using a large panel dataset of 140 countries covering the period from 1995 to 2009, we find an adverse effect of resource dependence on public education expenditures relative to GDP that is robust to controlling for a range of additional covariates. Furthermore, our findings indicate that this resource curse effect on the government prioritization of education mainly stems from point-source natural resources. These results are of particular importance for the sustainable management of natural resource wealth in developing countries, as they could achieve especially high returns by investing resource revenues in public goods such as education. While this paper underlines the importance of institutions and government accountability, our findings also raise questions on the role of the private sector as a partner in development, as the extractives industry could consider increasing funding for education through Corporate Social Responsibility (CSR) initiatives. - Highlights: •We use a panel dataset of 140 countries covering the period from 1995 to 2009. •We find an inverse relationship between resource dependence and education spending. •The effect of resource dependence is robust to controlling for several covariates. •Indirect effects through a decline in accountability and the service industry. •This curse mainly stems from point-source resource dependence.

  5. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  6. Resources for Underwater Robotics Education

    Science.gov (United States)

    Wallace, Michael L.; Freitas, William M.

    2016-01-01

    4-H clubs can build and program underwater robots from raw materials. An annotated resource list for engaging youth in building underwater remotely operated vehicles (ROVs) is provided. This article is a companion piece to the Research in Brief article "Building Teen Futures with Underwater Robotics" in this issue of the "Journal of…

  7. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  8. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  9. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  10. Fermilab Friends for Science Education | Join Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Join Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to membership dues allow us to create new, innovative science education programs, making the best use of unique

  11. Open Educational Resources: American Ideals, Global Questions

    Science.gov (United States)

    Weiland, Steven

    2015-01-01

    Educational relations between societies and cultures that begin with benevolent intentions can come to be seen as threats to national autonomy and local preferences. Indeed, side by side with the growth since the first years of this century of Open Educational Resources (OER) there has been worry about their impact on global educational…

  12. Community Resources for International Trade Education.

    Science.gov (United States)

    Blanco, Virgil H.; Channing, Rose M.

    1985-01-01

    Describes Middlesex Community College's involvement in education and training programs aimed at encouraging local business involvement in international trade and the activities of its National Resource for International Trade Education (e.g., information dissemination; consulting services; seminars and workshops; a speakers bank; research; staff…

  13. Financial Resource Allocation in Higher Education

    Science.gov (United States)

    Ušpuriene, Ana; Sakalauskas, Leonidas; Dumskis, Valerijonas

    2017-01-01

    The paper considers a problem of financial resource allocation in a higher education institution. The basic financial management instruments and the multi-stage cost minimization model created are described involving financial instruments to constraints. Both societal and institutional factors that determine the costs of educating students are…

  14. Application of Educational Technology Resource and Systems ...

    African Journals Online (AJOL)

    This paper examined the application of educational technology resource systems approach in teaching English Language highlighting some inadequacies observed in educational system in Nigeria. Language is the most unique gift to man from God for language differentiates man from animals. This forms the basis to ...

  15. A Resource Guide for Debunking Astronomical Pseudo-Science

    Science.gov (United States)

    Fraknoi, A.

    2008-11-01

    Many of us who do public programs for the International Year of Astronomy are likely to meet people who have questions or want to challenge us about pseudo-scientific topics related to astronomy. Perhaps they have heard about the claim that the moon landings were a hoax, or have seen a light in the sky which puzzled them. Even those of us who have extensive training in astronomy often are not prepared for tackling such questions. To deal with such situations, here is a concise guide to printed and web resources that offer rational examination of some of these ``fiction science'' claims. This is not a complete list, but a ``first defense'' for beginners. A fuller version can be found at: http://www.astrosociety.org/education/resources/pseudobib.html

  16. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  17. Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program delivers climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers.

    Science.gov (United States)

    Ostrom, T.

    2017-12-01

    This presentation will include a series of visuals that discuss how hands-on learning activities and field investigations from the the Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program deliver climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers. The GME program poster presentation will also show how teachers strengthen student preparation for Science, Technology, Engineering, Art and Mathematics (STEAM)-related careers while promoting diversity in the future STEM workforce. In addition to engaging students in scientific inquiry, the GME program poster will show how career exploration and preparation experiences is accomplished through direct connection to scientists and real science practices. The poster will show which hands-on learning activities that are being implemented in more than 30,000 schools worldwide, with over a million students, teachers, and scientists collecting environmental measurements using the GLOBE scientific protocols. This poster will also include how Next Generation Science Standards connect to GME learning progressions by grade strands. The poster will present the first year of results from the implementation of the GME program. Data is currently being agrigated by the east, midwest and westen regional operations.

  18. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  19. CEEFAR and the Role of Scientific Societies in K-16 Science Education.

    Science.gov (United States)

    Cardwell, Vernon B.

    1996-01-01

    Provides discussion of the lack of environment, food, agriculture, and renewable resources (EFAR) in national science education standards. Describes the concerns of both the science and education communities in terms of the goals of the Coalition for Education about Environment, Food, Agriculture and Renewable Resources (CEEFAR). (DDR)

  20. US Forest Service experimental forests and ranges: an untapped resource for social science

    Science.gov (United States)

    Susan Charnley; Lee K. Cerveny

    2011-01-01

    For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....

  1. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  2. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  3. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  4. The Globalization of Science Education

    Science.gov (United States)

    Deboer, George

    2012-02-01

    Standards-based science education, with its emphasis on clearly stated goals, performance monitoring, and accountability, is rapidly becoming a key part of how science education is being viewed around the world. Standards-based testing within countries is being used to determine the effectiveness of a country's educational system, and international testing programs such as PISA and TIMSS enable countries to compare their students to a common standard and to each other. The raising of standards and the competition among countries is driven in part by a belief that economic success depends on a citizenry that is knowledgeable about science and technology. In this talk, I consider the question of whether it is prudent to begin conversations about what an international standards document for global citizenship in science education might look like. I examine current practices to show the areas of international agreement and the significant differences that still exist, and I conclude with a recommendation that such conversations should begin, with the goal of laying out the knowledge and competencies that international citizens should have that also gives space to individual countries to pursue goals that are unique to their own setting.

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  6. Open Educational Resources: Education for the World?

    Science.gov (United States)

    Richter, Thomas; McPherson, Maggie

    2012-01-01

    Education is widely seen as an important means of addressing both national and international problems, such as political or religious extremism, poverty, and hunger. However, if developing countries are to become societies that can compete properly with Western industrialized countries, not only is a fundamental shift in thinking with regard to…

  7. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  8. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  9. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  10. Entering a New ERA: Education Resources and AGU

    Science.gov (United States)

    Karsten, J. L.; Johnson, R. M.

    2001-12-01

    Professional societies play a unique role in the on-going battle to improve public education in the Earth and space sciences. With guidance from its Committee on Education and Human Resources (CEHR), AGU has traditionally sponsored strong programs that provide mechanisms for linking its research membership with the formal/informal science education communities. Among the most successful of these are tutorials for K-12 teachers taught by AGU members during national meetings (e.g., GIFT - Geophysical Information For Teachers) and internships that allow teachers to experience geophysical science research first-hand (e.g., STaRS - Science Teacher and Research Scientist). AGU also co-sponsors major symposia to discuss and develop strategies for Earth science education reform (e.g., the NSF-sponsored Shaping the Future workshop) and provides an annual forum for the Heads and Chairs of undergraduate geoscience departments to discuss common problems and share solutions. In the fall of 2001, AGU expects to unveil a major new education and outreach website that will provide enhanced opportunities for communicating to students, teachers and the public about AGU members' research and new directions in geophysical science education. The most important contribution that AGU makes, however, is to validate and prominently endorse the education and outreach efforts of its members, both by sponsoring well-attended, education-related special sessions at AGU national meetings and by annually honoring individuals or groups with the Excellence in Geoscience Education award. Recent staff changes at AGU headquarters have brought new opportunities to expand upon these successful existing programs and move in other directions that capitalize on the strengths of the organization. Among new initiatives being considered are programs that partner education efforts with those being developed as part of several large research programs, curriculum modules that will promote teaching earth sciences

  11. U.S. Geological Survey Mineral Resources Program—Mineral resource science supporting informed decisionmaking

    Science.gov (United States)

    Wilkins, Aleeza M.; Doebrich, Jeff L.

    2016-09-19

    The USGS Mineral Resources Program (MRP) delivers unbiased science and information to increase understanding of mineral resource potential, production, and consumption, and how mineral resources interact with the environment. The MRP is the Federal Government’s sole source for this mineral resource science and information. Program goals are to (1) increase understanding of mineral resource formation, (2) provide mineral resource inventories and assessments, (3) broaden knowledge of the effects of mineral resources on the environment and society, and (4) provide analysis on the availability and reliability of mineral supplies.

  12. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  13. Increasing Access to Science Oriented Education Programmes in Tertiary Institutions in Ghana through Distance Education

    Science.gov (United States)

    Osei, C. K.; Mensah, J. A.

    2014-01-01

    There is emphasis in the educational policy of Ghana for the promotion of Distance Education programmes to widen access to education at all levels and facilitate human resource development. This study examined the level of access and challenges faced by learners in science oriented programmes offered by distance in the Kwame Nkrumah University of…

  14. Personal and Shared Experiences as Resources for Meaning Making in a Philosophy of Science Course

    Science.gov (United States)

    Arvaja, Maarit

    2012-01-01

    The aim of this case study was to explore health-education students' personal and collaborative meaning making activities during an online science philosophy course in the higher-education context. Through applying the dialogical perspective for learning, the focus was on studying how different contextual resources were used in building…

  15. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  16. NASA Resources for Educators and Public

    Science.gov (United States)

    Morales, Lester

    2012-01-01

    A variety of NASA Classroom Activities, Educator Guides, Lithographs, Posters and more are available to Pre ]service and In ]service Educators through Professional Development Workshops. We are here for you to engage, demonstrate, and facilitate the use of educational technologies, the NASA Website, NASA Education Homepage and more! We are here for you to inspire you by providing in-service and pre- service training utilizing NASA curriculum support products. We are here for you to partner with your local, state, and regional educational organizations to better educate ALL! NASA AESP specialists are experienced professional educators, current on education issues and familiar with the curriculum frameworks, educational standards, and systemic architecture of the states they service. These specialists provide engaging and inspiring student presentations and teacher training right at YOUR school at no cost to you! Experience free out-of-this-world interactive learning with NASA's Digital Learning Network. Students of all ages can participate in LIVE events with NASA Experts and Education Specialists. The Exploration Station provides NASA educational programs that introduce the application of Science, Technology, Engineering, & Mathematics, to students. Students participate in a variety of hands-on activities that compliment related topics taught by the classroom teacher. NASA KSC ERC can create Professional Development Workshops for teachers in groups of fifteen or more. Education/Information Specialists also assist educators in developing lessons to meet Sunshine State and national curriculum standards.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  18. A Community Assessment Tool for Education Resources

    Science.gov (United States)

    Hou, C. Y.; Soyka, H.; Hutchison, V.; Budden, A. E.

    2016-12-01

    In order to facilitate and enhance better understanding of how to conserve life on earth and the environment that sustains it, Data Observation Network for Earth (DataONE) develops, implements, and shares educational activities and materials as part of its commitment to the education of its community, including scientific researchers, educators, and the public. Creating and maintaining educational materials that remain responsive to community needs is reliant on careful evaluations in order to enhance current and future resources. DataONE's extensive collaboration with individuals and organizations has informed the development of its educational resources and through these interactions, the need for a comprehensive, customizable education evaluation instrument became apparent. In this presentation, the authors will briefly describe the design requirements and research behind a prototype instrument that is intended to be used by the community for evaluation of its educational activities and resources. We will then demonstrate the functionality of a web based platform that enables users to identify the type of educational activity across multiple axes. This results in a set of structured evaluation questions that can be included in a survey instrument. Users can also access supporting documentation describing the types of question included in the output or simply download a full editable instrument. Our aim is that by providing the community with access to a structured evaluation instrument, Earth/Geoscience educators will be able to gather feedback easily and efficiently in order to help maintain the quality, currency/relevancy, and value of their resources, and ultimately, support a more data literate community.

  19. Science-based natural resource management decisions: what are they?

    Science.gov (United States)

    T.J. Mills; T.M. Quigley; F.J. Everest

    2001-01-01

    While many people interested in natural resources management propose science-based decisions, it is not clear what “science-based” means. Science-based decisions are those that result from the full and complete consideration of the relevant science information. We offer five guidelines to focus the scientist’s contributions to science-based decisionmaking and use the...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Science Academies' Refresher Course in Advances in Chemical Sciences and Sustainable Development. Information and Announcements Volume 19 Issue 9 September 2014 pp 876-876 ...

  1. Ethiopian Journal of Education and Sciences: Submissions

    African Journals Online (AJOL)

    General: Journal of Education and Sciences is the product of Jimma University ... and behavioral sciences, current sensitive issues like gender and HIV/AIDS. Priority ... and science studies, and information on teaching and learning facilitation.

  2. 78 FR 64254 - Advisory Committee for Education and Human Resources; Cancellation of Meeting

    Science.gov (United States)

    2013-10-28

    ... NATIONAL SCIENCE FOUNDATION Advisory Committee for Education and Human Resources; Cancellation of... Foundation is issuing this notice to cancel the November 6-7, 2013 Advisory Committee for Education and Human Resources meeting. The public notice for this committee was published in the Federal Register on October 3...

  3. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, O.N.; Wanjala, F.

    2017-01-01

    The Africa Regional Cooperative Agreement for Research Development and Training related to Science and Technology (AFRA) established the AFRA Network for Education in Nuclear Science and Technology (AFRA-NEST) in order to implement AFRA strategy on Human Resource Development (HRD) and Nuclear Knowledge Management (NKM). The strategies for implementing the objectives are: to use ICT for web-based education and training; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels and awarding of fellowships/scholarships to young and brilliant students for teaching and research in the various nuclear disciplines

  4. Open educational resources: staff attitudes and awareness

    Directory of Open Access Journals (Sweden)

    Vivien Rolfe

    2012-02-01

    Full Text Available Attitudes are changing in education globally to promote the open sharing of educational courses and resources. The aim of this study was to explore staff awareness and attitudes toward ‘open educational resources’ (OER as a benchmark for monitoring future progress. Faculty staff (n=6 were invited to participate in semi-structured interviews which facilitated the development of a questionnaire. Staff respondents (n=50 were not familiar with the term OER but had a clear notion of what it meant. They were familiar with open content repositories within the university but not externally. A culture of borrowing and sharing of resources exists between close colleagues, but not further a field, and whilst staff would obtain resources from the Internet they were reticent to place materials there. Drivers for mobilising resources included a strong belief in open education, the ability of OER to enhance individual and institutional reputations, and economic factors. Barriers to OER included confusion over copyright and lack of IT support. To conclude, there is a positive collegiate culture within the faculty, and overcoming the lack of awareness and dismantling the barriers to sharing will help advance the open educational practices, benefiting both faculty staff and the global community.

  5. Fermilab Friends for Science Education | About Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us About Us national leader in precollege science education. From the first Summer Institute for Science Teachers held year over 37,000 students, and 2,500 teachers participated in programs through the Education Office

  6. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  7. Fermilab Friends for Science Education | Contact Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Contact Us Science Education P.O Box 500, MS 777 Batavia, IL 60510-5011 (630) 840-3094 * fax: (630) 840-2500 E-mail : Membership Send all other communications to: Susan Dahl, President Fermilab Friends for Science Education Box

  8. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  9. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  10. A framework for evaluating and designing citizen science programs for natural resources monitoring.

    Science.gov (United States)

    Chase, Sarah K; Levine, Arielle

    2016-06-01

    We present a framework of resource characteristics critical to the design and assessment of citizen science programs that monitor natural resources. To develop the framework we reviewed 52 citizen science programs that monitored a wide range of resources and provided insights into what resource characteristics are most conducive to developing citizen science programs and how resource characteristics may constrain the use or growth of these programs. We focused on 4 types of resource characteristics: biophysical and geographical, management and monitoring, public awareness and knowledge, and social and cultural characteristics. We applied the framework to 2 programs, the Tucson (U.S.A.) Bird Count and the Maui (U.S.A.) Great Whale Count. We found that resource characteristics such as accessibility, diverse institutional involvement in resource management, and social or cultural importance of the resource affected program endurance and success. However, the relative influence of each characteristic was in turn affected by goals of the citizen science programs. Although the goals of public engagement and education sometimes complimented the goal of collecting reliable data, in many cases trade-offs must be made between these 2 goals. Program goals and priorities ultimately dictate the design of citizen science programs, but for a program to endure and successfully meet its goals, program managers must consider the diverse ways that the nature of the resource being monitored influences public participation in monitoring. © 2016 Society for Conservation Biology.

  11. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  12. Educational Resources for Global Health in Otolaryngology.

    Science.gov (United States)

    Hancock, Melyssa; Hoa, Michael; Malekzadeh, Sonya

    2018-03-07

    Advances in modern communications and information technology have helped to improve access to, and quality of, health care and education. These enhancements include a variety of World Wide Web-based and mobile learning platforms, such as eLearning, mLearning, and open education resources. This article highlights the innovative approaches that have fostered improved collaboration and coordination of global health efforts in otolaryngology. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  14. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  15. 77 FR 23766 - Advisory Committee for Education and Human Resources; Notice of Meeting

    Science.gov (United States)

    2012-04-20

    ...'s science, technology, engineering, and mathematics (STEM) education and human resources programming. Agenda May 9, 2012 Morning Refreshments/Introductions, 2013 Budget and Planning, EHR's R&D Core Launch...

  16. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  17. EFFICIENCY FINANCIAL RESOURCES IN VOCATIONAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Nataliia Kovernuk

    2016-11-01

    Full Text Available The purpose of writing is to research and analyze the effectiveness of financial resources in vocational education in Ukraine and develop practical recommendations for their improvement. To research and analyze the practices of formation and use of financial resources in vocational education. Research conducted by the methods of empirical knowledge, analysis, clustering, comparison, observation, synthesis, graphical analysis. The measures effective use of financial resources in vocational education in Ukraine. Methodology is actual work of scientists and researchers. Results are exploring of the practice of planning expenditures of state and local budgets for vocational education concluded that in planning expenditure dominates the normative method of budget planning. This discrepancy established approaches to the development of standards of employee’s vocational institutions and expenditures of staff, on the one hand, and the required planning spending on vocational education. When planning educational grants for training labor to local budgets is determined by the amount of expenditures that are relevant to the intergovernmental transfers, which include, in particular, spending on vocational education. Although the legislation stipulates the independence of local budgets and calculation of expenditures that are relevant to the intergovernmental transfers should be done only to determine the amount of educational grants for training labor, in practice there is a significant limitation of the autonomy of local governments in the planning of local budgets. Thus, the deterioration of the efficiency of spending on vocational education due to increasing labor costs and labor charges. The reason for this was the dynamics as increased wages and a change in the number of employees engaged in technical and vocational education. Value. The analysis of public expenditure planning practices and local budgets for vocational education concluded that in

  18. Open Educational Resources and the Transformation of Education

    Science.gov (United States)

    Tuomi, Ilkka

    2013-01-01

    The extremely rapid expansion of open educational resource (OER) initiatives and the millions of learners they attract can be understood as an indicator of an emerging revolution in education and learning. This article describes recent developments in this area and develops conceptual foundations for studies and policies on OER. We describe four…

  19. Social Networking: A Collaborative Open Educational Resource

    Science.gov (United States)

    Toetenel, Lisette

    2014-01-01

    Studies undertaken since the introduction of Web 2.0 have focussed mainly on open educational resources (OERs) such as email, blogging and virtual learning environments. No consistent efforts have been undertaken to study the use of social networking sites as a tool for learning in the second language classroom. This study examined the use of…

  20. Bidirectional Transfer of DoD Technology: Assessment of Science and Technology Education Applications of DoD Modeling and Simulation Resources

    National Research Council Canada - National Science Library

    Anderson, Rodney

    1996-01-01

    Collection, analysis, and dissemination of modeling and simulation technologies in meetings, seminars, conference, workshops, and reports are key processes in implementation of computer assisted education...

  1. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  2. A Didactics (Didaktik) of Theory of Science in Higher Education

    DEFF Research Database (Denmark)

    Wiberg, Merete

    A Didactics (Didaktik) of Theory of Science in Higher Education - An investigation of Student’s understanding and application of theory of science and the idea of developing a didactics of theory of science as teaching in ontological complexity The paper is a work in progress and a preparation...... not come into play as a resource for the students’ understanding and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss...... and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss the role theory of science might have in students’ striving of understanding...

  3. Enhancing Science Teacher Training Using Water Resources and GLOBE

    Science.gov (United States)

    Falco, James W.

    2002-01-01

    Heritage College, located on the Yakama Indian Reservation in south central Washington state, serves a multicultural, underserved, rural population and trains teachers to staff the disadvantaged school districts on and surrounding the reservation. In-service teachers and pre-service teachers in the area show strength in biology but have weak backgrounds in chemistry and mathematics. We are addressing this problem by providing a 2-year core of courses for 3 groups of 25 students (15 pre-service and 10 in-service teachers) using GLOBE to teach integrated physical science and mathematics. At the conclusion of the program, the students will qualify for science certification by Washington State. Water resources are the focal point of the curriculum because it is central to life in our desert area. The lack or excess of water, its uses, quality and distribution is being studied by using GIS, remote sensing and historical records. Students are learning the methodology to incorporate scientific protocols and data into all aspects of their future teaching curriculum. In addition, in each of the three years of the project, pre-service teachers attended a seminar series during the fall semester with presentations by collaborators from industry, agriculture, education and government agencies. Students used NASA educational materials in the presentations that they gave at the conclusion of the seminar series. All pre- and in-service teachers continue to have support via a local web site for Heritage College GLOBE participants.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  5. NGSS aligned Earth science resources and professional development programs from the Exploratorium.

    Science.gov (United States)

    Muller, E.

    2016-12-01

    The Exploratorium is a museum of science, art and human perception located in San Francisco, CA. The Exploratorium has been offering resources and professional development to primary and secondary teachers since 1972. We focus on inquiry based, hands-on learning, with an emphasis on Next Generation Science Standards (NGSS) implementation. This brief, invited presentation will feature the programs and online resources developed by the Exploratorium's "Institute for Inquiry" and "Teacher Institute" that may help formal and informal educators engage, implement and promote three dimensional learning in the Earth Sciences.

  6. The big book of special education resources

    CERN Document Server

    Giuliani, George

    2015-01-01

    There are abundant resource in the field of special education for professionals and parents of children with special needs. However, it can be a daunting task to navigate through this sea of organizations, Web sites, books, and other resources in order to find exactly what you need.Save time and take the guesswork out of your search for information and materials by turning to this definitive guide. Practical and easy to use, this ready-reference is borne out of extensive research and numerous interviews with parents and professionals to ensure selection of only the highest-caliber and most sou

  7. Hands-on science: science education with and for society

    OpenAIRE

    Costa, Manuel F. M., ed. lit.; Pombo, José Miguel Marques, ed. lit.; Vázquez Dorrío, José Benito, ed. lit.

    2014-01-01

    The decisive importance of Science on the development of modern societies gives Science Education a role of special impact. Society sets the requirements rules and procedures of Education defining what concepts and competencies citizens must learn and how this learning should take place. Educational policies set by governments, elected and or imposed, not always reflects the will and ruling of Society. The School as pivotal element of our modern educational system must look ...

  8. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  9. Earth System Science Education Interdisciplinary Partnerships

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  10. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  11. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  12. Open Educational Resources: American Ideals, Global Questions

    Directory of Open Access Journals (Sweden)

    Steven Weiland

    2015-09-01

    Full Text Available Educational relations between societies and cultures that begin with benevolent intentions can come to be seen as threats to national autonomy and local preferences. Indeed, side by side with the growth since the first years of this century of Open Educational Resources (OER there has been worry about their impact on global educational development. Evaluation and research have lagged behind the steady expansion of access to online resources, leaving estimates of the value of digital innovation to the enthusiasm of OER providers and technology minded educational reformers. The advent of the “Massive Open Online Course” (or MOOC has exacerbated the problem, with attention moving toward a form of OER reflecting the enthusiasm of leading institutions in industrialized nations. The American led movement on behalf of the MOOC requires new questions about the motives, impact, and future of OER. This essay accounts for the history of OER, culminating in the MOOC, including how the latter in particular is an expression of American pedagogical and institutional interests representing belief in the transformative educational powers of the latest communications technologies. Criticism of OER and MOOCs can reflect organizational, operational, and ideological considerations. But it should recognize what they offer when there are few other opportunities for formal learning, and as research demonstrates their uses and impact.

  13. Cultural studies of science education

    Science.gov (United States)

    Higgins, Joanna; McDonald, Geraldine

    2008-07-01

    In response to Stetsenko's [2008, Cultural Studies of Science Education, 3] call for a more unified approach in sociocultural perspectives, this paper traces the origins of the use of sociocultural ideas in New Zealand from the 1970s to the present. Of those New Zealanders working from a sociocultural perspective who responded to our query most had encountered these ideas while overseas. More recently activity theory has been of interest and used in reports of work in early childhood, workplace change in the apple industry, and in-service teacher education. In all these projects the use of activity theory has been useful for understanding how the elements of a system can transform the activity. We end by agreeing with Stetsenko that there needs to be a more concerted approach by those working from a sociocultural perspective to recognise the contribution of others in the field.

  14. The Organizational Impact of Open Educational Resources

    Science.gov (United States)

    Sclater, Niall

    The open educational resource (OER) movement has been growing rapidly since 2001, stimulated by funding from benefactors such as the Hewlett Foundation and UNESCO, and providing educational content freely to institutions and learners across the world. Individuals and organizations are motivated by a variety of drivers to produce OERs, both altruistic and self-interested. There are parallels with the open source movement, where authors and others combine their efforts to provide a product which they and others can use freely and adapt to their own purposes. There are many different ways in which OER initiatives are organized and an infinite range of possibilities for how the OERs themselves are constituted. If institutions are to develop sustainable OER initiatives, they need to build successful change management initiatives, developing models for the production and quality assurance of OERs, licensing them through appropriate mechanisms such as the Creative Commons, and considering how the resources will be discovered and used by learners.

  15. Evaluating a Sexual Health Patient Education Resource.

    Science.gov (United States)

    Matzo, Marianne; Troup, Sandi; Hijjazi, Kamal; Ferrell, Betty

    2015-01-01

    This article shares the findings of an evaluation of a patient teaching resource for sexual health entitled Everything Nobody Tells You About Cancer Treatment and Your Sex Life: From A to Z, which was accomplished through systematic conceptualization, construction, and evaluation with women diagnosed with breast or gynecologic cancer. This resource, which has evolved from patient-focused research and has been tested in the clinical setting, can be used in patient education and support. Oncology professionals are committed to addressing quality-of-life concerns for patients across the trajectory of illness. Sexuality is a key concern for patients and impacts relationships and overall quality of life. Through careful assessment, patient education, and support, clinicians can ensure that sexuality is respected as an essential part of patient-centered care.

  16. Citizen science can improve conservation science, natural resource management, and environmental protection

    Science.gov (United States)

    McKinley, Duncan C.; Miller-Rushing, Abe J.; Ballard, Heidi L.; Bonney, Rick; Brown, Hutch; Cook-Patton, Susan; Evans, Daniel M.; French, Rebecca A.; Parrish, Julia; Phillips, Tina B.; Ryan, Sean F.; Shanley, Lea A.; Shirk, Jennifer L.; Stepenuck, Kristine F.; Weltzin, Jake F.; Wiggins, Andrea; Boyle, Owen D.; Briggs, Russell D.; Chapin, Stuart F.; Hewitt, David A.; Preuss, Peter W.; Soukup, Michael A.

    2017-01-01

    Citizen science has advanced science for hundreds of years, contributed to many peer-reviewed articles, and informed land management decisions and policies across the United States. Over the last 10 years, citizen science has grown immensely in the United States and many other countries. Here, we show how citizen science is a powerful tool for tackling many of the challenges faced in the field of conservation biology. We describe the two interwoven paths by which citizen science can improve conservation efforts, natural resource management, and environmental protection. The first path includes building scientific knowledge, while the other path involves informing policy and encouraging public action. We explore how citizen science is currently used and describe the investments needed to create a citizen science program. We find that:Citizen science already contributes substantially to many domains of science, including conservation, natural resource, and environmental science. Citizen science informs natural resource management, environmental protection, and policymaking and fosters public input and engagement.Many types of projects can benefit from citizen science, but one must be careful to match the needs for science and public involvement with the right type of citizen science project and the right method of public participation.Citizen science is a rigorous process of scientific discovery, indistinguishable from conventional science apart from the participation of volunteers. When properly designed, carried out, and evaluated, citizen science can provide sound science, efficiently generate high-quality data, and help solve problems.

  17. Levinas and an Ethics for Science Education

    Science.gov (United States)

    Blades, David W.

    2006-01-01

    Despite claims that STS(E) science education promotes ethical responsibility, this approach is not supported by a clear philosophy of ethics. This paper argues that the work of Emmanuel Levinas provides an ethics suitable for an STS(E) science education. His concept of the face of the Other redefines education as learning from the other, rather…

  18. Sharing Resources in Open Educational Communities

    Directory of Open Access Journals (Sweden)

    Paolo Tosato

    2014-06-01

    Full Text Available The spread of Internet and the latest Web developments have promoted the relationships between teachers, learners and institutions, as well as the creation and sharing of new Open Educational Resources (OERs. Despite this fact, many projects and research efforts paid more attention to content distribution focusing on their format and description, omitting the relationship between these materials and online communities of teachers. In this article we emphasize the importance of sharing resources in open educational communities (OEC, analysing the role of OERs and OEC in teachers' lifelong learning. Investigating their current usage, we aim to discover whether their interweavings could be an effective approach to support sharing of resources among teachers and to promote new educational practices. Through two surveys which involved more than 300 teachers from across Europe it was possible to highlight that is not simple to stimulate the collaboration among teachers, both online and face to face; nevertheless, when this happens, it seems to be a good way to promote formal and informal learning for teachers, as well as innovation in their professional practices.

  19. Fostering the Exploitation of Open Educational Resources

    Directory of Open Access Journals (Sweden)

    Thomas Richter

    2014-07-01

    Full Text Available The central concept behind Open Educational Resources (OER is opening up the access to educational resources for stakeholders who are not the usual target user group. This concept must be perceived as innovative because it describes a general economic and social paradigm shift: Education, which formerly was limited to a specific group of learners, now, is promoted as a public good. However, despite very good intentions, internationally agreed quality standards, and the availability of the required technological infrastructure, the critical threshold is not yet met. Due to several reasons, the usefulness of OER is often limited to the originally targeted context. Questions arise if the existing quality standards for Technology Enhanced Learning (TEL actually meet the specific requirements within the OER value chain, if the existing quality standards are applicable to OER in a meaningful way, and under which conditions related standards generally could support the exploitation of OER.We analyze quality standards for TEL and contrast the life cycle model of commercial learning resources against the life cycle model of OER. We investigate special demands on quality from the context of OER and, taking the former results into account, derive emergent quality criteria for OER. The paper concludes with recommendations for the design of OER and a future standard development.

  20. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  1. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. An Introduction to Parallel ... Abhiram Ranade1. Department of Computer Science and Engineering, Indian Institute of Technology Powai, Mumbai 400076, India ...

  3. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom....... Although educational change is ultimately implemented in everyday teaching and learning situations, other parallel dimensions influencing these situations cannot be forgotten. An understanding of the actual potentialities and limitations of educational transformations are highly dependent on the network...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Science Academies' Refresher Course on Bioprospection of Bioresources: Land to Lab Approach. Information and Announcements Volume 22 Issue 11 November 2017 pp 1101-1101 ...

  5. ethiopian students' achievement challenges in science education

    African Journals Online (AJOL)

    IICBA01

    Oli Negassa. Adama Science and Technology University, Ethiopia ... achievement in science education across selected preparatory schools of Ethiopia. The .... To what extent do students' achievements vary across grade levels, regions,.

  6. Searching for Meaning in Science Education.

    Science.gov (United States)

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  7. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  8. Games and Simulations for Climate, Weather and Earth Science Education

    Science.gov (United States)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  9. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  10. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  11. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  12. Ludic prospects for science education in education home fundamental

    Directory of Open Access Journals (Sweden)

    Aline Juliana Oja-Persicheto

    2017-12-01

    Full Text Available The research scenario on science teaching in early education indicates emerging issues on the pedagogical practices developed educational level. Furthermore, although the importance of teaching science since the beginning of basic education, there is still residual and limited space of this discipline in the early years of schooling to be recognized. Allied to this complex picture, school practices has performed largely with emphasis on lectures, with reduced participation of students in their learning process. So, some investigations have been developed with the intention to subsidize the construction of pedagogical practices based on specific childhood learning of scientific concepts. Thus, the present study, theoretical in nature, aimed at discussing the main strengths of playful perspective to the work of the multidisciplinary teacher, with possible situations to be held in the school context and to contribute to children's learning in an atmosphere that encourages increasingly interest and curiosity. The literature review indicated several alternatives, and, for this text, were selected: the didactic games, the works of children's literature and theater. The analysis of the use of these resources has concluded that the ludic perspective, when planned and developed in a wise manner, may represent a key element of the teaching process that favors learning qualitatively students.

  13. Science Education and Public Outreach Forums (SEPOF): Providing Coordination and Support for NASA's Science Mission Directorate Education and Outreach Programs

    Science.gov (United States)

    Mendez, B. J.; Smith, D.; Shipp, S. S.; Schwerin, T. G.; Stockman, S. A.; Cooper, L. P.; Peticolas, L. M.

    2009-12-01

    NASA is working with four newly-formed Science Education and Public Outreach Forums (SEPOFs) to increase the overall coherence of the Science Mission Directorate (SMD) Education and Public Outreach (E/PO) program. SEPOFs support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: * E/PO Community Engagement and Development * E/PO Product and Project Activity Analysis * Science Education and Public Outreach Forum Coordination Committee Service. SEPOFs are collaborating with NASA and external science and education and outreach communities in E/PO on multiple levels ranging from the mission and non-mission E/PO project activity managers, project activity partners, and scientists and researchers, to front line agents such as naturalists/interpreters, teachers, and higher education faculty, to high level agents such as leadership at state education offices, local schools, higher education institutions, and professional societies. The overall goal for the SEPOFs is increased awareness, knowledge, and understanding of scientists, researchers, engineers, technologists, educators, product developers, and dissemination agents of best practices, existing NASA resources, and community expertise applicable to E/PO. By coordinating and supporting the NASA E/PO Community, the NASA/SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.

  14. Framework for Reducing Teaching Challenges Relating to Improvisation of Science Education Equipment and Materials in Schools

    Science.gov (United States)

    Akuma, Fru Vitalis; Callaghan, Ronel

    2016-01-01

    The science education budget of many secondary schools has decreased, while shortages and environmental concerns linked to conventional Science Education Equipment and Materials (SEEMs) have emerged. Thus, in some schools, resourceful educators produce low-cost equipment from basic materials and use these so-called improvised SEEMs in practical…

  15. Accessibility of Open Educational Resources for Distance Education ...

    African Journals Online (AJOL)

    This paper investigated the accessibility of Open Educational Resources at. The Open University of Tanzania. Specifically, the study looked at staff and students' level of awareness on the types of OER available at OUT Library, access and use trends of OER by academic staff and students, challenges faced in accessing ...

  16. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  17. A Flexible e-Learning Resource Promoting the Critical Reading of Scientific Papers for Science Undergraduates

    Science.gov (United States)

    Letchford, Julie; Corradi, Hazel; Day, Trevor

    2017-01-01

    An important aim of undergraduate science education is to develop student skills in reading and evaluating research papers. We have designed, developed, and implemented an on-line interactive resource entitled "Evaluating Scientific Research literature" (ESRL) aimed at students from the first 2 years of the undergraduate program. In this…

  18. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  19. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  20. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  1. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  2. Mobiele apparaten en apps als versnellers van Open Educational Resources

    OpenAIRE

    De Vries, Fred; Thuss, Frank

    2013-01-01

    De Vries, F., & Thuss, F. (2013). Mobiele apparaten en apps als versnellers van Open Educational Resources? In R. Jacobi, H. Jelgerhuis, & N. van der Woert (Eds.), Trendrapport Open Educational Resources 2013 (pp. 51-54). Utrecht: SURF Foundation - Special Interest Group Open Educational Resources SURF.

  3. Mobiele apparaten en apps als versnellers van Open Educational Resources

    NARCIS (Netherlands)

    De Vries, Fred; Thuss, Frank

    2013-01-01

    De Vries, F., & Thuss, F. (2013). Mobiele apparaten en apps als versnellers van Open Educational Resources? In R. Jacobi, H. Jelgerhuis, & N. van der Woert (Eds.), Trendrapport Open Educational Resources 2013 (pp. 51-54). Utrecht: SURF Foundation - Special Interest Group Open Educational Resources

  4. The Development of Resources of Students in Adolescence as a Key Issue in Contemporary Education

    Science.gov (United States)

    Gosk, Urszula; Kuracki, Kamil

    2015-01-01

    In the presented paper, the issue of recognition and building of resources in adolescent pupils was discussed, referring to salutogenic concept of A. Antonovsky and Conservation of Resources Theory of S. E. Hobfoll. Coming out from developmental pedagogy and positive orientation in social sciences, benefits of scientific and educational actions…

  5. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  6. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  7. Financial Resources Allocation of Tabriz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Esmaeil Afiyan

    2015-08-01

    Full Text Available ​ Background and Objectives : According to complexity of resource allocation, issue about how to allocate health care resources in an accurate and fair manner has become the subject of discussions and decisions of related groups. Therefore, in this research we aim to study the methods of financial resource allocation of Tabriz University of Medical Sciences in order to identify its strengths and weaknesses for its promotion. Material and Methods : This study is a descriptive, qualitative sectional research and all comments have been collected by focus group discussions with experts and managers involved in the allocation of financial resources of Tabriz University of Medical Sciences. All factors affecting the process of allocation have been reviewd carefully. Results : Results suggested that except the health sector, none of the other sectors use the formulated  and scientific methods for allocating financial resources and despite the emphasize in the 4th development plan for operating funding, the final cost of the services, has no role in allocating financial resources. Conclusion : Regarding to judgmental and subjective method of financial resources allocation of Tabriz University of Medical Sciences and lack of documented and formulated methods, there is an essential need for developing an appropriate and formulated model for scientific allocation of financial resources in order to improve the efficiency and fairness of the allocation.

  8. AFRA Network for Education in Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Hashim, N.; Wanjala, F.

    2017-01-01

    AFRA-NEST was Conceived at the AFRA Ministerial Conference held in Aswan in 2007. The main objective of AFRA-NEST is to facilitate operation and networking in higher education, training and related research in Nuclear Science (NS&T) in the African Region through: • Sharing of information and materials of nuclear education and training. The strategies for implementing the objectives are: the use ICT for web-based education and training,; recognition of Regional Designated Centres (RDCs) for professional nuclear education in nuclear science and technology, and organization of harmonized and accredited programs at tertiary levels for teaching and research in the various nuclear disciplines. The main function of the AFRA-NEST is to; foster sustainable human resource development and nuclear knowledge management; host the Cyber Learning Platform for Nuclear Education and Training for the AFRA region and to integrate all available higher education capabilities in Africa

  9. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  10. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  11. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  12. Science Learning via Multimedia Portal Resources: The Scottish Case

    Science.gov (United States)

    Elliot, Dely; Wilson, Delia; Boyle, Stephen

    2014-01-01

    Scotland's rich heritage in the field of science and engineering and recent curricular developments led to major investment in education to equip pupils with improved scientific knowledge and skills. However, due to its abstract and conceptual nature, learning science can be challenging. Literature supports the role of multimedia technology in…

  13. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  14. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  15. Perceived barriers to online education by radiologic science educators.

    Science.gov (United States)

    Kowalczyk, Nina K

    2014-01-01

    Radiologic science programs continue to adopt the use of blended online education in their curricula, with an increase in the use of online courses since 2009. However, perceived barriers to the use of online education formats persist in the radiologic science education community. An electronic survey was conducted to explore the current status of online education in the radiologic sciences and to identify barriers to providing online courses. A random sample of 373 educators from radiography, radiation therapy, and nuclear medicine technology educational programs accredited by the Joint Review Committee on Education in Radiologic Technology and Joint Review Committee on Educational Programs in Nuclear Medicine Technology was chosen to participate in this study. A qualitative analysis of self-identified barriers to online teaching was conducted. Three common themes emerged: information technology (IT) training and support barriers, student-related barriers, and institutional barriers. Online education is not prevalent in the radiologic sciences, in part because of the need for the clinical application of radiologic science course content, but online course activity has increased substantially in radiologic science education, and blended or hybrid course designs can effectively provide opportunities for student-centered learning. Further development is needed to increase faculty IT self-efficacy and to educate faculty regarding pedagogical methods appropriate for online course delivery. To create an excellent online learning environment, educators must move beyond technology issues and focus on providing quality educational experiences for students.

  16. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  17. Science Education Research Trends in Latin America

    Science.gov (United States)

    Medina-Jerez, William

    2018-01-01

    The purpose of this study was to survey and report on the empirical literature at the intersection of science education research in Latin American and previous studies addressing international research trends in this field. Reports on international trends in science education research indicate that authors from English-speaking countries are major…

  18. The Viability of Distance Education Science Laboratories.

    Science.gov (United States)

    Forinash, Kyle; Wisman, Raymond

    2001-01-01

    Discusses the effectiveness of offering science laboratories via distance education. Explains current delivery technologies, including computer simulations, videos, and laboratory kits sent to students; pros and cons of distance labs; the use of spreadsheets; and possibilities for new science education models. (LRW)

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Face to Face. Articles in Resonance – Journal of Science Education. Volume 13 Issue 1 January 2008 pp 89-98 Face to Face. Viewing Life Through Numbers · C Ramakrishnan Sujata Varadarajan · More Details Fulltext PDF. Volume 13 Issue 3 March 2008 pp ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Deepak Nandi. Articles written in Resonance – Journal of Science Education. Volume 23 Issue 2 February 2018 pp 197-217 General Article. Thymus: The site for Development of Cellular Immunity · Shamik Majumdar Sanomy Pathak Deepak Nandi · More Details ...

  1. Science and Sanity in Special Education.

    Science.gov (United States)

    Dammann, James E.; Vaughn, Sharon

    2001-01-01

    This article describes the usefulness of a scientific approach to improving knowledge and practice in special education. Of four approaches to knowledge (superstition, folklore, craft, and science), craft and science are supported and implications for special education drawn including the need to bridge the gulf between research knowledge and…

  2. Improving science education for sustainable development

    NARCIS (Netherlands)

    Eijck, van M.W.; Roth, W.-M.

    2007-01-01

    In recent issues of noteworthy journals, natural scientists have argued for the improvement of science education [1–4]. Such pleas reflect the growing awareness that high-quality science education is required not only for sustaining a lively scientific community that is able to address global

  3. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  4. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Film Review. Articles in Resonance – Journal of Science Education. Volume 22 Issue 3 March 2017 pp 317-318 Film Review. The Untold Story of NASA's Trailblazers: Hidden Figures sheds light on the contributions of black women to the US Space Race.

  6. Innovative Applications : Open Educational Resources and Mobile Resources Repository for the Instruction of Educational Researchers in Mexico

    OpenAIRE

    Mortera-Gutierrez, Fernando J.

    2010-01-01

    The movement of Open Educational Resources (OER) is one of the most important trends that are helping education through the Internet worldwide. "Tecnológico de Monterrey" (http://tecvirtual.itesm.mx/) in Mexico, with other Mexican higher education institutions, is creating an Internet/web based repository of OERs and Mobile Resources for the instruction and development of educational researchers at undergraduate, Master's and Doctoral level. There is a lack of open educational resources and m...

  7. NASA Astrophysics EPO Resources For Engaging Girls in Science

    Science.gov (United States)

    Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.

    2011-09-01

    A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.

  8. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  9. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  10. Open access, open education resources and open data in Uganda.

    Science.gov (United States)

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country.

  11. The nature of science in science education: theories and practices

    Directory of Open Access Journals (Sweden)

    Ana Maria Morais

    2018-01-01

    Full Text Available The article is based on results of research carried out by the ESSA Group (Sociological Studies of the Classroom centred on the inclusion of the nature of science (metascience on science education. The results, based on analyses of various educational texts and contexts – curricula/syllabuses, textbooks and pedagogic practices – and of the relations between those texts/contexts, have in general shown a reduced presence and low conceptualization of metascience. The article starts by presenting the theoretical framework of the research of the ESSA Group which was focused on the introduction of the nature of science in science education. It is mostly based on Ziman’s conceptualization of metascience (1984, 2000 and on Bernstein’s theorization of production and reproduction of knowledge, particularly his model of pedagogic discourse (1990, 2000 and knowledge structures (1999. This is followed by the description of a pedagogical strategy, theoretically grounded, which explores the nature of science in the classroom context. The intention is to give an example of a strategy which privileges a high level learning for all students and which may contribute to a reflection about the inclusion of the nature of science on science education. Finally, considerations are made about the applicability of the strategy on the basis of previous theoretical and empirical arguments which sustain its use in the context of science education.

  12. NASA's SMD Cross-Forum Resources for Supporting Scientist Engagement in Education and Public Outreach Activities

    Science.gov (United States)

    Buxner, S.; Cobabe-Ammann, E. A.; Hsu, B. C.; Sharma, M.; Peticolas, L. M.; Schwerin, T. G.; Shipp, S. S.; Smith, D.

    2012-12-01

    Sharing the excitement of ongoing scientific discoveries is an important aspect of scientific activity for researchers. Directly engaging scientists in education and public outreach (E/PO) activities has the benefit of directly connecting the public to those who engage in scientific activities. A shortage of training in education methods, public speaking, and working with various public audiences increases barriers to engaging scientists in these types in E/PO activities. NASA's Science Mission Directorate (SMD) Education and Public forums (astrophysics, earth science, heliophysics, and planetary science) support scientists currently involved in E/PO and who are interested in becoming involved in E/PO through a variety of avenues. Over the past three years, the forums have developed a variety of resources to help engage scientists in education and public outreach. We will showcase the following resources developed through the SMD E/PO cross-forum efforts: Professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), ongoing professional development at scientific conferences to increase scientist engagement in E/PO activities, toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), toolkits to inform scientists of science education resources developed within each scientific thematic community, EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research, http://www.lpi.usra.edu/earthspace/), thematic resources for teaching about SMD science topics, and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  13. Enrichment of Science Education Using Real-time Data Streams

    Science.gov (United States)

    McDonnell, J. M.; de Luca, M. P.

    2002-12-01

    For the past six years, Rutgers Marine and Coastal Sciences (RMCS) has capitalized on human interest and fascination with the ocean by using the marine environment as an entry point to develop interest and capability in understanding science. This natural interest has been used as a springboard to encourage educators and their students to use the marine environment as a focal point to develop basic skills in reading, writing, math, problem-solving, and critical thinking. With the selection of model science programs and the development of collaborative school projects and Internet connections, RMCS has provided a common ground for scientists and educators to create interesting and meaningful science learning experiences for classroom application. Student exposure to the nature of scientific inquiry also prepares them to be informed decision-makers and citizens. Technology serves as an educational tool, and its usefulness is determined by the quality of the curriculum content and instructional strategy it helps to employ. In light of this, educational issues such as curriculum reform, professional development, assessment, and equity must be addressed as they relate to technology. Efforts have been made by a number of organizations to use technology to bring ocean science education into the K-12 classroom. RMCS has used he Internet to increase (1) communication and collaboration among students and teacher, (2) the range of resources available to students, and (3) opportunities for students and educators to present their ideas and opinions. Technology-based educational activities will be described.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 7. July 2013, pages 593-688. pp 593-594 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 595-595 Science Smiles. Science Smiles · Ayan Guha.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 18, Issue 6. June 2013, pages 495-594. pp 495-496 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 497-497 Science Smiles. Science Smiles · Ayan Guha.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 9. September 2015, pages 757-864. pp 757-758 Editorial. Editorial · Amit Roy · More Details Fulltext PDF. pp 759-759 Science Smiles. Science Smiles · Ayan Guha.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 6. June 2012, pages 527-622. pp 527-528 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 529-529 Science Smiles. Science Smiles · Ayan Guha.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 7. Issue front cover thumbnail. Volume 21, Issue 7. July 2016, pages 579-670. pp 579-579 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 582-582 Science Smiles. Science Smiles ... General Article. The Search for Another Earth.

  19. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  1. THE JUNIOR COLLEGE AND EDUCATION IN THE SCIENCES. THIRD REPORT IN A SERIES PREPARED FOR THE SUBCOMMITTEE ON SCIENCE, RESEARCH, AND DEVELOPMENT OF THE COMMITTEE ON SCIENCE AND ASTRONAUTICS OF THE U.S. HOUSE OF REPRESENTATIVES. (TITLE SUPPLIED).

    Science.gov (United States)

    HAWORTH, LELAND J.

    THIS THIRD REPORT ON SCIENCE EDUCATION IN THE U.S. RAISES THREE ISSUES FOR THE JUNIOR COLLEGE--(1) IS IT A DISCRETE RESOURCE IN THE ADVANCEMENT OF SCIENCE EDUCATION, (2) DOES IT REQUIRE A UNIQUE SCIENCE CURRICULUM, AND (3) HOW SHOULD ITS SCIENCE INSTRUCTORS BE PREPARED. UNDER THE COUNCIL OF STATE GOVERNMENTS'"MODEL LAW" (1965), THE COMPREHENSIVE,…

  2. Creating a Library of Climate Change Education Resources for Audiences in the Southeast United States

    Science.gov (United States)

    Carroll, J.; McNeal, K. S.; Williams, C. C.; Paz, J. O.; Cho, H. "; Nair, U. S.; Geroux, J.; Guthrie, C.; Wright, K.; Hill, J.

    2011-12-01

    The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast and promoting scientifically accurate, formal educational resources for the K-12 classroom audience, as well as informal educational resources for audiences such as agriculture, education, leisure, and religious organizations, to name a few. The CLiPSE project has been successful in creating partnerships with the National Geographic Alliances, Departments of Education, and Mississippi Environmental Education Alliance, among others, to determine an effective strategic plan for reaching K-12 audiences. One goal in the strategic plan is to create a catalog of climate change education resources that are aligned to state standards in the SE. Eighty-seven resources from the Climate Literacy and Energy Awareness Network (http://cleanet.org) have been aligned with the state education standards for grades six through twelve in the southeast, beginning with science in Mississippi and expanding to include science and math in the remaining SE states. The criteria for aligning the existing resources includes: matching key terms, topics, and lesson activities with the content strands and essential skills included in the state science framework. By developing a searchable database containing climate resources already aligned with state standards, CLiPSE will have made these resources more appealing to educators in the SE, increasing the likelihood of resources being implemented in the classroom. The CLiPSE Climate Science Team has also created an inventory of scientifically sound, informal resources, which will be available for dispersion to appropriate audiences and communities. Cataloged resources, both formal and informal, grouped by a variety of means, to include audience, grade level, and resource

  3. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  4. ROLE OF INTERNET - RESOURCES IN FORMING OF ECOLOGICAL KNOWLEDGE AT THE STUDY OF NATURAL SCIENCES SUBJECTS

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2013-06-01

    Full Text Available The problem of internet resources application for forming of pupils ecological knowledge at the study of natural sciences subjects is considered. It is noticed, that distribution of ecological knowledge and development of ecological education became the near-term tasks of school education, taking into account a global ecological crisis. It is therefore important to use in school preparation all possibilities that allow to promote the level of ecological knowledge of students and to influence the same on forming of modern views in relation to environmental preservation. Considerable attention is given to advices for the teachers of natural sciences subjects in relation to methodology of the internet resources use at preparation and realization of practical and laboratory works and other forms of educational-searching activity of students.

  5. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  6. Play with Science in Inquiry Based Science Education

    OpenAIRE

    Andrée, Maria; Lager-Nyqvist, Lotta; Wickman, Per-Olof

    2011-01-01

    In science education students sometimes engage in imaginary science-oriented play where ideas about science and scientists are put to use. Through play, children interpret their experiences, dramatize, give life to and transform what they know into a lived narrative. In this paper we build on the work of Vygotsky on imagination and creativity. Previous research on play in primary and secondary school has focused on play as a method for formal instruction rather than students’ spontaneous info...

  7. Reasons and resources for being explicit about the practices of science

    Science.gov (United States)

    Egger, A. E.

    2015-12-01

    The Next Generation Science Standards (NGSS) promote a fundamental shift in the way science is taught. The new focus is on three-dimensional learning, which brings science and engineering practices together with disciplinary core ideas and cross-cutting concepts. A key component is performance expectations rather than bullet lists of content that students should know. One of the stated goals is that "all students should have sufficient knowledge of science and engineering to engage in public discussions on related issues." While the NGSS were developed for K-12, college instructors benefit from familiarity with them in two critical ways: first, they provide a research-based and clearly articulated approach to three-dimensional learning that applies across the grade spectrum, and second, future K-12 teachers are sitting in their college-level science courses, and awareness of the skills those future teachers need can help direct course design. More specifically, while most college-level science courses make use of the science and engineering practices described in the NGSS, few offer explicit instruction in them or how they intertwine with disciplinary core ideas and cross-cutting concepts. Yet this explicit instruction is critical to building scientific literacy in future teachers—and all students. Many textbooks and laboratory courses limit a discussion of the process of science to one chapter or exercise, and expect students to be able to apply those concepts. In contrast, new resources from Visionlearning (http://www.visionlearning.com), InTeGrate (http://serc.carleton.edu/integrate), and other projects hosted at the Science Education Resource Center (http://serc.carleton.edu) were developed with explicit and pervasive integration of the nature and practices of science in mind. These freely available, classroom-tested and reviewed resources support instructors in introductory/general education courses as well as teacher preparation and more advanced courses.

  8. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  9. The Brewsters: A new resource for interprofessional ethics education.

    Science.gov (United States)

    Rozmus, Cathy L; Carlin, Nathan; Polczynski, Angela; Spike, Jeffrey; Buday, Richard

    2015-11-01

    One of the barriers to interprofessional ethics education is a lack of resources that actively engage students in reflection on living an ethical professional life. This project implemented and evaluated an innovative resource for interprofessional ethics education. The objective of this project was to create and evaluate an interprofessional learning activity on professionalism, clinical ethics, and research ethics. The Brewsters is a choose-your-own-adventure novel that addresses professionalism, clinical ethics, and research ethics. For the pilot of the book, a pre-test/post-test design was used. Once implemented across campus, a post-test was used to evaluate student learning in addition to a student satisfaction survey. A total of 755 students in six academic schools in a health science center completed the activity as part of orientation or in coursework. The project was approved as exempt by the university's Committee for the Protection of Human Subjects. The pilot study with 112 students demonstrated a significant increase in student knowledge. The 755 students who participated in the project had relatively high knowledge scores on the post-test and evaluated the activity positively. Students who read The Brewsters scored well on the post-test and had the highest scores on clinical ethics. Clinical ethics scores may indicate issues encountered in mass media. The Brewsters is an innovative resource for teaching interprofessional ethics and professionalism. Further work is needed to determine whether actual and long-term behavior is affected by the activity. © The Author(s) 2014.

  10. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... Studies in Mathematics and Sciences (AJESMS) is an international publication that ... in the fields of mathematics education, science education and related disciplines.

  11. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  12. The Contribution of Science-Rich Resources to Public Science Interest

    Science.gov (United States)

    Falk, John H.; Pattison, Scott; Meier, David; Bibas, David; Livingston, Kathleen

    2018-01-01

    This preliminary study examined the effect that five major sources of public science education--schools, science centers, broadcast media, print media, and the Internet--had on adults' science interest "values" and "cognitive predispositions." Over 3,000 adults were sampled in three U.S. metropolitan areas: Los Angeles,…

  13. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  14. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    Science.gov (United States)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  15. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  16. An Integrative Cultural Model to better situate marginalized science students in postsecondary science education

    Science.gov (United States)

    Labouta, Hagar Ibrahim; Adams, Jennifer Dawn; Cramb, David Thomas

    2018-03-01

    In this paper we reflect on the article "I am smart enough to study postsecondary science: a critical discourse analysis of latecomers' identity construction in an online forum", by Phoebe Jackson and Gale Seiler (Cult Stud Sci Educ. https://doi.org/10.1007/s11422-017-9818-0). In their article, the authors did a significant amount of qualitative analysis of a discussion on an online forum by four latecomer students with past negative experiences in science education. The students used this online forum as an out-of-class resource to develop a cultural model based on their ability to ask questions together with solidarity as a new optimistic way to position themselves in science. In this forum, we continue by discussing the identity of marginalized science students in relation to resources available in postsecondary science classes. Recent findings on a successful case of a persistent marginalized science student in spite of prior struggles and failures are introduced. Building on their model and our results, we proposed a new cultural model, emphasizing interaction between inside and outside classroom resources which can further our understanding of the identity of marginalized science students. Exploring this cultural model could better explain drop-outs or engagement of marginalized science students to their study. We, then, used this model to reflect on both current traditional and effective teaching and learning practices truncating or re-enforcing relationships of marginalized students with the learning environment. In this way, we aim to further the discussion initiated by Jackson and Seiler and offer possible frameworks for future research on the interactions between marginalized students with past low achievements and other high and mid achieving students, as well as other interactions between resources inside and outside science postsecondary classrooms.

  17. Transforming Elementary Science Teacher Education by Bridging Formal and Informal Science Education in an Innovative Science Methods Course

    Science.gov (United States)

    Riedinger, Kelly; Marbach-Ad, Gili; McGinnis, J. Randy; Hestness, Emily; Pease, Rebecca

    2011-01-01

    We investigated curricular and pedagogical innovations in an undergraduate science methods course for elementary education majors at the University of Maryland. The goals of the innovative elementary science methods course included: improving students' attitudes toward and views of science and science teaching, to model innovative science teaching…

  18. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  19. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  20. A Classification Scheme for Career Education Resource Materials.

    Science.gov (United States)

    Koontz, Ronald G.

    The introductory section of the paper expresses its purpose: to devise a classification scheme for career education resource material, which will be used to develop the USOE Office of Career Education Resource Library and will be disseminated to interested State departments of education and local school districts to assist them in classifying…

  1. An Ecology of Science Education.

    Science.gov (United States)

    Aubusson, Peter

    2002-01-01

    Reports on a 15-month study of attempted innovation in school science. The teachers in an Australian secondary school were attempting to introduce a constructivist approach to their teaching of science. Uses a method of analysis in which the school science system is mapped against an ecosystem. (Author/MM)

  2. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  3. Climate Change and Sustainability Open Educational Resources: Lessons learned and challenges to tackle

    Science.gov (United States)

    Robinson, Zoe; Whitfield, Stephen; Gertisser, Ralf; Krause, Stefan; McKay, Deirdre; Pringle, Jamie; Szkornik, Katie; Waller, Richard

    2010-05-01

    The UK's Higher Education Academy Subject Centre for Geography, Earth and Environmental Sciences (GEES) is currently running a project entitled ‘C-Change in GEES: Open licensing of climate change and sustainability resources in the Geography, Earth and Environmental Sciences' as part of a national Open Educational Resource project. The C-Change project aims to explore the challenges involved in ‘repurposing' existing teaching materials on the topics of climate change and sustainability to make them open access. This project has produced an open access resource of diverse climate change and sustainability-related teaching materials across the subjects of Geography, Earth and Environmental Sciences. The process of repurposing existing face-to-face teaching resources requires consideration of a wide variety of issues including the Intellectual Property Rights (IPR) associated with images and other material included in the teaching resources, in addition to issues of quality, accessibility and usability of resources. Open access education is an issue that will have implications across the whole of the organizational structure of a university, from legal advisors with commitments to University research and enterprise activities, to the academics wishing to produce open access resources, through to all levels of senior management. The attitudes, concerns and openness to Open Educational Resources of stakeholders from all positions within a HE institution will have implications for the participation of that institution within the OER movement. The many barriers to the whole-scale adoption of Open Educational Resources within the UK Higher Education system and the willingness of UK Higher Education Institutions to engage in the OER movement include institutional perspectives on the IPR of teaching materials developed by members of staff within the institution and financial viability, in addition to more sceptical attitudes of potential contributors. Keele University is

  4. Project CHOICE: #26. A Career Education Unit for Junior High School. Careers in Conservation of the Environment and Natural Resources. (Agriculture and Ecological Studies Cluster; Science and Engineering Occupations Cluster).

    Science.gov (United States)

    Kern County Superintendent of Schools, Bakersfield, CA.

    This junior high teaching unit on careers in conservation of the environment and natural resources is one in a series of career guidebooks developed by Project CHOICE (Children Have Options in Career Education) to provide the classroom teacher with a source of career-related activities linking classroom experiences with the world of work. The unit…

  5. Hip-Hop as a Resource for Understanding the Urban Context: A Review of Christopher Edmin's--Science Education for the Hip-Hop Generation, Sense Publishers, Rotterdam, 2010

    Science.gov (United States)

    Brown, Bryan

    2010-01-01

    This review explores Edmin's "Science education for the hip-hop generation" by documenting how he frames hip-hop as a means to access urban student culture. He argues that hip-hop is more than a mere music genre, but rather a culture that provides young people with ways of connecting to the world. Two primary ideas emerged as central to…

  6. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    Science.gov (United States)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a

  7. Teacher experiences in the use of the "Zoology Zone" multimedia resource in elementary science

    Science.gov (United States)

    Paradis, Lynne Darlene

    This interpretive research study explored the experiences of teachers with the use of the Zoology Zone multimedia resource in teaching grade three science. Four generalist teachers used the multimedia resource in the teaching of the Animal Life Cycle topic from the Alberta grade three science program. The experiences of the teachers were examined through individual interviews, classroom visits and group interviews. Three dimensions of the study, as they related to elementary science teaching using the Zoology Zone multimedia resource were examined: (a) technology as a teaching resource, (b) science education and constructivist theory, and (c) teacher learning. In the area of planning for instruction, the teachers found that using the multimedia resource demanded more time and effort than using non-computer resources because of the dependence teachers had on others for ensuring access to computer labs and setting up the multimedia resource to run on school computers. The teachers felt there was value in giving students the opportunity to independently explore the multimedia resource because it captured their attention, included appropriate content, and was designed so that students could navigate through the teaming activities easily and make choices about how to proceed with their own learning. Despite the opportunities for student directed learning, the teachers found that it was also necessary to include some teacher directed learning to ensure that students were learning the mandated curriculum. As the study progressed, it became evident that the teachers valued the social dimensions of learning by making it a priority to include lessons that encouraged student to student interaction, student to teacher interaction, small group and whole class discussion, and peer teaching. When students were engaged with the multimedia resource, the teacher facilitated learning by circulating to each student and discussing student findings. Teachers focussed primarily on the

  8. Science and technology related global problems: An international survey of science educators

    Science.gov (United States)

    Bybee, Rodger W.; Mau, Teri

    This survey evaluated one aspect of the Science-Technology-Society theme, namely, the teaching of global problems related to science and technology. The survey was conducted during spring 1984. Two hundred sixty-two science educators representing 41 countries completed the survey. Response was 80%. Findings included a ranking of twelve global problems (the top six were: World Hunger and Food Resources, Population Growth, Air Quality and Atmosphere, Water Resources, War Technology, and Human Health and Disease). Science educators generally indicated the following: the science and technology related global problems would be worse by the year 2000; they were slightly or moderately knowledgeable about the problems; print, audio-visual media, and personal experiences were their primary sources of information; it is important to study global problems in schools; emphasis on global problems should increase with age/grade level; an integrated approach should be used to teach about global problems; courses including global problems should be required of all students; most countries are in the early stages of developing programs including global problems; there is a clear trend toward S-T-S; there is public support for including global problems; and, the most significant limitations to implementation of the S-T-S theme (in order of significance) are political, personnel, social, psychological, economic, pedagogical, and physical. Implications for research and development in science education are discussed.

  9. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  10. Knowledge systems and the colonial legacies in African science education

    Science.gov (United States)

    Ziegler, John R.; Lehner, Edward

    2017-10-01

    This review surveys Femi Otulaja and Meshach Ogunniyi's, Handbook of research in science education in sub-Saharan Africa, Sense, Rotterdam, 2017, noting the significance of the theoretically rich content and how this book contributes to the field of education as well as to the humanities more broadly. The volume usefully outlines the ways in which science education and scholarship in sub-Saharan Africa continue to be impacted by the region's colonial history. Several of the chapters also enumerate proposals for teaching and learning science and strengthening academic exchange. Concerns that recur across many of the chapters include inadequate implementation of reforms; a lack of resources, such as for classroom materials and teacher training; and the continued and detrimental linguistic, financial, and ideological domination of African science education by the West. After a brief overview of the work and its central issues, this review closely examines two salient chapters that focus on scholarly communications and culturally responsive pedagogy. The scholarly communication section addresses the ways in which African science education research may in fact be too closely mirroring Western knowledge constructions without fully integrating indigenous knowledge systems in the research process. The chapter on pedagogy makes a similar argument for integrating Western and indigenous knowledge systems into teaching approaches.

  11. Open Informational Ecosystems: The Missing Link for Sharing Educational Resources

    Directory of Open Access Journals (Sweden)

    Michael Kerres

    2015-02-01

    Full Text Available Open educational resources are not available “as such”. Their provision relies on a technological infrastructure of related services that can be described as an informational ecosystem. A closed informational ecosystem keeps educational resources within its boundary. An open informational ecosystem relies on the concurrence of independent stakeholders that jointly provide (meta- information also beyond its boundaries. Mechanisms of open informational ecosystems are described and how they contribute to the delivery of educational resources and to opening education. The paper describes the case of the German Bildungsserver that aims at establishing a federated network of providers of open and closed educational resources. It points out that the design of (inter-national informational ecosystems has a major influence on the future of open educational resources in education.

  12. Determining discourses: Constraints and resources influencing early career science teachers

    Science.gov (United States)

    Grindstaff, Kelly E.

    This study explores the thinking and practices of five early-career teachers of grades eight to ten science, in relation to their histories, schools, students, and larger cultural and political forces. All the teachers are young women, two in their fourth year of teaching, who teach together in an affluent suburb, along with one first-year teacher. The other two are first-year teachers who teach in an urban setting. All of these teachers most closely associated good science teaching with forming relationships with students. They filtered science content through a lens of relevance (mostly to everyday life) and interest for students. Thus they filtered science content through a commitment to serving students, which makes sense since I argue that the primary motivations for teaching had more to do with working with students and helping people than the disciplines of science. Thus, within the discourse of the supremacy of curriculum and the prevalence of testing, these teachers enact hybrid practices which focus on covering content -- to help ensure the success of students -- and on relevance and interest, which has more to do with teaching styles and personality than disciplines of science. Ideas of good teaching are not very focused on science, which contradicts the type of support they seek and utilize around science content. This presents a challenge to pre- and in-service education and support to question what student success means, what concern for students entails and how to connect caring and concern for students with science.

  13. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  14. Nanoscale science and nanotechnology education in Africa ...

    African Journals Online (AJOL)

    Nanoscale science and nanotechnology education in Africa: importance and ... field with its footing in chemistry, physics, molecular biology and engineering. ... career/business/development opportunities, risks and policy challenges that would ...

  15. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    1986-01-01

    The Guidebook contains detailed information on curricula which would provide the professional technical education qualifications which have been established for nuclear power programme personnel. The core of the Guidebook consists of model curricula in engineering and science, including relevant practical work. Curricula are provided for specialization, undergraduate, and postgraduate programmes in nuclear-oriented mechanical, chemical, electrical, and electronics engineering, as well as nuclear engineering and radiation health physics. Basic nuclear science and engineering laboratory work is presented together with a list of basic experiments and the nuclear equipment needed to perform them. Useful measures for implementing and improving engineering and science education and training capabilities for nuclear power personnel are presented. Valuable information on the national experiences of IAEA Member States in engineering and science education for nuclear power, as well as examples of such education from various Member States, have been included

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Issue front ... Metabolic Engineering: Biological Art of Producing Useful Chemicals · Ram Kulkarni ... General Article. Is Calculus a Failure in Cryptography?

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 9 ... Atmosphere and Oceans: Evidence from Geological Records - Evolution of the Early Oceans ... Quantum Computing - Building Blocks of a Quantum Computer.

  18. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  19. Spec Tool; an online education and research resource

    Science.gov (United States)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  20. Innovations in Undergraduate Science Education: Going Viral

    OpenAIRE

    Hatfull, Graham F.

    2015-01-01

    Bacteriophage discovery and genomics provides a powerful and effective platform for integrating missions in research and education. Implementation of the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program facilitates a broad impact by including a diverse array of schools, faculty, and students. The program generates new insights into the diversity and evolution of the bacteriophage population and presents a model for introducing first-yea...

  1. Educational models in academic research on the teaching practices in science education in elementary school

    OpenAIRE

    Rebeca Chiacchio Azevedo Fernandes; Jorge Megid Neto

    2013-01-01

    We intended to identify the features and pedagogical trends of the school practices proposed and implemented in thesis and dissertations directed to science education at elementary school level from 1972 to 2005. Thirty studies were analysed regarding the teaching methodology, instructional resources, teacher-student relationships, evaluation, theoretical framework, and educational model (traditional, rediscovery, constructivist, technicist, STS, socio-cultural). We found that the constructiv...

  2. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  3. Study of an investigation on factors influencing human resources productivity in Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Zahra Ghasemi

    2016-01-01

    Full Text Available Introduction: Human resources development is one of the most important components of any organization and detecting important factors influencing human resources management plays an essential role in the success of the firms. In this study, we investigated different factors influencing human resources productivity of Shiraz University of Medical Sciences staff. Method: The present research was a cross-sectional study. Sample size was calculated 208 individuals. To access information about the human resource productivity, a valid and reliable questionnaire was used. The data were analyzed using SPSS software. Pearson correlation was used for statistical analysis of the data (p=0.05. Results:The results showed that there was a statistically significant relationship (p-value<0.001 between human resources productivity and factors affecting the productivity of human resources (motivational factors, leadership style, creativity and innovation, general and applied education, and competitive spirit. Motivational factors (r =0.89 and general education (r =0.65 had the most and the least effects on human resources productivity. Conclusion: Considering the fact that motivational factors were the most effective factors on human resource productivity, we recommend that managers should care more than before about this factor; also, in order to motivate the employees, they should consider the staff’s individual differences.

  4. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  5. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  6. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 11. November 2016, pages 965-1062. pp 965-966 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 967-967 Science Smiles ... pp 971-983 General Article.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 11. Issue front cover thumbnail Issue ... pp 985-1006 General Article. The Ziegler Catalysts: Serendipity or .... Science Academies' Summer Research Fellowship Programme for Students and Teachers - 2018 · More Details Abstract Fulltext PDF.

  9. Science as Myth in Physical Education.

    Science.gov (United States)

    Kirk, David

    Scientization is a process that refers to the mythologies that are generated around the practices of working scientists. This paper discusses how science works on popular consciousness and how particular occupational groups use science to legitimatize their discipline, specifically in physical education. Two examples are presented to illustrate…

  10. Is Museum Education "Rocket Science"?

    Science.gov (United States)

    Dragotto, Erin; Minerva, Christine; Nichols, Michelle

    2006-01-01

    The field of museum education has advanced and adapted over the years to meet the changing needs of audiences as determined by new research, national policy, and international events. Educators from Chicago's Adler Planetarium & Astronomy Museum provide insight into a (somewhat) typical museum education department, especially geared for readers…

  11. The Virtual Learning Commons: Supporting Science Education with Emerging Technologies

    Science.gov (United States)

    Pennington, D. D.; Gandara, A.; Gris, I.

    2012-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a

  12. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  13. The European Resource Centre for Alternatives in Higher Education.

    Science.gov (United States)

    de Boo, Jasmijn; Dewhurst, David; van der Valk, Jan

    2004-06-01

    The European Resource Centre for Alternatives in Higher Education (EURCA: http://www.eurca.org) is an exciting new project, which aims to enable teachers using animals in teaching to be more creative and innovative in their approach to teaching and learning, to foster high-quality training for science students, and to significantly reduce the number of animals used, often unnecessarily, in teaching. This will be achieved by: a) establishing a resource centre--a collection of mainly electronic alternatives, and taking this to relevant scientific meetings in Europe, where it would function as a drop-in advice centre for teachers; b) creating a network of academic teachers who actively use alternatives, to take responsibility for disseminating information about alternatives to other teachers in the European Union, to participate in the activity outlined above, and to share experiences and good practice; c) setting up an Internet website with an expansive, information-rich database (peer-reviews, demos, peer-evaluations, peer-recommendations, links to users, etc.) on selected "tried and tested" alternatives; and d) encouraging and promoting the findings of evaluative studies on the effectiveness of alternatives in higher education teaching and learning.

  14. Education Sciences: Towards a Theoretical Rebirth Beyond Reductionisms

    Directory of Open Access Journals (Sweden)

    Maria FORMOSINHO

    2013-11-01

    Full Text Available In order to clarify the directions that Education Sciences may take in the near future we start by discussing the current epistemological predicament of Education, and then articulate this discussion with an assessment of the impact of some major determinant external factors. We proceed by presenting the thread of Modernity in the configurations of educational reason and the impact of the inner fracture of reason fostered by Postmodernity, which leads us to conclude with the epistemic and normative requirements for theorizing Education. To avoid reductionism, we propose a triangular metatheory that should be able to account for the irreducible complexity of education. It presents a three-dimensional field where Education Sciences comprise, firstly, a hermeneutic and speculative dimension, cultivated by philosophy and oriented towards the setting of values and goals for the action, secondly, a descriptive and explanatory dimension, common to other Social Sciences, and thirdly an operational and technological dimension which surpasses the mere technical rationality confined to the selection of means and operationalization of goals, and therefore is in search of an intersubjective agreement that builds a consensus on the deontological normativity that regulates the activity of the professional educator, in its role of free agent and as a resource for action and change.

  15. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  16. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  17. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  18. RESOURCES OF MUSICAL EDUCATION IN CENTRAL ASIA

    Directory of Open Access Journals (Sweden)

    Feza TANSUĞ

    2017-06-01

    Full Text Available This essay also gives an idea of recent research trends and topics in music education in Central Asia. It consists of five parts including teaching music history, teaching epics, teaching songs and instrumental music, teaching traditional instruments, and dictionaries and language resources. Because of the extraordinary increase in the number of books published recently, a careful selection has been made in order to keep the references section to an acceptable length. Hence, the bibliography does not embody all of the works of a single author on the topic. This essay covers books and textbooks dealing with the music of Kazakhstan and the Kyrgyz Republic—two neighboring countries with strong common historical roots and closely related musical traditions. In addition to reviewing textbooks published in Kazakhstan and the Kyrgyz Republic, this article includes some relevant works by Russian authors. However, the extensive body of works authored by Central Asian scholars abroad was excluded from this essay. It contains references only in Kazakh, Kyrgyz, and Russian languages.

  19. Teaching Interdisciplinary Engineering and Science Educations

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; S. Stachowicz, Marian

    2014-01-01

    In this paper we study the challenges for the involved teachers who plan and implement interdisciplinary educations. They are confronted with challenges regarding their understanding of using known disciplines in a new interdisciplinary way and see the possibilities of integrating disciplines when...... creating new knowledge. We will address the challenges by defining the term interdisciplinary in connection with education, and using the Problem Based Learning educational approach and experience from the engineering and science educational areas to find the obstacles. Two cases based on interdisciplinary...... and understand how different expertise can contribute to an interdisciplinary education....

  20. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    347 Impact of Theoretical Chemistry on Chemical and. Biological Sciences. Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. SERIES ARTICLES. 368 Ecology: From Individuals to Collectives. A Physicist's Perspective on Ecology. Vishwesha Guttal. 310. 368 ...

  1. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  2. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  3. Modern Romanian Library Science Education

    OpenAIRE

    Elena Tîrziman

    2015-01-01

    Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Maste...

  4. Educational-researching and Information Resources In Interdisciplinary Automated Training System Based On Internet Technology

    Directory of Open Access Journals (Sweden)

    T. V. Savitskaya

    2016-01-01

    Full Text Available The aim of the research is the study of the functionality of modular object-oriented dynamic learning environment (Moodle to development the informational and educational and educational research resource for training students in the disciplines of natural-scientific and engineer science. Have considered scientific-practical and methodological experience in the development, implementation and use of the interdisciplinary automated training system based on the Moodle system in the educational process. Presented the structure of the typical training course and set out recommendations for the development of information and educational resources different types of lessons and self-study students.Have considered the features of preparation of teaching-research resources of the assignments for lab using the software package MatLab. Also has considered the experience of implementing the discipline “Remote educational technologies and electronic learning in the scientific and the educational activities” for the training of graduate students at the Mendeleev University of Chemical Technology of Russia. The proposed an article approaches to the implementation of informational and educational and educational research resources in the interdisciplinary automated training system can be applied for a wide range of similar disciplines of natural-scientific and engineering sciences in a multilevel system of training of graduates.

  5. The Development of Resources of Students in Adolescence as a Key Issue in Contemporary Education

    Directory of Open Access Journals (Sweden)

    Gosk Urszula

    2015-08-01

    Full Text Available In the presented paper, the issue of recognition and building of resources in adolescent pupils was discussed, referring to salutogenic concept of A. Antonovsky and Conservation of Resources Theory of S. E. Hobfoll. Coming out from developmental pedagogy and positive orientation in social sciences, benefits of scientific and educational actions concentrated on identifying pupils’ resources and supporting them in generating them, were shown. On the basis of Polish and foreign literature, empirical research treating about pupils’ resource, was analyzed, with special attention put to the sense of coherence and its components, stress management and behavior fostering health.

  6. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  7. Mind Mapping on Development of Human Resource of Education

    Science.gov (United States)

    Fauzi, Anis

    2016-01-01

    Human resources in the field of education consists of students, teachers, administrative staff, university students, lecturers, structural employees, educational bureaucrats, stakeholders, parents, the society around the school, and the society around the campus. The existence of human resources need to be cultivated and developed towards the…

  8. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    Science.gov (United States)

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  9. Open Informational Ecosystems: The Missing Link for Sharing Educational Resources

    Science.gov (United States)

    Kerres, Michael; Heinen, Richard

    2015-01-01

    Open educational resources are not available "as such". Their provision relies on a technological infrastructure of related services that can be described as an informational ecosystem. A closed informational ecosystem keeps educational resources within its boundary. An open informational ecosystem relies on the concurrence of…

  10. Illuminating the Darkness: Exploiting untapped data and information resources in Earth Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We contend that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or...

  11. A review of Computer Science resources for learning and teaching with K-12 computing curricula: an Australian case study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-10-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.

  12. Supporting new science teachers in pursuing socially just science education

    Science.gov (United States)

    Ruggirello, Rachel; Flohr, Linda

    2017-10-01

    This forum explores contradictions that arose within the partnership between Teach for America (TFA) and a university teacher education program. TFA is an alternate route teacher preparation program that places individuals into K-12 classrooms in low-income school districts after participating in an intense summer training program and provides them with ongoing support. This forum is a conversation about the challenges we faced as new science teachers in the TFA program and in the Peace Corps program. We both entered the teaching field with science degrees and very little formal education in science education. In these programs we worked in a community very different from the one we had experienced as students. These experiences allow us to address many of the issues that were discussed in the original paper, namely teaching in an unfamiliar community amid challenges that many teachers face in the first few years of teaching. We consider how these challenges may be amplified for teachers who come to teaching through an alternate route and may not have as much pedagogical training as a more traditional teacher education program provides. The forum expands on the ideas presented in the original paper to consider the importance of perspectives on socially just science education. There is often a disconnect between what is taught in teacher education programs and what teachers actually experience in urban classrooms and this can be amplified when the training received through alternate route provides a different framework as well. This forum urges universities and alternate route programs to continue to find ways to authentically partner using practical strategies that bring together the philosophies and goals of all stakeholders in order to better prepare teachers to partner with their students to achieve their science learning goals.

  13. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y; Monteith, H [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  14. Energy and Resource Recovery from Sludge. State of Science Report

    Energy Technology Data Exchange (ETDEWEB)

    Kalogo, Y.; Monteith, H. [Hydromantis Inc., Hamilton, ON (Canada)

    2008-07-01

    There is general consensus among sanitary engineering professionals that municipal wastewater and wastewater sludge is not a 'waste', but a potential source of valuable resources. The subject is a major interest to the members of the Global Water Research Coalition (GWRC). The GWRC is therefore preparing a strategic research plan related to energy and resource recovery from wastewater sludge. The initial focus of the strategy will be on sewage sludge as water reuse aspects have been part of earlier studies. The plan will define new research orientations for deeper investigation. The current state of science (SoS) Report was prepared as the preliminary phase of GWRC's future strategic research plan on energy and resource recovery from sludge.

  15. 75 FR 13265 - National Board for Education Sciences

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Institute of Education Sciences, Department of Education. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  16. 75 FR 53280 - National Board for Education Sciences

    Science.gov (United States)

    2010-08-31

    ... DEPARTMENT OF EDUCATION National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences. ACTION: Notice of an open meeting. SUMMARY: This notice sets forth the schedule and proposed agenda of an upcoming meeting of the National Board for Education Sciences. The...

  17. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  18. Open Distribution of Virtual Containers as a Key Framework for Open Educational Resources and STEAM Subjects

    Science.gov (United States)

    Corbi, Alberto; Burgos, Daniel

    2017-01-01

    This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…

  19. Science and Engineering Alliance: A new resource for the nation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Lawrence Livermore National Laboratory and four major Historically Black Colleges and Universities with strong research and development capabilities in science, engineering and computer technology have formed the Science and Engineering Alliance. Located in California, Alabama, Mississippi, Louisiana and Texas, each brings to the Alliance a tradition of research and development and educational excellence. This unique consortium is now available to perform research development and training to meet the needs of the public and private sectors. The Alliance was formed to help assure an adequate supply of top-quality minority scientists in the next century, while simultaneously meeting the research and development needs of the public and private sectors.

  20. PARTICULARITIES OF HUMAN RESOURCE MANAGEMENT IN THE ROMANIAN SECONDARY EDUCATION

    Directory of Open Access Journals (Sweden)

    MONICAăLOGOF;TU

    2016-12-01

    Full Text Available Professional skills of teachers, their level of engagement in fulfilling the responsibilities of educating pupils is a crucial key in the educational process. Need to understand the particularities of management is given by increasing efficiency, effectiveness of achieving the aims of education, and not only by providing resources and effective directing the activities. In this paperwork we performed an analysis of the particularities of human resource management in secondary education and a quantitative research of human resource management aspects in secondary education at the local level in rural areas from Romania. In order to improve pupil outcomes, secondary schools need a strong and ambitious strategy for improving the educational process, in which human resource management acquire strategic dimensions.

  1. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  2. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  3. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  4. Engineering and science education for nuclear power

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1988-01-01

    Experience has shown that one of the critical conditions for the successful introduction of a nuclear power programme is the availability of sufficient numbers of personnel having the required education and experience qualifications. For this reason, the introduction of nuclear power should be preceded by a thorough assessment of the relevant capabilities of the industrial and education/training infrastructures of the country involved. The IAEA assists its Member States in a variety of ways in the development of infrastructures and capabilities for engineering and science education for nuclear power. Types of assistance provided by the IAEA to Member States include: Providing information in connection with the establishment or upgrading of academic and non-academic engineering and science education programmes for nuclear power (on the basis of curricula recommended in the Agency's Guidebook on engineering and science education for nuclear power); Expert assistance in setting up or upgrading laboratories and other teaching facilities; Assessing the capabilities and interest of Member States and their institutions/organizations for technical co-operation among countries, especially developing ones, in engineering and science education, as well as its feasibility and usefulness; Preparing and conducting nuclear specialization courses (e.g. on radiation protection) in various Member States

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    232. Mahlburg's Work on Crank Functions. Ramanujan's Partitions Revisited. Nagesh Juluru and Arni S R Srinivasa Rao. REFLECTIONS. 268. The Scientific Enterprise. Science in the Modern Indian Context. V V Raman. R. R. R4. 2. 1. C r. L. R3+ rL. H. A. C. D. B. E. 244. 223. Transverse section of the ring porous wood ...

  6. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  7. Science Education and ESL Students

    Science.gov (United States)

    Allen, Heather; Park, Soonhye

    2011-01-01

    The number of students who learn English as a second language (ESL) in U.S. schools has grown significantly in the past decade. This segment of the student population increased by 56% between the 1994-95 and 2004-05 school years (NCLR 2007). As the ESL student population increases, many science teachers struggle to tailor instructional materials,…

  8. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  9. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    Sketch made by Niels Bohr in 1944 to illustrate the content of his debate with Einstein on the uncertainty principle at the 6th Solvay Conference in 1930. Niels Bohr (1885–1962). Sketch by Homi Bhabha. (Courtesy: TIFR, Bombay). Front Cover. 871. Science Smiles. Ayan Guha. 876. Back Cover. 948. Classics. Biology and ...

  10. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    (Credit: M S Pavan, IISc). Adolf von Baeyer. (1835–1917). (Illustration: Subhankar Biswas). Front Cover. Science Smiles. Ayan Guha. 488. Back Cover. Inside Back Cover. Flowering Trees. Credit: R Arun Singh, IISc. 483. REFLECTIONS. 570 Ramanujan's Circle. Inspirors, Patrons and Mentors. Utpal Mukhopadhyay. 489.

  11. Primary Science Education in China

    Science.gov (United States)

    Pook, Gayle

    2013-01-01

    Consider the extent to which primary science teaching has evolved since it became a core subject in England with the introduction of the National Curriculum in 1988, and the pace at which theory-driven classroom practice has advanced. It is no wonder that, given the recent economic restructuring and boom in technological development in China,…

  12. Virtual Games in Social Science Education

    Science.gov (United States)

    Lopez, Jose M. Cuenca; Caceres, Myriam J. Martin

    2010-01-01

    The new technologies make the appearance of highly motivating and dynamic games with different levels of interaction possible, in which large amounts of data, information, procedures and values are included which are intimately bound with the social sciences. We set out from the hypothesis that videogames may become interesting resources for their…

  13. Decentering resources: a phenomenological study of interpretive pedagogies in patient education.

    Science.gov (United States)

    Scheckel, Martha; Hedrick-Erickson, Jennifer

    2009-01-01

    The purpose of this interpretive phenomenological study was to document an innovative approach to teaching patient education where RN-Bachelor of Science in Nursing students, through an online course, learned and applied the interpretive pedagogies in patient education. The online course was the educational intervention which laid the groundwork of the study. Data were then collected from 9 of 18 students who took the course and agreed to participate. Interviews were audiotaped face to face or by telephone and transcribed and interpreted for meanings. Two themes that emerged for teaching patient education included "Decentering Resources: Listening Through Questioning" and "Decentering Resources: Empowering Through Questioning." This study revealed that, as students learned the interpretive pedagogies, resources (brochures, handouts, videos, etc.) took on less importance in their patient education practice. They recognized how resources frequently impeded patient-nurse interactions in teaching and learning encounters. Once students understood that they were perhaps depending too much on resources, they began engaging in questioning practices where significant meanings of listening and empowering in patient education unfolded. This study encourages nurse educators to teach students interpretive pedagogies in patient education to promote pedagogical literacy, which preserves the time-honored tradition of working together with patients during teaching and learning encounters.

  14. Perspectives of Increase of University Education Effectiveness: Use of Private Educational Resources

    Science.gov (United States)

    Tyurina, Yulia; Troyanskaya, Maria

    2017-01-01

    Purpose: The purpose of this paper is to determine the perspectives of increase of effectiveness of university education, related to the use of private educational resources. Design/Methodology/ Approach: In order to determine the dependence of effectiveness of university education on the use of private educational resources, this work uses the…

  15. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  16. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  17. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  18. Developing a Theory-Based Simulation Educator Resource.

    Science.gov (United States)

    Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C

    2015-01-01

    The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.

  19. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  20. Climate Odyssey: Resources for Understanding Coastal Change through Art, Science, and Sail

    Science.gov (United States)

    Klos, P. Z.; Holtsnider, L.

    2017-12-01

    Climate Odyssey (climateodyssey.org) is a year-long sailing expedition and continuing collaboration aimed at using overlaps in science and visual art to communicate coastal climate change impacts and solutions. We, visual artist Lucy Holtsnider and climate scientist Zion Klos, are using our complimentary skills in art, science and communication to engage audiences both intuitively and cognitively regarding the urgency of climate change through story and visualization. Over the 2015 - 2016 academic year, we embarked on the sailing portion of Climate Odyssey, beginning in Lake Michigan, continuing along the Eastern Seaboard, and concluding in the tropics. Along the way we photographed climate change impacts and adaptation strategies, interviewed stakeholders, scientists, and artists. We are now sharing our photographs and documented encounters through a tangible artist's book, interactive digital map, blog, and series of K16 lesson plans. Each of our images added to the artist's book and digital map are linked to relevant blog entries and other external scientific resources, making the map both a piece of art and an engaging education tool for sharing the science of climate change impacts and solutions. After completing the sailing component of the project, we have now finalized our multi-media resources and are working to share these with the public via libraries, galleries, and K16 classrooms in coastal communities. At AGU, we will share with our peers the completed version of the series of K16 lesson plans that provide educators an easy-to-use way to introduce and utilize the material in the artist's book, digital map, and online blog. Through this, we hope to both discuss climate-focused education and engagement strategies, as well as showcase this example of art-science outreach with the broader science education and communication community that is focused on climate literacy in the U.S. and beyond.

  1. Research into Open Educational Resources for Development | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Among them is the growing demand for postsecondary education when most ... thanks in part to greater access to the Internet and new flexible intellectual property licenses. ... While OERs are receiving considerable attention in universities, education ... develop researchers' capacity to analyze open educational resources; ...

  2. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  3. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  4. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  5. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  6. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  7. Discovery of Sound in the Sea: Resources for Educators, Students, the Public, and Policymakers.

    Science.gov (United States)

    Vigness-Raposa, Kathleen J; Scowcroft, Gail; Miller, James H; Ketten, Darlene R; Popper, Arthur N

    2016-01-01

    There is increasing concern about the effects of underwater sound on marine life. However, the science of sound is challenging. The Discovery of Sound in the Sea (DOSITS) Web site ( http://www.dosits.org ) was designed to provide comprehensive scientific information on underwater sound for the public and educational and media professionals. It covers the physical science of underwater sound and its use by people and marine animals for a range of tasks. Celebrating 10 years of online resources, DOSITS continues to develop new material and improvements, providing the best resource for the most up-to-date information on underwater sound and its potential effects.

  8. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  9. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  10. Future challenges in nuclear science education

    International Nuclear Information System (INIS)

    Yates, S.W.

    1993-01-01

    The role of Division of Nuclear Chemistry and Technology of the American Chemical Society in nuclear science education is reviewed, and suggestions for enhanced involvement in additional areas are presented. Possible new areas of emphasis, such as educational programs for pre-college students and non-scientific public, are discussed. Suggestions for revitalizing the position of radiochemistry laboratories in academic institutions are offered. (author) 7 refs

  11. The National Climate Assessment as a Resource for Science Communication

    Science.gov (United States)

    Somerville, R. C. J.

    2014-12-01

    The 2014 Third National Climate Assessment (NCA3) is scientifically authoritative and features major advances, relative to other assessments produced by several organizations. NCA3 is a valuable resource for communicating climate science to a wide variety of audiences. Other assessments were often overly detailed and laden with scientific jargon that made them appear too complex and technical to many in their intended audiences, especially policymakers, the media, and the broad public. Some other assessments emphasized extensive scientific caveats, quantitative uncertainty estimates and broad consensus support. All these attributes, while valuable in research, carry the risk of impeding science communication to non-specialists. Without compromising scientific accuracy and integrity, NCA3 is written in exceptionally clear and vivid English. It includes outstanding graphics and employs powerful techniques aimed at conveying key results unambiguously to a wide range of audiences. I have used NCA3 as a resource in speaking about climate change in three very different settings: classroom teaching for undergraduate university students, presenting in academia to historians and other non-scientists, and briefing corporate executives working on renewable energy. NCA3 proved the value of developing a climate assessment with communication goals and strategies given a high priority throughout the process, not added on as an afterthought. I draw several lessons. First, producing an outstanding scientific assessment is too complex and demanding a task to be carried out by scientists alone. Many types of specialized expertise are also needed. Second, speaking about science to a variety of audiences requires an assortment of communication skills and tools, all tailored to specific groups of listeners. Third, NCA3 is scientifically impeccable and is also an outstanding example of effective communication as well as a valuable resource for communicators.

  12. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  13. TCIA: An information resource to enable open science.

    Science.gov (United States)

    Prior, Fred W; Clark, Ken; Commean, Paul; Freymann, John; Jaffe, Carl; Kirby, Justin; Moore, Stephen; Smith, Kirk; Tarbox, Lawrence; Vendt, Bruce; Marquez, Guillermo

    2013-01-01

    Reusable, publicly available data is a pillar of open science. The Cancer Imaging Archive (TCIA) is an open image archive service supporting cancer research. TCIA collects, de-identifies, curates and manages rich collections of oncology image data. Image data sets have been contributed by 28 institutions and additional image collections are underway. Since June of 2011, more than 2,000 users have registered to search and access data from this freely available resource. TCIA encourages and supports cancer-related open science communities by hosting and managing the image archive, providing project wiki space and searchable metadata repositories. The success of TCIA is measured by the number of active research projects it enables (>40) and the number of scientific publications and presentations that are produced using data from TCIA collections (39).

  14. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  15. BioSIGHT: Interactive Visualization Modules for Science Education

    Science.gov (United States)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  16. Managing information resources for distance education | Lawoe ...

    African Journals Online (AJOL)

    Journal of Science and Technology (Ghana). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 25, No 1 (2005) >. Log in or Register to get access to full text downloads.

  17. Human resource development climate in higher education ...

    African Journals Online (AJOL)

    Eastern Africa Social Science Research Review. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 34, No 1 (2018) >. Log in or Register to get access to full text downloads.

  18. Mission Adaptive UAS Platform for Earth Science Resource Assessment

    Science.gov (United States)

    Dunagan, S.; Fladeland, M.; Ippolito, C.; Knudson, M.

    2015-01-01

    NASA Ames Research Center has led a number of important Earth science remote sensing missions including several directed at the assessment of natural resources. A key asset for accessing high risk airspace has been the 180 kg class SIERRA UAS platform, providing mission durations of up to 8 hrs at altitudes up to 3 km. Recent improvements to this mission capability are embodied in the incipient SIERRA-B variant. Two resource mapping problems having unusual mission characteristics requiring a mission adaptive capability are explored here. One example involves the requirement for careful control over solar angle geometry for passive reflectance measurements. This challenges the management of resources in the coastal ocean where solar angle combines with sea state to produce surface glint that can obscure the ocean color signal. Furthermore, as for all scanning imager applications, the primary flight control priority to fly the UAS directly to the next waypoint should compromise with the requirement to minimize roll and crab effects in the imagery. A second example involves the mapping of natural resources in the Earth's crust using precision magnetometry. In this case the vehicle flight path must be oriented to optimize magnetic flux gradients over a spatial domain having continually emerging features, while optimizing the efficiency of the spatial mapping task. These requirements were highlighted in several recent Earth Science missions including the October 2013 OCEANIA mission directed at improving the capability for hyperspectral reflectance measurements in the coastal ocean, and the Surprise Valley Mission directed at mapping sub-surface mineral composition and faults, using high-sensitivity magentometry. This paper reports the development of specific aircraft control approaches to incorporate the unusual and demanding requirements to manage solar angle, aircraft attitude and flight path orientation, and efficient (directly geo-rectified) surface and sub

  19. Educating science editors: is there a comprehensive strategy?

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Gorin, Sergey V; Kitas, George D

    2014-12-01

    The article considers available options to educate science editors in the fast-transforming digital environment. There is no single course or resource that can cover their constantly changing and diversifying educational needs. The involvement in research, writing, and reviewing is important for gaining editing skills, but that is not all. Membership in editorial associations and access to updated scholarly information in the field are mandatory for maintaining editorial credentials. Learned associations offer access to a few widely-recognized periodicals. There are also formal training courses covering issues in science writing and ethical editing, but no high-level evidence data exist to promote any of these. Networking with like-minded specialists within the global and regional editorial associations seems a useful strategy to upgrade editorial skills and resolve problems with the quality control and digitization of scholarly periodicals.

  20. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects......, and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...... and developing science teachers....

  1. The Efficacy of Educative Curriculum Materials to Support Geospatial Science Pedagogical Content Knowledge

    Science.gov (United States)

    Bodzin, Alec; Peffer, Tamara; Kulo, Violet

    2012-01-01

    Teaching and learning about geospatial aspects of energy resource issues requires that science teachers apply effective science pedagogical approaches to implement geospatial technologies into classroom instruction. To address this need, we designed educative curriculum materials as an integral part of a comprehensive middle school energy…

  2. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  3. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  4. Quality Physical Education. NASPE Resource Brief

    Science.gov (United States)

    National Association for Sport and Physical Education, 2013

    2013-01-01

    A quality physical education program provides learning opportunities, appropriate instruction, meaningful and challenging content, and student and program assessment. In addition, a quality physical education improves mental alertness, academic performance, and readiness and enthusiasm for learning in the nation's youth. This brief provides a list…

  5. Challenges and Instructors' Intention to Adopt and Use Open Educational Resources in Higher Education in Tanzania

    Science.gov (United States)

    Mtebe, Joel Samson; Raisamo, Roope

    2014-01-01

    Higher education in Tanzania like in many other Sub-Saharan countries suffers from unavailability of quality teaching and learning resources due to lack of tradition, competence, and experience to develop such resources. Nevertheless, there are thousands of open educational resources (OER) freely available in the public domain that can potentially…

  6. Time for action: science education for an alternative future

    Science.gov (United States)

    Hodson, Derek

    2003-06-01

    Following a brief historical survey of the popular 'slogans' that have influenced science education during the past quarter century and a review of current international debate on scientific literacy and science pedagogy, the author takes the view that while much of value has been achieved, there is still considerable cause for concern and that it is time for action in two senses. First, it is time to take action on the school science curriculum because it no longer meets the needs, interests and aspirations of young citizens. Second, it is time for a science curriculum oriented toward sociopolitical action. The author argues that if current social and environmental problems are to be solved, we need a generation of scientifically and politically literate citizens who are not content with the role of 'armchair critic'. A particular concern in North America is the link between science education, economic globalization, increasing production and unlimited expansion - a link that threatens the freedom of individuals, the spiritual well-being of particular societies and the very future of the planet. The author's response is to advocate a politicized, issues-based curriculum focused on seven areas of concern (human health; food and agriculture; land, water and mineral resources; energy resources and consumption; industry; information transfer and transportation; ethics and social responsibility) and addressed at four levels of sophistication, culminating in preparation for sociopolitical action. The curriculum proposal outlined in the article is intended to produce activists: people who will fight for what is right, good and just; people who will work to re-fashion society along more socially-just lines; people who will work vigorously in the best interests of the biosphere. At the heart of this curriculum is a commitment to pursue a fundamental realignment of the values underpinning Western industrialized society. Achieving that goal is a formidable task - one that

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Arrows in Chemistry. Abirami Lakshminarayanan. General Article Volume 15 Issue 1 January 2010 pp 51-63. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/01/0051-0063. Keywords.

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Use of Isotopes for Studying Reaction Mechanisms-Secondary Kinetic Isotope Effect. Uday Maitra J Chandrasekhar. Series Article Volume 2 Issue 8 August 1997 pp 18-25 ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electrons in Condensed Matter. T V Ramakrishnan. General Article Volume 2 Issue 12 December 1997 pp 17-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/002/12/0017-0032 ...

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 10. October 2002, pages 1-100. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Timoshenko: Father of Engineering ...

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 10. October 1998, pages 1-102. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. From Fourier Series to Fourier Transforms.

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 22; Issue 12. Pythagorean Means and Carnot Machines: When Music Meets Heat. Ramandeep S Johal.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 1. January 1999, pages 1-95. pp 1-2 Editorial. Editorial ... More Details Fulltext PDF. pp 80-88 Reflections. Some Moral and Technical Consequences of Automation.

  14. Science and Higher Education in Korea.

    Science.gov (United States)

    Lee, Sungho

    The role and contribution of academic science to national development in the Republic of Korea is discussed. After an overview on the development of the Korean system of higher education, attention is directed to the national research system and its articulation with the academic system. Consideration is given to: factors that contributed to the…

  15. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 8. August 2006, pages 1-106. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir Gilbert Thomas Walker · J Srinivasan M ...

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 11. November 2014, pages 971-1070. pp 971-971 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 972-973 Article-in-a-Box. Georg Cantor ...

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 14, Issue 1. January 2009, pages 1-100. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Sir James Lighthill · Renuka Ravindran.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 8. August 2005, pages 1-105. pp 1-1 Editorial. Editorial · Priti Shankar · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Theodore von Kármán – Rocket Scientist.

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 2. February 2006, pages 1-101. pp 1-1 Editorial. Editorial · S Ramasubramanian · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. David Huffman · Priti Shankar.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 11. November 2012, pages 1019-1120. pp 1019-1019 Editorial. Editorial · Y N Srikant · More Details Fulltext PDF. pp 1022-1033 Series Article. Fascinating Organic ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 9, Issue 10. October 2004, pages 1-98. pp 1-2 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. G. I. Taylor – An Amateur Scientist.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 2, Issue 4. April 1997, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. The Chandrasekhar Limit · G Srinivasan.

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 10, Issue 6. June 2005, pages 1-98. pp 1-1 Editorial. Editorial · Jaywant H Arakeri · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Roentgen and his Rays.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 7. July 2014, pages 585-668. pp 585-585 Editorial. Editorial · S Ranganathan · More Details Fulltext PDF. pp 586-589 Article-in-a-Box. Robert Burns Woodward ...

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 8. August 2014, pages 667-778. pp 667-667 Editorial. Editorial · K L Sebastian · More Details Fulltext PDF. pp 668-669 Table of Contents. Table of Contents.

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 12, Issue 1. January 2007, pages 1-96. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 19, Issue 12. December 2014, pages 1069-1210. pp 1069-1070 Editorial. Editorial · T N Guru Row Angshuman Roy Choudhury · More Details Fulltext PDF. pp 1071-1073 ...

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 7. July 2015, pages 571-664. pp 571-571 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 572-573 Table of Contents. Table of Contents.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 2. February 2002, pages 1-96. pp 1-1 Editorial. Editorial · Amitabh Joshi · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Claude Elwood Shannon · Priti Shankar.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 20, Issue 10. October 2015, pages 863-950b. pp 863-863 Editorial. Editorial · Rajaram Nityananda · More Details Fulltext PDF. pp 864-865 Article-in-a-Box. Jan Hendrik Oort ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 9. September 2002, pages 1-102. pp 1-2 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Fritz Haber · Animesh Chakravorty.

  13. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 2. February 2011, pages 103-202. pp 103-103 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 104-104 Article-in-a-Box. A Short Biography of Israel ...

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 8. August 2010, pages 681-772. pp 681-681 Editorial. Editorial · G K Ananthasuresh · More Details Fulltext PDF. pp 682-683 Table of Contents. Table of Contents.

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 11. November 2006, pages 1-98. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-4 Article-in-a-Box. Bernhard Riemann.

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 17, Issue 10. October 2012, pages 923-1020. pp 923-923 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 924-925 Article-in-a-Box. S N De - An Appreciation.

  17. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Programming Languages - A Brief Review. V Rajaraman ... V Rajaraman1 2. IBM Professor of Information Technology, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560012, India; Hon.Professor, Supercomputer Education & Research Centre Indian Institute of Science, Bangalore 560012, India ...

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Keywords. Scalars; four-vectors; lorentz transformation; special relativity. ... Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 4. Current Issue Volume 23 | Issue 4. April 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 7. Physical Research Laboratory. P Sharma. Information and Announcements Volume 4 Issue 7 July 1999 pp 92-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/004/07/0092-0096 ...

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 2. Erwin Schrödinger, “What is Life? The Physical Aspect of the Living Cell”. N Mukunda. Book Review Volume 4 Issue 2 February 1999 pp 85-87. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 12. December 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-6 Article-in-a-Box. Isaac Newton (1642/43-1727).

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 11. November 2002, pages 1-102. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-5 Article-in-a-Box. Stephen Jay Gould: A View of Life.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 10. Fractals: A New Geometry of Nature. Balakrishnan Ramasamy T S K V Iyer P Varadharajan. Classroom Volume 2 Issue 10 October 1997 pp 62-68. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Annual Meetings · Mid Year Meetings · Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Resonance – Journal of Science Education; Volume 23 .... pp 387-391 Book Review ... Parava: Soaring Towards New Directions in Human-Animal Relations.

  7. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  8. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  9. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 12. Jacques Monod and the Advent of the Age of Operons. R Jayaraman. General Article Volume 15 Issue 12 December 2010 pp 1084-1096. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Issue front cover thumbnail Issue back cover thumbnail. Volume 21, Issue 9. September 2016, pages 767-863. pp 767-768 Editorial. Editorial · More Details Abstract Fulltext PDF. pp 769-772 Article in a Box. The Creative Genius: John Nash.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 11. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 11. November 1996, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Karl Popper · G Prathap · More Details ...

  12. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 16, Issue 1. January 2011, pages 1-104. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Leeuwenhoek: Discoverer of the Microbial ...

  13. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  14. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 5. May 1998, pages 1-98. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-2 Article-in-a-Box. Thermal Ionisation and the Saha Equation!

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Resonance – Journal of Science Education; Volume 6; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 6, Issue 10. October 2001, pages 1- ... pp 96-97 Book Review. Call of Indian Birds – An Audio Cassette · Lt General Baljit Singh · More Details Fulltext PDF. pp 97-100 Book Review. Essentials ...

  16. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 8. Issue front cover thumbnail Issue back cover thumbnail. Volume 3, Issue 8 ... P G Babu · More Details Fulltext PDF. pp 56-65 Feature Article. Nature Watch - Hornbills – Giants Among the Forest Birds · T R Shankar Raman Divya Mudappa.

  17. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 4. April 2008 ... K R Y Simha Dhruv C Hoysall · More Details Fulltext PDF. pp 394-397 Think It Over. Solution to How Many Birds are Unwatched · Soubhik Chakraborty.

  18. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 5 ... pp 411-427 General Article. Bird of Passage at Four Universities - Student Days of Rudolf Peierls · G Baskaran · More Details Fulltext PDF. pp 428-433 General Article.

  19. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 1. Issue front cover thumbnail Issue back cover thumbnail. Volume 13, Issue 1. January 2008, pages 1-102. pp 1-1 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 2-3 Table of Contents. Table of Contents · More Details Fulltext ...

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. The Ribosome and the 2009 Nobel Prize in Chemistry. Laasya Samhita Umesh Varshney. General Article Volume 15 Issue 6 June 2010 pp 526-537. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 2. February 1996, pages 1-130. pp 1-1 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Chief Editor's column - After the Eclipse.

  2. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 4, Issue 6. June 1999, pages 1-102. pp 1-2 Editorial. Editorial · Alladi Sitaram · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Mahalanobis and Indian Statistics · T Krishnan.

  3. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 9. Haber Process for Ammonia Synthesis. Jayant M Modak. General Article Volume 7 Issue 9 September 2002 pp 69-77. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/09/0069-0077 ...

  4. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 11, Issue 10. October 2006, pages 1-102. pp 1-2 Editorial. Editorial · Renuka Ravindran · More Details Fulltext PDF. pp 3-5 Article-in-a-Box. Archimedes · P N Shankar.

  5. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Issue front cover thumbnail Issue back cover thumbnail. Volume 8, Issue 10. October 2003, pages 1-101. pp 1-1 Editorial. Editorial · G Nagendrappa · More Details Fulltext PDF. pp 2-3 Article-in-a-Box. Satish Dhawan · Srinivas Bhogle.

  6. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 6. Issue front cover thumbnail Issue back cover thumbnail. Volume 15, Issue 6. June 2010, pages 489-584. pp 489-490 Editorial. Editorial · S Mahadevan · More Details Fulltext PDF. pp 491-492 Article-in-a-Box. Conrad Waddington and the ...

  7. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 8. Detergents – Zeolites and Enzymes Excel Cleaning Power. B S Sekhon Manjeet K Sangha. General Article Volume 9 Issue 8 August 2004 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Issue front cover thumbnail Issue back cover thumbnail. Volume 1, Issue 3. March 1996, pages 1-130. pp 1-2 Editorial. Editorial · N Mukunda · More Details Fulltext PDF. pp 3-3 Article-in-a-Box. Fermat and the Minimum Principle.

  9. weaving together climate science and chemistry education

    African Journals Online (AJOL)

    Preferred Customer

    ... students, educators, and the general public, designed to help bridge the gap ... Design Principles of Visualizing and Understanding the Science of Climate ... The user is also able to examine simple models for these predictions ... Figure 6 illustrates the fluctuations in mean global temperature over an 800 ka span and.

  10. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 12. Issue front cover thumbnail Issue back cover thumbnail. Volume 7, Issue 12. December 2002, pages 1-106. pp 1-1 Editorial. Editorial · Biman Nath · More Details Fulltext PDF. pp 2-4 Article-in-a-Box. K. S. Krishnan – An Outstanding Scientist.

  11. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 5. Artificial Seeds and their Applications. G V S Saiprasad. General Article Volume 6 Issue 5 May 2001 pp 39-47. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/05/0039-0047 ...

  12. Radiation risk and science education

    International Nuclear Information System (INIS)

    Eijkelhof, H.M.C.

    1996-01-01

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author)

  13. Open-access databases as unprecedented resources and drivers of cultural change in fisheries science

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Utz, Ryan [National Ecological Observatory Network

    2014-01-01

    Open-access databases with utility in fisheries science have grown exponentially in quantity and scope over the past decade, with profound impacts to our discipline. The management, distillation, and sharing of an exponentially growing stream of open-access data represents several fundamental challenges in fisheries science. Many of the currently available open-access resources may not be universally known among fisheries scientists. We therefore introduce many national- and global-scale open-access databases with applications in fisheries science and provide an example of how they can be harnessed to perform valuable analyses without additional field efforts. We also discuss how the development, maintenance, and utilization of open-access data are likely to pose technical, financial, and educational challenges to fisheries scientists. Such cultural implications that will coincide with the rapidly increasing availability of free data should compel the American Fisheries Society to actively address these problems now to help ease the forthcoming cultural transition.

  14. Association between addiction treatment staff professional and educational levels and perceptions of organizational climate and resources.

    Science.gov (United States)

    Krull, Ivy; Lundgren, Lena; Beltrame, Clelia

    2014-01-01

    Research studies have identified addiction treatment staff who have higher levels of education as having more positive attitudes about evidence-based treatment practices, science-based training, and the usefulness of evidence-based practices. This study examined associations between addiction treatment staff level of education and their perceptions of 3 measures of organizational change: organizational stress, training resources and staffing resources in their treatment unit. The sample included 588 clinical staff from community-based substance abuse treatment organizations who received Substance Abuse and Mental Health Services Administration (SAMHSA) funding (2003-2008) to implement evidence-based practices (EBPs). Bivariate analysis and regression modeling methods examined the relationship between staff education level (no high school education, high school education, some college, associate's degree, bachelor's degree, master's degree, doctoral degree, and other type of degree such as medical assistant, registered nurse [RN], or postdoctoral) and attitudes about organizational climate (stress), training resources, and staffing resources while controlling for staff and treatment unit characteristics. Multivariable models identified staff with lower levels of education as having significantly more positive attitudes about their unit's organizational capacity. These results contradict findings that addiction treatment staff with higher levels of education work in units with greater levels of organizational readiness for change. It cannot be inferred that higher levels of education among treatment staff is necessarily associated with high levels of organizational readiness for change.

  15. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  16. CLOUD EDUCATIONAL RESOURCES FOR PHYSICS LEARNING RESEARCHES SUPPORT

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Merzlykin

    2015-10-01

    Full Text Available The definition of cloud educational resource is given in paper. Its program and information components are characterized. The virtualization as the technological ground of transforming from traditional electronic educational resources to cloud ones is reviewed. Such levels of virtualization are described: data storage device virtualization (Data as Service, hardware virtualization (Hardware as Service, computer virtualization (Infrastructure as Service, software system virtualization (Platform as Service, «desktop» virtualization (Desktop as Service, software user interface virtualization (Software as Service. Possibilities of designing the cloud educational resources system for physics learning researches support taking into account standards of learning objects metadata (accessing via OAI-PMH protocol and standards of learning tools interoperability (LTI are shown. The example of integration cloud educational resources into Moodle learning management system with use of OAI-PMH and LTI is given.

  17. Promoting Pre-college Science Education

    Science.gov (United States)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  18. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  19. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  20. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  1. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  2. Education Factor and Human Resources Development - Albania Case

    OpenAIRE

    Sonila Berdo

    2010-01-01

    The article gives a general view of the actual situation and the potential importance that the education factor plays in the formation and development of human resources in Albania, based on the Albanian education system applied as well as the strategies undertaken regarding the development of human resources by transforming it in an important asset and an unstoppable source of values for all the society. In particular, the article is focused in analyzing and evaluating the link between the l...

  3. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... DEPARTMENT OF EDUCATION Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications for New Awards for Fiscal....305D, 84.305E, 84.324A, 84.324B, and 84.324C. Summary: The Director of the Institute of Education...

  4. Let's Talk About Water: Film as a Resource to Engage Audiences Around Earth Science Issues

    Science.gov (United States)

    Clark, E.; Hooper, R. P.; Lilienfeld, L.

    2017-12-01

    Connecting a diverse audience to science can be challenging. Scientists generally publish their findings in ways that are not easily accessible to audiences outside of the science community and translating findings for wider consumption requires a mindful balance of generalization and accuracy. In response to these communication challenges, the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) developed the Let's Talk About Water (LTAW) program as a formula for hosting successful events for Earth Science education. The program uses film as a bridge to open a discussion between scientists and the audience. In this setting, films are powerful educational tools because they use storytelling to engage audiences emotionally, which creates relatable, teachable moments. Originally designed to bring awareness to water issues, the formula can easily be applied to increase literacy on climate change and other critical Earth Science issues facing society. This presentation will discuss the LTAW event formula and the resources that CUAHSI has available to support event organizers in the development of their own LTAW events.

  5. Learning about Sex: Resource Guide for Sex Educators. Revised Edition

    Science.gov (United States)

    Huberman, Barbara

    2011-01-01

    Whether you are someone new to the field of sex education, trying to start a library or resource center on adolescent sexual health, or an old pro, this guide should give you a basic orientation to what's available to support your work. These resources are important to advancing positive attitudes toward adolescent sexual health and the author…

  6. Toward a Multilevel Perspective on the Allocation of Educational Resources.

    Science.gov (United States)

    Monk, David H.

    1981-01-01

    The importance of the following is demonstrated: (1) striking a balance between the attention given to resource allocation practices at macro compared to microlevels of decision making; and (2) learning more about how resource allocation decisions made at one level affect practices at other levels of the educational system. (Author/GK)

  7. Current Issues for Higher Education Information Resources Management.

    Science.gov (United States)

    CAUSE/EFFECT, 1996

    1996-01-01

    Issues identified as important to the future of information resources management and use in higher education include information policy in a networked environment, distributed computing, integrating information resources and college planning, benchmarking information technology, integrated digital libraries, technology integration in teaching,…

  8. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  9. Review of online educational resources for medical physicists.

    Science.gov (United States)

    Prisciandaro, Joann I

    2013-11-04

    Medical physicists are often involved in the didactic training of graduate students, residents (both physics and physicians), and technologists. As part of continuing medical education, we are also involved in maintenance of certification projects to assist in the education of our peers. As such, it is imperative that we remain current concerning available educational resources. Medical physics journals offer book reviews, allowing us an opportunity to learn about newly published books in the field. A similar means of communication is not currently available for online educational resources. This information is conveyed through informal means. This review presents a summary of online resources available to the medical physics community that may be useful for educational purposes.

  10. Troubling an embodied pedagogy in science education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Kristensen, Liv Kondrup

    2017-01-01

    This chapter explores the idea of using an embodied pedagogy for science teaching following the mandated introduction of physical activity across all subjects in Danish primary schools. While there is research available that explores the different ways of utilizing movement in school, very little...... for the intertwined relationship between the body and mind. Based on observations that were conducted in science lessons at a Danish primary school, and from talking with the students, we examine how an embodied pedagogy in science was implemented. We explore a specific instance where a group of 14-16 year old...... of that which is available applies to science education. The argument is made that an embodied pedagogy recognises and validates the centrality of the body in learning, but it is about more than making students move. Utilising such an approach requires one to recognise that embodiment shapes interactions...

  11. Media education perspectives with multimedia resources

    Directory of Open Access Journals (Sweden)

    Jaime Gabriel Espinosa Izquierdo

    2016-08-01

    Full Text Available It is indisputable that today’s society has undergone changes in this decade, related to technological and educational advances. This has created the new era of knowledge for changing from analog to digital era, this has created the birth of new tools to improve the teaching and learning process where the teacher is the protagonist of these changes for secondary education, the which it has had major transformations for the rapid development of information technology and communications (ICT; to be implemented in the training process of prospective students, that is where the concept of learning technologies and knowledge (TAC and technologies for empowerment and participation (TEP appears; constituting them in educational tools necessary for the teaching-learning process of education.

  12. Basic science research and education: a priority for training and capacity building in developing countries.

    Science.gov (United States)

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. History of Science Web Resources at American Institute of Physics

    Science.gov (United States)

    Good, G. A.

    2009-12-01

    The Center for History of Physics and the associated Niels Bohr Library & Archives at the American Institute of Physics were pioneers in web resource development for education and for research in the 1990s. While these units of AIP continue to add significantly to the traditional ways of putting content before the public, they are also experimenting with blogs and Facebook, and are looking at other forms of interactive web presence. This talk explores how an active research center is trying to do both.

  14. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  15. Evaluating a Graduate Professional Development Program for Informal Science Educators

    Science.gov (United States)

    Lake, Jeremy Paul

    This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course

  16. Handbook of Research on Science Education and University Outreach as a Tool for Regional Development

    Science.gov (United States)

    Narasimharao, B. Pandu, Ed.; Wright, Elizabeth, Ed.; Prasad, Shashidhara, Ed.; Joshi, Meghana, Ed.

    2017-01-01

    Higher education institutions play a vital role in their surrounding communities. Besides providing a space for enhanced learning opportunities, universities can utilize their resources for social and economic interests. The "Handbook of Research on Science Education and University Outreach as a Tool for Regional Development" is a…

  17. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  18. Analysis of human resources in science and technology in ICT companies–case of Croatia

    Directory of Open Access Journals (Sweden)

    Jelena Horvat

    2014-12-01

    Full Text Available This paper integrates theories and findings of the level of tertiary educated workforce, the human resources in science and technology and skills that are desirable in employees from in the information and communication technologies (ICT sector. It is important to examine the real situation on the labor market in the ICT sector, which is often referred to as the key to overcoming the crisis and the future of national economy. Basic statistical elements, upon which to predict future demand for human resources in science and technology (HRST, are people who enter tertiary level of education (inputs or are already in the system (throughputs, but until graduation are not considered HRST’s (outputs. Analysis is based on a sample of 56 small companies in ICT sector in Croatia. This paper presents the overview of the situations of human resources in small companies ICT sector in Croatia. Existing literature on HRST, employee’s skills and ICT sector is reviewed in the light of this analysis, in order to better understand current employment structure and desirable competencies of future employees of small companies in the ICT sector in Croatia.

  19. Multiverse: Increasing Diversity in Earth and Space Science Through Multicultural Education

    Science.gov (United States)

    Peticolas, L. M.; Raftery, C. L.; Mendez, B.; Paglierani, R.; Ali, N. A.; Zevin, D.; Frappier, R.; Hauck, K.; Shackelford, R. L., III; Yan, D.; Thrall, L.

    2015-12-01

    Multiverse at the University of California, Berkeley Space Sciences Laboratory provides earth and space science educational opportunities and resources for a variety of audiences, especially for those who are underrepresented in the sciences. By way of carefully crafted space and earth science educational opportunities and resources, we seek to connect with people's sense of wonder and facilitate making personal ties to science and the learning process in order to, ultimately, bring the richness of diversity to science and make science discovery accessible for all. Our audiences include teachers, students, education and outreach professionals, and the public. We partner with NASA, the National Science Foundation, scientists, teachers, science center and museum educators, park interpreters, and others with expertise in reaching particular audiences. With these partners, we develop resources and communities of practice, offer educator workshops, and run events for the public. We will will present on our pedagogical techniques, our metrics for success, and our evaluation findings of our education and outreach projects that help us towards reaching our vision: We envision a world filled with science literate societies capable of thriving with today's technology, while maintaining a sustainable balance with the natural world; a world where people develop and sustain the ability to think critically using observation and evidence and participate authentically in scientific endeavors; a world where people see themselves and their culture within the scientific enterprise, and understand science within the context that we are all under one sky and on one Earth. Photo Caption: Multiverse Team Members at our Space Sciences Laboratory from left to right: Leitha Thrall, Daniel Zevin, Bryan Mendez, Nancy Ali, Igor Ruderman, Laura Peticolas, Ruth Paglierani, Renee Frappier, Rikki Shackelford, Claire Raftery, Karin Hauck, and Darlene Yan.

  20. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)